
University: Technische Universität Berlin

Institute: Institut für Softwaretechnik und Theoretische Informatik

Author: Olegs Klujs

Advisers: Hartmut Ehrig, Claudia Ermel

Date/Place: 17.08.2010 / Berlin

Concept and Transformationen of an Application
Environment for Model Transformations Based on Triple

Graph Grammars and Mathematica.

Die selbstständige und eigenhändige Ausfertigung versichert an Eides statt

Berlin, den

…..

Unterschrift

Abstract
This thesis provides a description of an application environment realisation for model transforma-
tion / integration based on the triple graph approach. The implementation is performed in Mathem-
atica. Due to the use of functional programming in Mathematica, the resulting application shows a
low abstraction from the theoretical concepts. The implementation is tested in two case studies for
model transformation between class and entity-relationship diagrams. Additionally, the basis for a
third case study is introduced. This case study will apply the model transformation and integration
to business service and IT service models by the use of ABT-Reo diagrams.

Kurzbeschreibung
In dieser Diplomarbeit wird die Realisierung einer Anwendungsumgebung für Modelltransforma-
tionen bei Verwendung des Konzeptes der Tripel Graphen beschrieben. Die Applikation zeichnet
eine niedrige Abstraktion von den theoretischen Grundlagen aus. Die Möglichkeit einer solchen Im-
plementierung ist auf das funktionale Programmieren mit Mathematica zurückzuführen. Die Imple-
mentierung wurde in zwei Fallbeispielen getestet. In den Fallbeispielen wird die Transformation
von Klassen- in Entity-Relationship Diagramme behandelt. Zusätzlich wurde die Grundlage für ein
drittes Fallbeispiel zur Realisierung von Modelltransformationen zwischen Geschäfts- und IT Ser-
vice Modellen unter Verwendung von ABT-Reo Diagrammen gelegt.

CONTENTS

I. Introduction 4

1 Motivation...5

2 Overview...6

II. Review of theoretical background 6

1 Triple Graph Grammars...7

1.1. Triple Graph. ...8
1.2. Triple Rule...10
1.3. Model Transformation...13
1.4. Model Integration...21
1.5. DPO Triple Rule..25

III. Realisation in Wolfram Research “Mathematica” 34

1 Wolfram Research “Mathematica”..35

1.1. Language..35
1.2. Concepts and techniques used in the implementation..36

2 Realisation of attributed Graph-transformation in Mathematica(by Jochen Adamek).........39

2.1. Introduction..39
2.2. Concepts and techniques used in the implementation..39

3 Realisation of Model Transformation in Mathematica...42

3.1. General model of the concept for implementation..42
3.2. Use cases..47
3.3. A Triple Graph as input..48
3.4. A Triple Rule as input..50
3.5. Applying a Triple Rule on a Triple Graph...51
3.6. Triple Rule modification..55
3.7. Model Transformation Realisation..61
3.8. Model Integration Realisation..65
3.9. Match search functionality for Triple Rule on Triple Graph...............................68
3.10. Automated source and source-/forward- sequence search.................................71

i

IV. Case studies 76

1 Company employee interdependency example...77

2 Car factory software example...93

V. Conclusion 100

1 Future Works..101

1.1. ABT-Reo Case study..101
1.2. Future modifications for the application..103
1.3. Future extensions...104

2 Conclusion..105

Bibliography 106

ii

I. INTRODUCTION

1 Motivation

1 Motivation
Nowadays visual modelling is an irreplaceable part of any business process, technical
design and production, system analyses and modification. No business, no company, no
project can be started without an analysis of work flows and a categorisation of units. Due
to the visual modelling proved to be more observable and distanced – a proper generalised
technique for working with huge data flows, relationships between units, simulation of pro-
cess execution, etc. - there have been developed various visual modelling languages and
techniques to realize different constructs and models in different systems and business
branches.

The understanding of the need and efficiency of the visual modelling led to a wide
spread implementation of such techniques and fast growth in the complexity of developed
systems. At this point a major problem came to surface: a system can be designed and im-
plemented as good as possible, however in case there is no suitable interface to the envir-
onment of the system (other systems) – it stays inefficient.

This led to the development of UML with implementations like RUP (Rational Uni-
fied Process) and Fusion, or DSL with various software realisations for designing
business / development processes and interaction (Visio, SmartDraw, etc.), which aims to
unite different modelling techniques under one source. In UML it is the language which
shall provide the interface, in DSL interfaces appear during the language generation pro-
cess.

However UML and DSL loose their efficiency by model growth or deeper specifica-
tion in some business areas. UML provides very abstract/general techniques, when the de-
velopers may seek for a more detailed / less abstract specification for their Diagrams. DSL
reaches its borders, when projects grow and the interfaces between different business
branches become less obvious, or a present realisation has to be extended / reorganised.
This fact creates a slot for a new technique.

Generally the requirement can be defined as follows: a technique is needed, which
provides a possibility to create interfaces between visual Model of different kinds and lan-
guages. Such an approach seek the model integration / transformation method based on al-
gebraic approach to Triple Graph Grammars as described in [EEH+08]. The main idea of
this method is that any visual model can be converted into a graph, which is build up ac-
cording to the rules of some formal language. Furthermore, any such graph can be inter-
preted as a unique sequence of basic (atomic) rules. These rules provide possibility (after
the basic rules for a visual model are defined) to search for a correspondence between rules
of different languages. Having corresponding atomic rules and following the build up se-
quence of a given graph in one visual language, we build up an appropriate graph in the
corresponding language. In such a way a “bridge” between two model of two different
visual languages can be constructed.

5

I. Introduction

2 Overview
The thesis consist of five parts.

The first part is the introduction, which includes a motivation part and an the over-
view of the thesis.

In the second part the theoretical background of graphs, triple rules and triple graph
grammars as introduced in [Sch94] and [EEH+08] are reviewed, as well as techniques of
model transformation and integration. In the end of the second part, in chapter II. 1.5. , the
triple rule concept is extended by a DPO rule concept, which extends triple rules with dele-
tion the functionality by keeping the morphism inductivity.

In the third part, a short introduction into Mathematica methods and concepts, used
during the implementation is made. In the next section the implementation of attributed
(typed) graph transformation in Mathematica realised by Jochen Adamek is briefly intro-
duced and the methods, included in the implementation in this thesis are described. Section
III. 3 is dedicated to the realization of model transformation / integration. The implement-
ation of all theoretical concepts from the second part are explained step by step Section
three also contains the implementation of the DPO rule extension, a method form auto-
mated match search and automated forward / integration rule sequence application.

The implemented concepts are tested in two case studies in part four. In these case
studies, two examples of class to entity-relationship diagrams transformation / integration
execution are described. It is shown how the rules are build, how the models are generated,
how automated source (source-/target-) search are applied to the model and how the auto-
mated forward and integration sequences are applied.

In the fifth part the future works can be found. The approach of ABT-Reo case study
realisation is briefly described.

6

II. REVIEW OF THEORETICAL BACKGROUND

II. Review of theoretical background

1 Triple Graph Grammars
Working with visual information representation has definite advantages, compared to deal-
ing with written information. This advantages led to development of various visual lan-
guages in all areas of modern science. Only in informatics there are countless kinds of dia-
grams, used to represent data flows, data storage, user interactions, instruction sequences,
operation system levels, system restrictions, etc. Yet, despite of all opportunities we gain
by using State-Charts, Sequence-, Entity-/Relationship-, Class- Diagrams, Fraction charts
or Data Graphs, etc. we are limited by the syntax of chosen visualisation method.

Triple Graph Grammars approach (first introduced by Andy Schürr[Sch94]) is an at-
tempt to create a method for connecting different systems/models with respect to some pre-
defined rules/criterias, so that changes in one system/model would inevitably lead to
changes in the other. The general idea of this approach is to define a three-tuple object out
of two graphs, a connections-relationship between them (realised also as a graph) and two
morphisms which carry out the transformation of one graph into an other inside the object.
On the one hand, this three-tuple can possess its own specific characteristic and behaviour
type; on the other hand graphs inside the tuple stay independent from each other since the
connection between them is realized with a third graph and morphisms. Thus two diagrams
from different visualisation languages can be connected, compared or put in dependence of
each other by the modification methods staying specific for chosen visualisation languages.

This chapter is a short introduction to the theoretical background of Triple Graph
Grammars which have been realized or used to realize Triple Graph Transformation/Integ-
ration in “Mathematica” in this thesis.

First formal definitions of Triple Graph, Triple Graph Morphism, Triple Rule and
Triple Transformation Step are brought in as they were introduced in [Sch94], [EEH+08]
and [EEE+07]. Further Model Transformation follows: before the final definition of Mod-
el Transformation is given, its explained how to generate source-/forward- rules from
triple rules, what is match consistency and the theorem of canonical composition / de-
composition is brought in. Similarly the Model Integration is described. As introduced in
[EEE+07] first the source-/target- and integrations rule are put up, then, as it was for
Triple Transformation, the canonical composition / decomposition is brought in, conclud-
ing with the definition of Model Integration.

Although the theory of triple graph transformation / integration,describes triple graph
transformation based on non-deleting triple rules, it appeared reasonable to build up a con-
struct which would offer the possibility of extending the implementation by the use of de-
leting-rules. This intend led to the idea of a DPO triple rule described in Section II. 1.5. .

The examples for visualisation of explained approaches and techniques are realized
in Class-Diagram language on left sides of the triple rules and Entity-Relationship-Dia-
gram language on right sides respectively. It is assumed that this modelling languages are
either wide known or can be intuitively understood from context. This modelling tech-
niques are widely described in [SE+07] and [BD+04].

8

1 Triple Graph Grammars

1.1. Triple Graph.
Understanding of the model transformation / integration based on triple graph grammars
requires being familiar with the general graph theory and the triple graph / triple graph
morphism concept. Therefore at this point the definition of graph, graph morphism, triple
graph and triple graph morphism are brought in, followed by a realisation of the theoretical
concepts in a practical example.

Definition 1 (Graph and Graph Morphism)
A graph G=V , E , s , t  consists of a set V of nodes (also called vertices), E of edges
and two functions src , tar : E → V ,the source and target functions.

Given graphs G1 ,G 2 with Gi=V i , E i , srci ,tar i for i=1,2 , a graph morphisms
f :G 1→ G2 , f = f V , f E , consists of two functions f V :V 1 →V 2 and f E : E1→ E2

that preserve the source and target functions, i.e. f V ◦ src1=src2 ◦ f E and
f V ◦tar 1=tar2 ◦ f E .

Definition 2 (Triple Graph and Triple Graph Morphism)
Three graphs SG , CG and TG , called source, connection, and target graphs, together
with two graph morphisms sG :CG → SG and tG :CG→ TG form a triple graph
G=SG 

sG CG
tG TG  . G is called empty, if SG , CG and TG are empty graphs.

A triple graph morphism m= s , c , t :GH between two triple graphs
G=SG 

sG CG
tG TG  and H=SH 

s H CH 
t H TH  consists of three graph morphisms

s : SG SH , c :CGCH and t :TGTH such that s ◦ sG=sH ◦c and t ◦ tG=tH ◦ c . It is
injective, if morphisms s, c and t are injective.

On the Image 1 are two simple Graphs: G1 in Class-Diagram language with only one
node “a” of type “Class” and G2 in Entity-Relationship language with only node “c” of
type “Table”. According to Definition 1 (Graph and Graph Morphism) these graphs can be
defined as fallows: G1=V 1 ,E1 , s1 , t 1 and G2=V 2 , E2 , s2 , t 2 , where
V 1={ a :Class } , E1=∅ , s1=∅ ,t 1=∅ and V 2={c :Table} ,E2=∅ , s2=∅ , t 2=∅ .

9

Image 1: Graphs: G1 and G 2

II. Review of theoretical background

In case, for instance, the diagrams on given images are used to model a data base repres-
entation in some object oriented programming language, it might be needed to describe the
relationship (coexistence property) between nodes a and c. Since G1 and G 2 are expected
to stay in their own modelling language, connecting them directly with an edge will lead to
major difficulties in later work. Besides, the intent of the theory is not only to establish a
connection, but also a relation between the graphs. Which makes it a better solution in this
case to insert a third graph G3 (Image 2) into the diagram, which on the one hand repres-
ents the connection between G1 and G2 but on the other hand is not bound to any partic-
ular modelling language. A formal definition for graph G3 is: G3=V 3 , E3 , s3 ,t 3 , with
V 3={b } , E3=∅ , s3=∅ ,t 3=∅ .

The actual connection between a,b and c remains missing. To realize it, firstly, the
three separate Graphs (G1 ,G 2 , G3) are united into one triple graph G 4 which includes
them all and for this reason can include also relations (visualised as edges) between nodes
from own under-graphs; secondly the actual edges are created by embedding two morph-
isms s13 :G3G1 and t 32 :G3G 2 . According to Definition 1 (Graph and Graph Morph-
ism) this morphisms can be defined as: s13= sV13 , sE13  , where sV13 :{b}{a:Class} ,
sE13 :∅∅ and s32= sV32 , s E32 , where sV32 :{b}{c:Table} , sE32 :∅∅ respect-

ively. The resulting construct is visualised in Image 3.

In the end the graph G4 can be defined as a triple graph according to Definition 2
(Triple Graph and Triple Graph Morphism): G 4=G1

s13 G3
t32 G 2 , with G1 - source graph,

G2 - target and G3 - connection graphs, s13 - source and t 32 - target morphisms.

10

Image 2: Graphs: G1 ,G 2 and G3

Image 3: Triple Graph: G1 ,G2 , G3⊆G4 , morphisms s13 , t 32

1 Triple Graph Grammars

1.2. Triple Rule
The ability to manually define a connection between two models is not the final aim of
graph transformation / integration. The aim is a rule-based construction which can be auto-
mated. Continuing the example from section 1.1 a requirement case is shown and the solu-
tion of it via a triple rule and a triple transformation step – two concepts which make a
automation possibility more near:

The requirement: to build up a data base representation in some programming lan-
guage. The approach chosen: to proceed with a stepwise build-up of models representing
the data base (entity relationship diagram) on source side and model representing some ob-
ject oriented programming language (class diagram) on target side. Furthermore, every
build-up step is defined by a unique rule. This rule describes changes to be made in every
sub-graph of a triple graph to fulfil a transformation and is constructed in following way:
the left-hand side of the rule - a triple graph which includes all components needed for the
rule to be applied, the right-hand side - a triple graph, used to replace the left-hand side and
a triple morphism, used to describe the replacement procedure of left-hand side triple graph
with the right-hand one. Since chosen approach creates a build-up sequence – only non-de-
leting triple rules are used. As a result the triple morphism is injective and left-total.

Image 4 Illustrates a simple triple rule “Class2Table” which inserts a new node of
type “Class” into the source part of a model, a new node of type “Table” into the target part
and a connection node into the connection graph with two connection morphisms respect-
ively. The left-hand side is an empty triple graph (in other words – there are no precondi-
tions in this rule), the right-side is the result-graph including the new nodes (of types
“Class”,”Connection”,”Table”). To describe the transformation procedure, a triple morph-
ism tr=s , c , t:G4G 4' is needed. It consists of three separate morphism. Each of this
morphisms is used to picture one of the transformations: s :G1G 1' , c :G 3G3 ' and
t :G 2G2 ' .

11

Image 4: Class2Table rule

II. Review of theoretical background

Definition 3 (Triple Rule tr and Triple Transformation Step)
A triple rule tr consists of triple graphs L and R, called left-hand and right-hand sides,
and an injective triple graph morphism tr= s , c , t : L → R .

Given a triple rule tr= s , c , t : L → R , a triple graph G and a triple graph morphism
m= sm , cm , tm: L → G , called triple match m, a triple graph transformation step

(TGT-step) G ⇒
tr , m

H from G to a triple graph H is given by three pushouts ([EEP+06]
“Graphs, Typed Graphs, and the Gluing Construction.”) SH , s ' , sn , CH , c ' , cn and
TH , t ' , tn  in category Graph with induced morphisms sH :CH → SH and
tH :CH → TH .

Assuming to have already a model representing some existing data base (for instance a
model already having two nodes of type “Class” with a node of type “Attribute” connected
to one of them in the class-diagram part of the model, three connection nodes in the con-
nection part and three nodes: two of type “Table”, one of type “Column” respectively in
the entity-diagram part – like in Image 9) and a triple rule with a node of type “Class” con-
nected to a node of type “Table” in its left-hand side (Image 8), a further difficulty be-
comes obvious: in the example data base model there are two “class2table” structures,
which correspond to the left-hand side of given rule.

The solution of this problem are three morphisms. Each of this morphisms defines an
appropriate correspondence between one of sub-graphs in the left-hand side of the rule and
the sub-graph of the example data base model. These morphisms are called matches.

12

Image 5: Triple Rule tr

Image 6: Triple Transformation Step

1 Triple Graph Grammars

To have the matches between given rule and the example graph provides the possibility to
perform the transformation step from Definition 3 (Triple Rule tr and Triple Transforma-
tion Step) by applying the rule to the example graph. The result is a triple graph G 4DB ' rep-
resenting the example data base model, which is extended by the right-hand side of given
rule in points of matches (Image 10).

13

Image 9: Example DB

Image 10: Example: Performing
transformation step

Image 8: Subclass2Table rule

II. Review of theoretical background

1.3. Model Transformation
Model transformation is another realisation of “divide and conquer” principle. To perform
a transformation from one model into an other, rules for synchronous creation of these
models are defined. These are simple triple rules (according to Definition 3). All nodes
from given models should be reachable by the rules. It means there shouldn't be a node in
(for example) the target model which wouldn't appear in right-hand side of some rule.

As soon as transformation (connection) rules are defined, the actual triple graph
transformation process can start. First, the source model is parsed in order to find a se-
quence of rules, which were used to build it up. In the beginning only the source model is
available and original triple rules, which are defined for the transformation, can't be used
during establishment of the source sequence (parsing of the source model can be per-
formed only with triple rules containing source graphs, but original triple rules contain also
connection and target graphs). For that reason original triple rules are reduced to source
triple rules, which are same triple rules with connection and target graphs empty. Yet, for
later phases connection and target parts will be needed, so for every source rule there is a
unique forward rule. Forward rules are constructed in such a way that after applying them
to a source model (a triple graph in which only the source graph is not empty), only con-
nection and target graphs of the model change but the source graph stays same.

Definition 4 (Derived Triple Rules)
Given a triple rule tr as in Definition 3 (Triple Rule tr and Triple Transformation Step), a
source rule trS and a forward rule trF can be constructed as shown in Image 11:

After establishing the source sequence, the corresponding source model is build up by ap-
plying source rules in inverse order of the parsing sequence and by using comatches as
new matches. Then forward rules are applied in the same order. Yet again a difficulty oc-
curs: As already mentioned in the description of triple rules application example (1.2.
Triple Rule) there are often multiple possibilities to apply same triple rule to same triple
graph. Which of these possibilities is selected depends on chosen matches. Therefore in
order to perform a consistent graph transformation, forward rules are applied strictly with
the notion of match consistency.

14

Image 11: Construction of source- and forward- rules

1 Triple Graph Grammars

Definition 5 (Match Consistency)

Let trS
* and trF

* be sequences of source rules triS and forward rules tri F , which are de-
rived from same rule tri for i=1,... , n .Let further G00 ⇒

tr *S G n0 ⇒
tr *F Gnn be a TGT-sequence

with (mi S , niS) being match and comatch of triS (respectively (mi F , niF) for tri F) then
match consistency of G00 ⇒

tr S
*

Gn0⇒
trF

*

Gnn means that S-component of the match mi F is
uniquely determined by the comatch ni S (i=,1 , ... , n).

Theorem 1 (Canonical Decomposition and Composition Result - Forward
Rule Case)

1. Decomposition: For each TGT-sequence based on triple rules tr*

(1) G0⇒
tr *

G n
 there is a canonical match consistent TGT-sequence

(2) G00=G 00⇒
tr *S

G n0 ⇒
tr *F

Gn n=Gn
 based on corresponding source rules trS

* and for-

ward rules trF
* .

2. Composition: For each match consistent transformation sequence (2) there is a ca-
nonical transformation sequence (1).

3. Bijective Correspondence: Composition and Decomposition are inverse to each
other.

Based on Theorem 1 (for prove see [EEE+07]), finally the formal definition of model
transformation can be introduced. According to that definition, model transformation is a
triple of a source graph, a target graph and a forward rule sequence. In this triple the
source component of first triple graph in given sequence is the given source graph, the tar-
get component of last triple graph in given sequence is given target graph. Such a trans-
formation is called source consistent, if for the forward sequence a source sequence exist
and their combination is match consistent.

Definition 6 (Model Transformation)

A model transformation sequence GS ,G 1 ⇒
tr *F

G n , GT  consists of a source graph G S , a

target graph GT , and a source consistent forward TGT-sequence G1 ⇒
tr *F

Gn with
GS=projS G1 and GT= projT Gn .

Source consistency of G1 ⇒
tr *F

Gn
 means that there is a source transformation se-

quence ∅⇒
tr *S

G1 , such that ∅⇒
tr *S

G1 ⇒
tr *F

G n is match consistent. A model transformation
MT :VLS0≡>VLT0 is defined by model transformation sequences GS ,G1 ⇒

tr *F

Gn , GT 
with GS∈VLS0 and GT ∈VLT0 .

Remark 1: A model transformation MT :VLS0≡>VLT0 is a relational dependency
and only in special cases a function. This allows to show that MT :VLS0≡> VLT0 defined
above is in fact MT :VLS≡>VLT .

15

II. Review of theoretical background

Fact 1 (Syntactical Correctness of Model Transformation MT): Given GS∈VLS0 and
G1 ⇒

trF *
Gn source consistent with projS G1=G S , then GT= projT Gn∈VLT and

G S∈VLS , i.e. MT :VLS≡> VLT . (for prof refer to [EEH+08])

16

Image 13:
Transformation

example source graph

Image 12: Transformation example rules
build-up: first row (light blue) – left-hand side triple graph,
second row (green) – right-hand side triple graph

According to Definition 6, to illustrate the process of triple graph transformation pro-
cedure a source model is needed, a set of triple rules and a sequence of corresponding for-
ward rules, in the end of which the target graph corresponds the actual target model.

Let the model in Image 13 be the source model and the set of rules in Image 12 - the
given set of transformation rules (Image 12). Now it is possible to generate corresponding
source and forward rules. Source rules are created by deleting connection and target com-
ponents from original rules (Image 15).

Image 15: Example source rules

Image 14: Example forward rules

A forward rule is applied to a triple graph, which normally has a not-empty source
graph with the intend of constructing corresponding connection- and target- graphs,
without changing the source graph. Therefore in the source part of forward rules between
left- and right- hand triple graphs, an identity morphism is needed. Yet an identity morph-
ism alone is not enough, since in connection- and target- parts of the rule simple injective
morphisms are used. If changes to original rules would be limited to replacement of the
morphism, connecting left- and right- hand source graphs, with an identity morphism, the
result triple graph in right-hand side contained often a partial morphism from connection-
to source- graphs, which contradicts to Definition 2 (Triple Graph and Triple Graph
Morphism). Therefore the construction of a forward rule according to Definition 4 (De-
rived Triple Rules) contains also the replacement of the morphism from connection- to
source- graphs of left-hand side triple graph in the rule with the concatenation of original
morphism from connection- to source- graphs of left-hand side triple graph (sL in Image
11) with original morphism transforming left-hand side source graph into right-hand one (
s in Image 11). As a result of this action, the left-hand source graph contains nodes and

edges created by sL and s (since s is non-deleting by Definition 3). It means the left- and
right- hand source graphs of forward rules are equal to each other and to the right-hand
source graph from original rule (Image 12 triple rules, Image 14 corresponding forward
rules).

Having source rules, the source sequence which led to the source model can be estab-
lished. In most cases it is done manually. The theory implicates the source model have
been build up by the use of some rules, from which given transformation rules were de-
rived. So the source sequence is supposed to exists. Yet often it is not the case. Then the
source sequence is established brute-force manually, or automated. In III. 3.10. a concept
realisation is introduced to shrink the search tree of brute-force pattern search, by the use
of DPO rules (1.5.) and backtracking.

In this example it is assumed that the source sequence
G0 ⇒

Class2TableS G1 ⇒
Class2TalbeS G 2 ⇒

Subcalss2TableS G3 ⇒
PrimaryAttribute2ColumnS G4 ⇒

Association2ForeignKeyS G5 was estab-
lished manually according to Table 1.

After the source sequence is established, forward rules can be applied to the source
model in source sequence corresponding order with the notion of match consistency ac-
cording to Table 2. The target graph of triple graph G10 is the actual target model (Image
16) and the graph transformation can be formally noted as

(projS G5 ,
G5 ⇒

Class2TableF G 6 ⇒
Class2TalbeF G 7 ⇒

Subcalss2TableF G 8 ⇒
PrimaryAttribute2ColumnF G 9 ⇒

Association2ForeignKeyF G10 ,
projT G10).

Moreover, the example graph transformation is source consistent:

1. The existence of a source sequence is a fact by source model construction (Table 1).

2. Match consistency of the source sequence can be shown by comparing comatcha
source components from Table 1 with matches source components from Table 2 -
Table 3.

R
ul

e

Visual representation

N
am

e match
n

Comatch
n-1

(only source part)
Comment

C
la

ss
2T

ab
le

S

G0 ∅ Class2Table is applied with
an empty match.

C
la

ss
2T

ab
le

S

G1 ∅ “a” - “Company”
 Again applying
Class2Table with empty
match.

Su
bc

la
ss

2T
ab

le
S

G 2 “a” - “Person” “a” - “Person”

Left hand triple graph
source graph from rule
Subclass2Table is a graph
with one node of type
“Class”, therefore choosing
one node of type “Class” -
from G 2 - “Person”(the
one being parent to an
other node of type “Class”
in Image 13).

Pr
im

ar
yA

ttr
ib

ut
e2

C
ol

um
nS

G3 “a”-”Customer” “a” - ”Person”
“b” - ”Customer”

Precondition (left hand
triple graph source graph)
of rule
PrimaryAttribute2Column
is also a graph with one
node of type “Class” . Yet
according to Image 13 -
“Customer” is the node,
which has a primary
attribute.

A
ss

oc
ia

tio
n2

Fo
re

gn
K

ey
S G 4

“a”-”Company”
“b”-”Person”

“a” - ”Customer”
“b” - “Attribute”
“c” -
”PrimitiveDataType”

In the precondition of
Association2ForegnKey
there are two nodes of type
“Class”: Therefore two
nodes type “Class” to
choose for G4 . Since in
Image 13 “Person” and
“Company” are connected
with a node of type
“Association”, those are
chosen.

G5

“a”-”Company”
“b”-”Person”
“c”-”Association”

G5 corresponds to the
example source graph from
Image 13.

Table 1: Example source sequence execution

(Light blue nodes in “Visual representation” are ones matched with nodes in left hand side of rule beginning at same raw with
corresponding “Visual representation”; the “co-match” entry belongs to rules ending in same raw with corresponding “co-match”)

Rule Visual representation Nam
e match n

C
la

ss
2T

ab
le

F

G5

Source:
“a” - “Company”
Connection:
∅

Target:
∅

C
la

ss
2T

ab
le

F

G6

Source:
“a” - “Person”
Connection:
∅

Target:
∅

Su
bc

la
ss

2T
ab

le
F

G7

Source:
“a” - “Person”
“b” - “Customer”
Connection:
“1” - “2”
Target:
“d” - “Person”

 P
rim

ar
yA

ttr
ib

ut
e2

C
ol

um
nF

G8

Source:
“a” - ”Customer”
“b” - “Attribute”
“c” - “PrimaryDataType”
Connection:
“1” - ”3”
Target:
“d” - “Person”

A
ss

oc
ia

tio
n2

Fo
re

gn
K

ey
F

G9

Source:
“a”-”Company”
“b”-”Person”
“c”-”Association”
Connection:
“1” - ”1”
“2” - “2”
Target:
“d” - “Company”
“e” - “Person”
“f” - “cust_id”

G10

Table 2: Example forward sequence execution

(Light blue nodes in “Visual representation” are ones matched with nodes in left hand side of rule beginning at same raw with
corresponding “Visual representation”)

Source comatch
n (1..5)

Forward match
n (6..10)

“a” - “Company” “a” - “Company”

“a” - “Person” “a” - “Person”

“a” - ”Person”
“b” - ”Customer”

“a” - “Person”
“b” - “Customer”

“a” - ”Customer”
“b” - “Attribute”
“c” - ”PrimitiveDataType”

“a” - ”Customer”
“b” - “Attribute”
“c” - ”PrimitiveDataType”

“a”-”Company”
“b”-”Person”
“c”-”Association”

“a”-”Company”
“b”-”Person”
“c”-”Association”

Table 3: Example match consistency check

Image 16: Transformation example target
graph

1.4. Model Integration
The concept and realisation of model integration resembles the concept and realisation of
model transformation, yet it aims another task specification. Model transformation is
meant for building up a new model in some different modelling language, which would
correspond to an existing one. An example use case is modelling a new data base for an ex-
isting object oriented application.

But what can be done if both data base and application already exist? Model trans-
formation fails in such a case, since there is no need in new creation of the second model.
The task specification in this case is to build up a connection between two existing models.
This is the task of model integration.

Similarly to the model transformation, the process of model integration begins with
the triple rule definition. After that the two models are parsed for a triple rule sequence,
which was used to build them up. Yet since in this case not only source, but also target
models are known, the sequence searched is not a source, but a source-target sequence.
This means that the triple rules used to generate this sequence are source-target rules. So,
first all rules are transformed into source-target rules by deleting the connection graphs
from the original rules. However, like in the model transformation case, further the connec-
tion graphs will be needed. To restore connection graphs in existing source-target models
integration rules are created. When an integration rule is applied to a triple graph, source
and target graphs stay same and only connection graphs are changed.

Definition 7 (Source-target rule, integration rule)
Given a triple rule tr as in Definition 3 (Triple Rule tr and Triple Transformation Step), a
source- target rule trST and an integration rule tr I can be constructed as shown below:

Model Integration includes also a theorem for canonical composition and decomposition
(for formal proof refer to [EEH+08]), which states that a triple rules sequence can be con-
verted into a source-target rule sequence followed by an integration rule sequence and visa
versa. This observation makes it possible after finding a source-target rule sequence which
leads to the building up of given source and target models, to apply integration rules in cor-
responding order and build up the connection graph in that way.

Image 17: Construction source-target and integration rules

Theorem 2 (Canonical Decomposition and Composition Result - Integration
Rule Case)

1. Decomposition: For each TGT-sequence based on triple rules tr*

(1) G0⇒
tr*

G n there is a canonical S-T -match consistent TGT-sequence

(2) G00=G 00 ⇒
tr*ST

G n0⇒
tr*I

Gnn=G n based on corresponding source-target rules tr*ST
and integration rules tr* I .

2. Composition: For each S-T -match consistent transformation sequence (2) there is
a canonical transformation sequence (1).

3. Bijective Correspondence: Composition and Decomposition are inverse to each
other.

Finally having the source and target models, the integration sequence and the final triple
graph with connection graph filled, the formal definition of Model integration can be verb-
alised (Definition 8). Having this two models and a sequence given, the corresponding
connection graph can be build up. The integration sequence itself is match consistent.

Additionally, as Remark 2 states – there exists only one unique source-target se-
quence for a given integration sequence, since the matches and comatches, which are used
to apply source-target rules, are determined by the match in the integration rules sequence.

Definition 8 (Model Integration)

A model integration sequence G S , GT  ,G0⇒
tr*I G n , G  consists of a source and a target

model G S and GT , an integrated model G and a source-target consistent TGT-sequence
G0⇒

tr*I Gn with G S=projS G0 and GT= projT G0 . Source-target consistency of

G0⇒
tr*I Gn means that there is a source-target transformation sequence ∅⇒

tr*ST G0 , such that

∅⇒
tr*ST G 0⇒

tr*I Gn is match consistent. A model integration MI :VLS0×VLT0≡>VL is defined

by model integration sequences G S ,G T  ,G 0⇒
tr*I Gn , G with GS∈VLS0 , GT ∈VLT0 and

G∈VL .

Remark 2: Given model integration sequence G S , GT  ,G 0⇒
tr*I G n , G  the corres-

ponding source-target TGT-sequence ∅⇒
tr*ST G0 is uniquely determined. The reason is that

each comatch of triST is completely determined by S- and T-component of the match of
tri I , because of embedding R(triST)≡> L(tri I) . Furthermore, each match of triST is giv-
en by uniqueness of pushout complements along injective morphisms with respect to non-
deleting rule triST and its compatch. Moreover, the source-target TGT-sequence implies
GS∈VLS0 and GT ∈VLT0 .

To visualise a model integration, source and target models and a set of triple rules are
needed. Let the source graph and triple rules be the same as in the transformation example
(Image 12 and Image 13). Further, let the target graph from G10 (Image 16) be the target
model.

Next source-target and integration rules have to be constructed out of triple rules. To
construct source-target rules again a deletion has to be performed, yet this time only in
connection graphs of given triple rules(Image 18).

To construct integration rules a similar procedure as in forward rules construction is
performed, but this time in source and target parts of given triple rules. To ensure that
source and target graphs stay untouched after source-target rule application to a triple
graph, again identity morphisms are needed. To preserve consistency of right-hand graph
in the rule, after an injective morphism execution in connection parts – a concatenation of
morphisms is performed (s° sL and t ° t L in Image 17). This concatenation leads to the
source and target graphs in left-hand sides of the rules being equal to source and target
graphs in right-hand sides of rules respectively (Image 19).

Image 19: Example integration rulesImage 18: Example source-target rules

Further the pattern search for the source-target sequence is performed brute-force
manually or automated. Since the sequence of triple rules is known from transformation

example: G0 ⇒
Class2Table G1 ⇒

Class2TalbeG2 ⇒
Subcalss2Table G3 ⇒

PrimaryAttribute2ColumnG 4 ⇒
Association2ForeignKey G5 , and

according to Theorem 2 - a canonical S-T consistent sequence of triple rules (which the se-
quence above is) can be decomposed to a corresponding source-target and integration rules
sequence:
G0 ⇒

Class2TableST G1 ⇒
Class2TalbeST G2 ⇒

Subcalss2TableST G3 ⇒
PrimaryAttribute2ColumnST G4 ⇒

Association2ForeignKeyST G5 and
G5 ⇒

Class2TableI G6 ⇒
Class2TalbeI G 7 ⇒

Subcalss2TableI G8 ⇒
PrimaryAttribute2ColumnI G 9 ⇒

Association2ForeignKeyI G10 respect-
ively. After executing the source-target sequence and gaining source-target graph G5 , the
integration sequence can be applied as follows in Table 4.

Rule Visual representation Nam
e match n

C
la

ss
2T

ab
le

F

G5

Source:
“a” - “Company”
Connection:
∅

Target:
“d” - “Company”

C
la

ss
2T

ab
le

F

G6

Source:
“a” - “Person”
Connection:
∅

Target:
“d” - “Person”

Su
bc

la
ss

2T
ab

le
F

G7

Source:
“a” - “Person”
“b” - “Customer”
Connection:
“1” - “2”
Target:
“d” - “Person”

 P
rim

ar
yA

ttr
ib

ut
e2

C
ol

um
nF

G8

Source:
“a” - ”Customer”
“b” - “Attribute”
“c” - “PrimaryDataType”
Connection:
“1” - ”3”
Target:
“d” - “Person”
“e” - “Person”

A
ss

oc
ia

tio
n2

Fo
re

gn
K

ey
F G9

Source:
“a”-”Company”
“b”-”Person”
“c”-”Association”
Connection:
“1” - ”1”
“2” - “2”
Target:
“d” - “Company”
“e” - “Person”
“f” - “cust_id”
“g” - “:FKey”
“h” - “employee_cust_id”

G10

Table 4: Example integration sequence execution

(Light blue nodes in “Visual representation” are ones matched with nodes in left hand side of rule beginning at same raw with
corresponding “Visual representation”)

1.5. DPO Triple Rule
In process of implementation of the triple graph theory a need for the possibility to create
deleting triple rules occurred. It is not possible to realize this approach by the use of an in-
jective triple graph morphism between left- and right-hand triple graphs in the rule. This
fact led to the extension of the theoretical concept of the triple rule.

The non-deletion property is important for triple graph transformation theory because
it prevents triple graph transformation/-integration sequences ending up in loops, by adding
and deleting same components of a graph. This is a temporal need. So, the task assignment
was stated as follows: needed was a graph transformation mechanism, which by its limita-
tion to injectivity, would form same result set as an injective triple morphism formed, yet
by lifting that limitation creating a result set (triple rule right-hand side) extended by triple
graphs, which would be subgraphs of left-hand side ones.

A solution for such a task is again a triple graph. Instead of using a triple-morphism
in a triple rule specification three triple graphs are taken.

Definition 9 (DPO Triple Rule and Extended Transformation Step)

A DPO rule dtr consists of triple graphs L= LS 
sL LC 

t L LT  and R=RS 
sR RC 

t R RT 
called left-hand and right-hand sides, a triple graph K=KS 

s K K C 
tK K T  and two inclu-

sion triple graph morphisms tr L=kl s , kl c , kl t: K → L and trR=kr s , krc , krt : K → R ,
so that dtr=L 

trL K 
tr R R .

Given a DPO rule dtr=L 
trL K 

tr R R , a triple graph G and a triple match
m= sm ,cm ,tm : L →G - which fulfil the gluing condition (according to [EEP+06]
“Definition 6.3 (gluing condition in adhesive HLR systems)”), then the extended triple

graph transformation step (ETGT-step) G ⇒
dtr , m

H from G to a triple graph H (Image 22)
is given as follows:

• POC SK', CK' and TK' are unique, because kl s , kl c and kl t are monomorphisms
and TripleGraph is a weak adhesive HLR category (see [EEP+06] “Fact 4.27 The-
orem 4.26 Properties of (weak) adhesive HLR categories”).

• POC SK', CK' and TK' exist, because sm, cm, tm fulfil the gluing condition by con-
struction.

• PO objects SH, CH and TH exist uniquely by [EEP+06]“Fact 4.18 (TripleGraphs
is an adhesive HLR category)” and [EEP+06]“Definition 4.9 (adhesive HLR cat-
egory)”.

and can be constructed in two phases:

Image 20: DPO Rule dtr

1. Calculating three pushout complements(definition [EEP+06]“Definition A.20”,
yellow fields in Image 22): SK 

sk SK ' 
kl ' S SG , CK 

ck CK ' 
kl ' C CG and

TK 
tk TK ' 

kl 'T TG with morphisms: sK ' :=kl s '
−1° sG °kl c ' and

tK ' :=kl t '
−1° tG ° kl c ' (see Image 21).

2. Calculating three pushouts (definition [EEP+06]“Graphs, Typed Graphs, and the
Gluing Construction.”, blue fields in Image 22): SH , kr s ' , sn  , CH , krc ' , cn
and TH , kr t ' , tn with induced morphisms
sH :=induced  sn° sR , kr s ' ° sK ' , cn , kr c '  and
tH :=induced tn°tR , kr t ' °t K ' , cn , kr c '  (see Image 23).

Image 24: DPO Transformation Step

Image 22: ETGT-step: pushouts and
pushout complements

Image 21: ETGT-step: morphism
calculation in phase 1

Image 23: Calculation of induced morphism in phase 2
(shown only for sH , for tH identically)

Remark 3 (Condition for component-wise construction):

Pushouts SG , kl s ' , sm , CG , kl c ' , cm , TG ,kl t ' , tm and SH ,kr s ' , sn  ,
CH ,krc ' , cn and TH ,kr t ' , tn can be constructed component-wise (with
SK 

sk SK ' 
kl ' S SG , CK 

ck CK ' 
kl 'C CG , TK 

tk TK ' 
kl ' T TG), only if there are morphisms sK '

and t K ' with sK ' °ck=sk ° sK , kl s ' ° sK '=sG °kl c ' , tK ' °ck=tk °tK and
kl t ' °tK '= tG° kl c ' .

Fact 2 (Component-wise construction for ETGT-step for Model Transformation/Integra-
tion)
Preconditions from Remark 3 are always valid in ETGT-steps while using triple rules for
computation of graph transformation source and forward sequences or integration
source-/target- and integration sequences.

1. Source sequence:
The source sequences are not created directly. To compute the source sequence, a
given source model is parsed using inverse source rules, i.e. rules that are deleting
on source component. Each parsing sequence ending at the empty graph specifies a
source sequence, which is given by inverse of the parsing sequence.

In this context considered are deleting triple rules trS
−1: LS

−1  KS
−1 RS

−1 derived
from triple rule tr : LR with kl=id .

The source graph G has also the specific form of G=GS ∅∅

⇒D= DS 
sK '
∅

t K '
∅ and sK '=∅ , tK '=∅ .

2. Forward sequence:

trF :=LF 
kl K F

kr RF  , where kl=id

⇒ D=G⇒ sK ' ,t K ' = sG ,tG are well defined.

3. Source-/target- and integration sequences can be shown similarly.

Image 25: Deletion source
triple rule

Definition 9 introduces the general idea of a dpo triple rule. However it was not the subject
of this thesis to formulate a final dpo rule definition, but to create a dpo rule construct,
which under certain conditions could be applied to the triple graph transformation /integra-
tion theory. That Definition 9 can be used only under explicit restriction of a gluing condi-
tion check can be seen from Image 26.

In counterexample from Image 26 the triple rule consists of empty graphs except in
left-hand side of the rule in source graph G1 ' . The target graph is a simple class2Table
graph G 4DB ' (like in Image 3). The match assigns “a:Class” node in G1 ' to “a:Class” node
in G1DB ' . During the attempt to apply Definition 9 and perform the ETGT-step, an error
occurs: After constructing component-wise three pushout complements G1DB ,G2DB ,G 3DB

phase 1 fails, since morphism sK ' is obviously partial.

For still being able to use Definition 9 in the thesis, it was proven in Fact 2 that for
specific use of triple graph transformation / integration, conditions from Remark 3 are al-
ways fulfilled. So Definition 9 can be used without limitations.

To show the possibility of this approach, to work also in non triple graph transforma-
tion / integration environment (yet the final definition of ETGT-step is held open for later
works) the example form section 1.2. is taken up and extended by a new rule which is the
deletion rule for Subclass2Table(Image 8) - RestoreSubclass2Table. It consists of G4 ' on
left-hand side and G 4 on right-hand. The attempt to construct such a rule with a triple rule
according to Definition 3 (Triple Rule tr and Triple Transformation Step) fails, since
morphisms s ' , c ' , t ' become partial instead as expected injective (Image 27).

Image 26: Example: ETGT-step fail

However, it is possible to build up such a rule using Definition 9 (DPO Triple Rule and Ex-
tended Transformation Step). Left-hand and right-hand triple graph stay same as in Image
27, yet the morphisms are replaced by a triple graph structure. For the implementation of
triple graph transformation in this thesis, only certain kind of deletion rules are concerned
– the ones which are inverse to some given non-deleting triple rules. That for the intro-
duced example as much as the implemented extension of the triple rule in Definition 3 –
dpo rule in Definition 9 include some limitations and restrictions.

Image 27: Attempt to build up a deletion
triple rule according to Definition 3

Image 28: DPO triple rule dtr:
RestoreSubclass2Table

Therefore RestoreSubclass2Table can be constructed as followed: Left-hand and right-
hand triple graph are G 4 ' andG 4 respectively, the partial triple morphism
 s ' , c ' , t ' :G 4 ' G4 is replaced by two injective triple morphisms:  s , c , t :G4CG 4 '
and  sc , cc , tc :G 4CG 4 . In order to use all rules defined according to Definition 3
(Triple Rule tr and Triple Transformation Step), one of the triple morphisms is defined as
identity triple morphism which is a subset of injective ones (in case of non-deleting rules, it
is  s , c , t :G4CG 4 ' , in case of deleting rules –  sc , cc , tc :G4CG 4). This leads to
connection graph G4C being an exact copy of either left-hand or right-hand side triple
graphs (see Image 28).

Image 29 finally illustrates the application of RestoreSubclass2Table to the result
triple graph G4DB ' from 1.2. . Like in the triple rule application according to Definition 3 to
perform this operation a triple graph, a triple rule and a match between them are required.
However, to proceed further according to Definition 3, pushouts([EEP+06]“Graphs, Typed
Graphs, and the Gluing Construction.”) G1DB , s , sm , G3DB , c , cm and G2DB , t , tm
should be executed, yet this is impossible since morphism s ' , c ' , t ' are directed opposite
the direction of the transformation step. However in Definition 9 Phase 1 a pushout com-
plement([EEP+06]“Definition A.20”) is performed. It means that proceeding with the
transformation step in this case is to execute pushout complements G1DB ' 

s ' G 1DB 
smc G1C ,

G3DB ' 
c' G3DB 

cmc G3C and G 2DB '
t ' G2DB

tmc G2C . Since s , c , t are inclusions by definition,
so are also s ' , c ' , t ' . This provides the opportunity to use inverse morphisms
s '−1, c '−1, t '−1 to calculate s13DB :=s '−1° s13DB ' °c ' and t 32DB :=t '−1° t32DB '° c ' . The pushout

complement result graphs and the calculated morphism combined build a triple graph
G 4DB=G1DB 

s13DB G 3DB 
t32DB G2DB . At this point conditions from Remark 3 have to be

checked, since in this case they are obviously fulfilled, it can be proceeded to the second
phase. To perform the second phase from Definition 9 wont lead to any changes in the res-
ult graph, because executing pushouts and calculating induced morphisms from identity
morphisms will lead to input triple graph being identical to output triple graph. Therefore
phase 2 is skipped. G 4DB is the result of applying RestoreSubclass2Table to G4DB ' .

Similarly can be shown, how a non-deleting rule (for instance Subclass2Table) can
be transformed into an extended triple rule and applied on some graph. During non-delet-
ing rule construction morphisms from dpo rule interface triple graph to left-hand side triple
graph become identity morphisms. This leads to first phase of Definition 9 being skipped
in the application process. But Definition 9 without the first phase converts to Definition 3.
So the application of the rule proceeds according to Section 1.2. .

Image 29: Example: Applying a dpo triple rule

This is the reason for extension of triple rule definition (Definition 9) to have no ef-
fect on actual triple graph transformation / integration implementation described in this
thesis. For triple graph transformation / integration purposes and as user inputs – non-delet-
ing rules are used with identity morphisms from connection to left-hand side of the rule, so
that the extended rule is reduced to triple rule (Definition 3). Yet in transformation- and in-
tegration-sequence search the functionality to apply deleting rules is the key for shrinking
the search tree and performing an efficiency raise in that way.

III. REALISATION IN WOLFRAM RESEARCH

“MATHEMATICA”

III. Realisation in Wolfram Research “Mathematica”

1 Wolfram Research “Mathematica”

1.1. Language.
The commercial software Mathematica was developed 1986 by Stephen Wolfram. The
software unites different approaches and techniques used also of procedural, object ori-
ented and functional programming. Also Mathematica provides an enormous powerful
GUI. With the graphical user interface of Mathematica it is possible to perform any kind of
calculation and evaluation. It support a big amount of special symbols and mathematical
functions. The possibility to define and visualise in Mathematica any mathematical or
physical formula, calculation or evaluation makes interesting to developers and scientists
normally using such tools like Matlab.

One of main techniques used in model transformation / integration realization is pat-
tern search. Without it no automated match search(III. 3.9.) can be performed. Without
automated match search automated transformation and integration can't be implemented.
Yet a pattern search evaluation time grows exponentially with the amount of nodes in the
model. Already the model in the second case study needs up to 6 hours evaluation time.
For this reason is the possibility of parallel computing, provided by Mathematica of
enormous importance for the realisation of model transformation / integration realization.
Mathematica supports multitasking and parallel computing which can be realised as auto-
matic parallelization, parallelization of data structures, parallelization for shared memory
and synchronisation.

An other reason for choosing this programming language, was the support of func-
tional programming in combination with a powerful visualisation engine.

Functional programming is important, since it creates the possibility to implement
the theoretical concepts without converting or extending these concepts with additional in-
formation or constructions, i.e. to implement as near to the theory as possible. A realisation
in java for instance implies the usage of class/interface structures. But most definitions,
theorems and facts in theoretical informatics can be classified as declarations or sets. It is
possible to declare and work with sets in most programming language (mostly realised as
lists or arrays), but normally sets contain elements of only one type, so even such a simple
definition like the definition of a graph II. 1.1. Definition 1, where a graph G is defined by
a set G :=V , E , s , t  , isn't easily possible. The reason is that V is a set of nodes, E a set
of edge and s and t functions, which means that V and E are of different types. Mathemat-
ica doesn't fix the type of the set, so that a graph can be defined directly in the same way it
is in the theory: G :=[V , E , s , t] This example shows an other advantage of functional
programming. It also provides the possibility to use functions as arguments of methods
[Pepper99] “Section 8.1” or use lamda notation [Pepper99] “Section 6.1” during the work
with lists.

The visualisation engine of Mathematica provides methods to visualise functions,
data, discrete objects, diagrams, images and annotations. It supports professional-quality
static and dynamic representations. Methods provided in Mathematica for visual represent-
ation of graphs are easy to combine with the theoretical definition of graphs. This options
relieve from the necessity to search or develop an additional visualisation engine for graph
visualisation.

38

1 Wolfram Research “Mathematica”

1.2. Concepts and techniques used in the implementation
In this cheater basic concepts of working with Mathematica are introduced. This is needed
for the explanation in the practical part of the thesis (III. 3) to be understandable. For de-
tailed information about work with Mathematica refer to the manual on Wolfram Research
homepage([MATH]) or the technical report of Jochen Adamek([Ada09]) ”Cheaters 6.1.-
6.5., 7.1.-7.2.”.

Module[{x, y, ...}, expr]
Specifies that occurrences of symbols x, y, … in expr should be treated as local. Creates
new symbols to represent each of its local variables every time it is called. Module can be
nested in any way, with inner variables being renamed if necessary.
In the implementation Module[] is used for general programming. Modules appear to be
most suitable for the purpose of semi-object oriented programming, since they provide an
delimited environment for local variables, which allows to segment the code, similar to
method in Java. Mathematica is providing more then only programming possibilities, but
also a powerful calculation, evaluation and visualisation engine with a specific user inter-
face in form of notebooks.

Notebook[{ cell1 , cell 2 ,...}]
is the low-level construct that represents a notebook manipulated by the Mathematica front
end.
Notebooks are saved in files with the ending “.nb” and consists of a defined amount of
cells. In each cell is executable code. Each cell can be activated, so that the code is evalu-
ated. A notebook uses standard Mathematica operations, methods and functions, but in case
special or user-defined methods are required additional packages can be loaded. Notebooks
are not proper for implementing applications, since they provide a real-time evaluation. For
programming Mathematica provides Packages, which can be included into each other and
store executable program code in form of variables, functions and modules. Packages are
loaded into a notebook with the command Needs[“...”].

Needs[“context`”]
Calls Get["context`"]. By convention, the file loaded in this way is the one which contains
a package that defines “context`”. Needs["file`"] typically reads in a file named “file.m”.

Package (.m)
Mathematica source format. Used for storing and exchanging Mathematica programs,
packages and data. Plain ASCII text format. Stores Mathematica expressions in Input-
Form. Can represent program code, numerical and textual data, 2D raster and vector im-
ages, 3D geometries, sound, and other kind of data.
As mentioned before, list objects are very common in use with Mathematica and very prac-
tical for representing theoretical concepts.

39

III. Realisation in Wolfram Research “Mathematica”

List ({…})
{e1, e2, ...} is a list of elements. Lists are very general objects, that represent collections of
expressions. Nested lists can be used to represent tensors.
Object-like structures like the triple graph or triple rule are realised as lists of different
data, which appear normally as the output of a module.

There is a huge amount of functions, which can be applied to lists. Lower are some
definitions of the ones used in the description of model transformation practical realisation:

Map[expr]
applies f to each element on the first level in expr.

Select[list,crit]
picks out all elements e i of list for which crit[e i] is True.

DeleteDuplicates[list]
deletes all duplicates from list.

Tuples[list1 , list 2 ,...]

generates a list of all possible tuples whose ith element is from list i .

Value assignment to a set of variables
A list of variables can be saved in one variable, but the same variable can be assigned to a
set of variable (Code 1).

Standard textual graph representation expression (- Graph: <x,y,Directed> -)
Is a standard textual output for a graph object in Mathematica. It represents a summary of
general information about components included in the graph: x is the amount of edges, y –
the amount of nodes, Directed – explains the graph to have directed edges (default value in
this thesis).

40

Code 1

1 Wolfram Research “Mathematica”

The implementation doesn't use this information, since it is obviously incomplete (main
data about the connections between edges and nodes is missing), yet it had to be intro-
duced, given that Mathematica Notebook engine(1.1.) uses this graph representation, each
time a graph object is in the result set of a calculation, but no explicit graph representation
method is specified.

41

III. Realisation in Wolfram Research “Mathematica”

2 Realisation of attributed Graph-transformation in
Mathematica(by Jochen Adamek)

2.1. Introduction
In his technical report Jochen Adamek introduces a tool which is a realization of a graph
transformation engine for (typed) attributed graphs. In “Konzeption und Implementierung
einer Anwendungsumgebung für attributierte Graphtransformation basierend auf Mathem-
atica”([Ada09]) Jochen Adamek explains the basics of (typed) attributed graph transforma-
tion theory and the ways of the realization of these concepts by the use of Mathematica. He
describes the construction and operating principle of graphs, pushouts, pulbacks and ap-
plication condition and shows an implementation possibility of these theoretical concepts
by the use of Mathematica. He also introduces two benchmarks(Sierpinski and Mutex) ap-
plied by the use of his tool.

Jochen Adamek compares his implementation to a tool AGG([AGG]) which was also
developed at TU-Berlin. The author compares the advantages, disadvantages and efficiency
of techniques, which were implemented in his work, to same techniques realized in AGG.
He pays much attention especially to the efficiency analyses and evaluates the efficiency of
the application of AGG and Mathematica implementations of the (typed) attributed graph
transformation theory to the MUTEX benchmark .

In the section “Zukünftige Realisierungen” the author describes several areas and ap-
proaches which might be based on his implementation in future. “Triple graph transforma-
tion / integration in Mathematica” is the realization of one of these approaches.

In cheaters 6.1.-6.5., 7.1.-7.2.([Ada09]) the author describes the development envir-
onment of Mathematica and Mathematica-Workbench for Eclipse in a very detailed way.
The implementation of this thesis' practical part was performed in the same development
environment, yet the description of it is limited to Mathematica techniques which have
been used. That for, the technical report of Jochen Adamek([Ada09]) is a good reference
for the usage of Mathematica and Mathematica-Workbench for Eclipse.

The implementation in this thesis is build up on several methods and concepts de-
veloped in [Ada09]. In the following chapter these methods and concepts are briefly intro-
duced.

2.2. Concepts and techniques used in the implementation

Morphisms realisation
Morphisms Jochen Adamek realises as indexed list: the index of an element in it is the in-
dex of corresponding node/edge in the morphism source graph node/edge list, the element
itself is the index of corresponding node/edge in the morphism target graph node/edge list
respectively.

42

2 Realisation of attributed Graph-transformation in Mathematica(by Jochen Adamek)

calculateGraphMorphism
Converts a list of node-/edge- pairs into a morphism f : AB , represented by an in-
dexed List of image positions. Positions of first elements of input tuples in appropriate in-
put graphs become indexes, positions of second elements respectively become elements.

makeRule
calculates a DPO rule for given left hand side LHS with typing morphism typeLHS, right
hand side RHS with typing morphism typeRHS and application conditions ACi={kindi,
{ACiGraph,typeACi}} with kindi:[\"NAC\",\"PAC\",..]. Result is the complete rule with
morphisms.

makeTypedGraph
constructs a graph by the use list of nodes and list of edges. As third argument make-
TypedGraph() gets a type graph. Result is a graph with edges and nodes typed over the ar-
gument type graph.

pushout
pushout construction for category GRAPHS/TG, assumed that the graph morphism r is in-
jective. Takes three typed graphs and two morphisms as arguments. Returns a pushout ob-
ject graph and two corresponding morphisms.

inducedGraphPO
calculates the induced mapping h for category SETS. Arguments are morphisms x1, x2, n,
g. x1 and x2 are mappings of comparison object X, n and g are mappings of pushout dia-
gram into the pushout object H (set H), i.e. R

x1 X 
x2 D , R

n H 
g D . Result induces

morphism h : H  X .

compG
calculates the composition of graph morphisms. Gets as arguments two list of nodes of
morphisms to combine and two list of edges of morphisms to combine. Output is a morph-
ism.

invG
calculates an inverse of injective graph morphism f : A B . Arguments are a list of nods
and a list of edges mapped by the morphism, amount of nods and edges.

matchesSimple()
calculates all matches from a graph L to a graph G. Arguments are typed graphs L and G,
their type graph and inheritance graph.

43

III. Realisation in Wolfram Research “Mathematica”

IsGluingCondition
calculates weather the gluing conditions for a double pushout are fulfilled. Arguments are
three graphs and the morphisms between them. Output a boolean value.

44

3 Realisation of Model Transformation in Mathematica

3 Realisation of Model Transformation in Mathematica
After formulating theoretical background of the triple graph transformation / -integration,
familiarising with Wolfram Research “Mathematica” and bringing in some aspects from
realisation of attributed Graph-transformation in “Mathematica” by Adamek Jochen
([Ada09]), the implementation of triple graph transformation / -integration can be finally
introduced.

In order of better navigation in program code and packages, first a general model of
the software in 3.1. is given. The model concludes: a semi-Class diagram, which specifies
the relationships and dependencies between packages and a Use-Case diagram to specify
the interfaces for uses input/-output methods implemented.

One of the main objects of this thesis was to construct such an implementation, that it
would be as near as possible to the theoretical background. Therefore the present chapter
is split in parts according to the theoretical concepts, which are realised. First it is ex-
plained how a triple graph and a triple rule are realised and the ways how they can be
passed to the application. 3.5. Describes how a triple rule is applied to a triple graph, by
executing three pushouts([EEP+06]“Graphs, Typed Graphs, and the Gluing Construction.”)
on source-, connection-, target- parts of given triple rule and triple graph over three
matches, from the left-hand side of the rule to the triple graph. However in the implement-
ation the concept from II. 1.2. Triple Rule is extended by II. 1.5. , so in 3.6.1 its explained,
how the realisation of the triple rule and triple rule application were extended to provide
deletion functionality to triple rules.

Further the description of source- and target- rules realisation and graph transforma-
tion accomplishment follows. Similarly source-/target- and integration- rules generation
and graph integration implementation is shown.

The ability to perform a graph transformation / integration looses practical sense if an
appropriate match from given graph to some next triple rule in a transformation/integration
sequence has to be specified manually in each step. Therefore in 3.9. a solution for this
problem is shown. Having a match-search functionality embedded into the
transformation/integration methods makes (under the notion of source consistency II. 1.3.
,II. 1.4.) triple graph transformation/integration automated.

3.1. General model of the concept for implementation
It is wrong to speak about classes or objects in Mathematica, given that all objects-like
structures are different kinds of sets, or packages, which are just collections of methods,
with the possibility to specify weather they are private or public. One cant assign a variable
some class's instance, or call methods from some variable. Yet a package is an organisation
unit and by including it into an other package – access to additional methods and variables
is gained. Moreover some of implemented modules are meant as class-like structures. For
instance TGGmakeGraph is a method which is implemented as a module for making out of
8 lists and 3 type-graphs a triple graph. The triple graph is represented by 3 graphs, 2 lists
(morphisms between the inside graphs), 3 type-graphs and 3 morphisms, which assign
source-, connection and target inside graphs to the type graphs. To represent a structure like
a triple Graph in object oriented programming language, a variable with class-type like
TripleGraphExample in Code 2 is be needed. In Mathematica variables have no specific

45

III. Realisation in Wolfram Research “Mathematica”

type before first value assignment. This makes it possible for the value to have any random
structure. After assigning a result of TGGmakeGraph to some variable, the variable will
include all of the components of a triple graph like an instance of TripleGraphExample
would do.

Based on the observation above, a model for project dependency organisation was
created. The intend was to build up a semi-class diagram in UML. The rules for building
up a class diagram were replaced with some more appropriate rules for a Mathematica im-
plementation.

Rules for building up a package relationship model:
1. Mathematica packages are represented as classes.

2. Methods used to specify objects are represented as classes.

3. Include-relationships are visualised as directed edges.

4. Include-relationships are organised by colours according to Image 31.

5. Composition-relation is represented by an edge with a filled diamond on the end.

6. The folder structure is visualised as overlapping package-figures in different col-
ours.

46

Code 2: Possible implementation of a triple graph in OOP

3 Realisation of Model Transformation in Mathematica

Since Mathematica was used only as an instrument and is not in focus of this thesis,
Mathematica packages and dependences are visualised only partially. The TGG (Triple
Graph Grammar)(III. 2) is also not wholly visualised but only the parts used by TGT
(Triple Graph Transformation).

47

Image 30: Package relationship model

III. Realisation in Wolfram Research “Mathematica”

From the Image 30 general organisation of the implementation can be seen. The project is
divided in 4 parts (without the Mathematica folder): TGG, AGT, TGT and Case studies.

• TGG (Triple Graph Grammars):

In the TGG triple graph, triple graph morphism, triple rule and triple graph service
methods like graph-drawing methods or rule applying methods are defined and im-
plemented. It is the core of the application since most of other packages use these.
The package Morphism is almost wholly adopted from III. 2 Realisation of attrib-
uted Graph-transformation in Mathematica(by Jochen Adamek) and used in build-
ing up the triple graphs and applying rules.

• AGT (Algebraic Graph Transformation) :

AGT is the III. 2 Realisation of attributed Graph-transformation in Mathematica(by
Jochen Adamek) itself, extended by triple graph functionalities. Some packages like
RuleApplication.m or TGG.m and all of the examples are excluded from the model
since they were not used by current implementation. Some packages like Matching
had to be extended.

• TGT (Triple Graph Transformation) :

TGT includes the packages in which the triple graph transformation and integration
functionalities are realised. There are methods for generating source- and forward-,
sourc-/forward and -integration rules, applying those rules to sequences of triple
rules or triple graphs.

• Case studies :

Case studies include declarations for example applications of model
transformation / integration to case studies (real models), described in the end of
this thesis IV. .

Generally it is not needed to include a package twice. For example, if the package Morph-
ism includes the package Compbinatorica and the package TripleGraph includes the pack-
age Morphism, it normally means that the package TripleGraph also includes the package
Morphism. Yet in during implementation complications occurred while using packages
from include inheritance. These complications led to the decision to include packages ex-
plicitly when they are needed.

The notebooks used for demonstration and evaluation of data are also excluded from
the model since those are user-interfaces and can not be included by other packages.

48

Image 31: Respective colours for
include edges

3 Realisation of Model Transformation in Mathematica

3.2. Use cases

49

Image 32: TGT use case diagram

III. Realisation in Wolfram Research “Mathematica”

The use case diagram in Image 32 consists of two parts. The use cases based on the
theoretical concepts from Part II. are visualised in the left part of the diagram. This use
cases are the guide lines for the implementation and can be summarised as follows:

• The user can input, edit and delete triple graphs and triple rules.

• The user can apply a triple rule to a triple graph.

• The user can make source and forward rules out of triple rules and execute a
graph transformation on a triple graph.

• The user can make source-/target- and integration rules out of triple rules and
execute a graph integration on a triple graph.

Aside of the editing and deleting ability which is provided by Mathematica itself, all use
cases are realised.

 The use cases which are visualised in the right part of the diagram, are the actual im-
plemented methods. They are described step by step in sections 3.3. - 3.10.

The middle part of the diagram represents the interfaces of the application which
realize the use cases.

3.3. A Triple Graph as input

The implementation of a triple graph, as mentioned in 3.1. , is realised in the form of a
module (III. 1.2.). The triple graph itself is the output of this module in the form of a list.
For instance:

The example in Image 33 left-hand side represents a triple graph class2Table in
Mathematica. Image 33 Right-hand side is visual representation of the same example from
II. 1.1. . As can be seen, calss2Table is a list of 5 elements: 1, 3, 5 elements are again lists
which include source-, connection-, target- graphs and their typings; elements 2, 4 are list-
realisations of morphisms between those graphs (Code 3).

50

Image 33: Example: class2Table triple graph

3 Realisation of Model Transformation in Mathematica

There are two ways to assign the application a triple graph as input. In the package Triple-
Graph.m, there are methods TGGMakeGraph and TGGMakeGraphL. Since the imple-
mentation is supposed to be near to theory, but as flexible as possible there are also two ap-
proaches to input data.

TGGMakeGraphL
TGGMakeGraphL is used to construct a triple graph. It needs 8 Lists as input and three
type-graphs. This method was designed to provide possibility of extending the application
by interaction capability with other programming languages or applications. Therefore is
the input data is in atomic state(Code 4).

TGGMakeGraph
TGGMakeGraph is used to construct a triple graph. It uses three graphs as arguments to-
gether with their typings and two lists which include nodes and edges connected by the
morphisms between connection and source, connection and target graphs respectively.
This approach uses the TGG implementation from III. 2 (Code 5).

51

Code 3: Example(pseudo code):
class2Table fragmentation

Code 4

III. Realisation in Wolfram Research “Mathematica”

As shown in Image 33 both methods return a list containing the graphs and morphisms
between them. The only difference is that TGGMakeGraph just calculates the morphisms
out of lists with node-/edges mappings and returns them together with the input graphs, but
TGGMakeGraphL first constructs the source-, connection- and target- graphs out of nodes,
edges and type graphs, and calls TGGMakeGraph afterwards.

3.4. A Triple Rule as input
As it was explained in II. 1.2. , a triple rule is represented by two triple graphs and three
morphisms between them. The realisation of this concept is similar to the one of triple
graph.

TGGmakeRulePure
TGGmakeRulePure is used to construct a triple rule. The method TGGmakeRulePure takes
two triple graphs, three lists of node/edge pairs – morphisms in rough form and a list of
application conditions as arguments. The triple graphs are returned without being
changed, but the pair lists and corresponding graphs are forwarded to makeRulePure
which generates with this information an indexed list for morphism representation (see III.
2.2.).

52

Code 5

Code 6

3 Realisation of Model Transformation in Mathematica

An example of for TGGmakeRulePure execution can be seen in Code 6. The Vari-
ables class2Table and subclass2Table are first initialized with left-hand side triple graph
and right-hand side triple graph respectively. Then these varaibles are passed to TGG-
makeRulePure as arguments. The content of class2Table is green underlined in the output
of TGGmakeRulePure. After comparing it to G 4 in Code 3, it becomes obvious that TGG-
makeRulePure does not perform any manipulation with the graphs themselves. Yet the
second argument (blue underlined in the input and brown in the output Code 3) is trans-
formed from a list of lists of name tuple's to a list of lists of indexes. These lists of indexes
represent the morphisms between the left- and right- hand side source-, connection- and
target graphs of the triple rule.

The purple marked empty list in the input and output parts of TGGmakeRulePure is
the list of application conditions. The extension of model transformation / integration by
application conditions is left open for future works (V. 1.2.).

3.5. Applying a Triple Rule on a Triple Graph
In II. 1.2. a triple graph transformation step is described. That procedure is needed to ap-
ply any triple rule on a triple graph. The required inputs are a triple rule, a triple graph and
a proper match from the given triple rule to the given triple graph. The result is a triple
graph, obtained by applying the given rule to the given graph with the given match. This
means that elements in the given graph, which correspond to then given rule's left hand
side elements are removed and the elements from the right hand side are created instead. A
method from the implementation realising pictured procedure is TGGapplyRulePure.

TGGapplyRulePure
TGGapplyRulePure is used to apply a triple rule on a triple graph. TGGapplyRulePure
takes as arguments: a triple rule (output of TGGmakeRulePure(3.4.)), a triple graph (out-
put of TGGMakeGraph or TGGMakeGraphL(3.3.)) and a match from left-hand side of the
triple rule to given triple graph.

53

Code 7: Applying class2TableRulePure to an empty
triple Graph

III. Realisation in Wolfram Research “Mathematica”

Code 7 represents a simple case of TGGapplyRulePure execution: blue underlined is the
rule to apply, green – the host graph, red – the match; the output (Out[54]) is a triple graph
in form of a list like in Section 3.3. .

To describe the different steps of TGGapplyRulePure implementation the example
used in II. 1.2. appears to be more detailed, so more suitable.

In Code 8 subclass2TableRulePure is applied to the example graph G 4DB from Image 34
with a triple graph G 4DB ' as resulting output(Out[18]). TGGApplyRulePure takes men-
tioned above arguments and converts the list of match pairs into a list of indexed list
morphism representations (III. 2.2.) by applying calculateGraphMorphism(III. 2.2.) to
match-pairs with corresponding graphs from left-hand side of the rule and the input graph
(Code 9 blue underlined).

54

Code 8: TGGApplyRulePure Image 34: Applying a triple rule to a
triple graph

Code 9

3 Realisation of Model Transformation in Mathematica

Code 10 shows the results of these calculations in case of application to the example.

Further, the generated lists and most input information are passed to TGGapplyRulePur-
eIndexed (Code 9 green underlined) which performs the actual rule application. In TGGap-
plyRulePureIndexed the input data is first split into source-, connection- and target parts
(Code 11).

Code 12 has a demonstrative purpose. The variables from Code 11 are replaced with their
values from the example. During the real execution, each code line is a value assignment.
For instance the variable LS (Code 11) gets the value of the first element from the list
class2Table (which is G1), the variable sL gets the value of the second element of class2T-
able, etc... (see also III. 1.2. “Value assignment to a set of variables”)

The assigned source-, connection- and target values are passed to the method pushout (see
III.2.2) (Code 13).

55

Code 11

Code 10: Example (pseudo code)

Code 12: Example (pseudo code)

III. Realisation in Wolfram Research “Mathematica”

Outputs of pushout applications are lists (containing source-, connection- and target result
graphs and morphisms) which are used as arguments in inducedGraphPO(III.2.2) and
compG(III.2.2). By the use of inducedGraphPO() and compG() induced morphisms are
generated which connect connection- and source- / connection- and target- graphs of the
output triple graph (Code 15, Code 16).

In the end, the outputs of all methods are summarised in the form of a triple graph (output
of TGGMakeGraph or TGGMakeGraphL(3.2)) and returned (Code 17).

If replaced G1DB ' ,G 3DB ' and G2DB ' in Code 18 by the textual standard graph representa-
tion expression (1.2.), the result would be the output(Out[18]) from Code 8.

56

Code 13

Code 15

Code 17

Code 14: Example (pseudo code)

Code 16: Example (pseudo code)

3 Realisation of Model Transformation in Mathematica

3.6. Triple Rule modification
During the working process, it became obvious that both theoretical and practical ap-
proaches need to be extended. On one hand to simplify the work with the resulting applica-
tion itself, on the other hand to shrink enormous search trees, which are created in triple
graph transformation / integration implementation automated application and match search.

3.6.1 DPO rule extension
One of the major modifications is the in chapter II. 1.5. explained DPO triple rule ap-
proach which extends triple rule from Definition 3 (Triple Rule tr and Triple Transforma-
tion Step) and replaces it in the implementation.

The decision about the implementation of the DPO triple rule had to be taken in early
stages of work, because the triple rule is one of the main tools used in building up both –
triple graph transformation and integration sequences. Despite a half implemented alternat-
ive version the choice was made in favour of the DPO rule. The reason was that the usage
of DPO rule concept opens the way for deletion rule generation. While deletion rules give
way to a backward pattern search implementation. Normally the pattern search is per-
formed brute-force by trying all available rules from the input set. An algorithms based on
this approach stops, when in one of the constructed search tree leafs the aimed graph oc-
curs. A backward pattern search starts at the aimed graph and proceeds by applying the cor-
responding deletion rules from available input set to the graph. The algorithms based on
this approach stops at the empty graph. If no rule can be applied any more, but the empty
graph is not reached, backtracking is performed (the transformation / integration sequence
search algorithms is described in chapter 3.10.). This approach appeared to be far more
productive then the brute-force search, since it shrinks the search tree enormously.

To extend the implementation by DPO rule functionality, first, makeRulePure (3.4.)
had to be reconstructed into makeRule. Its functionality stayed same but the input and out-
put data changed. The method makeRule becomes three graphs and two pair lists (which
represent morphisms between these graphs) as input, converts pair lists to indexed lists
morphism representation (III. 2.2.) and returns a triple graph.

Correspondingly to the method makeRulePure, the method TGGmakeRulePure is
converted into TGGmakeRule. Changes are similar to those made in makeRulePure: the in-
put data is extended by an additional triple graph and a triple morphism list.

57

Code 18: Example (pseudo code)

III. Realisation in Wolfram Research “Mathematica”

TGGmakeRule
TGGmakeRule is used to construct a DPO triple rule. The method TGGmakeRule takes
three triple graphs, six lists of node/edge pairs – morphisms in rough form and a list of ap-
plication conditions as arguments. The triple graphs are returned without any change, but
the pair lists and corresponding graphs are forwarded to makeRule, which generates with
this information an indexed list for morphism representation (see III. 2.2.). The output is a
DPO rule with application conditions.

Changes made in the method TGGapplyRulePure are bigger. First step from TGGap-
plyRule to TGGapplyRuleIndexed stays same. TGGapplyRule just converts the input
morphism tuples into indexed lists and passes all arguments further. Yet in TGGapplyR-
uleIndexed it is not enough to calculate three pushouts and two induced morphisms any
more, since the arguments for performing this action are simply missing. According to
Definition 9 (DPO Triple Rule and Extended Transformation Step) to proceed to phase 2
(pushout and induced), firstly three pushout complement and two morphisms from phase 1
have to be determined.

For this reason the input graph, matches and DPO rule left hand side after being spit in
source- (GS, mS, {LS,lS,KS,rS,RS}), connection- (GC, mC, {LC,lC,KC,rC,RC}) and target-
(GT, mT, {LT,lT,KT,rT,RT}) parts are passed to applyRuleFullResult (see Code 19).

applyRuleFullResult
applyRuleFullResult is the realisation of a transformation ([EEP+06]“Definition 5.2
(transformation)”) application. The method applyRuleFullResult takes as arguments: a
production in form of three graphs and morphisms between them, a typed graph and a
match – in form of an indexed list morphism (III. 2.2.). The method checks the match to be
consistent with the gluing conditions([EEP+06]“Definition 6.3 (gluing condition in adhes-
ive HLR systems)”), constructs the pushout complement and the pushout in the second
phase of the transformation. The output contains the pushout complement graph with ap-
propriate morphisms and a pushout graph with appropriate morphisms.
The application of appyRuleFullResult is based on the observation, that the pushout com-
plements / pushouts can be calculated separately from morphisms, connecting source-,
connection- and target- parts of a DPO triple rule (under the notion of Definition 8 Fact 2)
and that combination of pushout complement followed by a pushout is a transformation.

58

Code 19: combined POC and PO calculation

Code 20: Calculation of connection
morphisms

3 Realisation of Model Transformation in Mathematica

Morphisms calculated with pushout complements(fS, fC, fT) are passed to compG(...)
und invG(...) (see III. 2.2.) in order to compute connection morphisms sD and tD accord-
ing to the formulas sD ' := fS−1° sG ° fC and tD := fT−1°tG ° fC from Definition 9 phase
1(Code 20).

After all components of the connection graph from an ETGT-step(Definition 9) are
determined TGGapplyRuleIndexed proceeds same way as TGGapplyRulePureIndexed by
calculating induced morphisms for the output triple graph (Code 21) since the creation of
source-, connection- and target- graph parts of it by the use of pushouts has been already
performed in appyRuleFullResult.

The method TGGapplyRuleIndexed returns same way as TGGapplyRulePureIndexed a
triple graph (output of TGGMakeGraph or TGGMakeGraphL(3.2)).

3.6.2 Inclusion extension
Yet the extension of triple rule implementation by dpo rule functionality has let to an other
problem. The application implementation in this thesis is the realisation of graph trans-
formation theory based on the triple graph approach, which implies the use cases for this
application to be fixed (see 3.2.). As can be seen from diagram in Image 32 the aimed fi-
nal user of this application will create simple triple rules according to Definition 3 and
perform a graph transformation / integration. This user does not know about the existence
of a dpo triple rule concept (Definition 9) and about the positive influence of this concept
on the efficiency of transformation / integration sequence calculation. However he of-
course welcomes an efficiently and fast working application. This makes the task specifica-
tion obvious: implemented extension of the triple rule must be reduced to the input schema
of given use case (3.2.) without loosing its functionality. Simplified it means that the user
should think himself to be in a world without chapter II. 1.5. , yet the application should
use dpo rules for transformation / integration sequences calculations.

59

Code 21: TGGapplyRuleIndexed induced
Calculation

Image 36: DPO triple rule

Image 35: ETGT-step

III. Realisation in Wolfram Research “Mathematica”

The approach, which is used to solve this problem was already mentioned once in
Section II. 1.5. . On the one hand is the interest for DPO rules in this thesis limited with de-
letion rules, on the other hand are deletion rules of interest only to the application itself,
while performing transformation / integration sequence calculations. This means – during
user input and creation dpo rules look like simple triple rules, yet while being applied an
ETGT-step(Definition 9) is performed. From dpo rule definition it can be seen that if phase
1 of an ETGT-step is skipped Definition 9 converts to Definition 3, which leads input data
to shrink till the requirements of use case.

Skipping the ETGT-step phase 1 is same as applying ETGT-step phase 1 with no ef-
fect – no changes from G to K ' (Image 35). This is possible if kl s , kl c , kl t (Image 36) are
identity morphisms.

Based on the idea mentioned above TGGmakeRuleInclusion() was implemented.

TGGmakeRuleInclusion
Is used to construct a DPO triple rule with input data from TGGmakeRulePure. The meth-
od TGGmakeRuleInclusion takes two triple graphs, three lists of node/edge pairs – morph-
isms in rough form and a list of application conditions as arguments. An interface triple
graph is generated, which is the intersection of left-hand source- and right-hand source-,
left-hand connection- and right-hand connection, left-hand target- and right-hand target
graphs. Morphisms converting the interface triple graph into left-hand and respectively
right-hand side triple garph are calculated. Further these morphisms are converted into
indexed list for morphism representation (see III. 2.2.). The output is a DPO rule with ap-
plication conditions.
TGGmakeRuleInclusion() splits the input data into left-hand source, connection and target
graphs with morphisms between them, and right-hand respectively(Code 22) and passes
the graphs grouped source-source, connection-connection, target-target to makeRuleInclu-
sion()(Code 23).

60

Code 22

Code 23

3 Realisation of Model Transformation in Mathematica

makeRuleInclusion
a) Generates a new Graph(Code 24).

b) Calculates the common edges and nodes between the input Graphs(Code 25).

c) Calculates the typing for the new Graph and inclusion morphisms from new Graph
to input Graphs (Code 26).

d) inserts the common edges into the new graph(a)) (Code 27).

61

Code 24

Code 25

Code 26

Code 27

III. Realisation in Wolfram Research “Mathematica”

e) Calculates the production([EEP+06] “Definition 5.1 (production)”) using two input
and generated in a) graphs (Code 28).

In other words makeRuleInclusion() calculates the intersection between a pair of graphs
and returns a production p=Ll K 

r R ([EEP+06] “Definition 3.1 (graph production)”),
where L and R are the input graphs. In this way SL

kl s SK 
kr s SR , CL

kl c CK 
kr c CR and

TL
kl t TK 

krt TR (Image 36) are established. Next – TGGmakeRuleInclusion() constructs
sK=kl c° s L°kl s

−1 and tK=kl c°t L° kl t
−1 (Code 29), summarises the application conditions

and returns the dpo rule (Code 30).

Therefore often makeRuleInclusion() produces an copy of the left-hand side triple
graph. This happens in the case the intersections between left-hand graphs and right-hand
graphs result in the left-hand graphs, i.e. left-hand triple graph is a sub-graph of the right-
hand one. It is the usual case, yet not the rule. In case of deleting rules it is the way around:
the interface triple graph becomes a copy of the right-hand triple graph.

3.7. Model Transformation Realisation
Model transformation realisation consists of several methods: TGGSourceRule(), TGGFor-
wardRule(), TGGSourceRules(), TGGForwardRules(), TGGSourceGraph(), TGGapply-
FWRules() and TGGapplyFWRulesNM().
TGGSourceRule() and TGGForwardRule() are practical realisations of source and forward
rules construction (as explained in II. 1.3.).

62

Code 28

Code 29

Code 30

3 Realisation of Model Transformation in Mathematica

TGGSourceRule
Takes dpo rule (3.6.1) and a list of application conditions as argument, converts the dpo
rule into a source rule and returns the result in form of a dpo rule(3.6.1) .

During source rule construction two new triple graphs are generated out of the source com-
ponents of triple graphs from the input rule, new generated empty graphs and empty
morphisms. This data is afterwords passed to TGGmakeRuleInclusion(), so that resulting
output is a dpo rule (Code 31).

TGGForwardRule
Takes dpo rule (3.6.1) and a list of application conditions as argument, converts the dpo
rule into a forward rules and returns the result in form of a dpo rule(3.6.1).

TGGForwardRule() replaces the left-hand side source graph with right hand side source
graph and the morphism transforming the connection graph to source graph in left-hand
triple graph with the concatenation of this morphism with the original morphism connect-
ing the source graph of the interface triple graph with the source graph of right hand one
(as it can be noticed, in TGGForwardRule it is assumed that the left-hand triple graph and
the interface graph are equal, i.e. that the input rule is a simple non-deleting rule). The
identity morphisms and new interface triple graph are generated afterwords in TGGmakeR-
uleInclusion() (Code 32).

63

Code 31: source rule construction

Code 32: forward rule construction

III. Realisation in Wolfram Research “Mathematica”

TGGSourceRules() and TGGForwardRules() are methods for applying TGG-
SourceRule() and TGGForwardRule() respectively to lists of triple rules. The implementa-
tion of this methods shows the advantage of using Mathematica as programming language:
in object oriented language common approach for applying a method to a list of user-
defined objects (which triple rules are) is iteration over the list by the use of a “for” or
“while” loops. Loops make the program-code heavy and raise the computation time. In
Mathematica – this methods can be realised by a mapping function applied to a list, since
this programming language supports passing methods as arguments (III. 1.1.), working
with list-elements independently of their typing and the “Wild-card”-notation. (III. 1.1.).

In Code 33 the argument list “rulesList” from TGGSourceRules() is passed to the
mapping function. The mapping function by the use of a “Wild-card” symbol “#1” applies
TGGSourceRule() to every element in the list and returns a list as a result. TGGForward-
Rules() is build up in same way.

TGGSourceGraph() generates a source graph out of a triple graph. The method takes
a triple graph(output of TGGMakeGraph or TGGMakeGraphL(3.2)) as input, extracts the
source graph, generates new empty graphs, new empty morphisms and passes this argu-
ments to TGGmakeGraph(). The output is a triple graph.

TGGapplyFWRules
becomes a set of forward rules(output of TGGForwardRules()), a set of source matches, a
source triple graph(output of TGGSourceGraph()), a type graph and an inheritance graph
as input. The method applies the forward rules from the input sequence to the input source
graph. The result returned by the method is a triple graph and a boolean value, which
states weather the application procedure was performed successfully.
TGGapplyFWRules() is a recursive method, which applies a set of rules to a source triple
graph. Working with this method, one should be aware of that it includes no protection
mechanisms, which means that if as arguments not list of forward, but a list of source rules,
or an inconsistent list of matches is passed, the method doesn't throw an error message, but
performs the evaluation, just with a result value “false”. This is shortcoming is assumed to
be fixed in future work(V. 1).

The working mechanism of TGGapplyFWRuls() is illustrated in Image 37.

64

Code 33

3 Realisation of Model Transformation in Mathematica

First the return value and return graph are initialised, with “false” and the input graph re-
spectively. The recursion anchor is reached when the passed rules list is empty. If its not
the case next triple rule and corresponding source match are extracted from input
lists(Code 34).

65

Code 34

Image 37: working mechanism of TGGapplyFWRules()

III. Realisation in Wolfram Research “Mathematica”

Then a new set of matches from current forward rule to current triple graph from the
input is generated by the use of TGGMatches()(3.9.). The resulting matches are compared
in the source part with the input match to ensure the procedure to be source consistent
(Definition 5). The comparison is performed by the use of select function and “Wild-
card”(III. 1.1.) on the whole list of matching avoiding iteration through the list(Code 35).

However, not all iterations can be avoided. Next by the use of a “while” loop current input
rule is applied to the input graph using first match from the result list in Code 35. The
graph gained from this procedure is passed to TGGapplyFWRules(), together with the rest
of the input rules list and input matches list – performing in this way the recursion step. In
case that used match leads to a triple graph on which remaining rules in the input sequence
couldn't be applied (which is the case if a value “false” is returned by TGGapplyFWRules()
as a second argument), the “while” loop ensures that a backtracking will be performed and
the input rule will be applied to the input graph by the use of an other match from in Code
35 generated list, since the loop is terminating only in case the match list is empty or all
further recursion steps where performed successfully(Code 36).

In such a way TGGapplyFWRules() applies forward rules in a predefined order to a source
graph, with notion of source consistency till no rules left to apply, i.e. corresponding con-
nection and target graphs were generated – the graph transformation performed.

TGGapplyFWRulesNM() performs similar actions like TGGapplyFWRules(), yet
without comparing the generated match sequence with the comatches from source se-
quence, i.e. without checking source consistency and with an other arguments input
scheme (first a list with indexes is given, specifying the order of forward rules to be ap-
plied, secondly all forward rules are passed, then the graph to be applied on, the type graph
and inheritance graph).

66

Code 35

Code 36

3 Realisation of Model Transformation in Mathematica

3.8. Model Integration Realisation
Model integration similarly to model transformation part of the implementation consists of
two methods, which convert a dpo rule into a source-/target- rule or an integration rule (
TGGSTRule() and TGGIntegrationRule() respectively); two corresponding methods, which
apply TGGSTRule() and TGGIntegrationRule() to lists of rules (TGGSTRules() and TG-
GIntegrationRules); a method to convert a triple graph to a source-/target- triple graph
(TGGSTGraph()) and a main method TGGapplyInegrationRules() for applying a sequence
of integration rules to a source-/target- triple graph.

TGGSTRule
Takes dpo rule (3.6.1) and a list of application conditions as argument, converts the dpo
rule into a source-/target- rule and returns the result in form of a dpo rule(3.6.1).
The construction of the TGGSTRule() resembles very much the construction of TGG-
SourceRule()(3.7.): from the input dpo rule source and target components of left- and
right-hand sides of the rule are extracted, out of the extracted components and some empty
graph(for connection parts) new triple graphs are generated and passed to TGGmakeRule-
Inclusion(), so that the output of the method is a valid dpo rule (3.6.1) with empty connec-
tion graphs(Code 37).

TGGIntegrationRule
Takes dpo rule (3.6.1) and a list of application conditions as argument, converts the dpo
rule into an integration rule and returns the result in form of a dpo rule(3.6.1).
On the code of TGGIntegrationRule() it can be demonstrated how near to the theoretical
concepts the implementation is. According to Definition 7 to construct an integration rule
from a triple rule, following steps have to be performed:

1) Source and target graphs from the left-hand side of the rule have to be exchanged
with source and target rule from the left-hand side.

2) morphisms between source and target components of left- and right-hand sides of
the rule have to be exchanged with identity morphisms.

3) Morphisms from connection graph to source and target graphs in the left-hand side
of the rule have to be exchanged with concatenations of morphisms s° sL and
t °t L according to Image 38.

67

Code 37: TGGSTRule

III. Realisation in Wolfram Research “Mathematica”

The implementation of TGGIntegrationRule() is performed as follows(Code 38):

1) Source and target graphs from the left-hand side of the rule have are exchanged
with source and target rule from the left-hand side (green marked in Code 38).

2) Since source and target graphs are equal the intersection of left- and right-hand
source and target graphs will guarantee the generated morphisms from the interface
triple graph to the right hand triple graph of the dpo rule (II. 1.5.) to be identity
morphisms.

3) Morphisms from connection graph to source and target graphs in the left-hand side
of the rule are exchanged with concatenations of morphisms s° sL and t °t L ac-
cording to Image 38 (blue marked in Code 38).

The only difference is that TGGmakeRuleInclusion() returns a dpo rule, yet in the theory
simple triple rules are used. But since integration rules are non-deleting rules the in-
terphace triple graph of with TGGIntegrationRule() generated the rule is equal to the left-
hand triple graph, which means that while application of this rule to any triple graph first
part of Definition 9 will be skipped, which makes the output of TGGIntegrationRule() to a
simple triple rule corresponding the theory.

TGGapplyInegrationRules
becomes a set of integration rules(output of TGGIntegrationRules()), a set of source-/tar-
get- matches, a source-/target- triple graph(output of TGGSTGraph()), a type graph and
an inheritance graph as input. The method applies the integration rules from the input se-
quence to the input source-/target- graph. The result returned by the method is a triple
graph and a boolean value, which states weather the application procedure was performed
successfully.
Same as TGGapplyFWRules()(3.7.) is TGGapplyIntegrationRules() a recursive method
and that it has also a similar to TGGapplyFWRules() working mechanism can be seen from
diagram in Image 39. The difference is only that after the matches from in current recur-
sion step focused rule and graph are generated, they are filtered by comparing not only to
source but also to target parts of corresponding matches from the input sequence.

68

Image 38: integration Rule
Construction

Code 38: integration rule implementation

3 Realisation of Model Transformation in Mathematica

3.9. Match search functionality for Triple Rule on Triple Graph
Matching is one of major aspects in triple graph application concept. As mentioned in Sec-
tion II. 1.2. Triple Rule and 3.5 Applying a Triple Rule on a Triple Graph a match is
needed to define nodes and edges in graphs, which will get changed by the rule.

69

Image 39: working mechanism of
TGGapplyIntagrationRules()

III. Realisation in Wolfram Research “Mathematica”

Normally matches are defined by the user himself. Only the user possess detailed in-
formation about the model (graph) on which current rule is being applied. Yet, in process
of triple graph transformation realisation the necessity of match search automation oc-
curred. There are two main spheres, where this approach is needed: source and source-/tar-
get- sequence search, transformation sequence and integration sequence application.

1. Source and source-/target- sequence search (3.10.) builds up a huge search tree
during its execution. The search branches into various application variants. The
amount and kinds of this variants depend on the possible application matches
generated for the state in which the source (source-/target-) search is. The
amount of matches grows exponential with the amount of nodes in graphs and
amount of rules in the search sequence. On one hand is the source (source-/tar-
get-) search an automated method, which is designed to work without user in-
tervention. On the other hand is in some cases, because of high branching de-
gree, a manual match estimation near to impossible.

2. In forward (integration) sequence application source (source-/target-) sequences
define the source (source-/target-) components of the match, yet not the whole
match. There are two concepts to realize a method, which would search for a
proper match in this case. One is to take available match components and com-
plement the missing ones. Second is to generate matches in a normal way and
filter for known components afterwords. In case of forward (integration) se-
quence application the second approach is used. The reason for it is the possib-
ility to use the same method for both tasks: the search and the application.

TGGmatches
becomes a dpo rule(output of TGGmakeRuleInclusion()), triple graph(output of TGG-
MakeGraph), type graph and inheritance graph as argument. Calculates matches from in-
put triple rule to input triple graph and checks the matches to be consistent. Returns a list
of generated triple matches. Every triple match is a list of three elements, corresponding to
source, connection and target matches. Every match is a list of two elements: nodes to
match and edges to match. Every list of nodes or edges is an indexed list(III. 2.2. “Morph-
ism realisation”).
First TGGmatches() performs a splitting of the input data into source-, connection and tar-
get parts (Code 39).

70

Code 39

3 Realisation of Model Transformation in Mathematica

Split data is summarised according to the affiliation to source-, connection or target
components and passed to calculateMatches(). calculateMatches() passes the data to
matchesSimple() calculates possible matches from a production to a graph. In that way sets
of matches for every component(source, connection, target) are generated. Additionaly, be-
cause matchesSimple() returns many redundant entries, the method DeleteDuplicates()(III.
1.2.) is applied to the result sets of calculateMatches()(Code 40).

In next step the method isGluingCondition()(III. 2.2.) is applied to the matches, which
were generated in previous step. Since there are sets of matches to check isGluingCondi-
tion() is applied in combination with the method Map()(III. 1.2.) and because of interest
are only the matches fulfilling the gluing condition the method If() is used(Code 41).

Matches, which are returned by TGGmatches() are expected to be in form of a three ele-
ment list. This list has to consist of one source, one connection and one target match. That
for matches, which remained after the verification in Code 41 are mixed into three element
lists by the use of the method Tuples()(III. 1.2.).

71

Code 40

Code 41: matching: gluing condition check

Code 42

III. Realisation in Wolfram Research “Mathematica”

The gluing condition check performed in Code 41 verifies the match being consistent
only in the context of a transformation ([EEP+06] “Definition 5.2 (transformation)”) per-
formed in the world of simple graphs. To verify the consistency of matches in the triple
graph environment, the matches for source, connection and target components have to be
inspected not only individually, but also in combination with each other. Such a consist-
ency check is performed in propperMatch(). PropperMatch() in combination with contin-
ueProperMatchINC() and propperMatchFromOpposite() checks weather a match calcu-
lated for the source part of performed rule application is corresponding to some matched in
the connection part or weather for a target match a connection match exists. Propper-
Match() returns a boolean value. This value is the criteria for the Select()(III. 2.2.) method
in the end of TGGmatches() to include or to exclude a match from the generated set from
the result set. Which can be seen in Code 43.

72

Code 43:

3 Realisation of Model Transformation in Mathematica

3.10. Automated source and source-/forward- sequence search
Triple graph transformation and integration theory describes a certainly interesting ap-
proach. But for this approach to be beneficial in practical use, there is one more task to ac-
complish. In sections 3.7. and 3.8. the implementation of triple graph transformation and
integration were introduced. Both implemented methods get a sequences of triple rules
(source or source-/target-). The whole triple graph transformation / integration theory bases
on the existence of some sequence of triple rules, which were used to build up the given
model. This means, that to perform a real transformation or integration the application has
to parse the input model for a source sequence or a source-/target- sequence.

ApplyFun() was implemented with this purpose. This method uses deletion rules in
the parsing process. Deletion rules are generated by applying TGGdelrule() to a dpo rule.

73

Image 40: working mechanism of applyFun()

III. Realisation in Wolfram Research “Mathematica”

TGGdelrule
takes a dpo triple rule(output of TGGmakeRuleInclusion()(3.6.2)) as an argument and re-
places the left hand side graph with the right hand one, and the corresponding morphisms.
The output is a dpo triple rule, which deletes the changes made to a graph by given input
dpo rule, if applied with its comatches.
TGGmakeDelRules() applies TGGdelrule() on a list of dpo rules and returns a list of cor-
responding deleting rules.

ApplyFun
takes as arguments a list of deleting dpo triple rules (output of TGGmakeDelRules()), a list
of corresponding rule names, a triple graph to parse(output of TGGmakeGraph()(3.3.)),
two empty lists (for recursion realisation), a type graph and an inheritance graph. The out-
put is a list, consisting of a boolean value, a list of indexes, a list of matches and a sum-
mary list. The list of indexes is the order in which the rules from input list have to be ap-
plied to an empty graph with the matches from the list of matches to generate the input
graph.
ApplyFun() parses the input graph by applying the deletion rules from the input list to it.
Before performing any operations the input graph is backed up. The method iterates over
the input list of deletion rules. For each rule and the input graph a set of matches is gener-
ated. After all marches are inspected for focused rule, next rule in the list is chosen (yellow
actions in Image 40 and Code 44).

74

Code 44: applyFun: input deletion dpo rules list loop

3 Realisation of Model Transformation in Mathematica

Each deletion rules is applied with each generated match. This is realized by iteration
over the matches (red actions in Image 40). In the matches loop iteration step a match is
chosen and written into a history variable. Then the rule is applied (Code 45).

After rule application it is checked weather the empty triple graph has been reached. If it is
the case the output variable “outReturn” is filled with a list. The list contains “true” as first
element, a sequence of applied rules and a sequence of applied matches(Code 46).

Further, the graph generated in Code 45 is checked for being consistent triple graph, by a
special method checkTGG(). It is an inconsistency if, for example, source and connection
graphs contain no nodes, but the morphism between them isn't empty. If the graph is con-
sistent, but not empty the recursion step is performed and ApplyFun() is applied with same
dpo deletion rules list, yet with the new graph (blue action in Image 40 and Code 47).

If after performed manipulations the value of the first element in “outReturn” list still
stays “False”, the match entry is erased from history list and the in Code 44 backed up
graph is restored. The deletion of used match from the iteration list ends the match loop
(Code 48).

75

Code 45

Code 46

Code 47: applyFun: recursion step

III. Realisation in Wolfram Research “Mathematica”

Thanks to the use of DPO rules, applyFun() is not fixed to the search only for the source or
only for the target sequence. An other advantage is that applyFun() performs the pattern
search not by generating whole set of possible graphs from given rules, but aims directly
the build up sequence. The algorithms achieves this by searching for an empty graph as re-
cursion anchor and applying deletion DPO rules in recursion step.

76

Code 48

IV. CASE STUDIES

IV. Case studies

1 Company employee interdependency example
In the first case study the example class- to data base conversion diagram from II. 1.3. is
taken up. The rules from II. 1.3. are defined, so that they can be used by the application.
The diagram is first manually build up to prove the possibility of gaining it by the use the
triple rules. Then an automated transformation and integration are performed. The resulting
graphs of the transformation and integration are compared to the manually constructed
triple graph to ensure that these operations return a correct result.

To evaluate the entity relationship case study the notebook file
“TripleGraphTest_classentity_withNeeds.nb” in root Folder was created.

First step of evaluation in “TripleGraphTest_classentity_withNeeds.nb” is the load-
ing of additional packages (Code 49).

Following packages are being used in this case sturdy:

• TripleGraph.m

Contains the definition of methods, which implement the triple graph trans-
formation theory, i.e. TGGMakeGraph(), TGGmakeGraphL(), TGGmakeRule(),
TGGmakeRuleInclusion(), etc. A detailed description of this methods can be
found in sections III. 3.3. - III. 3.6. and III. 3.10. .

• Matching.m

Contains the definitions of methods: TGGmatches(), propperMatch(), calcu-
lateMatches(), etc. This is a package from the implementation of III. 2 Realisa-
tion of attributed Graph-transformation in Mathematica(by Jochen Adamek),
which has been extended by methods needed in the triple graph transformation
theory. Methods from Matching.m are used for automatic match calculations
between triple rules and triple graphs. These methods are described in detail in
section III. 3.9. .

• ClassEntityTG.m

80

Code 49

1 Company employee interdependency example

Contains the definitions of type graphs for source, connection and target parts
of the models, which are used in the case study. This means that node and edge
types are defined and the inheritance graphs created. In Code 50 can be ob-
served how this procedure is performed for the class diagram model.
Class$TGNodes is a list, which contains an entry for every node type from class
diagram language, used in the case study. To Class$TG a graph is assigned con-
sisting of Class$TGNodes elements as nodes and all possible edges between
them. Class$I represents the inheritance graph of the model. In case of class
diagram used for this case study the inheritance graph is flat (has only one di-
mension). Class$TGI summarises the type graph and inheritance graph in one
list. Similar are the definitions for connection and entity-relationship diagrams.

• ClassEntityTGGRules.m

Contains the definitions for graphs and triple graphs, which are needed to build
up the triple rules used in this case study. For instance, to build up the rule sub-
Class2Table (II. 1.2. Image 4) six graphs or two triple graphs are needed:

1) Left triple graph (purple in Code 51) consists of:

(a) source graph (class diagram part): node of type “ClassClass” (blue in
Code 51)

(b) connection graph: node of type “ClassTableRel” (green in Code 51)

(c) target graph (entity-relationship diagram part): node of type “EntityT-
able” (red in Code 51).

81

Code 50:class diagram: type graph generation

IV. Case studies

2) Right triple graph (purple in Code 52) consists of:

(a) source graph: two “ClassClass” nodes, connected to each other with an
edge of type “Class$parent” (blue in Code 52)

(b) connection graph: two nodes of type “ClassTableRel” (green in Code
52)

(c) target graph: a node of type “EntityTable” (red in Code 52).

Similar definitions are made for graphs and triple graphs used to build up the
rules Class2Table, PrimaryAttribute2Column and Association2ForegnKey.

• ClassEntityTripleGraphsForRules.m

includes the actual definitions of the rules Class2Table, SubClass2Table,
PrimaryAttribute2Column and Association2ForegnKey (Code 53).

82

Code 51

Code 52

Code 53

1 Company employee interdependency example

ClassEntityTripleGraphsForRules.m additionally contains a list allRulesClas-
sEntity, which includes all of the defined triple rules, and a list allRulesClas-
sEntityNames of corresponding rule names(Code 54).

After loading additional packages in “TripleGraphTest_classentity_withNeeds.nb”
the loaded components are visualised.

The Visualisation is performed by the use of methods showTGG() and showTG-
GRulePatched(). This methods are extensions of Mathematica build in method
GraphPlot()(III. 1.2.). showTGG(), showTGGRulePatched() as well as visualisation meth-
ods showTGGPatched(), showTGGRuleAll(), showTGGRulePureAll() and showTGGRule-
PurePatched() were developed during implementation of the practical part of this theses
too, yet couldn't be brought into the description, because of lack of time. The general func-
tionalities of showTGG() and showTGGRulePatched() are following:

83

Code 54

Code 56: Visualisation:
subclass2TableRule

Code 55: Visualisation: class3Table and
subclass2Table

IV. Case studies

showTGG
visualises a triple graph. The source graph edges are coloured blue in the visualisation,
the target graph edges are coloured green, but the morphisms are visualised as red dashed
arrows.

showTGGRulePatched
visualises a triple rule.

• If the left-hand triple graph is empty – the visualisation consists of six cells: three
upper ones realize the left hand triple graph, three lower ones realize the right
hand triple graph.

• If the left-hand triple graph isn't empty – the visualisation consists of six cells:
three lower ones realize the left hand triple graph, three upper ones realize the
right hand triple graph.

In both cases blue nodes belong to source graphs, white to connection graphs and green to
target graphs.
All triple graphs from “ClassEntityTGGRules.m” as well as triple rules from “Clas-
sEntityTripleGraphsForRules.m” are visualised in “TripleGraphTest_classentity_with-
Needs.nb”. For example, the rule subclass2tableRule(), which was constructed in Code 51
and Code 52 is also visualised in “TripleGraphTest_classentity_withNeeds.nb”. The visual-
isation includes the left- and right- hand triple graphs (class2table and subclass2table)
(Code 55) and the triple rule subclass2tableRule itself (Code 56).

Triple graphs and triple rules visualisations are followed by a manual constructed
triple rule execution sequence from empty (which is the empty triple graph) to G5. This is
done in order to prove that under explicitly defined conditions triple graph G5 is construc-
ted by the use of triple rules from the list allRulesClassEntity. G1 is the result of class2Ta-
bleRule() applied to empty with an empty match(Code 57), G2 - class2TableRule() applied
to G1, etc.

84

Code 57

Code 58

1 Company employee interdependency example

Beginning with subclass2TableRule() application, the matches are calculated by the use of
the method TGGmatches()(Code 58) and applied by the use of the method TGGapplyR-
uleIndexed(). Yet the choice of the matches to use stays determined manually (red under-
lined in Code 59).

85

Code 60: result graph G5 after manual triple rule application

Image 41: final triple graph in
transformation/integration example from II. 1.3. /II. 1.4.

Code 59

IV. Case studies

The resulting graph G5(Code 60) corresponds to G10 from II. 1.4. Table 4 (Image
41).

The sequence used for constructing G5 is
empty ⇒

class2TableRule G1 ⇒
class2TableRule G2 ⇒

subclass2TableRuleG3 ⇒
primaryAttribute2ColumnRule G4

⇒
Association2ForeignKeyRuleG5 .

Further in the deletion rules are tested. It is done by transforming every rule in a cor-
responding to it deletion rule and applying them in inverse sequence
G5 ⇒

Association2ForeignKeyRuleDel G4 ⇒
primaryAttribute2ColumnRuleDel G3 ⇒

subclass2TableRuleDel G2 ⇒
class2TableRuleDel G1

⇒
class2TableRuleDel empty to G5. In Code 61 it is shown how this procedure is performed to the
rule Association2ForegnKey. The matches, which are used for application of Association2-
ForegnKeyDel are also here generated in automatic way by the use of TGGmatches()(III.
3.9.)(green underlined in Code 61). Yet also in deletion rules case generated matches are
applied manually (red underlined in Code 61).

As expected applying deletion rules in above mentioned sequence ends up in an empty
graph empty. This result has proven, that it is possible to apply deletion rules to a graph in a
reverse order to the triple rule build up sequence of this graph and get an empty graph.

86

Code 61: Association2ForeighKeyRuleDel: deletion rule
generation and application

1 Company employee interdependency example

1.1.1 Automated triple graph transformation
Further in “TripleGraphTest_classentity_withNeeds.nb” an automatic transformation is be-
ing performed. For this reason the package “TrippleGraphTransformation.m” is being
loaded(Code 62). This package contains methods like TGGSourceRules(), TGGForward-
Rules(), TGGapplyFWRules, etc. These methods were developed for performing triple
graph transformation. In Section III. 3.7. the implementation of triple graph transformation
is described in detail.

The task of a triple graph transformation is to transform a source model into a target
model. That for, first G5 is transformed, by the use of TGGSourceGraph(), into a source
graph G5S (Code 63).

G5S represents the class diagram, which is transformed during the experiment in “Triple-
GraphTest_classentity_withNeeds.nb” into a corresponding entity-relationship diagram.

To perform the transformation according to the triple graph transformation theory (II. 1.3.)
some more components are needed. The corresponding to the source graph – connection
and target graphs are build up by the execution of a forward rule sequence. And the for-
ward rule sequence is determined by a source rule sequence. This means, that aside from
the source graph G5S source and forward rules have to be generated(Code 64).

87

Code 63: Case study 1: source graph

Code 62

Code 64:

IV. Case studies

The triple graph transformation theory doesn't provide any information about the
generation technique of the source rule sequence. Therefore the in section III. 3.10. intro-
duced method applyFun() can be used. applyFun() generates the source sequence by apply-
ing deletion source rules to the source model. That is the reason, why in Code 64 generated
source rules are transformed in corresponding deleting rules.

During the execution of applyFun() a lot of textual output is being produced(Code
65). This happens because applyFun() is a recursive method. Each line of output represents
the result sequence, which is calculated at a certain recursion step. The user can see in that
way the whole track, which led to the generation of the source sequence. Of direct import-
ance is the last output string and the second element in the output list(green underlined in
Code 66). These are the result parsing source sequence generated form G5S by the use of
applyFun() and the deleting source rules.

The fact, that the in Code 66 generated sequence correspond to manually established dele-
tion rule sequence
G5 ⇒

Association2ForeignKeyRuleDel G4 ⇒
primaryAttribute2ColumnRuleDel G3 ⇒

subclass2TableRuleDel G2 ⇒
class2TableRuleDel G1

⇒
class2TableRuleDel empty proves, that automated source sequence search implemented in this
thesis is successful, when applied in borders of this case study.

88

Code 65: applyFun: output during execution

Code 66: applyFun(): final output

1 Company employee interdependency example

After establishing the source rule sequence finally the model transformation accord-
ing to triple graph transformation theory (II. 1.3.) can be performed. Forward rules are ap-
plied to the source model G5S in by the triple rule source sequence defined order. This is
performed by the use of TGGapplyFWRules()(III. 3.7.)(Code 67).

The automated transformation result triple graph (Code 68) represents the class diagram
connected via a graph and two morphisms to the corresponding entity-relationship dia-
gram. The fact that it corresponds with manually constructed graph G5 from Code 60
proves, that automated triple graph transformation implemented in this thesis is successful,
when applied in borders of this case study. To get the sought entity-relationship model the
graph from Code 68 is reduced to the target graph(Code 69).

89

Code 67: performing triple graph transformation

Code 68: automated transformation result triple graph

Code 69: automated transformation result:
entity-relationship model

IV. Case studies

1.1.2 Automated triple graph integration
For performing an automated model integration according to the triple graph integration
theory(II. 1.4.) first, like in triple graph transformation, additional methods are needed.
Those methods are gained by loading “TrippleGraphIntegration.m”(Code 70) into the note-
book “TripleGraphTest_classentity_withNeeds.nb”. This package contains methods like
TGGSTRules(), TGGIntegrationRules(), TGGapplyInegrationRules, etc. These methods
were developed for performing triple graph integration. In Section III. 3.8. the implementa-
tion of triple graph integration is described in detail.

The task of a triple graph integration is to perform a connection between two models. For
that reason, first the manually constructed test-model triple graph G5 from Code 60 is
transformed, by the use of TGGSTGraph(), into a source/target graph G5ST (Code 71).

G5ST represents the class and entity-relationship diagrams, which have to be connected by
a third graph during the experiment automated triple graph integration in “TripleGraphT-
est_classentity_withNeeds.nb”.

90

Code 70

Code 71: automated graph integration: source-/target- graph

Code 72

1 Company employee interdependency example

To perform the integration according to the triple graph integration theory (II. 1.4.)
some more components are needed. The corresponding to the source-/target- graph – con-
nection graph is build up by executing an integration rule sequence. The integration rule
sequence is determined by a source-/target- rule sequence. This means, that aside from the
source-/target- graph G5ST source-/target- and integration rules have to be generated(Code
72).

The triple graph integration theory doesn't provide any information about the genera-
tion technique of the source-/target- rule sequence. Therefore the in section III. 3.10. intro-
duced method applyFun() can be used. applyFun() generates the source-/target- sequence
by applying deletion source-/target- rules to the source-/target- model. That is the reason,

why in Code 72 generated source-/target- rules are transformed in corresponding deleting
rules.

The result of applyFun() is a rule sequence (last output string and the second element in
the output list(green underlined in Code 73)) which can be used to build up given
source-/target- model. This is the result parsing source-/target- sequence, which is gener-
ated form G5ST by the use of applyFun() and the deleting source-/target- rules.

The fact, that the in Code 73 generated sequence correspond to manually established
deletion rule sequence
G5 ⇒

Association2ForeignKeyRuleDel G4 ⇒
primaryAttribute2ColumnRuleDel G3 ⇒

subclass2TableRuleDel G2 ⇒
class2TableRuleDel G1

⇒
class2TableRuleDel empty proves, that automated source-/target- sequence search implemented
in this thesis is successful, when applied in borders of this case study.

After establishing the source-/target- rule sequence finally the model integration ac-
cording to triple graph integration theory (II. 1.4.) can be performed. Integration rules are
applied to the source-/target- model G5ST in by the triple rule source-/target- sequence
defined order. This is performed by the use of TGGapplyIntegrationRules()(III. 3.8.)(Code
74).

91

Code 73: applyFun() result: source-/target- sequence

Code 74: performing triple graph integration

IV. Case studies

The automated integration result triple graph (Code 75) represents the class diagram con-
nected by a graph and two morphisms to the corresponding entity-relationship diagram.
The fact that it corresponds with manually constructed graph G5 from Code 60 proves, that
automated triple graph integration implemented in this thesis is successful, when applied in
borders of this case study.

92

Code 75: automated integration result triple graph

2 Car factory software example

2 Car factory software example
In the second case study a model representing an car entry in a car factory software is
used(Image 42). The simulation of triple garph transformation and integration is performed
in the notebook “TripleGraphTest_classentity2_withNeeds.nb”.

In the same way as in as in the first case study(IV. 2.1.1) to Image 42 corresponding triple
graph is manually constructed by the use of in “ClassEntityTripleGraphsForRules.m”
defined triple rules. The resulting triple graph is illustrated in Code 76.

93

Code 76: result graph G4 after manual triple rule application

Image 42: Case study 2 models: Car factory

IV. Case studies

2.1.1 Automated triple graph transformation
Further in “TripleGraphTest_classentity2_withNeeds.nb” an automatic transformation is
being performed. For this reason the package “TrippleGraphTransformation.m” is being
loaded(Code 77). This package contains methods like TGGSourceRules(), TGGForward-
Rules(), TGGapplyFWRules, etc. These methods were developed for performing triple
graph transformation. In Section III. 3.7. the implementation of triple graph transformation
is described in detail.

The task of a triple graph transformation is to transform a source model into a target
model. That for, first G4 is transformed, by the use of TGGSourceGraph(), into a source
graph G4S (Code 78).

G4S represents the class diagram, which is transformed during the experiment in “Triple-
GraphTest_classentity2_withNeeds.nb” into a corresponding entity-relationship diagram.

To perform the transformation according to the triple graph transformation theory (II. 1.3.)
some more components are needed. The corresponding to the source graph – connection
and target graphs are build up by the execution of a forward rule sequence. And the for-
ward rule sequence is determined by a source rule sequence. This means, that aside from
the source graph G4S source and forward rules have to be generated(Code 79).

94

Code 78: Case study 1: source graph

Code 77

Code 79:

2 Car factory software example

The triple graph transformation theory doesn't provide any information about the
generation technique of the source rule sequence. Therefore the in section III. 3.10. intro-
duced method applyFun() can be used. applyFun() generates the source sequence by apply-
ing deletion source rules to the source model. That is the reason, why in Code 79 generated
source rules are transformed in corresponding deleting rules.

During the execution of applyFun() a lot of textual output is being produced(Code
80). This happens because applyFun() is a recursive method. Each line of output represents
the result sequence, which is calculated at a certain recursion step. The user can see in that
way the whole track, which led to the generation of the source sequence. Of direct import-
ance is the last output string and the second element in the output list(green underlined in

Code 81). These are the result parsing source sequence generated form G5S by the use of
applyFun() and the deleting source rules.

The fact, that the in Code 81 generated sequence correspond to manually established dele-
tion rule sequence
G4 ⇒

primaryAttribute2ColumnRuleDel G3 ⇒
subclass2TableRuleDel G2 ⇒

subclass2TableRuleDel G1 ⇒
class2TableRuleDel empty

proves, that automated source sequence search implemented in this thesis is successful,
when applied in borders of this case study.

95

Code 80: applyFun: output during execution

Code 81: applyFun(): final output

IV. Case studies

After establishing the source rule sequence finally the model transformation accord-
ing to triple graph transformation theory (II. 1.3.) can be performed. Forward rules are ap-
plied to the source model G4S in by the triple rule source sequence defined order. This is
performed by the use of TGGapplyFWRules()(III. 3.7.)(Code 82).

The automated transformation result triple graph (Code 83) represents the class diagram
connected via a graph and two morphisms to the corresponding entity-relationship dia-
gram. The fact that it corresponds with manually constructed graph G4 from Code 76
proves, that automated triple graph transformation implemented in this thesis is successful,
when applied in borders of this case study. To get the sought entity-relationship model the
graph from Code 83 is reduced to the target graph(Code 84).

2.1.2 Automated triple graph integration
For performing an automated model integration according to the triple graph integration
theory(II. 1.4.) first, like in triple graph transformation, additional methods are needed.
Those methods are gained by loading “TrippleGraphIntegration.m”(Code 85) into the note-
book “TripleGraphTest_classentity2_withNeeds.nb”. This package contains methods like
TGGSTRules(), TGGIntegrationRules(), TGGapplyInegrationRules, etc. These methods
were developed for performing triple graph integration. In Section III. 3.8. the implementa-
tion of triple graph integration is described in detail.

96

Code 82: performing triple graph transformation

Code 83: automated transformation result triple graph

Code 84: automated transformation result:
entity-relationship model

Code 85

2 Car factory software example

The task of a triple graph integration is to perform a connection between two models.
For that reason, first the manually constructed test-model triple graph G4 from Code 76 is
transformed, by the use of TGGSTGraph(), into a source/target graph G4ST (Code 86).

G4ST represents the class and entity-relationship diagrams, which have to be connected by
a third graph during the experiment automated triple graph integration in “TripleGraphT-
est_classentity2_withNeeds.nb”.

To perform the integration according to the triple graph integration theory (II. 1.4.) some
more components are needed. The corresponding to the source-/target- graph – connection
graph is build up by executing an integration rule sequence. The integration rule sequence
is determined by a source-/target- rule sequence. This means, that aside from the
source-/target- graph G4ST source-/target- and integration rules have to be generated(Code
87).

The triple graph integration theory doesn't provide any information about the genera-
tion technique of the source-/target- rule sequence. Therefore the in section III. 3.10. intro-
duced method applyFun() can be used. applyFun() generates the source-/target- sequence
by applying deletion source-/target- rules to the source-/target- model. That is the reason,
why in Code 87 generated source-/target- rules are transformed in corresponding deleting
rules.

97

Code 86: automated graph integration: source-/target- graph

Code 87

Code 88: applyFun() result: source-/target- sequence

IV. Case studies

The result of applyFun() is a rule sequence (last output string and the second ele-
ment in the output list(green underlined in Code 88)) which can be used to build up given
source-/target- model. This is the result parsing source-/target- sequence, which is gener-
ated form G4ST by the use of applyFun() and the deleting source-/target- rules.

The fact, that the in Code 88 generated sequence correspond to manually established
G4 ⇒

primaryAttribute2ColumnRuleDel G3 ⇒
subclass2TableRuleDel G2 ⇒

subclass2TableRuleDel G1 ⇒
class2TableRuleDel empty dele-

tion rule sequence proves, that automated source-/target- sequence search implemented
in this thesis is successful, when applied in borders of this case study.

After establishing the source-/target- rule sequence finally the model integration ac-
cording to triple graph integration theory (II. 1.4.) can be performed. Integration rules are
applied to the source-/target- model G4ST in by the triple rule source-/target- sequence
defined order. This is done by the use of TGGapplyIntegrationRules()(III. 3.8.)(Code 89).

The automated integration result triple graph (Code 90) represents the class diagram
connected by a graph and two morphisms to the corresponding entity-relationship diagram.
The fact that it corresponds with manually constructed graph G4 from Code 76 proves, that
automated triple graph integration implemented in this thesis is successful, when applied in
borders of this case study.

98

Code 89: performing triple graph integration

Code 90: automated integration result triple graph

2 Car factory software example

99

V. CONCLUSION

101

V. Conclusion

1 Future Works

1.1. ABT-Reo Case study
A third case study for model transformation / integration is already in work. It is based on
the integrated model based on ABT-Reo diagrams, introduced in [BHE+10]. In this case
study the model transformation / integration will be applied to triple graphs consisting of a
business service model in the source component and an IT service model in the target com-
ponent (Image 43). Both source and connection models are realized in ABT-Reo modelling
language.

The type graph IMAGE of the case study, triple graphs and triple
rules(departmentToLan(), filterToEd(), pvpcRtL()) required for the transformation simu-
lated in [BHE+10] are already defined and implemented in packages: SecurityTG.m, Se-
curityTGRules.m, SecurityTGRules.m and SecurityTripleGraphsForRules.m.

102

Image 43: Triple graph: business service model vs IT service
model [BHE+10]

Image 44: Abstract syntax [BHE+10]Image 45: Concrete
syntax [BHE+10]

1 Future Works

The case study evaluation is realised till a successful automated source sequence
search. Yet the work on this case study had to be paused, due to leak of time and high com-
plexity of the models, which made the execution and debugging times rise exponentially.
The ABT-Reo model concrete syntax(Image 45) have a very condensed syntax. For the im-
plementation abstract syntax is being used(Image 44 contains the abstract syntax corres-
ponding to in Image 45 concrete syntax). This makes the generation only of the left hand
triple graph source graph of the rule “private vs public”(pvpcRtL()) to have a confusing
notation(Code 91).

Further, because of the large amount of nodes and edges the graphical visualisation
becomes also unclear. Code 92 illustrates the rule from Image 43 in abstract syntax imple-
mented in the case study and visualised by the use of the method showTGG(), mentioned in
chapter IV. 2.1.1.

103

Code 91: triple rule pvpcR: left hand triple graph source graph generation

Code 92: Abstract syntax: Triple graph: business
service model vs IT service model

V. Conclusion

The main difficulty on the way of applying automated model transformation to the
ABT-Reo case study hight calculation load in automated match search.

Therefore, before carrying on with the application of this case study. Several task a to
accomplish:

1. The graph visualisation has to be extended by concrete syntax. Some progress
has been already achieved in the realization of this task: showTGSimple() for in-
stance visualises an in abstract syntax entered graph(Code 94) in concrete syn-
tax(Code 93). In future it should be extended to triple graph visualisation in
concrete syntax.

2. The automated match search should be made less heavy weight.(1.2.)

3. The automated source sequence search should bread a smaller search tree.(1.2.)

1.2. Future modifications for the application
Already by the application of the ABT-Reo case study it became obvious that modifica-
tions have to be performed on the match search and on the sequence search algorithms.
There are several options how it can be done in future:

1. Both match search and source (source-/target-) sequence searches, contain sev-
eral loops in the implementations. This loops can be replaced with list map-
pings. Since list mappings are Mathematica built in functions, the manipula-
tions of lists performed by the use of this functions will provide an enormous
increase of efficiency in comparison to manual iteration over a list.

2. Automated matching should filter the improper matches during the match
search in the algorithms, but not after matches already have been generated.

104

Code 94: business service model (Image 43
left hand side): abstract syntax

Code 93: business service model (Image 43
left hand side): concrete syntax

1 Future Works

3. The source (source-/target-) sequence search should be optimised, by limiting
the deletion rules application possibilities.

All methods in the application, should throw detailed exceptions and error messages in
case wrong data has been entered, or in a wrong way. Mathematica stack trace is too ab-
stract.

1.3. Future extensions.
In first place in future several theoretical concepts should be implemented. Such as applic-
ation conditions[EEP+06] and on-the-fly approach[EEE+09].

Most in this thesis implemented model transformation / integration methods already
include application conditions as arguments. Yet for now this data is being ignored. In fu-
ture extensions of model transformation / integration application condition should be taken
into the application process of the triple rule.

The model transformation / integration theory, as it is implemented in this thesis,
when applied to large projects becomes unproductive. The reason is that during the trans-
formation / integration process a sequence of source-/forward- rules or source-/target- and
integrations rule is to be build up. This process leads to constructions of huge search-trees,
while building up the sequences and an enormous rise of complicity as result of extending
the underlying triple rule sets. The On-the-Fly Construction (introduced in [EEE+09])
promises to fix this problem. In this approach the source (source-/target-) sequence auto-
mated generation becomes dispensable. The extension of the implementation of model
transformation with On-the-Fly Construction([EEH+09]) would make a huge step towards
real applicable in practice model transformation.

105

V. Conclusion

2 Conclusion
In this thesis, model transformation / integration based on the triple graph approach theory
has been introduced and described in chapters II. 1.1. - II. 1.5. . In chapters III. 3.1. - III.
3.10. it was shown how these concepts are transformed into program code. The imple-
mentation was done in Mathematica. The usage of this programming language provided
the possibility not to abstract from the theoretical concepts during the implementation. As a
result an application was developed, by which models of different modelling languages can
be transformed one into another, or a connection can be established between two models.

Not only the theoretical concept of triple graph model transformation was realized,
but also the theory of triple graphs was extended(II. 1.5.) by the DPO rule construction.
This extension provided the possibility to implement deleting triple rules(III. 3.6.1). The
usage of deleting triple rules was limited to the intern usage of the application. Thanks to
this extension, an efficient source(source-/target-) rules sequence pattern search has been
implemented (III. 3.10.). The efficiency of the search was achieved by shrinking the pars-
ing tree to realistic sizes.

To test the implementation, two case studies were performed. Based on entity-rela-
tionship and class diagram languages two models were specified and transformed / integ-
rated. The case study evaluation was performed in five steps:

1. Triple rules were defined and models were build up manually.

2. Automated source rule sequence search has been performed and corresponding
automated forward rule sequence has been applied to the source graph.

3. The target model of the result triple graph was compared to the manually gener-
ated one in 1..

4. Automated source-/target- rule sequence search has been performed and corres-
ponding automated integration rule sequence has been applied to the
source-/target- graph.

5. The resulting triple graph was compared to the in the manually generated one in
1..

Considering these case studies, it can be argued that the model transformation / integration
implementation in this thesis is successful and correct.

A third ABT-Reo case study was started and brought to the source rule sequence gen-
eration state. Unfortunately the complexity of diagrams in this case study rose very fast. So
special simplification and visualisation algorithms were developed, but the further realiza-
tion of this case study is planned in borders of future works.

106

Bibliography

Bibliography
[EEH+08] Ehrig, Hartmut; Ehrig, Karsten; Herman, Frank. From Model

Transformation to Model Integration based on the
Algebraic Approach to Triple Graph Grammars. Volume
10. 2008

[Sch94] Schürr, Andy. Specification of graph translators with
triple graph grammars. In Mayr and Schmidt (eds.). Proc.
WG’94 Workshop on Graph-Theoretic Concepts in
Computer Science. Springer. Berlin. 1995

[EEE+07] Ehrig, Hartmut; Ehrig, Karsten; Ermel, Claudia; Herman, Frank; Taentzer,
Gabriele. Information Preserving Bidirectional Model
Transformations. In Dwyer and Lopes (eds.). Fundamental
Approaches to Software Engineering. Springer. Berlin. 2007

[SE+07] S. Sumathi; S. Esakkirajan. Entity-Relationship Model.
Fundamentals of Relational Database Management
Systems . Springer. Berlin. 2007

[BD+04] Bruegge, Bernd; Dutoit, Allen H.. Class Diagrams. Object-
Oruented Software Engeneering . Pearson Prentice Hall. Upper
Saddle River. 2004

[EEP+06] Ehrig, Hartmut; Ehrig, Karsten; Prange, Ulrike; Taentzer, Gabriele. . .
Fundamentals of Algebraic Graph Transformation.
Springer. Berlin. 2006

[Pepper99] Pepper, Peter. . Funktionale Programmierung in OPAL, ML,
HASKELL und GOFER . Springer. Berlin. 1999

[MATH] Mathematica, Wolfram Research Homepage.
http://www.wolftam.com

[Ada09] Adamek, Jochen. Konzeption und Implementierung einer
Anwendungsumgebung für attributierte
Graphtransformation basierend auf Mathematica.
Technische Universität Berlin: Institut für Softwaretechnik und Informatik.
Technical report Nr.2009/15 . 2009

[AGG] A Development Environment for Attributed
GraphTransformation Systems. http://user.cs.tu-
berlin.de/~gragra/agg/

[BHE+10] Christoph Brandt, Frank Hermann, Hartmut Ehrig, Thomas Engel.
Enterprise Modellingusing Algebraic Graph
Transformation - Extended Version. : . Technical report Nr.
2010/06 . 2010

[EEE+09] Ehrig, Hartmut; Ehrig, Karsten; Ermel, Claudial; Herman, Frank; Prange,
Ulricke. On-the-Fly Construction, Correctness and
Completeness of Model Transformation based on
Triple Graph Grammars: Long Version. 2009

[EEH+09] Ehrig, Hartmut; Ermel, Claudia; Herman, Frank; Prange, Ulricke. On-
the-Fly Construction, Correctness and Completeness
of Model Transformations based on Triple Graph

Bibliography

Grammars: Long Version. : . Technical Report Nr. 2009/11. Fak. IV
TU Berlin . 2009

	I. Introduction
	1 Motivation
	2 Overview

	II. Review of theoretical background
	1 Triple Graph Grammars
	1.1. Triple Graph.
	1.2. Triple Rule
	1.3. Model Transformation
	1.4. Model Integration
	1.5. DPO Triple Rule

	III. Realisation in Wolfram Research “Mathematica”
	1 Wolfram Research “Mathematica”
	1.1. Language.
	1.2. Concepts and techniques used in the implementation

	2 Realisation of attributed Graph-transformation in Mathematica(by Jochen Adamek)
	2.1. Introduction
	2.2. Concepts and techniques used in the implementation

	3 Realisation of Model Transformation in Mathematica
	3.1. General model of the concept for implementation
	3.2. Use cases
	3.3. A Triple Graph as input
	3.4. A Triple Rule as input
	3.5. Applying a Triple Rule on a Triple Graph
	3.6. Triple Rule modification
	3.6.1 DPO rule extension
	3.6.2 Inclusion extension

	3.7. Model Transformation Realisation
	3.8. Model Integration Realisation
	3.9. Match search functionality for Triple Rule on Triple Graph
	3.10. Automated source and source-/forward- sequence search

	IV. Case studies
	1 Company employee interdependency example
	1.1.1 Automated triple graph transformation
	1.1.2 Automated triple graph integration

	2 Car factory software example
	2.1.1 Automated triple graph transformation
	2.1.2 Automated triple graph integration

	V. Conclusion
	1 Future Works
	1.1. ABT-Reo Case study
	1.2. Future modifications for the application
	1.3. Future extensions.

	2 Conclusion

