
Towards Formal Algebraic Modeling and Analysis

of Communication Spaces?

Tony Modica

modica@cs.tu-berlin.de

Integrated Graduate Program Human-Centric Communication
Technische Universität Berlin

Abstract. We subsume Communication Spaces (CS) as communication-
based systems taking into account the central notions of interpretation of
content in contexts, communication roles, and allowing for human-centric
demands, e.g. adaption to environment and preferences. Since most of
the well-known formal modeling approaches are adequate only for spe-
ci�c aspects or limited views of systems considered as CS, in this article
a new formal approach is advocated. This approach is an integration
and extension of the well-established modeling techniques of algebraic
high-level Petri nets and rule-based graph transformation, intended to
cover the main aspects of CS and to analyze and verify properties speci�c
to them. We demonstrate the new approach of Algebraic Higher-Order
Net with Individual Tokens (AHOI nets) on an example modeling of the
widely known Internet telephone software Skype. This allows us to dis-
cuss the advantages of AHOI nets w.r.t. needs of a basic modeling of
CS.

1 The Challenges of Communication Spaces

The notion of Communication Spaces (CS) is not intended to be �xed formally.
Moreover, it is meant to serve as a characterizing concept of communication
systems featuring speci�c aspects, e.g.:

� Contextuality of contents that is transmitted (via channels) by communicat-
ing entities (actors).

� Dynamics in the system structure, so that actors may move in CS, even join
or leave several di�erent CS.

� Preferences, access rights, and roles are to be respected.

Typical examples that can be considered from the CS viewpoint are Internet-
based applications like Skype, Facebook, or SecondLife; and also Mobile Ad-
hoc networks or SmartHomes, in which appliances are connected intelligently

? This work has been supported by the Integrated Graduate Program on Human-
Centric Communication at TU Berlin (http://www.h-c3.org/ra_en.html#RAE) and
by the research project forMAlNET (http://tfs.cs.tu-berlin.de/formalnet) of
the German Research Council

http://www.h-c3.org/ra_en.html#RAE
http://tfs.cs.tu-berlin.de/formalnet


2 Tony Modica

to o�er increased comfort to their inhabitants. It is desirable to have a formal
modeling technique for CS, so that we can specify the features of such systems
unambiguously and are able to simulate, test, and analyze/verify1 them, using
the formal semantics of the modeling technique. We have observed that most of
the well-known modeling techniques like UML and actor systems [1] or formal
speci�cation techniques like process algebras [2], low-level and high-level Petri
nets [3,4], algebraic speci�cation [5] and graph transformation [6], and di�erent
kinds of logic are only adequate to model and/or analyze speci�c aspects of
CS. Plain Petri nets for example have a static structure. Graph transformation
systems in contrast are dynamic in their structure but lack a description of
system behaviour. Of course, appropriate graph transformation systems may
also be used to simulate e.g. the behaviour of Petri nets but it seems advisable to
distinguish system behaviour from recon�guration and to possibly use standard
results for analysis. Another thing to mention is that we believe that visual
diagrammatic models as Petri nets and graphs can have advantages for system
modeling w.r.t readability and understandability, though there is no standard
measure for these properties.

As a consequence of the above, we advocate a new integrated formal modeling
technique for CS. In this paper, however, we only give an informal introduction
to our new visual modeling technique and demonstrate how it can be used to
model a typical example of a CS: the Internet telephone software Skype.

2 Modeling of CS with a new Kind of Petri Nets

In this section, we formulate some main requirements for modeling of CS and
give an informal overview to a modeling approach, called AHOI Petri nets.

2.1 Requirements for Modeling of CS

An adequate formal modeling approach would have to cover at least three main
aspects of CS:

1. Data and content in the CS and the knowledge of actors (their content
spaces).

2. Structure of the CS, which actors are connected to each other (in short, the
topology). In particular, the structure should be dynamic to allow actors to
enter and leave.

3. Interactions in and between di�erent CS, transmission of data

According to our experience, no single classic modeling approach is powerful
enough to achieve this. For this reason, we propose a new integrating approach:
recon�gurable Algebraic Higher-Order Petri nets with Individual tokens (AHOI
nets).

1 General interesting properties are realted to consistency, safety and security require-
ments, liveness, termination etc.



Towards Formal Algebraic Modeling and Analysis of Communication Spaces 3

De�nition 1 (Algebraic Higher-Order Nets with Individual Tokens).
An Algebraic Higher-Order Net with Individual Tokens (AHOI net) is a tuple
(AN , I,m) where

� AN is an Algebraic High-Level (AHL) Net as in [7] whose algebra features a
suitable token sort for some kind of Petri net and operations for calculating
activated transitions and the results of �ring steps. The eponymous example
with low-level place/transition nets as tokens are the Algebraic Higher-Order
nets introduced in [8]2.

� I is the (possibly in�nite) set of individual tokens of the AHOI net.
� m : I → (AAN × PAN ) is the marking function, assigning each individual
token to a pair (a, p), representing an algebraic value a on place p in AN .

A recon�gurable AHOI net is an AHOI net with a set of transformation
rules. The main advantage of Petri nets with individual tokens to Petri systems
following the collective token approach (where marking are elements of the com-
mutative monoid (AAN ×PAN )⊕) is that we can formulate transformation rules
in the sense of the double-pushout (DPO) approach in [6], so that these rules also
can change markings. In regular AHL nets, i.e. with collective token markings,
changing of markings via DPO transformation is not possible due to technical
restrictions. The �ring behaviour of an AHOI net (AN , I,m) with �nite I is
equivalent to the behaviour of AN with the marking

∑
i∈I

m(i).

As we will see in the next section's example, AHOI nets are powerful enough
to cover the main aspects of CS by integrating Petri nets (topology), abstract
data types (content spaces), and net transformation (interaction and dynamics).
However, to be able to follow this example, we �rst give an informal introduction
to AHOI nets in a simpli�ed notation, while a formal theory of AHL nets with
individual tokens is under development in a technical report to appear.

2.2 AHOI Nets in a Nutshell

Instead of reviewing Algebraic High-Level nets we will go through a quick tutorial
of AHOI nets, for which we avoid the formal notation and consider a simpli�ed
visual representation: Fig. 1 shows an AHOI net component, with rectangles as
transitions and ovals as typed places that contain tokens. Arcs inscripted with
terms connect places and transitions to form a bipartite graph. For example,
there are the places User of type SkypeName, Template of type DataUnit, and
State of type State, containing e.g. the tokens Alice and O�ine, which represent
values of the correspondent data types. Especially, we have a token DU(Alice)
being itself a Petri net3, which we consider as higher-order tokens (or object
nets, to distinguish them from the containing system net). These three places
constitute the predomain of transition activate because of the arcs pointing to

2 The idea of nets in nets stems from [9] as an approach to represent mobile agents in
a Petri net

3 This net is represented as a value of an appropriate algebraic type for Petri nets.



4 Tony Modica

the transitions from these places. Similarly, User, Online, Ready2Talk, and Tem-
plate are the postdomain of activate, because of the arcs pointing to them from
activate.

Fig. 1. AHOI net component for a Skype client

We call a transition enabled if on each of its predomain places we can �nd
a token so that the set of selected tokens is consistent with the arc inscriptions.
Basically, a token selection is consistent if the tokens correspond with the de�nite
arc terms and we can �nd a consistent assignment for the arc variables to the
selected tokens4. In Fig. 1 for example, activate is enabled because we can assign
u=DU(Alice), n=Alice, and the token O�ine corresponds directly to the arc's
term. If a transition is enabled, we can �re it, which means that the predomain
tokens are removed and for each term on the postdomain arcs, a token according
to the variable assignment and arc inscriptions is added to the corresponding
place.

4 Actually, in general AHOI nets arcs can have arbitrary terms with variables, e.g.
op(y, z, . . .), and transitions additionally may have �ring conditions like op1(x) =
op2(y, z, . . .) according to the signature of the system net's algebra. But for the
example, we only consider de�nite values and variables as arc inscriptions, as well
as the simple condition pattern v!=Val, denoting that additionally the token value
Val can not be assigned to variable v.



Towards Formal Algebraic Modeling and Analysis of Communication Spaces 5

Note that e.g. place User is in the predomain and also in the postdomain of
activate with the same arc inscription on the in- and outgoing arc, so its marking
will not change on �ring activate. Due to the arc to Ready2Talk inscripted with
the same variable u as the arcs from and back to Template, �ring activate copies
the token assigned to u to both places. In short, if we �re activate, the result will
be that DU(Alice) will have been copied to Ready2Talk and the token O�ine
on State will be replaced by token Online.

To recon�gure AHOI nets we use the rule-based net transformation approach
in [6,10]. Transformation rules are spans of morphisms L← K → R with a left-
hand side L, a right-hand side R, and an interface K being the intersection of L
and R, all these being AHOI nets. In Fig. 2, we consider an example AHOI net
rule p : L← K → R to demonstrate transformation: In general, to apply p to a
net N we need to �nd an occurrence of L in N , speci�ed by an injective AHOI
net morphism o : L → N . To get the context C, we remove everything that is
matched by parts of L and is not preserved in K and �nally add in the result
net N ′ everything found in R that is not already present in the interface K.
Altogether, Fig. 2 shows a net transformation via rule p : L ← K → R, where
N can be considered as gluing of L and C along K and N ′ as gluing of R and
C along K5. Note that also the markings of places p1 and p3 are changed by
this rule application.

Fig. 2. Example AHOI net transformation

AHOI net morphisms (e.g. the match) must ful�ll some structural conditions
to ensure that rule applications yield valid AHOI nets [11]. Because L and R

5 The resulting squares in Fig. 2 are pushouts in the category of AHOI nets, i.e. N
is the gluing of L and C, where the interface K speci�es items to be identi�ed;
analogously for N ′.



6 Tony Modica

are usually su�cient to understand which parts a rule deletes and creates, we
mostly omit K and denote a rule as L→ R in a compact notation.

3 Modeling Skype with AHOI Nets

Skype6 is a widely used program for Internet telephony, o�ering easy to use
(synchronized) data exchange and conferences. With its contact and privacy
management, users can decide who and how other users can contact them. We
discuss how Skype, as a typical representative o�ering many CS-relevant fea-
tures, can be modeled with AHOI nets. First, we have to make some general
decisions about what aspects we focus on and how to represent these.

Skype is not open source, there is no (publicly available) formal model, espe-
cially no one according to the CS viewpoint, and Skype uses proprietary network
protocols. Therefore, we limit ourselves to modeling observable behavior only,
i.e. to activities users can perform in their Skype client software and the direct
e�ects of these activities caused in the Skype system. Our example follows these
guidelines:

� A single AHOI net models the whole Skype system. Each user, resp. his client
instance, is represented by an (initally discrete) component of this system
net.

� We strictly distinguish user-triggered client behavior and system reactions.
User actions are modeled by transitions in the corresponding client compo-
nent; a user can act if at least one of its client's transitions is enabled. In
contrast, global system actions are modeled by rules that recon�gure the
system. To be more speci�c: An action in a client can either alter the client's
con�guration directly (like (de)activating the client, modifying privacy set-
tings etc.) or represent a request to the Skype system to perform a global task
(like establishing connections or transmitting data) that may extend/restrict
possible actions of the client. System operations executing such requests are
realized by rule applications, which possibly create or remove transitions of
a client net component.

� To keep the intuitive visual representation of AHOI nets comprehensible, we
assume the system to apply cleaning-up rules on temporary net structures
after the activity that they were created for has been completed. Moreover,
when simulating a system, the modeler should be able to grasp the system's
state very quickly.

3.1 Skype User Clients as AHOI Components

Fig. 1 shows the AHOI component for the Skype client of a user �Alice�. Each
client component has the following basic structure:

6 Skype is free to use and freely available at http://www.skype.com.

http://www.skype.com


Towards Formal Algebraic Modeling and Analysis of Communication Spaces 7

� One place typed by State, which is also named State, represents the current
state of a Skype client. The data type State consists of the values O�ine,
Online, SkypeMe, and DND. The example client in Fig.1 is in state O�ine.

� SkypeName places carry identities of Skype users, e.g. the token Alice on
the place User indicates that Alice is the client's owner and the tokens on
Contacts represent two Skype users she has in her contact list7. The place
WhitePages is shared between all user clients and carries tokens correspond-
ing to the tokens on the User places of all existing clients. A SkypeName
token on place CallRequest would announce a request to the system for con-
nection to the correspondent client, and similarly on place ContactRequest
for exchange of contact data.

� DataUnit higher-order tokens, as shown in the left of Fig. 1, are a kind
of agents that allow their owner client to send data to and receive data
from other clients. The owner is indicated by the SkypeName token on the
unit's place Owner and we denote a unit with owner X as DU(X). The type
Data may represent audible, textual, graphical etc. data, which a unit can
generate, send, and receive by �ring its transitions.

� If there is a token on the client's place Ready2Talk the client is supposed
neither to be o�ine nor to participate in another call/conference, hence to
be able to accept incoming calls.

An example �ring step for activating the client has been discussed in Sect. 2.2.
The remaining possible �ring steps in Fig. 1 are changing the client's state to
DoNotDisturb or SkypeMe by �ring the corresponding transitions, deactivating
the client by �ring deactivate, which would delete the DataUnit token from
Ready2Talk, or announcing requests for a either a connection to another client
by �ring requestCall or for contact exchange by �ring requestContact. In the
following section, we will see how the system reacts on requests by recon�guring
clients to allow more activities.

3.2 Request for Contact

In the following we suppose a minimal example of a system net that contains
two client net components like the one shown in Fig. 18. One has, as depicted,
the tokens Alice on its User place, Carol on its Contacts place, and the object
net token DU[Alice] on its Template place. The second is supposed to belong to
a user named Bob, hence having the tokens Bob on its User place, DU[Bob] on
its Template place and an empty Contacts place. Both clients are considered to
be online, having the corresponding token on their State place, respectively.

7 The data type SkypeName is some appropriate type for distinguishing identities, e.g.
unique strings or integers.

8 Note that these client components can be created in a system net (and be deleted)
with recon�guration rules dynamically! This realizes registration and resigning of
Skype users. Basically, this rule consists of an empty left-hand side and the net in
Fig. 1 as the right-hand side.



8 Tony Modica

Fig. 3. Rule CreateContactExchange creating structure for contact exchange

Alice now wants to talk to Bob, which she would realize by �ring requestCall,
so that a token Bob is put on her CallRequest place. But she does not have his
SkypeName token on her Contacts place, yet. So, before calling him she has to
ask for his permission to add his contact to her contact list, represented by her
Contacts place. This is according to the default procedure in Skype to follow.

To accomplish an exchange of user contacts, Alice �res her requestContact
transition, so that the token Bob (assigned to the variable n in this �ring step)
is copied from the WhitePages place to Alice's ContactRequest place.

Remember, we want to separate strictly user behavior in the client from reac-
tions by the system, following the modeling principles we stated at the beginning
of this section. So, we let the Skype system react the Alice's request by applying
the transformation rule CreateContactExchange shown in Fig. 3, extending the
possible behavior of Bob's client.

In the left-hand side L of this rule we have three places that should be
matched on the corresponding places of the requesting client and two places
of the responding client9. Further, to be applicable, this rule needs a token
value that can be assigned to the token variable User, one on ContactRequest
and User2 each. In our example scenario this would be the two tokens Bob
indicating the user of Bob's client component and the request Alice just has
announced before.

The e�ect of applying this rule is the creation of the structure in the right-
hand side R and removing the request token on the place matched by Con-
tactRequest. In the manipulated system net, the two clients are now connected
with this structure and we interpret the newly created transitions as additional
behavior for Bob's client. E.g., Bob can �re the transition deny, which moves
a simple control token (assigned to variable c) to the Finished place and con-
cludes the contact exchange request without further e�ect. Alternatively, he may
�re accept which, besides moving the control token, will copy a token Alice to
the Bob's Contacts place and a token Bob to Alice's Contacts place. This fol-

9 The dashed frames and the boxes describing the roles in the middle of the rule
are just a hint to understand to which component the matched places should be
connected. They are actually not part of this or the following rules' syntax.



Towards Formal Algebraic Modeling and Analysis of Communication Spaces 9

lows from having applied the rule matching User1 place to Alice's User place,
which surely carries a token Alice that, on �ring accept, is assigned to variable
n1 and hence copied to Bob's Contacts place. The assignment of the token Bob
(matched by the rule's token variable User before) to variable n2 and copying
it to Alice's Contacts place happens analogously.

In short, after Bob has �red accept, he now e�ectively has Alice on his contact
list and vice versa and Alice is �nally able to call him.

3.3 Cleaning the Model by Removing Dispensable Structures

After a request for contact exchange has been accepted or denied the additional
structure created can be removed because none of the new transitions can �re any
more, due to the control token being moved to Finished. We just can remove this
now useless structure by the reversed creation rule, i.e. a rule that has basically
CreateContactExchange's R as left-hand side and L as right-hand side. We don't
carry this out in more detail10 in this article, it just should demonstrate how
reversed rules can be used in principle to keep the overall model lean and clear
without confusing left-overs.

3.4 Creating Conferences

Fig. 4. Rule CreateConference creating a conference structure

Now, Alice wants to invite Bob to a direct call11 and �res requestCall in
her client component so that the token Bob that has been created before in

10 Of course, the deleting rule is not supposed to delete a control token on the Request
place and to create a User token as would do the simply reversed rule, but rather
just to delete a control token on Finished.

11 In Skype, you may invite additional contacts to a running conversation, so we con-
sider a direct call just as an (initial) conference with two participants.



10 Tony Modica

the contact exchange is copied to her CallRequest place. To allow the system to
react to the request, we formulate the rule CreateConference depicted in Fig. 4.
Similar to the previous rule, the four upper framed places in the left-hand side
L should match the corresponding places of the conference host component,
whereas the lower ones belong to the called client component. When applicated
to our running example, the rule creates the conferencing structure in R, moves
Alice's DataUnit token DU[Alice] from the Ready2Talk to the new Conferencing
place, and deletes the request token Bob on CallRequest.

Being the host, Alice is attending the conference immediately after rule ap-
plication; she is unavailable to other calls while her conference is running. Her
only option is to quit (by �ring the appropriate transition) and terminate the
whole conference12. Bob may join, which would move his DataUnit token to
Conferencing as well.

The conference is established now and we discuss the transitions �reDU and
kick/leave in the following subsections.

3.5 Transmitting Data

We assume that Bob has joined the conference, so that his DataUnit token is
now on the Conferencing place that just has been created by the rule CreateCon-
ference. Alice �red send in her DataUnit object net DU[Alice]13, which copied
the token �Hello!� from her unit's Storage to its Out place (cf. the left of Fig.1).
We interpret a token on a DataUnit's Out place as a request to distribute the
token value to all other DataUnits in the same conference.

The (vertically depicted) rule Transmit in Fig. 5 is a schema14 whose in-
stances each match a DataUnit token sender and a �xed number of receiver
units to realize multicasting of data on a conference place; in our example we
consider just Bob as a single receiver. In the right-hand side R, the matched
tokens are replaced with algebraically calculated object nets, for which we use
the following operations that we provide in the AHOI net's algebra:

� out : DataUnit → Data yields the token value on the Out place of the
DataUnit passed as argument of this operation.

� send : DataUnit × Data → DataUnit returns the passed DataUnit but
removes the value of the Data argument from the unit's Out place.

12 We assume the transition quit to have a �ring condition, so that only DU[Alice] can
be assigned to u. This is the reason why we need quit to be connected to Alice's
User place; it needs to access her SkypeName token value.

13 To �re object net transitions, we use the �reDU transition that has been created
with the conference structure. It takes an object net token assigned to variable u,
calculates algebraically the net that results after �ring an enabled transition inside
the object net u represents, and returns the �red net as a new object net token back
to the conference place. For this we make use of the assumed operations on the Petri
net token sort of AHOI nets. You may look at [8] for details of this construction.

14 For now, we assume that we have a rule for each possible conference size, i.e. the
number of participants. Recently, we proposed the more �exible and advanced ap-
proach of Amalgamated Rules for multicasting in [12].



Towards Formal Algebraic Modeling and Analysis of Communication Spaces 11

Fig. 5. Rule schema Transmit distributing data among DataUnit tokens

� rec : DataUnit×Data→ DataUnit is similar to operation send but returns
the passed DataUnit where the Data argument value has been added to the
unit's In place.

Now we can understand the terms in the right-hand side of Transmit :
send(sender, out(sender)) is basically the DataUnit sender where the token has
been removed from itsOut place. Similarly, each term rec(receiverX, out(sender))
is the corresponding receiver DataUnit to which the Data token from the sender
is added to. The green object nets besides the rule illustrate this. After apply-
ing this rule to our example, Bob can �re receive in his DataUnit to gather
the transported Data from his input place In and the transmission has been
completed.

To avoid incomplete transmissions (e.g. by applying a Transmit rule instance
with just one receiver on a conference with three participants, hence with two
receivers) and transmissions after the host has quit (which should immediately
terminate the conference) we introduce negative application conditions (NACs)
for rule Transmit. A rule is not applicable if there exists a valid occurrence for at
least one of its NACs. With NACcomplete we ensure that the rule can be applied
only if the left-hand side Lmatches all tokens on Conferencing so that there is not
another unmatched DataUnit token left, allowing only complete transmissions to



12 Tony Modica

all participants. NACforbidHostQuit prohibits a rule to be applied after the host
has quit the conference (when his DataUnit can be located on his Ready2Talk
place).

3.6 Joining and leaving Conferences

In Skype, the conference host may invite more participants to a running con-
ference. In our example, Alice can �re another callRequest while she hosts a
conference, so that the rule InviteParticipant in Fig. 6 can be applied. It simply
connects another client to the conference like the intial rule for creating confer-
ences before. Note that the invited participant does not necessarily have to be
ready to talk to get invited, the rule rather ensures that Alice as the host has
not quit the conference by requiring her DataUnit on the Conferencing place.

Fig. 6. Rule InviteParticipant connecting invited participants to conference

Every participant can leave the conference by �ring kick/leave, but this can
also be used by Alice to exclude participants from the conference. Note that Alice
can only quit the conference via her own quit transition because the conference
is considered to be �nished when she does this. Other rules like Transmit respect
that and do not allow to continue the conference so that the participants only
option is to leave in this case. Again, a user �ring kick/leave just announces
a request that the system answers with application of rule KickParticipant in
Fig. 7, which disconnects the client from the conference and moves its DataUnit
token back to its Ready2Talk place.

It should be imaginable that an appropriate rule can be formulated to re-
move a conference whose participants all have left and whose host has quit,
possibly with some NACs. This concludes the example scenario in a state where
Alice's and Bob's clients have exchanged contacts and data and are now again
unconnected client components.



Towards Formal Algebraic Modeling and Analysis of Communication Spaces 13

Fig. 7. Rule KickParticipant disconnecting participants who left a conference

4 Conclusion and Outlook

After introducing the general notion of Communication Spaces (CS), we dis-
cussed the new approach of AHOI nets as a formal modeling technique for CS.
The examples, concerning particular features o�ered by Skype, show that this
approach and the chosen modeling principles are powerful enough for �rst ade-
quate modeling approach of CS. We have shown how we need to employ all the
specialities of the AHOI nets as an integrated modeling technique:

� High-level data tokens are needed to represent data and user identities for
e�ectively restricting communication.

� Moreover, higher-order tokens containing high-level nets are again used to
represent users and their behavior and data in di�erent system parts as
conferences and chats [8].

� With recon�gurable Petri nets we enable the system to adapt itself to user
requests and allow for a dynamic set of actors at system runtime. For more
detail on the necessity of recon�guration for modeling multicasting in dy-
namical Petri net systems we refer to [12].

� Petri nets with individual tokens [11] feature distinguishable tokens with
identities, which are a technical premise to be able to formulate marking-
changing rules. We have proven the existence of a weak adhesive high-level
replacement system [6] for these nets, yielding a rich transformation theory.

To improve modeling usability, we plan to examine i.a. the following exten-
sions of AHOI nets:

� An explicit control structure for de�ning rule sequences to ensure and enforce
cleaning-up recon�gurations to be performed directly after the correspondent
activity has terminated. Additionally, �ring of transitions could be related to
the application of particular rules and be comprised in the control structure.

� Amalgamated rule applications are similar to the "apply as long as possible"
control structure, but in contrast, an amalgamated rule is applied to all



14 Tony Modica

possible matches in the same step. With this technique, we can realize the
schema of rule Transmit without explicitly formulating rules for all possible
conference sizes. Moreover, we need this extension for non-local consistency-
related concepts like Skype's Shared Groups, which are synchronized contact
lists distributed between several clients. We contributed a �rst idea of how
amalgamated rules can be used for multicasting data instead of the informal
rule schema we used to formulate the rule Transmit in Fig. 5 [12].

Now that our formalism enables us to represent and simulate a model like
Skype with the characterizing features of a CS, the most important part of our
future work is to analyze and verify important properties of Skype in partic-
ular and to �nd/derive important properties we can prove for CS in general
when using AHOI nets and the presented modeling approach with its principles
in general. Examples of such properties are e.g. that a contact's owner must
have con�rmed all correspondent entries in his contact list, or that the system
respects the clients' privacy settings when establishing communication via re-
con�guration. To verify such properties we intend to make use of the rich theory
of (high-level) Petri nets [4] and high-level replacement systems [6], especially
the result for consistency and independency. We are currently elaborating the
transformation theory of nets with individual tokens [11] by lifting the results
of the collective approach and developing new analysis concepts.

To provide tool support for modeling and analyzing, we are also extending a
graphical editor as an Eclipse plugin for a simpli�ed kind of the AHL nets in [8]
to support the AHOI formalism as we introduced it in this article.

References

1. Agha, G.: ACTORS: A Model of Concurrent Computation in Distributed Systems.
PhD thesis, MIT (1985) Cambridge: MIT Press.

2. Milner, R.: Communicating and Mobile Systems: the Pi-Calculus. Cambridge
University Press (June 1999)

3. Reisig, W.: Petri Nets: An Introduction. Volume 4 of EATCS Monographs on
Theoretical Computer Science. (1985)

4. Jensen, K., Rozenberg, G., eds.: High-Level Petri Nets. (1991)
5. Ehrig, H., Mahr, B.: Fundamentals of Algebraic Speci�cation 1: Equations and

Initial Semantics. Volume 6 of EATCS Monographs on Theoretical Computer Sci-
ence., Berlin (1985)

6. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. EATCS Monographs in Theoretical Computer Science. (2006)

7. Ehrig, H., Padberg, J., Ribeiro, L.: Algebraic high-level nets: Petri nets revisited.
In: Proc. of the ADT-COMPASSWorkshop'92 (Caldes de Malavella, Spain), Berlin
(1993) Technical Report TUB93-06.

8. Ho�mann, K., Mossakowski, T., Ehrig, H.: High-Level Nets with Nets and Rules
as Tokens. In: Proc. of 26th Intern. Conf. on Application and Theory of Petri Nets
and other Models of Concurrency. Volume 3536 of LNCS. Springer Verlag (2005)
268�288

9. Valk, R.: Concurrency in communicating object petri nets. In: Concurrent Object-
Oriented Programming and Petri Nets. (2001) 164�195



Towards Formal Algebraic Modeling and Analysis of Communication Spaces 15

10. Ehrig, H., Ho�mann, K., Padberg, J., Ermel, C., Prange, U., Biermann, E., Modica,
T.: Petri Net Transformations. In: Petri Net Theory and Applications. I-Tech
Education and Publication (2008) 1�16

11. Ehrig, H., Modica, T., Biermann, E., Ermel, C., Ho�mann, K., Prange, U.: Low-
and high-level petri nets with individual tokens. Technical Report 13/2009,
Fakultät IV - Technische Unversität Berlin (2009) to appear.

12. Biermann, E., Ehrig, H., Ermel, C., Ho�mann, K., Modica, T.: Modeling Multi-
casting in Dynamic Communication-based Systems by Recon�gurable High-level
Petri Nets. In: 2009 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL-HCC'09). (2009)


	Towards Formal Algebraic Modeling and Analysis of Communication Spaces
	Tony Modica

