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Application conditions for rules and constraints for graphs are well-known in the theory of graph
transformation and have been extended already toM-adhesive transformation systems. Concerning
constraints we distinguish according to the literature between two kinds of satisfaction, called general
and initial satisfaction of constraints, where initial satisfaction is defined for constraints over an
initial object of the base category. Unfortunately, the standard definition of general satisfaction is not
compatible with negation in contrast to initial satisfaction.

Based on the well-known restriction of objects along type morphisms we study in this paper re-
striction and amalgamation of application conditions and constraints together with their solutions. In
our main result, we show compatibility of initial satisfaction for positive constraints with restriction
and amalgamation, while general satisfaction fails in general.

This is based on a result concerning compatibility of compositions via pushouts with restriction,
where the proof requires the horizontal van Kampen property, in contrast to the vertical one required
forM-adhesive categories.

1 Introduction

The framework ofM-adhesive categories has been introduced recently [7, 3] as a generalization of dif-
ferent kinds of high level replacement systems based on the double pushout (DPO) approach [5]. Promi-
nent examples that fit into the framework ofM-adhesive categories are (typed attributed) graphs [5, 18]
and (high-level) Petri nets [2, 10]. In the context of domain specific languages and model transforma-
tions based on graph transformation, graph conditions (constraints) are already used extensively for the
specification of model constraints and the specification of application conditions of transformation rules.
Graph conditions can be nested, may contain Boolean expressions and are equivalent to first order logic
on graphs [19, 13]. We generally use the term “nested condition” whenever we refer to the most general
case.

Restriction is a general concept for the definition of views of domain languages and is used for
reducing the complexity of a model and for increasing the focus to relevant model element types. A
major research challenge in this field is to provide general results that allow for reasoning on properties
of the full model (system) by analyzing restricted properties on the views (restrictions) of the model only.
Technically, a restriction of a model is given as a pullback along type morphisms. While this construction
can be extended directly to restrictions of nested conditions, the satisfaction of the restricted nested
conditions is not generally guaranteed for the restricted models, but—as we show in this paper—can be
ensured under some sufficient conditions.

According to the literature [13, 5], we distinguish between two kinds of satisfaction for nested condi-
tions, called general and initial satisfaction, where initial satisfaction is defined for nested conditions over
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an initial object of the base category. Intuitively, general satisfaction requires that a property holds for all
occurrences of a premise pattern, while initial satisfaction requires this property for at least one occur-
rence. Unfortunately, the standard definition of general satisfaction is not compatible with the Boolean
operator for negation and disjunction, but initial satisfaction is compatible with all Boolean operators
(see App. A). In order to show, in addition, compatibility of initial satisfaction with restriction we in-
troduce the concept of amalgamation for typed objects, where objects can be amalgamated along their
overlapping according to the given type restrictions.

As the main technical result, we show that solutions for nested conditions can be composed and
decomposed along an amalgamation of them (Thm. 4.10), if the nested conditions are positive, i.e., they
contain neither a negation nor a “for all” expression. Based on this property, we show in our main result
(Thm. 5.1), that initial satisfaction of positive nested conditions is compatible with amalgamation based
on restrictions that agree on their overlappings. Note in particular that this result does not hold for general
satisfaction as we illustrate by a concrete counterexample.

The structure of the paper is as follows. Section 2 reviews the general framework of M-adhesive
categories and main concepts for nested conditions and their satisfaction. Thereafter, Sec. 3 presents the
restriction of objects and nested conditions along type object morphisms. Section 4 contains the con-
structions and results concerning the amalgamation of objects and nested conditions and in Sec. 5, we
present our main result showing the compatibility of initial satisfaction with amalgamation and restric-
tion. Related work is discussed in Sec. 6. Section 7 concludes the paper and discusses aspects of future
work. Appendix A provides formal details concerning the transformation between both satisfaction rela-
tions and their compatibility resp. incompatibility with Boolean operators. Finally, App. B contains the
proofs that are not contained in the main part.

2 General Framework and Concepts

In this section we recall some basic well-known concepts and notions and introduce some new notions
that we are using in our approach. Our considerations are based on the framework ofM-adhesive cate-
gories. AnM-adhesive category [7] consists of a category C together with a classM of monomorphisms
as defined in Def. 2.1 below. The concept ofM-adhesive categories generalizes that of adhesive [16],
adhesive HLR [9], and weak adhesive HLR categories [5].

Definition 2.1 (M-Adhesive Category). AnM-adhesive category (C,M) is a category C together with
a classM of monomorphisms satisfying:

• the classM is closed under isomorphisms, composition and decomposition,

• C has pushouts and pullbacks alongM-morphisms,

• M-morphisms are closed under pushouts and pullbacks, and

• it holds the vertical van Kampen (short VK) property. This means that pullbacks along M-
morphisms are M-VK squares, i. e., pushout (1) with m ∈ M is an M-VK square, if for all
commutative cubes (2) with (1) in the bottom, all vertical morphisms a,b,c,d ∈M and pullbacks
in the back faces we have that the top face is a pushout if and only if the front faces are pullbacks.
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Remark 2.2. In Sec. 3, Sec. 4 and Sec. 5 we will also need the horizontal VK property, where the VK
property is only required for commutative cubes with all horizontal morphisms inM (see [7]), to show
the compatibility of object composition and the corresponding restrictions. Note furthermore, that an
M-adhesive category which also satisfies the horizontal VK property is a weak adhesive HLR category
[5].

A set of transformation rules over an M-adhesive category according to the DPO approach con-
stitutes an M-adhesive transformation system [7]. For various examples (graphs, Petri nets, etc.) see
[5].

In Sec. 3, Sec. 4 and Sec. 5 we are considering M-adhesive categories with effective pushouts.
According to [17], the formal definition is as follows.

Definition 2.3 (Effective Pushout).
Given M-morphisms a : B→ X, b : C → X in an M-adhesive
category (C,M) and let (A, p1, p2) be the pullback of a and b.
Then pushout (1) of p1 and p2 is called effective, if the unique
morphism u : D→ X induced by pushout (1) is anM-morphism.

B i1
''PPPPPPP a

!!
A

p1
77ooooooo

p2 ''OOOOOOO (1) D
u // X

C i2

77ooooooo
b

==

Nested conditions in this paper are defined as application conditions for rules in [13]. Depending on
the context in which a nested condition occurs we use the terms application condition [13] and constraint
[5], respectively. Furthermore, we define positive nested conditions to be used in Sec. 3, Sec. 4, and
Sec. 5 for our main results.

Definition 2.4 (Nested Condition). A nested condition acP over an object P is inductively defined as
follows:

• true is a nested condition over P.

• For every morphism a : P→C and nested condition acC over C, ∃ (a,acC) is a nested condition
over P.

• A nested condition can also be a Boolean formula over nested conditions. This means that also
¬acP,

∧
i∈I acP,i, and

∨
i∈I acP,i are nested conditions over P for nested conditions acP, acP,i (i∈I)

over P for some index set I.

Furthermore, we distinguish the following concepts:

• A nested condition is called application condition in the context of rules and match morphisms.

• A nested condition is called constraint in the context of properties of objects.

• A positive nested condition is built up only by nested conditions of the form true, ∃ (a,ac),∧
i∈I acP,i or

∨
i∈I acP,i, where I 6= /0.

An example for a nested condition and its meaning is given below.



4 Satisfaction, Restriction and Amalgamation of Constraints

Example 2.5 (Nested Condition). Given the nested condition acP from Fig. 2 where all morphisms are
inclusions. acP means that the source of every b-edge has a b-self-loop and must be followed by some
c-edge such that subsequently there is a path in the reverse direction visiting the source and target of
the first b-edge with precisely one c-edge and one b-edge in an arbitrary order. We denote this nested
condition by acP = ∃ (a1, true) ∧ ∃ (a2, ∃ (a3, true)∨ ∃ (a4, true)).

We are now defining inductively whether a morphism satisfies a nested condition (see [5]).

Definition 2.6 (Satisfaction of Nested Condition). Given a nested condition acP over P, a morphism
p : P→ G satisfies acP (see Fig. 1(a)), written p � acP, if:

• acP = true,

• acP = ∃ (a,acC) with a : P→C and there exists a morphism q : C→ G ∈M such that q◦a = p
and q � acC,

• acP = ¬ac′P and p 6� ac′P,

• acP =
∧

i∈I acP,i and for all i ∈ I holds p � acP,i , or

• acP =
∨

i∈I acP,i and for some i ∈ I holds p � acP,i.

In the following we distinguish two kinds of satisfaction relations for constraints: the general [5]
and the initial satisfaction [13]. The initial satisfaction is defined for constraints over an initial object
of the base category while the general satisfaction is considered for constraints over arbitrary objects.
Intuitively, while general satisfaction requires that a constraint acP is satisfied by every M-morphism
p : P→G, the intial satisfaction requires just the existence of anM-morphism p : P→G which satisfies
acP.

P
a //

p ##HH
HH

HH
HH

=

C /acC

q � acCxxqqqqqqqq

G
(a) Satisfaction of acP by morphism p

I
iP //

iG ##GG
GG

GG
GG

=

P/acP

p � acPxxqqqqqqqq

G
(b) Initial satisfaction of acI

Figure 1: Satisfaction of nested conditions

Definition 2.7 (General Satisfaction of Constraints). Given a constraint acP over P. An object G gener-
ally satisfies acP, written G � acP, if ∀ p : P→ G ∈M. p � acP (see Fig. 1(a)).

Definition 2.8 (Initial Satisfaction of Constraints). Given a constraint acI over an initial object I. An

object G initially satisfies acI , written G
I
� acI , if iG � acI for the initial morphism iG : I→ G.

Note, that for acI = ∃ (iP,acP) we have

G
I
� acI ⇔ ∃ p : P→ G ∈M. p � acP (see Fig. 1(b)).

For positive nested conditions we define solutions for the satisfaction problem. A solution Q (a tree
of morphisms) determines which morphisms are used to fulfill the satisfaction condition.

Definition 2.9 (Solution for Satisfaction of Positive Nested Conditions). Given a positive nested condi-
tion acP over P and a morphism p : P→ G. Then Q is a solution for p � acP if:

• acP = true and Q = /0,
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• acP = ∃ (a,acC) with a : P→C and Q = (q,QC) withM-morphism q : C→G such that q◦a = p
and QC is a solution for q � acC (see Fig. 1(a)),

• acP =
∧

i∈I acP,i and Q = (Qi)i∈I such that Qi is a solution for p � acP,i for all i ∈ I, or

• acP =
∨

i∈I acP,i and Q = (Qi)i∈I such that there is j ∈ I with solution Q j for p � acP, j and for all
k ∈ I with k 6= j it holds that Qk = /0.

The following example demonstrates the general and initial satisfaction of constraints and gives their
corresponding solutions.
Example 2.10 (Satisfaction and Solution of Constraints).

1. General Satisfaction
Consider the graph GA from Fig. 2 below and the constraint acP from Ex. 2.5. There are two
possibleM-morphisms p1, p2 : P→ GA, where p1 is an inclusion and p2 maps b1 to b2 with the
corresponding node mapping. For both matches p1 and p2 there is a b-self-loop on the image of
the node 1, a c-edge outgoing from the image of the node 2, as well as the corresponding images
for the edges b2 and c2 in C3. Thus, GA generally satisfies acP.
A corresponding solution for p1 � acP is given by Qgen = (Qi)i∈{1,2} with Q1 = (q1, /0) and Q2 =
(q2,(Q j) j∈{3,4}), where Q3 = (q3, /0), Q4 = /0 and qi : Ci→ GA for i = 1,2,3 are inclusions.

a1

1 2

P

∅
I

acP

q1p1,p2

C1
1b3

∧

1 2 3
b2 c2

C4
c1b1

1 2 3
c2 b2

C3
b1 c1

1 2 3

C2
c1b1 ∨

1 2 3 4
c2 b2

GA
b1 c1 c3

a2 a3

a4

q2 q3

iG

iP b1

b3
b4

2
b1

Figure 2: General and initial satisfaction of constraints

2. Initial Satisfaction
Let acI = ∃ (iP,acP) with iP as depicted in Fig. 2 and acP from Ex. 2.5. The graph GA initially
satisfies acI since there exists p1 : P→ GA ∈M satisfying acP as mentioned before.
A corresponding solution for iG � acI is given by Qinit = (p1,Qgen) with Qgen from the example for
general satisfaction.

Remark 2.11. A nested condition is called typed over a given type object, if all nested conditions in
every of its nesting levels are also typed over the same type object. Furthermore, the compatibility of the
corresponding match and solution with this type object is required.

3 Restriction Along Type Morphisms

In this section, we present the restriction of objects, morphisms, positive nested conditions and their
solutions along type morphisms which are the basis also for the amalgamation of nested conditions in
Sec. 4.
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General Assumption. In this and the following sections, we consider anM-adhesive category (C,M)
satisfying the horizontal VK property (see Rem. 2.2) that has effective pushouts (see Def. 2.3).

Definition 3.1 (Restriction along Type Morphism). Given an object GA typed over T GA by tGA :
GA→ T GA and t : T GB → T GA ∈ M, then T GB is called restriction of T GA, GB is a restriction of
GA, and tGB is a restriction of tGA if (1) is a pullback. Given a : G′A → GA, then b is a restriction of a
along type morphism t, written b = Restrt(a), if (2) is a pullback.

T GA GA
tGAoo G′A

aoo

T GB

t

OO

GB

tG

OO

tGBoo

(1)

G′B

t ′G

OO

boo

(2)

For positive nested conditions we can define the restriction recursively as restriction of their compo-
nents.

Definition 3.2 (Restriction of Positive Nested Conditions). Given a positive nested condition acPA typed
over T GA and let T GB be a restriction of it with t : T GB → T GA ∈M. Then we define the restriction
acPB = Restrt(acPA) over the restriction PB of PA as follows:

• The restriction of true is true,

• the restriction of ∃ (a,acCA) is given by restriction of a and acCA , i. e., acPB = ∃ (Restrt(a),
Restrt(acCA)), and

• the restriction of a Boolean formula is given by the restrictions of its components, i. e.,
Restrt(¬ac′PA

)=¬Restrt(ac′PA
), Restrt(

∧
i∈I acPA,i)=

∧
i∈I Restrt(acPA,i), and Restrt(

∨
i∈I acPA,i)=∨

i∈I Restrt(acPA,i).

PAa
{{

T GA CA /acCA
oo

T GB

t
OO

CB /acCB

tC
OO

oo

PBb

cc

tP

OO

Now we extend the restriction construction to solutions of positive nested conditions and show in
Fact 3.4 that a restriction of a solution is also a solution for the respective restricted constraint.

Definition 3.3 (Restriction of Solutions for Positive Nested Conditions). Given a positive nested con-
dition acPA typed over T GA together with a restriction acPB along t : T GB → T GA. For a morphism
pA : PA→G and a solution QA for pA � acPA , the restriction QB of QA along t, written QB = Restrt(QA),
is defined inductively as follows:

• If QA is empty then also QB,

• if acPA = ∃ (a : PA→CA,acCA) and QA = (qA,QCA), then QB = (qB,QCB) such that qB and QCB

are restrictions of qA respectively QCA, and

• if acPA =
∧

i∈I acPA,i or acPA =
∨

i∈I acPA,i, and QA = (QA,i)i∈I , then QB = (QB,i)i∈I such that QB,i

is a restriction of QA,i for all i ∈ I.

Fact 3.4 (Restriction of Solutions for Positive Nested Conditions). Given a positive nested condition
acPA and a match pA : PA→ GA over T GA with restrictions acPB = Restrt(acPA), pB = Restrt(pA) along
t : T GB→ T GA. Then for a solution QA of pA � acPA there is a solution QB = Restrt(QA) for pB � acPB .
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4 Amalgamation

The amalgamation of typed objects allows to combine objects of different types provided that they agree
on a common subtype. This concept is already known in the context of different types of Petri net
processes, such as open net processes [1] and algebraic high-level processes [6], which can be seen as
special kinds of typed objects. In this section we introduce a general definition for the amalgamation of
typed objects. Moreover, we extend the concept to the amalgamation of positive nested conditions and
their solutions.

As required for amalgamation we discuss, under which conditions morphisms can be composed via
a span of restriction morphisms. Two morphisms gB and gD “agree” in a morphism gD, if gD can be
constructed as a common restriction and can be used as a composition interface for gB and gC as in
Def. 4.1.

Definition 4.1 (Agreement and Amalgamation of Typed Objects). Given a span T GB
tgDB←− T GD

tgDC−→ T GC,
with tgDB, tgDC ∈M and typed objects GB

gB→ T GB, GC
gC→ T GC and GD

gD→ T GD. We say gB,gC agree in
gD, if gD is a restriction of gB and gC, i.e., RestrtgDB(gB) = gD = RestrtgDC(gC).

Given pushout (1) below with all morphisms in M and typed objects gB,gC agreeing in gD. A
morphism gA : GA→ T GA is called amalgamation of gB and gC over gD, written gA = gB +gD gC, if the
outer square is a pushout and gB,gC are restrictions of gA.

GD
gD��

uujjjjjjjjjjjjjjjjjjjjjjjjj

))TTTTTTTTTTTTTTTTTTTTTTTTT

T GD

tgDBuujjjjjjjjjj

tgDC ))TTTTTTTTTT

GB gB
//

))TTTTTTTTTTTTTTTTTTTTTTTTT T GB tgBA

))TTTTTTTTTT (1) T GCtgCA

uujjjjjjjjjj GCgC
oo

uujjjjjjjjjjjjjjjjjjjjjjjjj

T GA

GA

gA
OO

Fact 4.2 is essentially based on the horizontal VK property.

Fact 4.2 (Amalgamation of Typed Objects). Given pushout (1) with all morphisms inM as in Def. 4.1.

Composition. Given gB,gC agreeing in gD, then there exists a unique amalgamation gA = gB +gD gC.

Decomposition. Vice versa, given gA : GA → T GA, there are unique restrictions gB,gC, and gD of gA

such that gA = gB +gD gC.

Here and in the following uniqueness means uniqueness up to isomorphism.

Proof. Given gB,gC agreeing in gD, we have that the upper two trapezoids are pullbacks. Now we
construct GA as pushout over GB and GC via GD, such that the outer diamond is a pushout. This leads to
a unique induced morphism gA : GA→ T GA, such that the diagram commutes and via the horizontal VK
property we get that the lower two trapezoids are pullbacks and therefore gA = gB +gD gC.

Vice versa, we can construct GB,GC,GD as restrictions such that the trapezoids become pullbacks,
where gA : GA→ T GA and T GA,T GB,T GC,T GD are given such that (1) is a pushout withM-morphisms
only. Then the horizontal VK property implies that the outer diamond is a pushout and gA is unique
because of the universal property and gA = gB +gD gC.

The uniqueness (up to isomorphism) of the amalgamated composition and decomposition construc-
tions follows from uniqueness of pushouts and pullpacks up to isomorphism.
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Example 4.3 (Amalgamation of Typed Objects). Figure 3 shows a pushout of type graphs T GA, T GB,
T GC and T GD.

Composition. Consider the typed graphs GB, GC and GD typed over T GB, T GC and T GD, respectively.
The graph GD, containing the same nodes as GB and GC and no edges, is the common restriction
of GB and GC. So, the type morphisms gB and gC agree in gD which by Fact 4.2 means that there
is an amalgamation gA = gB +gD gC. It can be obtained by computing the pushout of GB and GC

over GD, leading to the graph GA that contains the b-edges of GB as well as the c-edges of GC.
The type morphism gA is induced by the universal property of pushouts, mapping all edges in the
same way as gB and gC.

Decomposition. Vice versa, consider the graph GA typed over T GA. We can restrict GA to the type
graphs T GB and T GC, leading to typed graphs GB and GC, containing only the b- respectively
c-edges of GA. Restricting the graphs GB and GC to type graph T GD, we get in both cases the
graph GD that contains no edges, and we have that gA = gB +gC gD.

b1 c1 c3
1 2 3 4

c2 b2

c1 c3
1 2 3 4

c2

1 2 3 4
b1

1 2 3 4

b2

GA GC

GDGB

b c

b

c

TGA TGC

TGB TGD

gA gC

gDgB

Figure 3: Amalgamation of typed graphs

We already defined the restriction of positive nested conditions (Def. 3.2) and their solutions (Def. 3.3).
Now we want to consider the case, that we have two conditions, which have a common restriction and
can be amalgamated.

Definition 4.4 (Agreement and Amalgamation of Positive Nested Conditions). Given a pushout (1) be-
low with all morphisms inM. Two positive nested conditions acPB typed over TGB and acPC typed over
TGC agree in acPD typed over TGD if acPD is a restriction of acPB and acPD .

Given acPB and acPC agreeing in acPD then a positive nested condition acPA typed over T GA is called
amalgamation of acPB and acPC over acPD , written acPA = acPB +acPD

acPC , if acPB and acPC are restrictions
of acPA and tPA = tPB +tPD tPC. Especially we have trueA = trueB +trueD trueC, short true = true+true true.

PD / acPD

tPD��

uukkkkkkkkkkkkkkkkkkkkkkkkkk

))TTTTTTTTTTTTTTTTTTTTTTTTTT

T GD

tgDBuujjjjjjjjjj

tgDC ))TTTTTTTTTT

PBacPB .
tPB

//

))SSSSSSSSSSSSSSSSSSSSSSSSSS T GB tgBA

))TTTTTTTTTT (1) T GCtgCA

uujjjjjjjjjj PC / acPCtPC
oo

uukkkkkkkkkkkkkkkkkkkkkkkkkk

T GA

PA / acPA

tPA
OO
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In the following Fact 4.5, we give a construction for the amalgamation of positive nested conditions
and in Thm. 4.10 for the corresponding solutions.

Fact 4.5 (Amalgamation of Positive Nested Conditions). Given a pushout (1) as in Def. 4.4 with all
morphisms inM.

Composition. If there are positive nested conditions acPB and acPC typed over T GB and T GC, respec-
tively, agreeing in acPD typed over T GD then there exists a unique positive nested condition acPA

typed over T GA such that acPA = acPB +acPD
acPC .

Decomposition. Vice versa, given a positive nested condition acPA typed over T GA, there are unique
restrictions acPB , acPC and acPD of acPA such that acPA = acPB +acPD

acPC .

The amalgamated composition and decomposition constructions are unique up to isomorphism.

Remark 4.6. Given an amalgamation acPA = acPB +acPD
acPC of positive nested conditions, we can con-

clude from the proof of Fact 4.5 in App. B that we also have corresponding amalgamations in each level
of nesting.

b1 c1
1 2 3

c2 b2

b1 c1
1 2 3

a1,A

b1 c1
1 2 3

b2 c2

b1
1 2 3

b2

b1
1 2 3

a2,B b1
1 2 3

b2

C1,A

C2,A

PA

C1,B

PB

c1
1 2 3

c2

c1
1 2 3

a1,C

c1
1 2 3

c2

a2,C

C1,C

C2,C

PCa2,A

1 2 3

1 2 3

a1,D

1 2 3
a2,D

C1,D

C2,D

PD

C2,B

acPA acPC

acPDacPB

a1,B

Ç  

Ç  Ç  

Ç  

b c

b

c

TGA TGC

TGB TGD

c1,BA pBA c2,BA

tP,A

tP,B

pCA

c2,CA

c1,CA

tP,D

tP,C

c2,DC
c1,DCpDC

c2,DB

pDB

c1,DB

Figure 4: Amalgamation of positive nested conditions

Example 4.7 (Amalgamation of Positive Nested Conditions). Figure 4 shows a pushout of typed graphs
T GA, T GB, T GC and T GD, and four positive nested conditions acPA , acPB , acPC and acPD typed over T GA,
T GB, T GC and T GD, respectively. For simplicity the figure contains only the type morphisms of the Ps,
but there are also corresponding type morphisms for the Cs, mapping all b-edges to b and all c-edges to
c. There is acPA =

∨
i∈{1,2} acCi,A with acCi,A = ∃ (ai,A, true) for i = 1,2, and acPB , acPC and acPD have a

similar structure.

Composition. We have that tPD is a common restriction of tPB and tPC , and also that ai,D is a common
restriction of ai,B and ai,C for i = 1,2. Thus, acPD is a common restriction of acPB and acPC which
means that acPB and acPC are agreeing in acPD . So by Fact 4.5 there exists an amalgamation
acPA = acPB +acPD

acPC , and according to Rem. 4.6 it can be obtained as amalgamation of its
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components. This means that we have an amalgamation tPA = tPB +tPD
tPC with pushout of the Ps as

shown in Fig. 4, as well as amalgamations of the corresponding type morphisms of the Cs, leading
to the pushouts depicted in Fig. 4 by dotted arrows for the C1s and by dashed arrows for the C2s.
The morphisms a1,A and a2,A are obtained by the universal property of pushouts.

Decomposition. The other way around, considering the condition acPA , we can construct the restrictions
acPB and acPC by deleting the c- respectively b-edges. Then, restricting acPB and acPC to T GD by
deleting all remaining edges, we obtain the same condition acPD such that acPA = acPB +acPD

acPC .
In order to answer the question, under which conditions such amalgamated positive nested conditions

are satisfied, we need to define an amalgamation of their solutions. Afterwards, we show in the proof of
Thm. 4.10, that a composition of two solutions via an interface leads to a unique amalgamated solution
and that a given solution for an amalgamated positive nested condition is the amalgamation of its unique
restrictions.
Definition 4.8 (Agreement and Amalgamation of Solutions for Positive Nested Conditions). Given
pushout (1) below with all morphisms in M, an amalgamation of typed objects gA = gB +gD gC, and
an amalgamation of positive nested conditions acPA = acPB +acPD

acPC with corresponding matches pA =
pB +pD pC.

1. Two solutions QB for pB � acPB and QC for pC � acPC agree in a solution QD for pD � acPD if QD is
a restriction of QB and QC.

2. Given solutions QB for pB � acPB and QC for pC � acPC agreeing in a solution QD for pD � acPD ,
then a solution QA for pA � acPA is called amalgamation of QB and QC over QD, written QA =
QB +QD QC, if QB and QC are restrictions of QA.

PAacPA .

pA &&LLLLLL PC / acPCpCA
oo

pCxxqqqqqq

GA

gA ''NNNNNN GCgCA
oo

gCwwoooooo

T GA
(1)

T GC
tgCAoo

T GB

tgBA
OO

T GD
tgDBoo

tgDC
OO

GB

gBA

OO

gB 77pppppp
GDgDB

oo

gDC

OO

gDggOOOOOO

PBacPB .

pBA

OO

pB 88rrrrrr
PD / acPDpDB

oo

pDC

OO

pDffMMMMMM

Remark 4.9. Note that by assumption gA = gB +gD gC in the definition above we already have a pushout
over the Gs, and by acPA = acPB +acPD

acPC we also have a pushout over the Ps.
Theorem 4.10 (Amalgamation of Solutions for Positive Nested Conditions). Given pushout (1) as in
Def. 4.8 with all morphisms inM, an amalgamation of typed objects gA = gB +gD gC, and an amalgama-
tion of positive nested conditions acPA = acPB +acPD

acPC with corresponding matches pA = pB +pD pC.
Composition. Given solutions QB for pB � acPB and QC for pC � acPC agreeing in a solution QD for

pD � acPD , then there is a solution QA for pA � acPA constructed as amalgamation QA = QB +QD QC.

Decomposition. Given a solution QA for pA � acPA , then there are solutions QB, QC and QD for
pB � acPB , pC � acPC and pD � acPD , respectively, which are constructed as restrictions QB, QC

and QD of QA such that QA = QB +QD QC.
The amalgamated composition and decomposition constructions are unique up to isomorphism.
Remark 4.11. From the proof of Thm. 4.10 in App. B we can conclude that for a given amalgamation of
solutions QA = QB +QD QC, we also have corresponding amalgamations of its components.
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5 Compatibility of Initial Satisfaction with Restriction and Amalgama-
tion

In this section we present our main result showing compatibility of initial satisfaction with amalgamation
(Thm. 5.1) and restriction (Cor. 5.2) which are based on the amalgamation of solutions for positive
nested conditions (Thm. 4.10). This main result allows to conclude the satisfaction of a constraint for
a composed object from the satisfaction of the corresponding restricted constraints for the component
objects. It is valid for initial satisfaction, but not for general satisfaction.

Theorem 5.1 (Compatibility of Initial Satisfaction with Amalgamation). Given pushout (1) below with
all morphisms inM, an amalgamation of typed objects gA = gB +gD gC, and an amalgamation of positive
constraints acA = acB +acD acC. Then we have:

Decomposition. Given a solution QA for GA
I
� acA, then there are solutions QB for GB

I
� acB, QC for

GC
I
� acC and QD for GD

I
� acD such that QA = QB +QD QC.

Composition. Vice versa, given solutions QB for GB
I
� acB and QC for GC

I
� acC agreeing in a solution

QD for GD
I
� acD, then there exists a solution QA for GA

I
� acA such that QA = QB +QD QC.

IacA .
iGA

''OOOOOOOO I / acC
idI

oo
iGC
wwnnnnnnnn

GA

gA ((QQQQQQQQ GCgCA
oo

gCvvmmmmmmmm

T GA
(1)

T GC
tgCAoo

T GB

tgBA
OO

T GDtgDB
oo

tgDC
OO

GB

gBA

OO

gB 66mmmmmmmm
GD

gDBoo

gDC

OO

gDhhQQQQQQQQ

IacB .

idI

OO

iGB

77oooooooo I / acD
idIoo

idI

OO

iGD

ggPPPPPPPP

Proof.

Decomposition. By Def. 2.8 a solution QA for GA
I
� acA is also a solution for iGA � acA, where iGA

is the unique morphism iGA : I → GA. Moreover, due to amalgamation gA = gB +gD gC the inner
trapezoids in the diagram above are pullbacks. So by closure of M under pullbacks we have
that gBA,gCA,gDB,gDC ∈ M which means that they are monomorphisms. Therefore, the outer
trapezoids become pullbacks by standard category theory, which means that iGB : I → GB is a
restriction of iGA , iGC : I→GC is a restriction of iGA , and iGD : I→GD is a restriction of iGB as well
as of iGC .
Furthermore, the outer square in the diagram is a pushout, implying that we have an amalgamation
iGA = iGB +iGD

iGC . Thus, using Thm. 4.10 we obtain solutions QB for iGB � acB, QC for iGC � acC

and QD for iGD � acD such that QA = QB +QD QC, and by Def. 2.8 QB, QC and QD are solutions for

GB
I
� acB, GC

I
� acC and GD

I
� acD, respectively.

Composition. Now, given solutions QB, QC and QD for GB
I
� acB, GC

I
� acC and GD

I
� acD, respectively.

Then by Def. 2.8 we have that QB, QC and QD are solutions for iGB � acB, iGC � acC and iGD � acD,
respectively. As shown in item 1, there is iGA = iGB +iGD

iGC and therefore, since QB and QC agree
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in QD, by Thm. 4.10 we obtain a solution QA for iGA � acA such that QA = QB +QD QC. Finally,

Def. 2.8 implies that QA is a solution for GA
I
� acA.

Corollary 5.2 (Compatibility of Initial Satisfaction with Restriction). Given type restriction
t : T GB → T GA ∈ M, object GA typed over T GA with restriction GB, and a positive constraint acA

over initial object I typed over T GA with restriction acB. Then GA
I
� acA implies GB

I
� acB. Moreover, if

QA is a solution for GA
I
� acA then QB = Restrt(QA) is a solution for GB

I
� acB.

Proof. Consider the diagram in Thm. 5.1 with GC = GA, GD = GB, acC = acA and acD = acB. Then
by standard category theory we have that all rectangles in the diagram are pushouts and the trapezoids
are pullbacks. Thus, we have gA = gB +gB gA and, analogously, acA = acB +acB acA with corresponding

matches iGA = iGB +iGB
iGA . So, given a solution QA for GA

I
� acA, by item 1 of Thm. 5.1 there is a solution

QB for GB
I
� acB with QA = QB +QB QA such that by Def. 4.4 QB is a restriction of QA.

Example 5.3 (Compatibility of Initial Satisfaction with Amalgamation). Figure 5 shows the amalgama-
tion of typed graphs gA = gB +gD gC from Ex. 4.3 and an amalgamation of positive nested conditions
acA = acB +acD acC. Note that we have acA = ∃ (iPA ,acPA) and acB, acC and acD with similar structure,
where the amalgamation acPA = acPB +acPD

acPC is presented in Ex. 4.7.

Composition. For GB
I
� acB we have the solution QB = (qB,(Q1,B,Q2,B)) with Q1,B = (q1,B, /0) and

Q2,B = /0, where qB and q1,B are inclusions. Moreover, we have similar solutions QC for

GC
I
� acC and QD for GD

I
� acD. According to Rem. 4.11 the amalgamation QA = QB +QD QC

can be constructed by amalgamation of the components.
First, we explain in detail the amalgamation q1,A = q1,B +q1,D q1,C. Note that the graphs GA, GB,
GC and GD can be considered as type graphs such that e. g. C1,D is typed over GD by q1,D. So,
since q1,D is a common restriction of q1,B and q1,C, we have that q1,B and q1,C agree in q1,D. This
means that there is an amalgamation of typed objects q1,A = q1,B +q1,D q1,C, where the inclusion
q1,A maps all nodes and edges in the same way as q1,B and q1,C.
Moreover, for the empty solutions we have an empty solution as amalgamation, and thus we have
amalgamations of solutions Q1,A = Q1,B +Q1,D Q1,C = (q1,A, /0) and Q2,A = Q2,B +Q2,D Q2,C = /0. The
amalgamation qA = qB +qD qC can be obtained analogously as described for q1,A, and hence we

have QA = QB +QD QC = (qA,(Q1,A,Q2,A)) which is a solution for GA
I
� acA.

Decomposition. For GA
I
� acA we have a solution QA = (qA,(Q1,A,Q2,A)) with Q1,A = (q1,A, /0) and

Q2,A = /0 where qA and q1,A are inclusions. The restrictions QB, QC and QD of QA are given
by restrictions of the components. By computing the restrictions q1,B, q1,C and q1,D of q1,A, and

similar the restrictions of qA and /0 we get as result again the solutions QB for GB
I
� acB, QC for

GC
I
� acC, and QD for GD

I
� acD as described in the composition case above.

From Cor. 5.2 we know that initial satisfaction is compatible with restriction of typed objects and
constraints. In contrast, general satisfaction and restriction are not compatible in general. As the follow-
ing example illustrates, it is possible that a typed object generally satisfies a constraint while the same
does not hold for their restrictions.
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b1 c1 c3
1 2 3 4

c2 b2

b1 c1
1 2 3

c2 b2

b1 c1
1 2 3

a1,A

b1 c1
1 2 3

b2 c2

Â 
iPA

c1 c3
1 2 3 4

c2

1 2 3 4
b1

1 2 3 4

b2

b1
1 2 3

b2

b1
1 2 3

a1,B

b1
1 2 3

b2

Â 
iPB

C1,A

C2,A
PA I

I

C1,B

PB

q1,B

c1
1 2 3

c2

c1
1 2 3

a1,C

c1
1 2 3

c2

a2,C

Â 
iPC

C1,C

C2,C

PC
I

a2,A

GA GC

GDGB

1 2 3

1 2 3

a1,D

1 2 3

a2,D
Â 

iPD

I

C1,D

C2,D

PD

q1,C

C2,B

acA acC

acDacB

q1,D

a2,B

Ç  

Ç  Ç  

Ç  

q1,A

qA iGA iGC qC

iGD
qDiGBqB

b c

b

c

TGA TGC

TGB TGD

gA gC

gDgB

Figure 5: Amalgamation of solutions for initial satisfaction

Example 5.4 (Restriction of General Satisfaction Fails in General). Figure 6 shows a restriction GB

of the typed graph GA and a restriction acPB of the constraint acPA . There are two possible matches
p1,A, p2,A : PA→GA ∈M where p1,A is an inclusion and p2,A maps b1 to b2 and c1 to c2. Since for each
of the matches the graph GA contains the required edges in the inverse direction, both of the matches
satisfy acPA . For pi,A we have qi,A with qi,A ◦aA = pi,A for i = 1,2. Thus, we have that GA � acPA .

For the constraint acPB there is a match pB : PB→ GB ∈M mapping edge b1 identically and node 3
to node 4. We have that pB 6� acPB because there is no edge from node 4 to node 2 in GB, which means
that GB 6� acPB . This is due to the fact that there is no match pA : PA → GA ∈M such that pB is the
restriction of pA.

1 2 3

c2 b2

CA
acPA

1 2 3
b1

CB

1 2 3

PB
b1

1 2 3
c1b1

b1 c1

b2

1 2 3 4

c2 b2

GA

c3b1 c1

1 2 3 4
b1

GB

b2

acPB

q1A,q2A

qB

aA

aB

tG tC tP

PA

pB

p1A,p2A

c

TGA

b

TGB

b

t

tGA

tGB

Figure 6: Counterexample for restriction of general satisfaction

6 Related Work

The framework ofM-adhesive categories [7] generalizes various kinds of categories for high level re-
placement systems, e.g. adhesive [16], quasi-adhesive [17], partial VK square adhesive [14], and weak-
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adhesive categories [5]. Therefore, the results of this paper are applicable to all of them, where the
category of typed attributed graphs is a prominent example.

Multi-view modelling is an important concept in software engineering. Several approaches have
been studied and used, e.g. focussing on aspect oriented techniques [12]. In this line, graph transfor-
mation (GT) approaches have been extended to support view concepts based on the integration of type
graphs. For this purpose, the concept of restriction along type morphisms has been studied and used
intensively [11, 4] including GT systems using the concept of inheritance [15]. Instead of restriction of
constraints considered in this paper, only forward translation of constraints have been studied in [4] for
the case of atomic constraints with general satisfaction leading to a result similar to Thm. 5.1. The no-
tions of initial and general satisfaction for nested conditions can be transformed one into the other [13],
but this transformation uses the Boolean operator negation that is not present in positive constraints, for
which, however, our main result on the compatibility of restriction and initial satisfaction holds. More-
over, we have shown by counterexample that general satisfaction is not compatible with restriction in
general, even if only positive constraints are considered.

7 Conclusion

Nested application conditions for rules and constraints for graphs and more general models have been
studied already in the framework ofM-adhesive transformation systems [5, 9]. The new contribution of
this paper is to study compatibility of satisfaction with restriction and amalgamation. This is important
for large typed systems respectively objects, which can be decomposed by restriction and composed
by amalgamation. The main result in this paper shows that initial satisfaction of positive constraints is
compatible with restriction and amalgamation. The amalgamation construction is based on the horizontal
van Kampen (VK) property, which is required in addition to the vertical VK property of M-adhesive
categories. To our best knowledge, this is the most interesting result for M-adhesive transformation
systems which is based on the horizontal VK property. Note that the main result is not valid for general
satisfaction of positive constraints nor for initial satisfaction of general constraints. For future work, it
is important to obtain weaker versions of the main result, which are valid for general satisfaction and
constraints, respectively.
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A Properties of General and Initial Satisfaction

In this appendix we present some basic properties on general and initial satisfaction, their mutual trans-
formability and finally we define a tranformation of contrains into application conditions using the Shift
transformation.
We begin with the fact that describes the compatibility properties of general and initial satisfaction with
respect to Boolean operators. Afterwards an example for incompatibility of general satisfaction with
negation is given.

Fact A.1 (Compatibility / Incompatibility with Boolean Operators). Given a constraint acP over P and
an object G. Then it holds:

1. G
I
� acI is compatible with ¬, ∧, ∨, i.e.,

i. G
I
� ¬acI ⇔¬(G

I
� acI),

ii. G
I
�

∧
i∈I acI,i⇔

∧
i∈I(G

I
� acI,i),

iii. G
I
�

∨
i∈I acI,i⇔

∨
i∈I(G

I
� acI,i).

2. G � acP is in general not compatible with ¬, ∨, i.e.,
i. G � ¬acP < ¬(G � acP),
ii. G �

∨
i∈I acP,i <

∨
i∈I(G � acP,i).

where < means “in general not equivalent”.

Proof.

1. G
I
� acI

De f . 2.8⇔ iG � acI and � for morphisms is compatible with ¬, ∧, ∨ by definition

2. i. (G � ¬acP)
De f . 2.7⇔ ( ∀ p ∈M. p � ¬acP)

De f . 2.7⇔ ( ∀ p ∈M. p 2 acP)

< ( ∃ p ∈M. p 2 acP)⇔¬( ∀ p ∈M. p � acP)
De f . 2.7⇔ ¬(G � acP)

ii. G �
∨

i∈I acP,i
De f . 2.7⇔ ( ∀ p ∈M. p �

∨
i∈I acP,i)⇔ ( ∀ p ∈M.

∨
i∈I(p � acP,i)

<
∨

i∈I( ∀ p ∈M. p � acP,i)
De f . 2.7⇔

∨
i∈I(G � acP,i)

Example A.2 (Incompatibility with Negation). Consider the constraint acP from the Ex. 2.5 and the
graph G′A depicted in Fig. 7. The graph G′A does not generally satisfy acP since we can match the b1-
edge in P to the b2-edge in G′A, but there is no b-self-loop on the node 3 corresponding to the b3-edge in
C1. Compatibility of general satisfaction with negation would now imply that G′A generally satisfies the
negation of acP. But this does not hold since for the inclusion p : P→ G′A there are the corresponding
inclusions qi : Ci→ G′A for i = 1,2,3 such that p satisfies acP and therefore p 6� ¬acP and G 6� ¬acP.

Similar to results in [13], general and initial satisfaction can be transformed into each other as given
below. The subsequent examples illustrate this transformability.

Fact A.3 (Transformation between General and Initial Satisfaction). Given a constraint acP over P and
an object G. Then it holds:

1. G � acP⇔ G
I
� ¬ ∃ (iP,¬acP)

2. G
I
� ∃ (iP,acP)⇔¬(G � ¬acP) < (G � acP)
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C3
b1 c1
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C2
c1b1 ∨
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c2 b2

GA
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iP b1

b3

2
b1

’

Figure 7: Properties of general and initial satisfaction

Proof.
1. G

I
� ¬ ∃ (iP,¬acP)

De f . 2.8⇔ iG � ¬( ∃ (iP,¬acP))
⇔¬(iG � ∃ (iP,¬acP))
De f . 2.8⇔ ¬( ∃ p ∈M. p◦ iP = iG ∧ p � ¬acP)
initiality⇔ ¬( ∃ p ∈M.¬p � acP)
⇔ ∀ p ∈M. p � acP
De f . 2.7⇔ G � acP

I
=

P/acP

G

iP

iG p ∈M

2. G
I
� ∃ (iP,acP)

Fact A.1, 1⇔ ¬(G
I
� ¬ ∃ (iP,acP))

Fact A.3, 1⇔ ¬(G � ¬acP)

Example A.4 (Transformation of General Satisfaction into Initial Satisfaction). Consider the constraint
acP from the Ex. 2.5 and the graph GA from the Fig. 2. The graph GA generally satisfies acP accord-
ing to the Ex. 2.10. The Fact A.3,1 would now imply that GA does not initially satisfy the constraint
∃ (iP,¬acP). This holds if there is noM-morphism satisfying the negation of acP, or in other words, acP

is satisfied by everyM-morphism which is the case as mentioned before.

Example A.5 (Transformation of Initial Satisfaction into General Satisfaction). Consider again the con-
straint acP from the Ex. 2.5 and the graph G′A from the Fig. 7. For initial satisfaction it is sufficient to
find some M-morphism satisfying acP which is the inclusion p : P→ G′A in this case. To obtain the
equivalence according to Fact A.3, 2, the general satisfaction does not hold because the negation of acP

would have to be satisfied by everyM-morphism which is not the case for the inclusion p which satisfies
acP. Lastly, G′A does not generally satisfy acP because we can match the b1-edge in P to the b2-edge in
G′A, but there is no b-self-loop on the node 3 corresponding to the b3-edge in C1.

Nested conditions can be shifted over morphisms, as explained in the following definition and lemma
(see [8]). The result of the shifting is then the adapted nested condition over the codomain object of the
morphism over which the nested condition was shifted. For proof of the lemma consult [8].

Definition A.6 (Construction of Shift Transformation over Morphisms). The transformation Shift is in-
ductively defined as follows:
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• Shift(b, true) = true
• Shift(b, ∃ (a,acC)) =

∨
(a′,b′)∈F ∃ (a′,Shift(b′,acC))

if F = {(a′,b′) ∈ E ′ | b′ ∈M ∧ a′ ◦b = b′ ◦a} 6= /0
• Shift(b, ∃ (a,acC)) = ¬true if F = /0

P

acC.C

P′

C′

=

b

a

b′

a′

For Boolean formulas over nested conditions, Shift is extended in the usual way.

Lemma A.7 (Shift of Nested Conditions over Morphisms).
Let (C,M) be anM-adhesive category with E-M-factorization.
There is a transformation Shift such that, for all nested conditions
acP over P and all morphisms b : P→ P′,n : P′→ H holds:
n◦b � acP⇔ n � Shift(b,acP).

acP.P P′/Shift(b,acP)

H

b

n◦b n

Using the described Shift transformation we can transform constraints into application conditions for
both introduced kinds of satisfaction (similar to results in [13]).

Theorem A.8 (Transformation of Constraints into Application Conditions).
1. Given a constraint acI over an initial object I and a match

m : L→ G. Then it holds:

G
I
� acI ⇔ m � Shift(iL,acI)

2. Given a constraint acP over an object P and a match
m : L→ G. Then it holds:
G � acP⇔ m � ¬(Shift(iL, ∃ (iP,¬acP)))

acI.I P/acP

GL

iP

iG

m

iL

Proof.

1. G
I
� acI

De f . 2.8⇔ iG � acI

⇔ m◦ iL � acI
Lem. A.7⇔ m � Shift(iL,acI)

2. G � acP
Fact A.3, 1⇔ G

I
� ¬ ∃ (iP,¬acP)

Fact A.1, 1⇔ ¬(G
I
� ∃ (iP,¬acP))

T hm. A.8, 1⇔ ¬(m � Shift(iL, ∃ (iP,¬acP)))
⇔ m � ¬Shift(iL, ∃ (iP,¬acP))

Remark A.9. Initial satisfaction is much more suitable for transformation of constraints into application
conditions.

B Remaining Proofs

In this App. B, we give the proofs for Fact 3.4, Fact 4.5, and Thm. 4.10.

Fact 3.4 (Restriction of Solutions for Positive Nested Conditions). Given a positive nested condition
acPA and a match pA : PA→ GA over T GA with restrictions acPB = Restrt(acPA), pB = Restrt(pA) along
t : T GB→ T GA. Then for a solution QA of pA � acPA there is a solution QB = Restrt(QA) for pB � acPB .

Proof.

• For acPA = true the implication is trivial, because QA is empty which means that also QB is empty
and thus a solution for pB � acPB is empty, because acPB is also true.
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PA
a{{

pA

ww
T GA GA

tGAoo CA /acCA

qAoo

T GB

t
OO

GB

tG
OO

tGBoo CB /acCB

tC
OO

qBoo

PB

tP

OO

b
cc

pB

gg

Figure 8: Restriction of solution qA for pA � ∃ (a,acCA)

• For acPA = ∃ (a,acCA) we have that QA = (qA,QCA) such that qA : CA→GA ∈M with qA ◦a = pA

and QCA is a solution for qA � acCA . Then by qB = Restrt(qA) : CB→ GB we have qB ∈M and we
also have tG : GB→ GA ∈M, because t ∈M (see Fig. 8). So for acPB = ∃ (b,acCB) we have

tG ◦qB ◦b = qA ◦ tC ◦b = qA ◦a◦ tP = pA ◦ tP = tG ◦ pB

which by monomorphism tG implies qB ◦b = pB.
Moreover, the fact that QCA is a solution for qA � acCA implies that QCB = Restrt(QCA) is a solution
for qB � acCB by induction hypothesis and hence the restriction QB = (qB,QCB) of QA is a solution
for pB � acPB .

• Now, for acPA =
∧

i∈I acPA,i we have acPB =
∧

i∈I Restrt(acPA,i). By the fact that QA is a solution
for pA � acPA we have that QA = (QA,i)i∈I such that QA,i is a solution for pA � acA,i for all i ∈ I.
Thus, by induction hypothesis we have restrictions QB,i = Restrt(QA,i) that are solutions for pB �
Restrt(acPA,i) for all i ∈ I. Hence, the restriction QB = (QB,i)i∈I of QA is a solution for pB � acPB .

• Finally, for acPA =
∨

i∈I acPA,i we have acPB =
∨

i∈I Restrt(acPA,i). By the fact that QA is a solution
for pA � acPA we have that QA = (QA,i)i∈I such that for one j ∈ I there is a solution QA, j for
pA � acA, j and for all k 6= j we have that QA,k = /0. Thus, by induction hypothesis the restriction QB, j

of QA, j is a solution for pB � Restrt(acPA, j). Hence, we also have that the restriction QB = (QB,i)i∈I
is a solution for pB � acPB with QB,k = /0 for k 6= j.

Fact 4.5 (Amalgamation of Positive Nested Conditions). Given a pushout (1) as in Def. 4.4 with all
morphisms inM.

Composition. If there are positive nested conditions acPB and acPC typed over T GB and T GC, respec-
tively, agreeing in acPD typed over T GD then there exists a unique positive nested condition acPA

typed over T GA such that acPA = acPB +acPD
acPC .

Decomposition. Vice versa, given a positive nested condition acPA typed over T GA, there are unique
restrictions acPB , acPC and acPD of acPA such that acPA = acPB +acPD

acPC .

The amalgamated composition and decomposition constructions are unique up to isomorphism.

Proof.

Composition. We do an induction over the structure of acPD :
• acPD = true.

Then we also have acPB = true and acPC = true, and the amalgamation acPA is trivially given
by acPA = true.
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• acPD = ∃ (d,acCD) with d : PD→CD.
The assumption that acPB and acPC agree in acPD means that acPD is a restriction of acPB

and acPC and thus by Def. 3.2, we have that acPB = ∃ (b,acCB) with b : PB → CB, acPC =
∃ (c,acCC) with c : PC → CC, d is a restriction of b and c, and acCD is a restriction of acCB

and acCC . This in turn means that acCB and acCC agree in acCD according to Def. 4.4. So,
by induction hypothesis we obtain an amalgamation acCA = acCB +acCD

acCC which implies
that tCA = tCB +tCD tCC, i. e., diagrams (2)-(5) below are pullbacks. By closure of M under
pullbacks, we obtain from tgBA, tgCA ∈M that also cBA,cCA ∈M.
Moreover, the fact that d is a restriction of b and c means that (6)+(2) and (7)+(3) are pull-
backs which by pullback decomposition implies that (6) and (7) are pullbacks. Note that
b, c and d can be considered as typed over CB, CC and CD, respectively. So, according to
Def. 4.1 we obtain that b and c agree in d with respect to the pushout of the Cs, leading
to an amalgamation a = b +d c : PA → CA with pullbacks (8) and (9) by Fact 4.2. Hence,
acPA = ∃ (a,acCA) is the required amalgamation.

PAacPA .

a &&LLLLLLLL
(8)

(9)

PC / acPC
pCAoo

cxxrrrrrrrrr

CA

acCA
O

tCA &&NNNNNNNN
(4)

(5)

CC

acCC
O

cCAoo

tCCwwpppppppp

T GA

(1)

T GC
tgCAoo

T GB

tgBA

OO

T GD
tgDBoo

tgDC

OO

CB
M

acCB

cBA

OO

tCB
88pppppppp

CD
M

acCD

cDB
oo

cDC

OO

tCD
ggNNNNNNNN

(2)

(3)

PBacPB .

pBA

OO

b
88rrrrrrrr

PD / acPDpDB
oo

pDC

OO

d
ffMMMMMMMM

(6)

(7)

• acPD =
∧

i∈I acPD,i.
Since acPD is a restriction of acPB and acPC they must be of the form acPB =

∧
i∈I acPB,i and

acPC =
∧

i∈I acPC,i. Moreover, since acPB and acPC agree in acPD , we obtain that also acPB,i

and acPC,i agree in acPD,i for all i ∈ I. So by induction hypothesis there are amalgamations
acPA,i = acPB,i +acPD,i acPC,i such that acPB,i and acPC,i are restrictions of acPA,i for all i ∈ I.
Hence, acPA =

∧
i∈I acPA,i is the required amalgamation.

• The remaining case for disjunction works analogously to the case for conjunction.
The uniqueness of the amalgamation follows from the fact that we have an amalgamation in each
level of nesting and the amalgamation of typed objects is unique by Fact 4.2.

Decomposition. We do an induction over the structure of acPA :
• acPA = true.

This case is trivial because true = true+true true.
• acPA = ∃ (a,acCA) with a : PA→CA.

Then by induction hypothesis there exist restrictions acCB , acCC and acCD of acCA such that
acCA = acCB +acCD

acCC . Moreover, by Fact 4.2 there are unique restrictions b, c and d of a
such that a = b+d c. Hence, we have restrictions acPB = ∃ (b,acCB), acPC = ∃ (c,acCC) and
acPD = ∃ (d,acCD) of acPA , and as shown in item 1 the fact that acCA = acCB +acCD

acCC and
a = b+d c implies that acPA = acPB +acPD

acPC .
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• acPA =
∧

i∈I acPA,i.
Then by induction hypothesis there exist restrictions acPB,i, acPC,i and acPD,i of acPA,i such
that acPA,i = acPB,i +acPD,i acPC,i for all i∈ I. Hence, acPB =

∧
i∈I acPB,i, acPC =

∧
i∈I acPC,i and

acPD =
∧

i∈I acPD,i are restrictions of acPA such that acPA = acPB +acPD
acPC .

• Again, the remaining case for disjunction works analogously to the case for conjunction.
The uniqueness of the decomposition follows from the uniqueness of restrictions by pullback con-
struction.

Theorem 4.10 (Amalgamation of Solutions for Positive Nested Conditions). Given pushout (1) as in
Def. 4.8 with all morphisms inM, an amalgamation of typed objects gA = gB +gD gC, and an amalgama-
tion of positive nested conditions acPA = acPB +acPD

acPC with corresponding matches pA = pB +pD pC.

Composition. Given solutions QB for pB � acPB and QC for pC � acPC agreeing in a solution QD for
pD � acPD , then there is a solution QA for pA � acPA constructed as amalgamation QA = QB +QD QC.

Decomposition. Given a solution QA for pA � acPA , then there are solutions QB, QC and QD for pB �
acPB , pC � acPC and pD � acPD , respectively, which are constructed as restrictions QB, QC and QD

of QA such that QA = QB +QD QC.

The amalgamated composition and decomposition constructions are unique up to isomorphism.

Proof.

Composition. We do an induction over the structure of acPA .
• acPA = true.

Then also acPB , acPC , acPD are true and we have empty solutions QA, QB, QC and QD. Since
the restriction of an empty solution is empty, we have that QB and QC are restrictions of QA.

• acPA = ∃ (a,acCA) with a : PA→CA.
By Fact 4.5 (Composition) we have the following diagram, where all rectangles are pushouts
and all trapezoids are pullbacks, and all horizontal and vertical morphisms are inM.

PAacPA .

a &&MMMMMMMM
(2′)

(3′)

PC / acPC
pCAoo

cxxqqqqqqqqq

CA

acCA
O

tCA ''NNNNNNNN
(2)

(3)

CC

acCC
O

cCAoo

tCCwwppppppppp

T GA

(1)

T GC
tgCAoo

T GB

tgBA

OO

T GD
tgDBoo

tgDC

OO

CB
M

acCB

cBA

OO

tCB
77pppppppp

CD
M

acCD

cDB
oo

cDC

OO

tCD
ggNNNNNNNN

(4)

(5)

PBacPB .

pBA

OO

b
88qqqqqqqq

PD / acPDpDB
oo

pDC

OO

d
ffMMMMMMMM

(4′)

(5′)

Now, we consider solutions QB = (qB,QCB), QC = (qC,QCC) and QD = (qD,QCD) for pB �
acPB , pC � acPC and pD � acPD , respectively, such that QD is a restriction of QB and QC. Then
we also have that qD is a restriction of qB and qC, and thus

gBA ◦qB ◦ cDB = gBA ◦gDB ◦qD = gCA ◦gDC ◦qD = gCA ◦qC ◦ cDC
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which by pushout over the Cs implies a unique morphism qA : CA → GA with qA ◦ cBA =
gBA ◦qB and qA ◦ cCA = gCA ◦qC.

PAacPA .
a &&LLLLLL

pA

��

PC / acPC
pCAoo

cxxqqqqqqpC

��

CAacCA .

qA &&MMMMMM CC / acCCcCA
oo

qCxxqqqqqq

GA

gA ''NNNNNN GCgCA
oo

gCwwoooooo

T GA T GC
tgCAoo

T GB

tgBA
OO

T GD
tgDBoo

tgDC
OO

GB

gBA

OO

gB 77oooooo
GDgDB

oo

gDC

OO

gDggOOOOOO

CB
acCB .

cBA

OO

qB 88qqqqqq
CD

/ acCDcDB
oo

cDC

OO

qDffMMMMMM

PBacPB .

pBA

OO

b
88rrrrrr pB

??

PD / acPDpDB
oo

pDC

OO

d
ffMMMMMMpD

__

Moreover, we have

qA ◦a◦ pBA = qA ◦ cBA ◦b = gBA ◦qB ◦b = gBA ◦ pB = pA ◦ pBA

and analogously qA ◦ a ◦ pCA = pA ◦ pCA which by jointly epimorphic pBA, pCA implies that
qA ◦a = pA.

In order to show that qA ∈M we consider the following diagram in the left:

GA GC
gCAoo CC

qCoo

GB

gBA

OO

GDgDB
oo

gDC

OO

(9)(7)

(8)(6)

CDqD
oo

cDC

OO

CB

qB

OO

CDcDB
oo

qD

OO

CDidCD

oo

idCD

OO

CC
gCA◦qC

vvmmmmmmmmmmmmmmmm

cCA}}||
||

||
||

GA CAqAoo CD

cDC

aaBBBBBBBB

cDB}}||
||

||
||

CB

gBA◦qD

hhQQQQQQQQQQQQQQQQ

cBA

aaBBBBBBBB

We have that (6) is a pushout with all morphisms in M and thus also a pullback. Dia-
grams (7) and (8) are pullbacks by restriction, and (9) is a pullback because qD ∈M is a
monomorphism. Hence, by composition of pullbacks, we obtain that the complete diagram
is a pullback alongM-morphisms gBA ◦qB and gCA ◦qC which means that the pushout of the
Cs is effective (see Def. 2.3), implying that qA ∈M.

It remains to show that qB and qC are restrictions of qA. In the following diagram we have that
(10) and (11) are pullbacks by restrictions, the Cs and the Gs form pushouts (see Rem. 4.9)
and all morphisms in (10)-(13) are inM. So the horizontal as well as the vertical VK property
implies that also (12) and (13) are pullbacks which means that qB and qC are restrictions of
qA.
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CAacCA .

qA &&MMMMMMMM
(12)

(13)

CC / acCCcCA
oo

qCxxqqqqqqqq

GA

gA ''OOOOOOOO GCgCA
oo

gCwwoooooooo

T GA T GC
tgCAoo

T GB

tgBA

OO

T GD
tgDBoo

tgDC

OO

GB

gBA

OO

gB
77oooooooo

GDgDB
oo

gDC

OO

gD
ggOOOOOOOO

CBacCB .

cBA

OO

qB
88qqqqqqqq

CD / acCDcDB
oo

cDC

OO

qD
ffNNNNNNNN(10)

(11)

Finally, QD being a restriction of QB and QC means that QCD is a restriction of QCB and QCC

which by induction hypothesis implies a solution QCA of qA � acCA such that QCB and QCC

are restrictions of QCA. Hence, QA = (qA,QCA) is a solution for pA � acA such that QB and
QC are restrictions of QA.

• acPA =
∧

i∈I acPA,i.
We have acPB =

∧
i∈I acPB,i, acPC =

∧
i∈I acPC,i and acPD =

∧
i∈I acPD,i such that for all i ∈ I

there is acPD,i a restriction of acPB,i and acPC,i.
Moreover, given solutions QB, QC and QD of pB � acPB , pC � acPC and pD � acPD , respectively,
we have QB = (QB,i)i∈I , QC = (QC,i)i∈I and QD = (QD,i)i∈I such that for all i ∈ I QB,i, QC,i

and QD,i are solutions for pB � acPB,i, pC � acPC,i and pD � acPD,i, respectively, and QD,i is a
restriction of QB,i and QC,i.
Then, by induction hypothesis there are solutions QA,i for pA � acPA,i for all i ∈ I such that
QB,i and QC,i are restrictions of QA,i. Hence, QA = (QA,i)i∈I is the required solution for
pA � acPA .

• acPA =
∨

i∈I acPA,i.
We have acPB =

∨
i∈I acPB,i, acPC =

∨
i∈I acPC,i and acPD =

∨
i∈I acPD,i such that for all i ∈ I

there is acPD,i a restriction of acPB,i and acPC,i.
Moreover, given solutions QB, QC and QD of pB � acPB , pC � acPC and pD � acPD , respectively,
we have QB = (QB,i)i∈I , QC = (QC,i)i∈I and QD = (QD,i)i∈I such that for some jB, jC, jD ∈ I
QB, jB , QC, jC and QD, jD are solutions for pB � acPB, jB , pC � acPC, jC and pD � acPD, jD , respec-
tively, and for all kB,kC,kD ∈ I with kB 6= jB, kC 6= jC and kD 6= jD we have that QB,kB , QC,kC

and QD,kD are empty. Furthermore, for all i ∈ I QD,i is a restriction of QB,i and QC,i.

Case 1. QD, jD = /0.
Then we have QD, j = /0 for all j ∈ I. According to Def. 3.3 only the restriction of
an empty solution is empty, implying that we also have QB, j = QC, j = /0 for all j ∈ I.
Moreover, since for jD ∈ I QD, jD is a solution for pD � acPD, jD we can conclude that
acPD, jD = true, and by the fact that acPD, jD is a restriction of acPA, jD , acPB, jD and acPC, jD it
follows that also acPA, jD = true, acPB, jD = true and acPC, jD = true. So, as shown above,
there is a solution QA, jD = /0 for pA � acPA, jD . Hence, QA = (QA,i)i∈I with QA,i = /0 for
all i ∈ I is a solution for pA � acPA such that QB and QC are restrictions of QA.

Case 2. QD, jD 6= /0.
Then according to Def. 3.3 there are also QB, jD 6= /0 and QC, jD 6= /0 which means that
jB = jC = jD. So by induction hypothesis there is a solution QA, jD for pA � acPA, jD such
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that QB, jD and QC, jD are restrictions of QA, jD . Hence, QA = (QA,i)i∈I with QA,k = /0
for all k ∈ I with k 6= jD is a solution for pA � acPA , and we have that QB and QC are
restrictions of QA.

In the first case acPA = true, the uniqueness of the amalgamation follows from the fact that an
empty solution can only be restriction of another empty solution. In the second case acPA =
∃ (a,acCA), the uniqueness of QA = (qA,QCA) follows from the uniqueness of qA by universal
pushout property, and by uniqueness of QCA by induction hypothesis. Finally, in the cases of con-
junction and disjunction, the uniqueness of the solution follows from uniqueness of its components
by induction hypothesis.

Decomposition. Again, we do an induction over the structure of acPA .

• acPA = true.
Then we also have that acPB , acPC and acPD are true. Moreover, we have that QA is empty,
leading to empty restrictions QB, QC and QD that are solutions for pB � acPB , pC � acPC and
pD � acPD , respectively.

• acPA = ∃ (a,acCA) with a : PA→CA.
Then we have acPB = ∃ (b,acCB), acPC = ∃ (c,acCC) and acPD = ∃ (d,acCD). By amalgama-
tion gA = gB +gD gC we have pullbacks (2)-(5) below. Moreover, by restrictions acPB , acPC and
acPD of acPA we have restrictions b, c and d of a, implying pullbacks (6)-(9) below. According
to Rem. 4.6 we have an amalgamation of positive nested conditions acCA = acCB +acCD

acCC

which implies an amalgamation of typed objects tCA = tCB +tCD tCC by Def. 4.4.

PAacPA .

a
$$III

III
I

pA

��

(6)

(7)

PC / acPC
pCAoo

c
zzuuu

uuu
u

pC

��

CAacCA .

tCA
--

qA
$$JJJJJJ

(10)

(11)

CC / acCC

tCC
qq

cCA
oo

qC
zz

GA

gA %%LLL
LLL

L

(2)

(3)

GCgCA
oo

gCyyrrr
rrr

r

T GA

(1)

T GC
tgCAoo

T GB

tgBA

OO

T GD
tgDBoo

tgDC

OO

GB

gBA

OO

gB
99rrrrrrr

GDgDB
oo

gDC

OO

gD
eeLLLLLLL(4)

(5)

CB
acCB .

tCB

11
cBA

OO

qB ::

CD
/ acCD

tCD

mm

cDB
oo

cDC

OO

qDee
(12)

(13)

PBacPB .

pBA

OO

b
::uuuuuuu

pB

AA

PD / acPDpDB
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Now, given a solution QA = (qA,QCA) for pA � acPA , there is qA : CA→GA ∈Mwith qA◦a =
pA.
Furthermore, we have

gA ◦qA ◦ cBA = tCA ◦ cBA = tgBA ◦ tCB

which by pullback (2) implies a unique morphism qB : CB→ GB such that gB ◦qB = tCB and
gBA ◦qB = qA ◦ cBA. Due to amalgamation tCA = tCB +tCD tCC we have that tCB is a restriction
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of tCA and thus (10)+(2) is a pullback. So together with pullback (2) we obtain that also (10)
is a pullback by pullback decomposition, and thus qB is a restriction of qA.
Moreover, by qA, tgBA ∈M and closure ofM under pullbacks, we know that qB,gBA ∈M.
Hence, by

gBA ◦ pB = pA ◦ pBA = qA ◦a◦ pBA = qA ◦ cBA ◦b = gBA ◦qB ◦b

we obtain pB = qB ◦b because gBA ∈M is a monomorphism.
Analogously, due to pullback (3) and restriction tCC of tCA there is a unique restriction qC :
CC → GC ∈M of qA with pullback (11) such that pC = qC ◦ c, and due to pullback (4) and
restriction tCD of tCB there is a unique restriction qD : CD→GD ∈M of qB with pullback (12)
such that pD = qD ◦ d. Then, since tCD is a restriction of tCC, (5)+(13) is a pullback which
by pullback decomposition and pullback (5) implies that also (13) is a pullback. Thus, qD is
also a restriction of qC which means that we have qA = qB +qD qC.
So, by induction hypothesis there are solutions QCB for qB � acCB , QCC for qC � acCC , and QCD

for qD � acCD such that QCA = QCB +QCD QCC. Hence, for QB = (qB,QCB), QC = (qC,QCC)
and QD = (qD,QCD) we obtain that QA = QB +QD QC.

• acPA =
∧

i∈I acPA,i.
Then we also have acPB =

∧
i∈I acPB,i, acPC =

∧
i∈I acPC,i, and acPD =

∧
i∈I acPD,i. Now, given

a solution QA = (QA,i)i∈I for pA � acPA , then QA,i is a solution for pA � acPA,i for all i ∈ I.
Thus, by induction hypothesis for all i ∈ I there are solutions QB,i for pB � acPB,i, QC,i for
pC � acPC,i, and QD,i for acPD,i such that QA,i = QB,i +QD,i QC,i. This in turn means that for
all i ∈ I there are QB,i and QC,i restrictions of QA,i, and QD,i is a restriction of QB,i and QC,i.
Hence, for QB = (QB,i)i∈I , QC = (QC,i)i∈I and QD = (QD,i)i∈I we have that QB and QC are
restrictions of QA, and QD is a restriction of QB and QC, implying QA = QB +QD QC.

• acPA =
∨

i∈I acPA,i.
Then we also have acPB =

∨
i∈I acPB,i, acPC =

∨
i∈I acPC,i, and acPD =

∨
i∈I acPD,i. Given a

solution QA = (QA,i)i∈I for pA � acPA , then there is j ∈ I, such that QA, j is a solution for
pA � acPA, j, and for all k ∈ I with k 6= j there is QA,k = /0. By induction hypothesis there
are solutions QB, j for pB � acPB, j, QC, j for pC � acPC, j, and QD, j for pD � acPD, j such that
QA, j = QB, j +QD, j QC, j. Hence, for QB = (QB,i)i∈I ,QC = (QC,i)i∈I and QD = (QD,i)i∈I where
for all k ∈ I with k 6= j there is QB,k = QC,k = QD,k = /0 we have that QA = QB +QD QC.

The uniqueness of the solutions follows from uniqueness of restrictions by pullback constructions.
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