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Application conditions for rules and constraints for graphs are well-known in the theory of graph
transformation and have been extended already to M-adhesive transformation systems. Concerning
constraints we distinguish according to the literature between two kinds of satisfaction, called general
and initial satisfaction of constraints, where initial satisfaction is defined for constraints over an
initial object of the base category. Unfortunately, the standard definition of general satisfaction is not
compatible with negation in contrast to initial satisfaction.

Based on the well-known restriction of objects along type morphisms we study in this paper re-
striction and amalgamation of application conditions and constraints together with their solutions. In
our main result, we show compatibility of initial satisfaction for positive constraints with restriction
and amalgamation, while general satisfaction fails in general.

This is based on a result concerning compatibility of compositions via pushouts with restriction,
where the proof requires the horizontal van Kampen property, in contrast to the vertical one required
for M-adhesive categories.

1 Introduction

The framework of M-adhesive categories has been introduced recently [7, 3] as a generalization of dif-
ferent kinds of high level replacement systems based on the double pushout (DPO) approach [5]. Promi-
nent examples that fit into the framework of M-adhesive categories are (typed attributed) graphs [15, [18]]
and (high-level) Petri nets [2, [10]. In the context of domain specific languages and model transforma-
tions based on graph transformation, graph conditions (constraints) are already used extensively for the
specification of model constraints and the specification of application conditions of transformation rules.
Graph conditions can be nested, may contain Boolean expressions and are equivalent to first order logic
on graphs [[19,[13]]. We generally use the term “nested condition” whenever we refer to the most general
case.

Restriction is a general concept for the definition of views of domain languages and is used for
reducing the complexity of a model and for increasing the focus to relevant model element types. A
major research challenge in this field is to provide general results that allow for reasoning on properties
of the full model (system) by analyzing restricted properties on the views (restrictions) of the model only.
Technically, a restriction of a model is given as a pullback along type morphisms. While this construction
can be extended directly to restrictions of nested conditions, the satisfaction of the restricted nested
conditions is not generally guaranteed for the restricted models, but—as we show in this paper—can be
ensured under some sufficient conditions.

According to the literature [[13} 5], we distinguish between two kinds of satisfaction for nested condi-
tions, called general and initial satisfaction, where initial satisfaction is defined for nested conditions over
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2 Satisfaction, Restriction and Amalgamation of Constraints

an initial object of the base category. Intuitively, general satisfaction requires that a property holds for all
occurrences of a premise pattern, while initial satisfaction requires this property for at least one occur-
rence. Unfortunately, the standard definition of general satisfaction is not compatible with the Boolean
operator for negation and disjunction, but initial satisfaction is compatible with all Boolean operators
(see [App. A). In order to show, in addition, compatibility of initial satisfaction with restriction we in-
troduce the concept of amalgamation for typed objects, where objects can be amalgamated along their
overlapping according to the given type restrictions.

As the main technical result, we show that solutions for nested conditions can be composed and
decomposed along an amalgamation of them (Thm. 4.10), if the nested conditions are positive, i.e., they
contain neither a negation nor a “for all” expression. Based on this property, we show in our main result
(Thm. 5.7, that initial satisfaction of positive nested conditions is compatible with amalgamation based
on restrictions that agree on their overlappings. Note in particular that this result does not hold for general
satisfaction as we illustrate by a concrete counterexample.

The structure of the paper is as follows. Section [2] reviews the general framework of M-adhesive
categories and main concepts for nested conditions and their satisfaction. Thereafter, presents the
restriction of objects and nested conditions along type object morphisms. Section [4] contains the con-
structions and results concerning the amalgamation of objects and nested conditions and in we
present our main result showing the compatibility of initial satisfaction with amalgamation and restric-
tion. Related work is discussed in Section [7]concludes the paper and discusses aspects of future
work. Appendix [A]provides formal details concerning the transformation between both satisfaction rela-
tions and their compatibility resp. incompatibility with Boolean operators. Finally, contains the
proofs that are not contained in the main part.

2 General Framework and Concepts

In this section we recall some basic well-known concepts and notions and introduce some new notions
that we are using in our approach. Our considerations are based on the framework of M-adhesive cate-
gories. An M-adhesive category [7]] consists of a category C together with a class M of monomorphisms
as defined in below. The concept of M-adhesive categories generalizes that of adhesive [16],
adhesive HLR [9]], and weak adhesive HLR categories [3]].

Definition 2.1 (M-Adhesive Category). An M-adhesive category (C, M) is a category C together with
a class M of monomorphisms satisfying:

* the class M is closed under isomorphisms, composition and decomposition,

» C has pushouts and pullbacks along M-morphisms,

o M-morphisms are closed under pushouts and pullbacks, and

it holds the vertical van Kampen (short VK) property. This means that pullbacks along M-
morphisms are M-VK squares, i.e., pushout (1) with m € M is an M-VK square, if for all
commutative cubes (2) with (1) in the bottom, all vertical morphisms a,b,c,d € M and pullbacks
in the back faces we have that the top face is a pushout if and only if the front faces are pullbacks.
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Remark 2.2. In[Sec. 3| [Sec. 4l and|[Sec. 5| we will also need the horizontal VK property, where the VK
property is only required for commutative cubes with all horizontal morphisms in M (see [7]), to show
the compatibility of object composition and the corresponding restrictions. Note furthermore, that an
M-adhesive category which also satisfies the horizontal VK property is a weak adhesive HLR category
[5)].

A set of transformation rules over an M-adhesive category according to the DPO approach con-
stitutes an M-adhesive transformation system [[7]]. For various examples (graphs, Petri nets, etc.) see
[5].

In [Sec. 3] [Sec. 4] and [Sec. 5] we are considering M-adhesive categories with effective pushouts.
According to [[17], the formal definition is as follows.

Definition 2.3 (Effective Pushout). /’\
Given M-morphisms a: B — X, b: C — X in an M-adhesive / \
category (C, M) and let (A, py,p>) be the pullback of a and b. A — X

Then pushout (1) of p1 and p; is called effective, if the unique \ </

morphism u : D — X induced by pushout (1) is an M-morphism.

Nested conditions in this paper are defined as application conditions for rules in [13]]. Depending on
the context in which a nested condition occurs we use the terms application condition [[13]] and constraint
[3], respectively. Furthermore, we define positive nested conditions to be used in and
for our main results.

Definition 2.4 (Nested Condition). A nested condition acp over an object P is inductively defined as
follows:

* true is a nested condition over P.

o For every morphism a : P — C and nested condition acc over C, 3 (a,acc) is a nested condition
over P.

* A nested condition can also be a Boolean formula over nested conditions. This means that also
—acp, \iczacpi, and \/ i1 acp; are nested conditions over P for nested conditions acp, acp; (i € T)
over P for some index set 1.

Furthermore, we distinguish the following concepts:
* A nested condition is called application condition in the context of rules and match morphisms.
* A nested condition is called constraint in the context of properties of objects.

* A positive nested condition is built up only by nested conditions of the form true, 3 (a,ac),
Nieracpi or \,cracp;, where T # 0.

An example for a nested condition and its meaning is given below.
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Example 2.5 (Nested Condition). Given the nested condition acp from where all morphisms are
inclusions. acp means that the source of every b-edge has a b-self-loop and must be followed by some
c-edge such that subsequently there is a path in the reverse direction visiting the source and target of
the first b-edge with precisely one c-edge and one b-edge in an arbitrary order. We denote this nested
condition by acp = 3 (ay,true) N 3 (az, 3 (as,true)V 3 (as,true)).

We are now defining inductively whether a morphism satisfies a nested condition (see [S]).

Definition 2.6 (Satisfaction of Nested Condition). Given a nested condition acp over P, a morphism
p: P — G satisfies acp (see[Fig. I(a)), written p E acp, if:

* acp = true,

* acp = I (a,acc) with a: P — C and there exists a morphism q : C — G € M such that goa = p
and g F acc,

e acp = —acl and p H ach,
* acp = \jczacp; and for all i € T holds p = acp; , or
* acp = \/;czacp; and for some i € L holds p F acp,.

In the following we distinguish two kinds of satisfaction relations for constraints: the general [5]
and the initial satisfaction [13]]. The initial satisfaction is defined for constraints over an initial object
of the base category while the general satisfaction is considered for constraints over arbitrary objects.
Intuitively, while general satisfaction requires that a constraint acp is satisfied by every M-morphism
p : P — G, the intial satisfaction requires just the existence of an M-morphism p : P — G which satisfies
acp.

a ip

P C<dacc 1 P<acp
x - A/':acc k - ACP
G G
(a) Satisfaction of acp by morphism p (b) Initial satisfaction of ac;

Figure 1: Satisfaction of nested conditions

Definition 2.7 (General Satisfaction of Constraints). Given a constraint acp over P. An object G gener-
ally satisfies acp, written GE acp, if ¥V p: P — G € M. pE acp (see|Fig. 1(a)).

Definition 2.8 (Initial Satisfaction of Constraints). Given a constraint acy over an initial object 1. An

1
object G initially satisfies acy, written G F acy, if i F acy for the initial morphism i : 1 — G.
Note, that for ac; = 3 (ip,acp) we have

I
GFacj< dp:P—Ge M. pEacp (see[Fig. 1(D)).
For positive nested conditions we define solutions for the satisfaction problem. A solution Q (a tree
of morphisms) determines which morphisms are used to fulfill the satisfaction condition.

Definition 2.9 (Solution for Satisfaction of Positive Nested Conditions). Given a positive nested condi-
tion acp over P and a morphism p : P — G. Then Q is a solution for p = acp if:

e acp =true and Q =0,



H. Scholzel, H. Ehrig, M. Maximova, K. Gabriel & F. Hermann 5

* acp = 3 (a,acc) witha: P — C and Q = (q,0c) with M-morphism q : C — G such that goa = p
and Qc is a solution for q = acc (see|Fig. 1(a)),
» acp = N\icgacp; and Q = (Q;)ict such that Q; is a solution for p E acp; for all i € Z, or

* acp = \cgacpi and Q = (Q;)ict such that there is j € T with solution Q; for p = acpj and for all
k € T with k # j it holds that Q, =
The following example demonstrates the general and initial satisfaction of constraints and gives their
corresponding solutions.
Example 2.10 (Satisfaction and Solution of Constraints).

1. General Satisfaction

Consider the graph G4 from below and the constraint acp from There are two
possible M-morphisms p1,p2 : P — Ga, where py is an inclusion and p, maps by to by with the
corresponding node mapping. For both matches p) and p> there is a b-self-loop on the image of
the node 1, a c-edge outgoing from the image of the node 2, as well as the corresponding images
for the edges by and cy in C3. Thus, G4 generally satisfies acp.

A corresponding solution for py & acp is given by Qgen = (Qi)icf1,2y with Q1 = (¢1,0) and O =
(92,(Q)) jeg3,4)), where Q3 = (q3,0), Qs = 0 and q; : C; — Ga for i = 1,2,3 are inclusions.

Figure 2: General and initial satisfaction of constraints

2. Initial Satisfaction
Let ac; = 3 (ip,acp) with ip as depicted in and acp from The graph G4 initially
satisfies acy since there exists p : P — G4 € M satisfying acp as mentioned before.
A corresponding solution for ig F acy is given by Qinir = (p1, Qgen) with Qg from the example for
general satisfaction.
Remark 2.11. A nested condition is called typed over a given type object, if all nested conditions in
every of its nesting levels are also typed over the same type object. Furthermore, the compatibility of the
corresponding match and solution with this type object is required.

3 Restriction Along Type Morphisms

In this section, we present the restriction of objects, morphisms, positive nested conditions and their
solutions along type morphisms which are the basis also for the amalgamation of nested conditions in
Sec. 4
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General Assumption. In this and the following sections, we consider an M-adhesive category (C, M)
satisfying the horizontal VK property (see[Rem. 2.2) that has effective pushouts (see[Def. 2.3).

Definition 3.1 (Restriction along Type Morphism). Given an object G4 typed over TGy by tg,:
Gy —TGa and t : TGg — TGa € M, then TGg is called restriction of TGa, Gp is a restriction of
Ga, and tg, is a restriction of t, if (1) is a pullback. Given a : Gy — Gy, then b is a restriction of a
along type morphism t, written b = Restr,(a), if (2) is a pullback.

!
TGy <A Gy <Q—GA

IT (1 ch 2) T"c

1,
TGy <2— Gp<2— G}y

For positive nested conditions we can define the restriction recursively as restriction of their compo-
nents.

Definition 3.2 (Restriction of Positive Nested Conditions). Given a positive nested condition acp, typed
over TGy and let T Gg be a restriction of it witht : TGg — TG € M. Then we define the restriction
acp, = Restr,(acp,) over the restriction Pg of Py as follows:

o The restriction of true is true,

* the restriction of 3 (a,acc,) is given by restriction of a and acc,, i.e., acp, = 3 (Restr,(a),
Restri(acc,)), and

* the restriction of a Boolean formula is given by the restrictions of its components, i.e.,
Restrt(ﬂac}A) = —Restr; (ac},A ), Restri(\icr acp, i) = Niez Restri(acp, ;), and Restr;(\/;czacp, ;) =
Viez Restr;(acp, ;).

f’—PA

TGy Cy dacg,
ZT Tlc tp
TGg Cg <accy

‘h\PB

Now we extend the restriction construction to solutions of positive nested conditions and show in
that a restriction of a solution is also a solution for the respective restricted constraint.

Definition 3.3 (Restriction of Solutions for Positive Nested Conditions). Given a positive nested con-
dition acp, typed over T Gy together with a restriction acp, along t : TGp — TGyu. For a morphism
pa : Pa — G and a solution Q4 for pa E acp,, the restriction Qp of Q4 along t, written Qg = Restr,(Qa),
is defined inductively as follows:

* If Q4 is empty then also Qp,

* ifacp, = 3 (a: Py — Ca,acc,) and Qs = (qa,Qca), then Qp = (qp,Qcp) such that qg and Qcp
are restrictions of qa respectively Qca, and

s ifacp, = Niczacp, i or acp, = \/ ;e acp, i, and Qx = (Qa.i)icz, then Op = (Op,i)icz such that Qp;
is a restriction of Qq ; for all i € 1.

Fact 3.4 (Restriction of Solutions for Positive Nested Conditions). Given a positive nested condition
acp, and a match py : Px — Ga over TG4 with restrictions acp, = Restri(acp,), pp = Restr;(pa) along
t: TGp — TGga. Then for a solution Qu of pa F acp, there is a solution Qp = Restr;(Qa) for pg = acp,.
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4 Amalgamation

The amalgamation of typed objects allows to combine objects of different types provided that they agree
on a common subtype. This concept is already known in the context of different types of Petri net
processes, such as open net processes [[1]] and algebraic high-level processes [6], which can be seen as
special kinds of typed objects. In this section we introduce a general definition for the amalgamation of
typed objects. Moreover, we extend the concept to the amalgamation of positive nested conditions and
their solutions.

As required for amalgamation we discuss, under which conditions morphisms can be composed via
a span of restriction morphisms. Two morphisms gg and gp “agree” in a morphism gp, if gp can be
constructed as a common restriction and can be used as a composition interface for g and g¢ as in

Definition 4.1 (Agreement and Amalgamation of Typed Objects). Given a span TGp &£o TGp 8o TG,
withtgpp,tgpc € M and typed objects Gp 55 TGy, Gc 5 TGc and Gp 8 TGp. We say gg, gc agree in

gp, if gp is a restriction of gg and gc, i.e., Restr;g,,(88) = &p = Restrig,.(8c).

Given pushout (1) below with all morphisms in M and typed objects gp,gc agreeing in gp. A
morphism ga : G4 — TGy is called amalgamation of gg and gc over gp, written go = gp +g, &c, if the
outer square is a pushout and gg,gc are restrictions of ga.

V8
/TGD\

18BA 18ca
\ ) /

TGy
8A¢

is essentially based on the horizontal VK property.
Fact 4.2 (Amalgamation of Typed Objects). Given pushout (1) with all morphisms in M as in
Composition. Given gp,gc agreeing in gp, then there exists a unique amalgamation gs = gp g, &c-

Decomposition. Vice versa, given g4 : G4 — TGy, there are unique restrictions gp,gc, and gp of ga
such that gx = gp +g, &c-

Here and in the following uniqueness means uniqueness up to isomorphism.

Proof. Given gp,gc agreeing in gp, we have that the upper two trapezoids are pullbacks. Now we
construct G4 as pushout over Gg and G¢ via Gp, such that the outer diamond is a pushout. This leads to
a unique induced morphism g4 : G4 — T Gy, such that the diagram commutes and via the horizontal VK
property we get that the lower two trapezoids are pullbacks and therefore g4 = gg +,,, gc-

Vice versa, we can construct Gg,G¢, Gp as restrictions such that the trapezoids become pullbacks,
where g4 : G4 — TG4 and TG4, TGp,TGe, T Gp are given such that (1) is a pushout with M-morphisms
only. Then the horizontal VK property implies that the outer diamond is a pushout and g4 is unique
because of the universal property and g4 = gg +,, &c-

The uniqueness (up to isomorphism) of the amalgamated composition and decomposition construc-
tions follows from uniqueness of pushouts and pullpacks up to isomorphism. O
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Example 4.3 (Amalgamation of Typed Objects). Figure |3|shows a pushout of type graphs TGy, TGp,
TGC and TGD.

Composition. Consider the typed graphs Gp, G¢ and Gp typed over TG, TG¢ and T Gp, respectively.
The graph Gp, containing the same nodes as Gg and G¢ and no edges, is the common restriction
of Gg and Gc. So, the type morphisms gg and gc agree in gp which by [Fact 4.2l means that there
is an amalgamation gx = gp +g, gc. It can be obtained by computing the pushout of Gg and G¢
over Gp, leading to the graph Gy that contains the b-edges of Gg as well as the c-edges of G¢.
The type morphism g4 is induced by the universal property of pushouts, mapping all edges in the
same way as gp and gc.

Decomposition. Vice versa, consider the graph G4 typed over TGy. We can restrict Gy to the type
graphs TGg and T Gc, leading to typed graphs Gp and G¢, containing only the b- respectively
c-edges of Ga. Restricting the graphs Gp and G to type graph TGp, we get in both cases the
graph Gp that contains no edges, and we have that g = g +4. 8-

G &
b c c c c
050505 OIEIONNOS "O= -0

C2 by C2

A -~ meTGA TAC
oA el O e

b
O3, ® 0.0 @ 6 O
bs [Gg @

A

Figure 3: Amalgamation of typed graphs

We already defined the restriction of positive nested conditions and their solutions (Def. 3.3).
Now we want to consider the case, that we have two conditions, which have a common restriction and

can be amalgamated.

Definition 4.4 (Agreement and Amalgamation of Positive Nested Conditions). Given a pushout (1) be-
low with all morphisms in M. Two positive nested conditions acp, typed over TGp and acp,. typed over
TGc agree in acp, typed over TGp if acp, is a restriction of acp, and acp,,.

Given acp, and acp. agreeing in acp, then a positive nested condition acp, typed over T Gy is called
amalgamation of acp, and acp, over acp,, written acp, = acp, +acp, ACPe» if acp, and acp,. are restrictions
of acp, and tps = tpg +ipptpe. Especially we have trues = truep +pyep, truec, short true = true + e true.

Pp Qacp,
WPD
TGp
acpy > Pp =~ TGy 1 TGe ~———— P <acp,
2 % Alg% fre
TGy
Ipa 4\

Py Tacp,
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In the following we give a construction for the amalgamation of positive nested conditions
and in for the corresponding solutions.
Fact 4.5 (Amalgamation of Positive Nested Conditions). Given a pushout (1) as in |Def. 4.4| with all
morphisms in M.

Composition. If there are positive nested conditions acp, and acp, typed over T Gp and T G, respec-
tively, agreeing in acp, typed over T Gp then there exists a unique positive nested condition acp,
typed over TG4 such that acp, = acp, +acp, ACPe-

Decomposition. Vice versa, given a positive nested condition acp, typed over TGy, there are unique
restrictions acpy, acp. and acp, of acp, such that acp, = acp, +acp, acpe-

The amalgamated composition and decomposition constructions are unique up to isomorphism.

Remark 4.6. Given an amalgamation acp, = acp, “tacp, ACPe of positive nested conditions, we can con-
clude from the proof of \Fact 4.5|in|App. B|that we also have corresponding amalgamations in each level
of nesting.

acpa Caa| Cac acpc
by cy C2,cA cq
Q@) «---- @ P
™ . azA b P @ a,.c @ o
O e One ©)” @0
< ? Pca ?
Cia aa v ; ; v T e
- b, ¢ <l N b LA e e Lot o Cic
: @ :b : tp,a N\ 1/ tec w—@
b. T !
= s TGi [TGo i %
. 1 :C2Dc Ppc : 1,DC
5 ! :
Cunj—— L0 e med O || W%gl
@M te ) \tr.p
be 4; ..................... ClDBE ............
Ps al’B\ Y E E \4 fal’D Pp
I—E b, N : !
@—>@ @ \_Ib—@ pos Cz,]) a/ @ @ @
aB 1 2,D
<. ______
wen Q20 Ol {0 @ ® -

Figure 4: Amalgamation of positive nested conditions

Example 4.7 (Amalgamation of Positive Nested Conditions). Figure[d|shows a pushout of typed graphs
TGa, TGp, TGc and T Gp, and four positive nested conditions acp,, acpy, acp. and acp, typed over T Gy,
T Gg, TGc and T Gp, respectively. For simplicity the figure contains only the type morphisms of the Ps,
but there are also corresponding type morphisms for the Cs, mapping all b-edges to b and all c-edges to
c. There is acp, = \jeqy 2y acc,, with acc,, = 3 (aia,true) for i= 1,2, and acp,, acp. and acp, have a
similar structure.

Composition. We have that tp, is a common restriction of tp, and tp., and also that a; p is a common
restriction of a; g and a; c for i = 1,2. Thus, acp, is a common restriction of acp, and acp. which
means that acp, and acp. are agreeing in acp,. So by there exists an amalgamation
acp, = acpy +acy, acr., and according to it can be obtained as amalgamation of its
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components. This means that we have an amalgamation tp, = tpy +, tp. with pushout of the Ps as
shown in as well as amalgamations of the corresponding type morphisms of the Cs, leading
to the pushouts depicted in by dotted arrows for the Cys and by dashed arrows for the Cys.
The morphisms ay o and ay 4 are obtained by the universal property of pushouts.

Decomposition. The other way around, considering the condition acp,, we can construct the restrictions
acp, and acp. by deleting the c- respectively b-edges. Then, restricting acp, and acp. to T Gp by
deleting all remaining edges, we obtain the same condition acp, such that acp, = acp, +acp, ACP-

In order to answer the question, under which conditions such amalgamated positive nested conditions
are satisfied, we need to define an amalgamation of their solutions. Afterwards, we show in the proof of
that a composition of two solutions via an interface leads to a unique amalgamated solution
and that a given solution for an amalgamated positive nested condition is the amalgamation of its unique
restrictions.

Definition 4.8 (Agreement and Amalgamation of Solutions for Positive Nested Conditions). Given
pushout (1) below with all morphisms in M, an amalgamation of typed objects ga = gp +g, &c, and
an amalgamation of positive nested conditions acp, = acp, +acp, ACp- With corresponding matches p =
DB+ pp PC-
1. Two solutions Qg for pp = acp, and Qc for pc F acp. agree in a solution Qp for pp F acp, if Op is
a restriction of Qp and Qc.

2. Given solutions Qg for pp ¥ acp, and Qc for pc = acp. agreeing in a solution Qp for pp F acp,,
then a solution Q4 for pa F acp, is called amalgamation of Qp and Qc over Qp, written Qp =
OB+, Qc, if O and Qc are restrictions of Qa.

acp, > Py ooh Pc<acp,.
pa pc
A gca Ge
x\ tg8ca 4
TGy <=—TGe
PBA gsr  tgpal tg 1) Mepc gnc Ppc
DB
g TGB < TGD g
7 L
G G
DB B 8DB b PD
acpy > Py Ppacp,

PpB
Remark 4.9. Note that by assumption ga = gp g, &c in the definition above we already have a pushout
over the Gs, and by acp, = acp, “tacp, Acp. we also have a pushout over the Ps.
Theorem 4.10 (Amalgamation of Solutions for Positive Nested Conditions). Given pushout (1) as in
with all morphisms in M, an amalgamation of typed objects gy = gp +4,, &c, and an amalgama-
tion of positive nested conditions acp, = acpy +acp, ACp. With corresponding matches py = pp +p;, pc-
Composition. Given solutions Qp for pp = acp, and Qc for pc F acp. agreeing in a solution Qp for
pp F acp,, then there is a solution Q4 for ps F acp, constructed as amalgamation Qs = Qp+9,, Oc.

Decomposition. Given a solution Qu for pa = acp,, then there are solutions Qp, Oc and Qp for
pp = acp,, pc F acp. and pp F acp,, respectively, which are constructed as restrictions Qp, Qc
and Qp of Q4 such that Q4 = Qp +¢, Oc.

The amalgamated composition and decomposition constructions are unique up to isomorphism.
Remark 4.11. From the proof of|[Thm. 4.10|inApp. Blwe can conclude that for a given amalgamation of
solutions Qa = Qp +¢, Oc, we also have corresponding amalgamations of its components.
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5 Compatibility of Initial Satisfaction with Restriction and Amalgama-
tion

In this section we present our main result showing compatibility of initial satisfaction with amalgamation

(Thm. 5.1) and restriction (Cor. 5.2) which are based on the amalgamation of solutions for positive

nested conditions (Thm. 4.10). This main result allows to conclude the satisfaction of a constraint for

a composed object from the satisfaction of the corresponding restricted constraints for the component
objects. It is valid for initial satisfaction, but not for general satisfaction.

Theorem 5.1 (Compatibility of Initial Satisfaction with Amalgamation). Given pushout (1) below with
all morphisms in M, an amalgamation of typed objects go = gp g, 8¢, and an amalgamation of positive
constraints aca = acp +qc, acc. Then we have:

i i
Decomposition. Given a solution Q4 for G4 F aca, then there are solutions Qg for Gg F acg, Q¢ for

I I
Gc F acc and Qp for Gp F acp such that Q4 = Qp +¢, Qc.

I I
Composition. Vice versa, given solutions Qp for Gg F acg and Q¢ for G¢ F acc agreeing in a solution

I I
Op for Gp F acp, then there exists a solution Q4 for G4 F acy such that Qs = Qp +¢,, Oc.

aca > [ - - - I <acc
1Gy id; lGe
e \ - / GC
84 tgca 8c
TGy TGc
idy gBA tgpa (1) Mepc gnc idy
TGg=—TG
8B B 18pB D 8D
gpB
GB GD
ig id, ig
acg> | 5 “ L ] <acp

Proof.

Decomposition. By [Def. 2.8

1
a solution Q4 for G4 F acy is also a solution for ig, F acs, where ig,

is the unique morphism ig, : I — G4. Moreover, due to amalgamation g4 = gp +, gc the inner
So by closure of M under pullbacks we have

trapezoids in the diagram above are pullbacks.
that gga,gca,gpB,&pc € M which means that they are monomorphisms.
trapezoids become pullbacks by standard category theory, which means that ig,
restriction of i, , iG,.

as of ig,.

Therefore, the outer
:I — Gpisa

: I — G¢ is arestriction of ig,, and i, : [ — Gp is a restriction of ig, as well

Furthermore, the outer square in the diagram is a pushout, implying that we have an amalgamation

iG, =

iGp +ig, iG.. Thus, usmg hm 4.10| we obtain solutions Qp for ig, F acp, Qc for ig. F acc

and QD for i zGD E acp such that Qi = 0 +¢, Oc. and by [Def. 2.8 O, Oc and Qp are solutions for

Gp ¥= acg, G¢ |= acc and Gp |= acp, respectively.

I I I
Composition. Now, given solutions Qg, Q¢ and Qp for Gg F acp, G¢ F acc and Gp F acp, respectively.
Then by [Def. 2.8|we have that Qp, Oc and Qp are solutions for ig, = acp, ig. = acc and i, F acp,
respectively. As shown in item 1, there is ig, = ig, +ig, i, and therefore, since Qp and Q¢ agree
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in Op, by [Thm. 4.10] we obtain a solution Q4 for ig, F aca such that Q4 = Qp +0, Qc. Finally,
I
Def. 2.8|implies that Q4 is a solution for G4 F acy.

O]

Corollary 5.2 (Compatibility of Initial Satisfaction with Restriction). Given type restriction
t: TGp — TGy € M, object G typed over TGy with restriction Gg, and a positive constraint aca

1 I
over initial object I typed over T G4 with restriction acg. Then G4 F acy implies Gg = acg. Moreover; if
I I

Q4 is a solution for G4 F aca then Qp = Restr;(Q4) is a solution for G F acp.
Proof. Consider the diagram in [I’hm. 5.1| with G¢ = Ga, Gp = Gp, acc = acq and acp = acp. Then

by standard category theory we have that all rectangles in the diagram are pushouts and the trapezoids
are pullbacks. Thus, we have g4 = gp +,, g4 and, analogously, acy = acp +4c, aca with corresponding

I
matches ig, = ig, +ig, iG,- So, given a solution Q4 for G4 F acy, by item 1 of[Thm. 5.1|there is a solution

I
Qp for Gp F acp with Q4 = Qp +¢, Q4 such that by [Def. 4.4| Qp is a restriction of Q4. O

Example 5.3 (Compatibility of Initial Satisfaction with Amalgamation). Figure [5|shows the amalgama-
tion of typed graphs ga = g+, &c from and an amalgamation of positive nested conditions
aca = acp ~+acp, acc. Note that we have aca = 3 (ip,,acp,) and acg, acc and acp with similar structure,

where the amalgamation acp, = acp, +acp, ACp S presented in

i
Composition. For G F acg we have the solution Qp = (qg,(Q1,8,02.8)) with Q18 = (q1,8,0) and

Q> = 0, where qp and q1p are inclusions. Moreover, we have similar solutions Qc for

I I
Gc F acc and Qp for Gp = acp. According to |Rem. 4.11| the amalgamation Qs = Qp +¢, Oc
can be constructed by amalgamation of the components.

First, we explain in detail the amalgamation q\ o = q1p +4,, q1,c. Note that the graphs G, Gp,
Gc and Gp can be considered as type graphs such that e. g Cip is typed over Gp by qi p. So,
since q1.p is a common restriction of q1 g and qi1 c, we have that q\ p and qi c agree in q1 p. This
means that there is an amalgamation of typed objects q1 o = q1.8 +q, , q1,c, Where the inclusion
q1.4 maps all nodes and edges in the same way as q\ p and q c.

Moreover, for the empty solutions we have an empty solution as amalgamation, and thus we have
amalgamations of solutions Q1 o = Q1 5+0,, Q1.c = (q1.4,0) and Q2 4 = Q2 +0,, Q2. =0. The
amalgamation gy = qp +4, qc can be obtained analogously as described for q s, and hence we

I
have Q4 = Qp+9, Oc = (qa,(Q1.4,02.4)) which is a solution for G4 = aca.

I
Decomposition. For G = acy we have a solution Qx = (qa,(Q1.4,024)) with Q1.4 = (q14,0) and
024 = 0 where qa and q 4 are inclusions. The restrictions Qp, Qc and Qp of Qa are given
by restrictions of the components. By computing the restrictions q1 g, q1.c and qi, D of q1.4, and

szmzlar the restrictions of qA and O we get as result again the solutions Qp for Gp |= acg, Qc for

Gc |= acc, and Qp for Gp |= acp as described in the composition case above.

From we know that initial satisfaction is compatible with restriction of typed objects and
constraints. In contrast, general satisfaction and restriction are not compatible in general. As the follow-
ing example illustrates, it is possible that a typed object generally satisfies a constraint while the same
does not hold for their restrictions.
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Figure 5: Amalgamation of solutions for initial satisfaction

Example 5.4 (Restriction of General Satisfaction Fails in General). Figure [6] shows a restriction Gg
of the typed graph G and a restriction acp, of the constraint acp,. There are two possible matches
D14, P24 - Px — Ga € M where py 4 is an inclusion and py o maps by to by and c4 to cy. Since for each
of the matches the graph G4 contains the required edges in the inverse direction, both of the matches
satisfy acp,. For p; s we have q; s with q; s 0 an = pj a for i = 1,2. Thus, we have that Ga F acp,.

For the constraint acp, there is a match pp : P — Gp € M mapping edge b, identically and node 3
to node 4. We have that pp 7 acp, because there is no edge from node 4 to node 2 in Gg, which means
that Gp ¥ acp,. This is due to the fact that there is no match ps : P — Ga € M such that pp is the
restriction of pa.

P1asP2a
TG, Gaj <« G 5, IiacPA
a

b b c
bDOQ . _taa (:)V\lm—». (qlAquA @_1\;@)_1\;@ < A b, &

4

C2

A
t )\tc tc tp ac
T&l GEI a CEI b Py PB
tas b, B 1 ag b,
0 <200, 0 0<0%e, @ O™ ©

2
< P

Figure 6: Counterexample for restriction of general satisfaction

6 Related Work

The framework of M-adhesive categories [7]] generalizes various kinds of categories for high level re-
placement systems, e.g. adhesive [[16]], quasi-adhesive [[17], partial VK square adhesive [14], and weak-
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adhesive categories [5]]. Therefore, the results of this paper are applicable to all of them, where the
category of typed attributed graphs is a prominent example.

Multi-view modelling is an important concept in software engineering. Several approaches have
been studied and used, e.g. focussing on aspect oriented techniques [[12]. In this line, graph transfor-
mation (GT) approaches have been extended to support view concepts based on the integration of type
graphs. For this purpose, the concept of restriction along type morphisms has been studied and used
intensively [[11 4] including GT systems using the concept of inheritance [[15]]. Instead of restriction of
constraints considered in this paper, only forward translation of constraints have been studied in [4]] for
the case of atomic constraints with general satisfaction leading to a result similar to The no-
tions of initial and general satisfaction for nested conditions can be transformed one into the other [13]],
but this transformation uses the Boolean operator negation that is not present in positive constraints, for
which, however, our main result on the compatibility of restriction and initial satisfaction holds. More-
over, we have shown by counterexample that general satisfaction is not compatible with restriction in
general, even if only positive constraints are considered.

7 Conclusion

Nested application conditions for rules and constraints for graphs and more general models have been
studied already in the framework of M-adhesive transformation systems [J5,9]]. The new contribution of
this paper is to study compatibility of satisfaction with restriction and amalgamation. This is important
for large typed systems respectively objects, which can be decomposed by restriction and composed
by amalgamation. The main result in this paper shows that initial satisfaction of positive constraints is
compatible with restriction and amalgamation. The amalgamation construction is based on the horizontal
van Kampen (VK) property, which is required in addition to the vertical VK property of M-adhesive
categories. To our best knowledge, this is the most interesting result for M-adhesive transformation
systems which is based on the horizontal VK property. Note that the main result is not valid for general
satisfaction of positive constraints nor for initial satisfaction of general constraints. For future work, it
is important to obtain weaker versions of the main result, which are valid for general satisfaction and
constraints, respectively.
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A Properties of General and Initial Satisfaction

In this appendix we present some basic properties on general and initial satisfaction, their mutual trans-
formability and finally we define a tranformation of contrains into application conditions using the Shift
transformation.

We begin with the fact that describes the compatibility properties of general and initial satisfaction with
respect to Boolean operators. Afterwards an example for incompatibility of general satisfaction with
negation is given.

Fact A.1 (Compatibility / Incompatibility with Boolean Operators). Given a constraint acp over P and
an object G. Then it holds:
1. G li acy is compatible with —, N\, V, i.e.,
i. G #i —ac; < (G li acr),
ii. G li Niezacri < Niez(G li acy),
iii. G li Vieracri < Vier(G Fi acy).

2. GFE acp is in general not compatible with —, V, i.e.,
i. GE —acp < —(GF acp),
ii. GE \jcracp; 4 Vicz(G E acp;).
where < means “in general not equivalent”.

Proof.

I
1. GE acI@]iG F acy and F for morphisms is compatible with —, A, V by definition

2. 1. (G|=—|acP)(Vp€/\/l. phﬂacP)(VpeM.pJ‘éacP)
<¢>(EIpGM.pJ#acP)@—'(VpeM.pbaCP)ﬁ(G|=acP)
ii. GF Viezacm( VpeM.pE\Vracpi) < (VY pe M. Vier(pE acp;)
< Viez(Y p € M. pE acp;) VieZ(G Facp;)
O

Example A.2 (Incompatibility with Negation). Consider the constraint acp from the and the
graph G, depicted in The graph G/, does not generally satisfy acp since we can match the by-
edge in P to the by-edge in G, but there is no b-self-loop on the node 3 corresponding to the bz-edge in
Ci. Compatibility of general satisfaction with negation would now imply that G, generally satisfies the
negation of acp. But this does not hold since for the inclusion p : P — G/, there are the corresponding
inclusions q; : C; — Gy for i =1,2,3 such that p satisfies acp and therefore p t# —acp and G V¥ —acp.

Similar to results in [13]], general and initial satisfaction can be transformed into each other as given
below. The subsequent examples illustrate this transformability.

Fact A.3 (Transformation between General and Initial Satisfaction). Given a constraint acp over P and
an object G. Then it holds:

I
1. GFacp < GFE -3 (ip,—acp)

I
2. GF 3 (ip,acp) < —(GF —acp) < (GFE acp)
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Figure 7: Properties of general and initial satisfaction

Proof. |
1. GE-4 (ip,—wle)

Wéﬂ" igFE —\( = (l'p,—mle)) 1 P<acp

<=>_'(i(;': = (l'p,—wle)) —
ﬁ(ﬂpeM.poip:iG/\p#—'acP) iG PEM

iniﬁélity (I peM.—pEacp) G
& Vpe M. pEacp
GPZacP

I

4 act A. A
2. GE 3 (ip,acp) ' (GE -3 (ip,ace)) PEER ' (G E —acp)

O]

Example A.4 (Transformation of General Satisfaction into Initial Satisfaction). Consider the constraint
acp from the and the graph Gy from the The graph G, generally satisfies acp accord-
ing to the The [Fact A.3}1 would now imply that G4 does not initially satisfy the constraint
3 (ip,—acp). This holds if there is no M-morphism satisfying the negation of acp, or in other words, acp
is satisfied by every M-morphism which is the case as mentioned before.

Example A.5 (Transformation of Initial Satisfaction into General Satisfaction). Consider again the con-

straint acp from the and the graph G/, from the For initial satisfaction it is sufficient to

find some M-morphism satisfying acp which is the inclusion p : P — G/, in this case. To obtain the

equivalence according to 2, the general satisfaction does not hold because the negation of acp

would have to be satisfied by every M-morphism which is not the case for the inclusion p which satisfies

acp. Lastly, G, does not generally satisfy acp because we can match the by-edge in P to the by-edge in
"\, but there is no b-self-loop on the node 3 corresponding to the bz-edge in Cj.

Nested conditions can be shifted over morphisms, as explained in the following definition and lemma
(see [8l]). The result of the shifting is then the adapted nested condition over the codomain object of the
morphism over which the nested condition was shifted. For proof of the lemma consult [8].

Definition A.6 (Construction of Shift Transformation over Morphisms). The transformation Shift is in-
ductively defined as follows:
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P —b) P/
o Shift(b,true) = true B ,
* Shift(b, 3 (a,acc)) =\ (@ pyer 3 (@, Shift(b',acc)) Ja B la
if}":{(a’,b’)EE'M'EM/\a’Ob:b’oa};é(D aCCDCT) C’

* Shift(b, 3 (a,acc)) = ~true if F =0

For Boolean formulas over nested conditions, Shift is extended in the usual way.

Lemma A.7 (Shift of Nested Conditions over Morphisms). acp>P __ 5 P'<Shift(b,acp)
Let (C, M) be an M-adhesive category with E-M-factorization. \
There is a transformation Shift such that, for all nested conditions /

acp over P and all morphisms b: P — P',n: P' — H holds:
nobE acp < nFE Shift(b,acp).

Using the described Shift transformation we can transform constraints into application conditions for
both introduced kinds of satisfaction (similar to results in [[13]]).

Theorem A.8 (Transformation of Constraints into Application Conditions).

. . . s, . l'
1. Givena constram.t acy over an initial object I and a match acsl P P<acp
m :IL — G. Then it holds:
G F ac; < mE Shift(ir,acy) LL iG
2. Given a constraint acp over an object P and a match L————G

m: L — G. Then it holds:
G F acp < m &= —(Shift(ir, 3 (ip, ~acp)))

Proof.
1
I GFac 2. GEacp
Wﬂﬂ . g /
AN P23 G & 3 (ip, —acy)
S moip Fac
LA, s;;ﬁ(iL acy) FTZD (G E 3 (ip,~acp))
5 [Thm. A.8) 1 —(m = Shift(ir, 3 (ip,~acp)))

SmE ﬁShifl‘(iL, = (ip,ﬁan))
O]

Remark A.9. Initial satisfaction is much more suitable for transformation of constraints into application

conditions.

B Remaining Proofs

In this we give the proofs for[Fact 3.4} [Fact 4.3] and [Thm. 4.10]

Fact 3.4 (Restriction of Solutions for Positive Nested Conditions). Given a positive nested condition
acp, and a match py : Py — Gy over TG4 with restrictions acp, = Restri(acp,), pp = Restr;(pa) along
t: TGp — TGga. Then for a solution Qu of pa E acp, there is a solution Qp = Restr;(Qa) for pg = acp,.

Proof.

* For acp, = true the implication is trivial, because Q4 is empty which means that also QOp is empty
and thus a solution for pp F acp, is empty, because acp, is also true.
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Py
1Gy qA ¢
TGa Gy Cp<acc "
[T Tt(; th tp
TGy < — Gy <" Cpaace,
b
PB Py

Figure 8: Restriction of solution g4 for ps F 3 (a,acc,)

* Foracp, = 3 (a,acc,) we have that Q4 = (qa,Qca) such that g4 : C4 — G4 € M with gaoa = pa
and Qca is a solution for g4 F acc,. Then by gg = Restri(ga) : Cg — Gp we have g € M and we
also have 1 : Gg — G4 € M, because r € M (see|Fig. 8). So for acp, = 3 (b,acc,) we have

Icoqpob=gpotcob=gpoaotp=pyotp=1tgopp

which by monomorphism ¢ implies gg 0 b = pp.

Moreover, the fact that Qc4 is a solution for g4 F acc, implies that Qcp = Restr;(Qca) is a solution
for g F acc, by induction hypothesis and hence the restriction Qp = (¢, Qcg) of Q4 is a solution
for pp F acp,.

* Now, for acp, = \;czacp, ; we have acp, = \;c7 Restr,(acp, ;). By the fact that Q4 is a solution
for ps F acp, we have that Q4 = (Qai)icz such that Q4 ; is a solution for py F acs; forall i € Z.
Thus, by induction hypothesis we have restrictions Qp; = Restr;(Qy ;) that are solutions for pp
Restr;(acp, ;) for all i € Z. Hence, the restriction Qp = (Qp.i)icz of Q4 is a solution for pg F acp,.

* Finally, for acp, = \/;czacp, ; we have acp, = \/;c7 Restr,(acp, ;). By the fact that Q4 is a solution
for pa F acp, we have that Q4 = (Qa.i)icz such that for one j € 7 there is a solution Q4 ; for
pa Facy jand forall k # j we have that Q4 x = 0. Thus, by induction hypothesis the restriction Qp ;
of Q4 j is a solution for pg = Restr;(acp, ;). Hence, we also have that the restriction Qp = (Qp.)icz
is a solution for pp F acp, with Qg = 0 for k # j.

O]

Fact 4.5 (Amalgamation of Positive Nested Conditions). Given a pushout (1) as in with all
morphisms in M.

Composition. If there are positive nested conditions acp, and acp. typed over T Gp and T G¢, respec-
tively, agreeing in acp, typed over T Gp then there exists a unique positive nested condition acp,
typed over TG4 such that acp, = acp, +acp, ACPe-

Decomposition. Vice versa, given a positive nested condition acp, typed over TG, there are unique
restrictions acp,, acp. and acp, of acp, such that acp, = acp, +acp, ACPc-

The amalgamated composition and decomposition constructions are unique up to isomorphism.

Proof.
Composition. We do an induction over the structure of acp,:

* acp, = true.
Then we also have acp, = true and acp. = true, and the amalgamation acp, is trivially given
by acp, = true.
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* acp, = | (d,acCD) with d : Pp — Cp.

The assumption that acp, and acp. agree in acp, means that acp, is a restriction of acp,
and acp, and thus by we have that acp, = 3 (b,acc,) with b : P — Cg, acp. =
3 (¢,ace.) with ¢ : Pc — Cc, d is a restriction of b and ¢, and acc, is a restriction of acc,
and acc.. This in turn means that acc, and acc,. agree in acc, according to So,
by induction hypothesis we obtain an amalgamation acc, = acc, +acc, acc. Which implies
that ftcq = tcp +icp Icc, 1. €., diagrams (2)-(5) below are pullbacks. By closure of M under
pullbacks, we obtain from 7gpa,tgca € M that also cps,cca € M.

Moreover, the fact that d is a restriction of b and ¢ means that (6)+(2) and (7)+(3) are pull-
backs which by pullback decomposition implies that (6) and (7) are pullbacks. Note that
b, ¢ and d can be considered as typed over Cp, Cc and Cp, respectively. So, according to
we obtain that b and ¢ agree in d with respect to the pushout of the Cs, leading
to an amalgamation a = b+, ¢ : P, — C4 with pullbacks (8) and (9) by Hence,
acp, = 3 (a,acc,) is the required amalgamation.

pPca

acp, > Py Pc <Qacp,
acc, acce
N ® v <
Ca . Cc
Toe o
TGA <~ TGC
PBA (9) cBa (5) ngAT (1) Ttgz)c (3) epe (7) Ppc
TGy <2 TGp
1
'C// @) Y&
Cp 7y Cp
/ ” (6) - X
acc, acc,

acp, > Py Pp <acp,

PDB
* acp, = Niez acpy,i-
Since acp, is a restriction of acp, and acp. they must be of the form acp, = A;c7acp,; and
acp. = N\;eracp.;. Moreover, since acp, and acp. agree in acp,, we obtain that also acp,
and acp.; agree in acp, ; for all i € Z. So by induction hypothesis there are amalgamations
acp, i = ACPy,i Facp, ; ACPi such that acp,; and acp,.; are restrictions of acp, ; for all i € 7.
Hence, acp, = \;cracp, ; is the required amalgamation.
* The remaining case for disjunction works analogously to the case for conjunction.

The uniqueness of the amalgamation follows from the fact that we have an amalgamation in each
level of nesting and the amalgamation of typed objects is unique by
Decomposition. We do an induction over the structure of acp,:
* acp, =true.
This case is trivial because true = true +;,. true.
* acp, = I (a,acc,) witha: Py — Ca.
Then by induction hypothesis there exist restrictions acc,, acc. and acc, of acc, such that
acc, = accy +ac, acc.- Moreover, by there are unique restrictions b, ¢ and d of a
such that a = b+, c. Hence, we have restrictions acp, = 3 (b,accy), acp. = 3 (c,acc,.) and
acp, = 3 (d,acc,) of acp,, and as shown in item 1 the fact that acc, = acc, +ace,, dcce and
a = b+, c implies that acp, = acp, +acp, ACPc-
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* acp, = Niez ace,.i.
Then by induction hypothesis there exist restrictions acpy ;, acp.; and acp, ; of acp, ; such
that acp, ; = acp, i +acp, ; ACRi forall i € Z. Hence, acp, = \;cz acp,.i, acp. = \icz acp.; and
acp, = Niez acp, i are restrictions of acp, such that acp, = acp, +acp, acr..
* Again, the remaining case for disjunction works analogously to the case for conjunction.
The uniqueness of the decomposition follows from the uniqueness of restrictions by pullback con-
struction.

O]

Theorem 4.10 (Amalgamation of Solutions for Positive Nested Conditions). Given pushout (1) as in
[Def. 4.8with all morphisms in M, an amalgamation of typed objects gx = g+, gc, and an amalgama-

tion of positive nested conditions acp, = acpy +acp, acp. with corresponding matches pa = pg+p, pc.
Composition. Given solutions Qp for pp = acp, and Qc for pc F acp. agreeing in a solution Qp for
pp F acp,, then there is a solution Q4 for ps F acp, constructed as amalgamation Qs = Qp+9,, Oc.

Decomposition. Given a solution Qa for ps = acp,, then there are solutions Qp, Qc and Qp for pp E
acp,, pc = acp. and pp F acp,, respectively, which are constructed as restrictions Qp, Qc and QOp
OfQA such that QA = QB —|—QD Qc.

The amalgamated composition and decomposition constructions are unique up to isomorphism.

Proof.
Composition. We do an induction over the structure of acp,.

* acp, = true.
Then also acp,, acp., acp, are true and we have empty solutions Q4, Op, Oc and Qp. Since
the restriction of an empty solution is empty, we have that Op and Q¢ are restrictions of Q4.

* acp, = 3 (a,acc,) witha : Py — Ca.
By (Composition) we have the following diagram, where all rectangles are pushouts
and all trapezoids are pullbacks, and all horizontal and vertical morphisms are in M.

acp, > Py pea P- < acp,
acc, . acce
x v Ei A) \Y /
Cy Cc
Ica tgca Icc
TGy <—TG¢
pea| (3 cm (3) ngAT (1) ’Frgpc (5) e (5) | poe
TGy <22 TGp
’C/ (4) %
Cp o Cp
acp, > Py accs acco Pp <acp,

PpB

Now, we consider solutions Qg = (¢5,0cs), Oc = (q¢,Qcc) and Op = (gp,Qcp) for pg E
acpy, pc F acp. and pp F acp,, respectively, such that Qp is a restriction of Qp and Qc. Then
we also have that gp is a restriction of g and gc, and thus

8BACYBOCDB = 8BACEDBO YD = 8CAC8DCOYdD = 8CA©CGC O CpC
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which by pushout over the Cs implies a unique morphism g4 : C4 — G4 with g4 ocps =
gBa©gp and g4 o cca = gca © g

Pca

acp, > Py Pc Qacp.
[\ PA pc f
acc, > CA =< cca — CC < acce
ga™s N Y £ qc
Ga 8ca GC
gx 18ca ‘{
TGA < TG
PBA CBA gsA  1gpal tg Mepc 8pc ¢pc pPpc
DB
¢ TGp<=—TGp o
GB 8DB GD %
- CD < accy,
CDB
PD d
acpy > Pp Pp <acp,

Moreover, we have

gacaopps = qaocpaob =gpaogpob = gpaopp = paoppa

and analogously g4 cao pca = pa © pca which by jointly epimorphic ppa, pca implies that
gaoa=pa.

In order to show that g4 € M we consider the following diagram in the left:

Ga gca Ge qc Ce
25 (6) 8pc (8) cpc % \
Gp <4 Op="—Cp G =ir— Cy
| @) | O |ide ‘m /
Cp~—p— Cp = i Cp

We have that (6) is a pushout with all morphisms in M and thus also a pullback. Dia-
grams (7) and (8) are pullbacks by restriction, and (9) is a pullback because gp € M is a
monomorphism. Hence, by composition of pullbacks, we obtain that the complete diagram
is a pullback along M-morphisms gps 0 g and gca o gc which means that the pushout of the
Cs is effective (see[Def. 2.3), implying that g4 € M.

It remains to show that g and gc are restrictions of g4. In the following diagram we have that
(10) and (11) are pullbacks by restrictions, the Cs and the Gs form pushouts (see
and all morphisms in (10)-(13) are in M. So the horizontal as well as the vertical VK property
implies that also (12) and (13) are pullbacks which means that gz and gc¢ are restrictions of
qA-
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accy, > Cy o Cc acc,
qA (12) qc
Ga Gc
8cA
TGy TGc
cga (13) 8B4 thAT ,ngr)c gnc (11) ¢pc
TGy <= TGp
2 e
GB 8DB GD
y (10) \\%
accy > CB CD < accy,

CDB
Finally, Qp being a restriction of Op and Q¢ means that Qc¢p is a restriction of Qcp and Qcc
which by induction hypothesis implies a solution Qca of g4 F acc, such that Qcp and Qcc
are restrictions of Qca. Hence, Q4 = (ga,0Qca) is a solution for ps F acy such that Qp and
Qc are restrictions of Q4.

* acp, = Niez ace, -

We have acp, = \;cracpi, acp. = \jczace.; and acp, = \;cracp,; such that for all i € 7
there is acp, ; a restriction of acp, ; and acp.. ;.

Moreover, given solutions Qg, Qc and Qp of pg F acp,, pc F acp. and pp = acp,, respectively,
we have Qp = (Qg,i)iez, Oc = (Qc,i)iez and Op = (Op,i)icz such that for alli € Z Qp;, Oc,
and Qp; are solutions for pg F acp, ;, pc F acp.; and pp F acp, ;, respectively, and Qp ; is a
restriction of Qp; and Qc ;.

Then, by induction hypothesis there are solutions Q4 ; for ps F acp, ; for all i € 7 such that
Op, and Qc,; are restrictions of Q4 ;. Hence, Q4 = (Qa,)icz is the required solution for
pa Facp,.

* acp, = Viegace, .

We have acp, = \/;cracpi, acp. = \/;czacp.; and acp, = \/;cracp, ; such that for all i € 7
there is acp, ; a restriction of acp, ; and acp, ;.

Moreover, given solutions Qg, Oc and Qp of pg = acp,, pc F acp. and pp F acp,, respectively,
we have Op = (QB,i)iEI7 Oc= (QC,i)ieI and Op = (QD,i)ieI such that for some j, jc, jp €T
OB, js» Qc,jc and Qp ;,, are solutions for pp = acp, j,, pc F acp. j- and pp F acp, j,, respec-
tively, and for all kg, kc,kp € T with kp 7'5 jB, k¢ 75 Jjc and kp 7'5 Jjp we have that QB,kBa quc
and Qp x,, are empty. Furthermore, for all i € Z Qp; is a restriction of Qp; and Qc ;.

Case 1. Op j, = 0.
Then we have Qp ; = 0 for all j € Z. According to only the restriction of
an empty solution is empty, implying that we also have Qp ; = Qc ; = 0 for all j € 7.
Moreover, since for jp € T Qp j, is a solution for pp F acp, j, we can conclude that
acp,,j, = true, and by the fact that acp, j, is a restriction of acp, j,, acp, j, and acp,. j, it
follows that also acp, j, = true, acp, j, = true and acp. j, = true. So, as shown above,
there is a solution Q4 j, = 0 for ps = acp, j,. Hence, Qs = (Qa.i)icz With Q4 ; = 0 for
all i € 7 is a solution for ps F acp, such that Qg and Q¢ are restrictions of Q4.

Case 2. Op j, # 0.
Then according to there are also Qg j, # 0 and Qc j, # 0 which means that
JB = jc = jp. So by induction hypothesis there is a solution Q4 j, for pa F acp, j, such
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that Qp j, and Qc j, are restrictions of Q4 j,. Hence, Q4 = (Qa,i)icz With Qay =0
for all kK € Z with k # jp is a solution for ps F acp,, and we have that Qp and Q¢ are
restrictions of Qy.

In the first case acp, = true, the uniqueness of the amalgamation follows from the fact that an
empty solution can only be restriction of another empty solution. In the second case acp, =
3 (a,acc,), the uniqueness of Qs = (ga,Qca) follows from the uniqueness of g4 by universal
pushout property, and by uniqueness of Q¢4 by induction hypothesis. Finally, in the cases of con-
junction and disjunction, the uniqueness of the solution follows from uniqueness of its components
by induction hypothesis.

Decomposition. Again, we do an induction over the structure of acp, .

* acp, =true.
Then we also have that acp,, acp. and acp, are true. Moreover, we have that Q4 is empty,
leading to empty restrictions Qp, Qc and Qp that are solutions for pg = acp,, pc F acp. and
pp F acp,, respectively.

* acp, = 3 (a,acc,) witha : Py — Cy.
Then we have acp, = 3 (b,accy), acp. = 3 (c,acc.) and acp, = 3 (d,acc,). By amalgama-
tion g4 = gp +g, &c we have pullbacks (2)-(5) below. Moreover, by restrictions acp,, acp. and
acp, of acp, we have restrictions b, ¢ and d of a, implying pullbacks (6)-(9) below. According
to we have an amalgamation of positive nested conditions acc, = acc, +acc, 4cc,
which implies an amalgamation of typed objects tca = tcp +4, tcc bY

Pca

‘\ PA (7)
AN i
U |

TGy <2 TG
PBA (6) cpa(10) 8BA (2)18pA (1) tgpc (5) gpc(13) ¢pc (9) Ppc
18DB

TGB < TG]_)

w NP

Gp ap

N

acp, > Py

8DB

(12)

- CD < accy,

® N

<ac
PDB Pp Fp

Now, given a solution Q4 = (g4, Qca) for pa F acp,, there is g4 : Co — G4 € M with gyoa =

PA-
Furthermore, we have

8A0qaocps =1IcaOoCps =18BACICB

which by pullback (2) implies a unique morphism gp : Cp — Gp such that g o gp = tcp and
8BA ©qB = qa © cpa. Due to amalgamation fcq = tcp ., tcc We have that fcp is a restriction
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of tc4 and thus (10)+(2) is a pullback. So together with pullback (2) we obtain that also (10)
is a pullback by pullback decomposition, and thus gp is a restriction of g4.

Moreover, by ga,tgps € M and closure of M under pullbacks, we know that gp,gps € M.
Hence, by

8BAOPB = PAODPBA =(A0aAO0PRA =(qgaocpaob=gpsogpob

we obtain pp = gp o b because gg4 € M is a monomorphism.
Analogously, due to pullback (3) and restriction fc¢ of fc4 there is a unique restriction gc :
Cc — G¢ € M of g4 with pullback (11) such that pc = g¢ o ¢, and due to pullback (4) and
restriction f¢p of t¢p there is a unique restriction gp : Cp — Gp € M of g with pullback (12)
such that pp = gp od. Then, since f¢p is a restriction of t¢¢, (5)+(13) is a pullback which
by pullback decomposition and pullback (5) implies that also (13) is a pullback. Thus, gp is
also a restriction of gc which means that we have g4 = g +4,, qc.
So, by induction hypothesis there are solutions Qcp for gg = acc,, Qcc for gc F acc,., and Qcp
for gp  acc,, such that Qcy = Ocp +g., Qcc. Hence, for Qp = (¢8,0cB). Oc = (qc,Qcc)
and Op = (C]D, QCD) we obtain that 04 =03 +QD Oc.

* acp, = Niezace,,i.
Then we also have acp, = \;cracp, i, acp. = \jczace.i, and acp, = \;c7 acp, ;. Now, given
a solution Q4 = (Qa,)icz for ps F acp,, then Q4 ; is a solution for ps F acp, ; for all i € .
Thus, by induction hypothesis for all i € 7 there are solutions Qp; for pg F acp, i, Qc,; for
pc F acp. i, and Qp; for acp, ; such that Q4 ; = Qp; +¢,, Oc,. This in turn means that for
all i € 7 there are Qp; and Q¢ ; restrictions of Qg4 ;, and QD,i is a restriction of Qg ; and Oc .
Hence, for Op = (0.i)icz, Oc = (Qc,i)ier and Op = (Op,i)icz We have that Qp and Q¢ are
restrictions of Q4, and Qp is a restriction of Qg and Qc, implying Q4 = Op +¢,, Oc-

* acp, = Vjeracp,,i.
Then we also have acp, = \/;,czacp,i, acp. = \/,czace. i, and acp, = \/;cracp, ;. Given a
solution Q4 = (Qa.i)icz for pa F acp,, then there is j € Z, such that Q, ; is a solution for
pa Facp, j, and for all k € Z with k # j there is Q4 x = 0. By induction hypothesis there
are solutions Qg ; for pp F acp, j, Qc,; for pc F acp. j, and Qp ; for pp F acp, ; such that
Qa,j = 0B,j+0,,; Qc,j- Hence, for Qp = (03,)ic7.0c = (Qc,i)icr and Op = (Qp,i)ict Where
for all k € Z with k # j there is Qp s = Qcx = Opx = 0 we have that Q4 = Qp +¢,, Oc.

The uniqueness of the solutions follows from uniqueness of restrictions by pullback constructions.

O
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