Generation of Animation Views for Petri Nets
in GenGED*

Claudia Ermel, Roswitha Bardohl, and Hartmut Ehrig

Institut fiir Theoretische Informatik und Softwaretechnik,
Technische Universitat Berlin,
Email: {lieske,rosi,ehrig}@cs.tu-berlin.de,
WWW home page: http://tfs.cs.tu-berlin.de

Abstract. Formal specification techniques like Petri nets allow for the
formal description and analysis of systems. Tool support exists for many
different Petri net classes for editing, simulating and analyzing formal
models. A domain-specific animation of net behavior going beyond the
well-known token game, however, is not yet supported in most cases. In
this paper, we present a formal approach for the generic specification of
animation views for different Petri net classes based on GENGED and
graph transformation.

The GENGED approach, developed at the TU Berlin, allows for the
generic description of visual modeling languages including different Petri
net classes. In our framework, the animation view of a system modeled as
a Petri net consists of a domain-specific visual layout and an animation
view according to the firing behavior of the Petri net class. The basic
idea is to generate visual animation rules based on visual syntax rules
defining the corresponding Petri net language. We propose a view trans-
formation from the classical Petri net layout to the animation layout.
The well-known producer/consumer system modeled as an elementary
Petri net serves as running example. We provide an animation view for
the application domain kitchen where producing and consuming is visu-
alized by icons for baking and eating cakes, respectively.

1 Introduction

The use of visual modeling techniques today is indispensable in software system
specification and development. Especially, specification techniques for commu-
nication-based systems must provide means for modeling distributed systems
and concurrent behavior. Petri nets allow already the formal specification and
analysis of concurrent or distributed systems and the visual description of net
models by the graphical notation of nets. This kind of graphical visualization of
nets, however, is not always sufficient.

* This work is supported by the joint research project “DFG-Forschergruppe PETRI

NET TECHNOLOGY” (H. Weber, Coordinator) at TU Berlin and HU Berlin and by
the project GRAPHIT (DLR, Germany / CNPq, Brazil).

In order to support an intuitive understanding of Petri net behavior, espe-
cially for non-Petri net experts, it is desirable to have a layout of the model
in the application domain. However, there are no specific tools to support an
application-specific layout of system states and transformations modeled by Petri
nets. Moreover, a formal relationship between the system model based on Petri
nets and a corresponding layout of the model as icons from the application do-
main is missing. Such a support, called animation view for Petri nets in our
framework, is presented in this bag,EEO 0 1geneml framework for an-
imation of visual languages in Mhe animation view shows
directly the states and dynamic changes of a system. In our sample application
domain of a kitchen, the animation view of the well-known producer/consumer
system visualizes producing as baking and consuming as eating cakes. Our pa-
per is based on a generic approach how to visualize behavior and animation of a
system given as a diagram of a specific visual langu (%B;) which defines e.g. a
Petri net class. For this purpose, we use GENGED as generic description of
VLs, especially we consider different types of Petri nets (low-level and high-level
Petri nets).

graphical constraint solving techniques and tools 15, 16| and has been suc-
cessfully applied to a variety of VLs, including dlfferent versions of UML class
diagrams,'Nassi—%gf%]{i rgna@odl ﬁﬁ%%chaﬁﬁ% well as low-level and Wi isoo
level Petri nets [8, I, 3,6, 2]. The correspondlng visual environment [T, 7] sup-
ports the generic descrlptlon of VLs and the generation of language specific
graphical editors.

The GENGED approach is based on algebra%cB gf@yhmf%m@gon and

Our approach to define the animation of Petri nets relies on the formal basis
of GENGED for specifying VLs, including visual modeling techniques like Petri
nets. In order to clarify the necessities for su _V(I‘jﬁsscriptions let us take a closer
look on diagrams like those shown in Figure [I."On the one hand, we have some
graphical symbols like classes and associations in a UML class diagram or like
places, transitions and arcs in a Petri net. On the other hand, there are spatial
relations between symbols, e.g. an association arrow must start at the border of
a class symbol, or an arc in a Petri net always connects a place and a transition.

In analogy to formal textual languages, for a specific VL an alphabet is defined
over which sentences (diagrams), can be constructed. This visual alphabet cap-
tures all information about symbols, their relations and layout conditions. Yet,
it is not sufficient to construct diagrams over an alphabet. In this case, there
would be diagrams with illegal syntactical constellations (like multiple tokens on
one place in a diagram over an alphabet for elementary Petri nets). Thus, like
in formal textual languages, we have to give some rules defining the generation
of syntactically legal diagrams over an alphabet. Together with a start diagram,
these rules form a syntax grammar. The alphabet and the grammar of a VL
establish a VL specification over which diagrams can be generated. Using graph
grammars as underlying formal basis, we have a natural visual formalism for

Employee| works_for Company

[Job] ~ [Tasks|

Class Diagram

L1 L2

input x

while x>1

Y, xeven? 4 \
after(C1)]
X = x/2‘ X :=3x-1

Nassi-Shneiderman AHL Net
Diagram

after(C2)

Fig. 1. from Visual Languages

the definition of VLs. Moreover, the well-defined concepts of VL specifications
in GENGED offer the basis for the specification of animation.

The behavior of a Petri net is given in our proposed GENGED framework by
arp%%tPBE glorkﬁ%es which correspond to the firing behavior of the transitions
17]) At animation view for a Petri net basically is defined by a new
layout of the Petri net tokens in each marking, i.e. a combination of suitable
icons according to the specific application domain of the model. Additionally,
the behavior rules modeling the firing behavior are transformed into animation
rules for the animation view defining the state transitions of the system in the
new animation layout. In order to have compatibility with the behavior rules, we
define view transformation rules leading from the behavior rules to the anima-
tion rules of the animation view. In the case of our simple producer/consumer
example, the animation rules directly define the production and consumption of
cakes in the kitchen.

The paper is organized as follows: In Section E%oduce our running
example, a producer/consumer system specified as elementary Petri net. We
present an animation view of the system in the domain of a kitchen where
two persons are baking (producing) and eating (consuming) cakes, respectively.
Section E} at first reviews the formal specification technique of algebraic graph
grammars. Then we go into more detail and explain the GENGED approach
applying its concepts to the specification of the visual syntax of a Petri net
language. The GENGED framework is extended to incorpor te I‘gllga%plg%iﬁcation
of behavior and animation of Petri nets in our main section % T'he current state
of the 1mp]] nienfle‘%}eorlllto€ fhe concepts in the GENGED environment is sketched
in Section b.

2-Example

2 Example: A Producer/Consumer System

As running example for the formal specification of a system model and its anima-
tion view, we use the well-known specification of a producer/consumer system
as elementary Petri net. This example is (like the reader/writer protocol) one of
the basic models for communication-based systems: two independent agents (the
producer and the consumer) communicate via a channel (the buffer). The pro-
ducer sends messages (writes) to the channel, and the consumer receives (reads)
them from the channel. Rather than visualizing the flow (reading/writing) of
messages, we suggest an animation view where real goods are produced and
consumed. Thus, the underlying idea is visualized in a more concrete way.

The visual language (VL) we specify by using the GENGED approach defines
the comgion graphical representation of elementary nets.

Fig. b shows the Petri net modeling the behavior of a producer who is produc-
ing and delivering goods, and a client (consumer) who is removing the goods from
a buffer and consuming them. The places modeling the different buffer states on
the one hand ensure that goods are delivered only if the consumer needs them
(the buffer is empty). On the other hand, the consumer can consume a new
good only if the buffer was filled by the producer in advance. The left subnet
consisting of the places ready to deliver and ready to produce and the transitions
produce and deliver is the specification part corresponding to the producer. Anal-
ogously, the right subnet (the places ready to consume and ready to remove and
the transitions remove and consume) corresponds to the consumer. The places
buffer filled and buffer empty and the arcs to the producer and consumer subnets
model the buffer, i.e. the interface between producer and consumer.

ready to ready to
deliver buffer consume

filled

produce }/ CKdellver remove\\consume
\@ buffer @

ready to empty ready to
produce remove

Fig. 2. Net Producer/Consumer

PC-AnimView

A possible animation view of the net is illustrated in Fig. E._TheTrmducer
and the consumer are visualized as symbols representing a mother and her child
in a kitchen. The mother is producing cakes and the child is consuming them.

The producer subnet corresponds to the mother standing near the stove
baking (producing) cakes, and putting (delivering) them onto the table (the
buffer), whereas the consumer subnet is visualized as a child taking (removing)
the cakes from the table and eating (consuming) them. As the Petri net marking
models a state of the system where both producer and consumer are ready

%*I‘Ifﬂ

Fig. 3. ; éfﬁ W for Producer/Consumer

(waiting) to produce respectively consume, and the buffer is empty, there is no
cake to be seen in our animation view, but the mother is ready to produce one,
and the child is waiting for it. ProdCons

The transitions of the Petri net in Fig. bm visualized in the animation
view. In the user interface of the GENGED environm tIthfé/m trrgsgond to
animation rules visualized in an extra menu (see Sectlon%_mm then
is triggered by the user who selects an animation rule whereupon an action is
performed (if the respective transition is enabled in the corresponding Petri net
marking). Thus the behavior of the Petri net (the token game) can be simulated
in the animation view.

Of course, different animations for the same system model are feasible. For
example, communication between two partners in general might be visualized
by special symbols for requests and answers, or by animating the contents of a
message appropriately.

3 Defining Petri Net Languages within GenGED

In this section we review the basic concepts used for generic description of syntax,
behavior and animation of Petri nets using GENGED. In general these basic
concepts arg given bé/ algebraic graph transformation which is briefly introduced
in Section |3_1_1_t'h_ GENGED approach graph transformation is applied to
the generic description of visual languages (VLs) consisting of a visual alphabet
and a visual grammar. We review the GENGED concepts with tjelf?lcgs Lon
the specification of a place/transition Petri net la%lgnmzla%e in Section we give
a visual alphabet of Petri nets, and in Section 8.3 we propose a visual syntax
grammar which is based on the visual alphabet.

3.1 Review of Graph Transformation

ProdCons
In GENGED, diagrams as the Petri net in Fig. m;ﬂ sentences of a VL, i.e.
they consist of an abstract syntax level (the symbols and links) and a concrete
syntax level (their layout). Diagrams are formalized as attributed graph struc-
tures, a generalization of attributed graphs. Attributed graph structures allow to
define arbitrary graphical symbols as sorts and their connections as operations in
a corresponding attributed graph structure signature. The formalization of rule
applications as categorical pushout construction in the category of attributed

graph structures is slightly different to the construction for graphs and allows
a cleaner separation of operations on graphs and data type attributes. In this
paper, it is sufficient to keep in mind that all attributed graphs are attributed
graph structures and that the transformation of visual sentences by rules of
a visual grammar works in a way similar to attributed graph transformation.
Hence, in Itiswggction we review the main concepts of attributed graph trans-
formation [T0] a5 they are used Witji%a%%NGED- A detailed discourse on the
formal backgrounds can be found in [T]:

We illustrate the use of attributed graph grammars in GENGED by spec-
ifying simple place/transition nets (P/T nets) as graphs and sketching their
manipulation as graph rules. Our P/T nets allow multiple black tokens for each
place, but restrict the arc weight to one for all arcs, thgggg%% e have no arc
inscriptions in a net. The sample elementary net in Fig. en can be expressed
as a sentence of our specified P/T net language.

In the theory of algebraic graph transformation, a graph is given by two
disjoint sets (graph objects), called nodes (vertices) and edges (directed arcs)
from a sou e nor(%e fo a target node. Every graph object is typed over a type
graph. Fig. Ell(’f)gﬁl%esents a graph with six nodes and five arcs (between them).
The nodes are of type Place (white circles), Transition (rectangles) and Token
(black dots). The arcs representing Petri net arcs are of type ArcPT and ArcTP
(solid lines), whereas tokens belonging to a place are represented by Token nodes

connected to a tPl%cer ancflde by arcs of type tk. The corresponding type graph is

shown in Fig . Here, the nodes ar}cal ares represent the types themselves,
whereas the graph objects in Fig. B (a) can be seen as instances of these types.

Note that the type graph poses some restrictions on possible instances as, e.g.
instances must not have arcs connecting two places or two transitions.

[;1 At [;2 Place ArcpT Transition
Q pIName :I ArcTP |:|
N) # k @ trName
\. String Token String
(a) (b)

Fig. 4. A ¥pegphpia) typed over the Type Graph (b)

Nodes and arcs may be additionally labeled by attributes which are used
to store data together with the graph objects. In this paper we will only use
attributes for nodes. In the type graph attributes are denoted by an edge carrying
an attribute type name connecting a node to its attribute type (a set). In the
instance graphs an attgibute edge will connect a node with the current value of
that attribute. In Fig. &, Phe type graph (b) specifies that a Place node contains
an attribute named plName of data type String denoting the name of a place.
In the instance graph (a) the value of this attribute is a concrete name for
each place. We allow abstract data types for attributes, i.e. we consider not
only the sets of types, but also operations on these types. In particular, the use

of abstract data types allows us to use variables and terms as attributes (by
choosing a term algebra as attribute algebra). As we will see later on, this is
useful for a specification of behavior as graph grammar.

A relationship between two graphs can be expressed by a graph morphism
g which maps the nodes and arcs of the first graph G to nodes and arcs of the
second graph H, denoted by g : G — H. The graph objects in G are called origins
and in H images. The mappings have to be type compatible (nodes and arcs are
mapped to nodes and arcs of the same type) and compatible with structure (the
source/target node of an arc is mapped to the source/target node of the arc’s
image). Attribute values (if any) also have to coincide.

Graph transformation defines a rule-based manipulation of graphs'. Graph
grammars (consisting of a start graph and a set of graph rules) generalize Chom-
sky grammars from strings to graphs. The start graph represents the initial state
of the system, whereas the set of rules describes the possible state changes that
can occur in the system. A rule comprises two graphs: a left-hand side L (or
LHS) and a right-hand side R (or RHS), and a graph morphism r : L — R
between the graph objects of L and R. Graph objects in L which do not have
an image via r in R are deleted; graph objects in R without original in L are
created, and graph objects in L which are mapped to R by r are preserved by
the rule.

The application of a rule to a graph G (derivation) requires a mapping from
the rule’s left-hand side L to this graph G. This mapping, called match, is a
graph morphism m : L — G. A match marks the graph objects in the working
graph that participate in the rule application, namely the graph objects in the
image of m. The rule application itself consists of three steps. First, the graph
objects marked in the rule for deletion are deleted. Thereafter, the new graph
objects are appended to the graph. As a last step, all dangling arcs are deleted
from tlhae ﬁr@ﬁlg Tl‘he graph transformation results in a transformed graph H.
Fig. 5 shows the application of a rule inserting an arc between a place and a
transition to a graph G representing a Petri net. The resulting graph H contains
the Petri net after the application of the rule, i.e. the arc has been inserted.

Fig. 5. Graph Rule

Rules may contain variables and terms as attributes. Using attributed graphs,
the attribute values or variables of the rule’s left-hand side have to match as

R —— o Low93 , gEHK+97
We here follow the Algebraic Single-Pushout approach to graph grammars [19, 10][.

well. An attribute variable is bound to an attribute value in the mapped graph
object by the match. In the transformed graph, the attribute values are evaluated
depending on the rule’s right-hand side and result in a constant value.

The GENGED approach allows the generic description of visual languages
based on VL specifications. A VL specification consists of a visual alphabet of
pictorial objects and a visual syntax grammar. VL sentences (diagrams) can be
derived from the start graph by applying the grammar rules.

3.2 The Visual Alphabet

In general, a diagram consists of a set of symbol graphics that are spatially
related. We offer graphical constraints for these spatial relationships, called link
constraints. Symbol graphics and link constraints concern the layout of diagrams,
called concrete syntaz. The logical part of diagrams is called abstract syntaz. The
combination of both syntactical levels is called visual syntaz level and can be
represented by attributed graphs.

A wvisual alphabet establishes a type system for symbols and links, i.e. it defines
the vocabulary of a VL. Note that in an alphabet, the symbol and link types
have to be unique as well as the link arcs have to be acyclic.

Symbol graphics and graphical constraints specify layouE(_:(fpﬁlg:cri{)er%rs. In ad-
dition to logical (node) attributes as considered in Section B.1, symbol graph-
ics define a further kind of attributes for all abstract symbol nodes. Graphical
constraints specify layout conditions. They are given by (in-)equations over con-
straint variables denoting the positions and sizes of graphical objects. For exam-
ple, the constraint ”point p1 lies always to the left of point p2” can be expressed
as in-equation pl.x < p2.x over the x coordinates of both points. The set of
all constraint variables and constraints define a constraint satisfaction problem
(Csp) that has to be solved by an adequate variable binding in a diagram over
the alphabet.

Definition 1 (Visual P/T Net Alphabet).

The visual alphabet of the P/ net language, called P/T net alphabet, is briefly
illustrated as a graph in Fig. %Tmctangles for the abstract syntax of lexical
symbols and rounded rectangles for the abstract syntax of attribute symbols. The
dashed arrows mark the connections of the abstract syntax and the concrete
syntax level.

In the P/T net alphabet, the attribute symbol for the place name is called
PIName and linked by pn to the lexical symbol Place. The attribute symbol for
the transition name is called TrName and linked by tn to the lexical symbol
Transition. Each name is given by a String data type that is to be written in
a certain text font and text size. We distinguish arcs that run from places to
transitions (ArcPT) and arcs that run from transitions to places (ArcTP). Both
kinds of arcs have a certain source and target symbol where they are linked to
(depicted by the edges spt, tpt, ttp, stp, short for source/target of place-transition
arc resp. transition-place arc).

String
Abstract L
PIName) P

Syntax | Name

Concrete
Syntax

Strih;g, 12pt,Helvetica String, 12pt,Helvetica

Fig. 6. |/Pistkhphabet Concrete Syntax of the P/T Net Alphabet

Some link constraints are illustrated by dotted arrows between the symbol
layouts. The constraints force a specific layout of diagrams typed over the visual
alphabet. For example, one constraint ensures that the place name is always
“near” the ellipse. Another constraint on the connection of a token symbol and
its place states that a token is always visualized ”inside” the corresponding place
symbol. A

EEO1

Note that the visual alphabet of the AHL net language }ﬁﬁﬁimilar to the
visual alphabet of P/T nets presented above. The difference is given by arc
inscriptions and the modeling of tokens. In the AHL net alphabet, tokens are
modeled as string data types instead of pictorial objects as in the P/T net al-
phabet. Arc inscriptions are modeled as string data types, too. Obviously, the
definition of alphabets for different Petri net classes in GENGED is straight-
forward. Especially for the design of visualizations of new Petri net features,
GEN a offers a simple way to generate a prototype editor. For an example,
see :ilt where a visual language for model evolution is defined consisting of a
combination of AHL nets and class diagrams.

Let us proceed with the P/T net language. An example for a vi Iaol gentence
over our P /T net alphabet is our producer/consumer system in Fig. E Here, only
symbols and links from our alphabet are used and connected according to the
alphabet (the type graph). All graphical constraints are satisﬁgfl_.g%ncglllllclgtration
we show the visual syntax of a subnet of this system in Fig. I7.

As already mentioned, the visual alphabet establishes a type system for all
possible instances. Such instances also occur in visual syntax grammars we con-
sider in the following section.

3.3 The Visual Syntax Grammar

The visual alphabet is the basis to define the syntax grammar for our P/T net
language. The syntax grammar is represented by a graph grammar: it consists of
a start diagram and a finite set of graph rules. The start diagram and both sides of
a rule are diagrams typed over a specific alphabet, as well as the diagrams which

exa:PN-VG

10

|

. S i

Al

|

i

[Transition |; ¢
i

T

Abstract 3
Syntax !

\
I
1 |
A L
D b
o
! ! [N
'
| fram) | |
! T [I
o\ N \ e
| = ready to', '
\) .
| |, deliver VAT
b Lo
\
Y \ St
produce \ deliver
Concrete \ ,
\
Syntax |)
¥
ready to
produce

Fig. 7. e over the P/T Net Alphabet

can be derived by applying grammar rules. In our graph grammar rules, we use
in addition to the left-hand rule sides so-called negative application conditions
(NACs) which restrict the application of a rule. An NAC is a graph containing
a forbidden graph pattern. The rule must not be applied to a graph if there is
a match from the NAC to the graph, i.e. the forbidden pattern is found in the
graph. . PN-

In Def. B%I\ngne the syntax grammar for the P/T net language. This
definition has to be fixed once and allows the generation of a syntax-directed
editor for arbitrary P/T nets (sentences corresponding to the defined syntax of
the language). We define the insertion of the symbols Place, Transition, ArcPT,
ArcTP and Token, as well as their graphical relation.

Defipjtion 2 (P/T Net Syntax Grammar).

Fig. E ustrates a syntax gramma: lfg four P/T net language which is based
on the visual alphabet in Def. : In our P/T net grammar, the start sentence
is empty. The first rule supports the insertion of a place together with a place
name; the NAC requires that the place with the user-defined name is not already
in the sentence where the rule is going to be applied to. The second rule anal-
ogously supports the insertion of a transition symbol. The next two rules allow
for the insertion of arcs, either running from a place to a transition (insArcPT) or
running from a transition to a place (insArcTP). The NACs forbid the application
if there is already an arc. Last but not least, tokens can be inserted by applying
the rule addToken. A

The application of a rule to a diagram G is obtai dlyﬁ%v% er{flatch morphism
on the abstract syntax level as explained in Section [é [.The derivation of the

abstract syntax of diagram H has to be extended by its concrete syntax according
to the alphabet. The diagram-specific Csp of H is derived from th .pl%gl%];thf
alphabet, and a CsP satisfaction (a solution) is computed. Fig. B 1|usfra%es
the application of the rule InsArcPT. This rule allows the insertion of an arc

exa:PN-VL

11

NA L R
¢
pn | ! | insPlace(pn) pn | !

e e
NAC L[] R
I i insTrans(tn) I i
tn 1 . 1
| tn I tn
[f [
NAC L R

|
[Place]! \Tr‘ans |

I

I
Pl T |
| aQeH r‘ans\ insArcPT ,’
o i
o i

3
NAC L R

|
[Place]/ [Trans |
el Lk

A

,
- ,
[Place] (T], |[Ple

| | | |
- i

&

St

L

V,’ j
3

|
B

‘
‘ ,
O
d"o’

addToken

Fig. 8. tax Grammar for the P/T Net Language

between a place and a transition in our visual P/T net language. The match and
rule morphisms are indicated by the numbers of corresponding nodes.

A VL is generated by applying syntax grammar rules. The sentences occur-
ring in the grammar as well as those which are derived by applying grammar
rules are typed over the corresponding visual alphabet. Hence, a VL is generated
by a VL specification.

Definition 3 (Visual P/T Net Language).
The visual P/T net language is given by the VL specification

P/T Net Specification = (P/T Net Alphabet, P/T Net Syntaz Grammar)

:VisPT
where the P/T Net Alphabet has bgep.defined in Def. T ?aanalsfﬁe P/T Net
exa: G
Syntax Grammar is given in Def. 2 A

The visual P/T net language as regarded so far is the basis to define behavior
rules and domain-specific animation views as explained in the following section.

4.1-Behavior

12

-

T InsArcPT

. . —_—

Fig. 9. [’PFpHudtibppaf| the Rule InsArcPT

4 Animation of Petri Nets within GenGED

In order to bridge the gap between the underlying formal, descriptive specifica-
tion of a process model (i.e. a Petri net) and a natural dynamic visual represen-
tation of processes being simulated, we suggest the definition of an animation
view for a visual process model. On the one hand, this animation view has to
be readily comprehensible; people who are non-specialists in the modeling tech-
nique of Petri nets should be able to observe functional behavior of the model.
On the other hand, the behavior shown in the animation view h 5 40 §&{£$§139nd
to the behavior defined in the original process model. In Section E I, we consider
the graph grammar based concepts for the behavior specification of Petri nets.
These ¢ Sr‘la%eﬂ‘%si%ﬁe%xplained along our Producer/Consumer net. Thereafter, in
Section %.2 we give guidelines for the specification of an animation view for a
specific Petri net and present an application-specific animation grammar for our
Producer/Consumer net. To nsurg a A%onsistent mapping of the Petri net be-
havior, we propose in Section E.3 a graph grammar based view transformation
from the Petri net to its animation view.

4.1 Behavior of Petri Nets

In Petri nets and similar visual process models, two aspects can be considered.
The first aspect concerns the topological structure of the model, i.e., which visual
elements exist and how are they linked to each other. The second aspect concerns
the behavior of the modeled system, i.e., the flow of control within processes and
the flow of communication between processes. In the previous section, we dealt

13

with the visual specification of the Petri net language, i.e. we specified what a
Petri net is, but not what it does. Therefore, in this section we focus on simulating
the dynamic behavior of P/T nets by a visual grammar approach based on our
P/T net language.

In the literature one can find several graph gragmar. based approaches for
the specification of Petri net behavior: Schneider summarizes different ap-
proaches to define the behavior of process systems (e.g. Petri nets, event struc-
tures and actors) by graph grammars. He states that graph grammars are well
suited to describe in a uniform way not only the syntactical structure of visual
process models but also their semantic properties. In Petri nets, the basic form of
a state transformation is the firing of a transition. The straightforward technique
for behavior simulation therefore is playing the token game.

One of the first who discnssed the relationship between graph grammars and
Petri nets is Kreowski . He associates a graph rule to each transition, with the
rule being applicable if and only if the transition is allowed to fire. Tokens within
a place are modeled as a bundle of new nodes connected to the node representing
the place. This approach is able to handle both places with bounded capacity
and places with unbounded capacity and can easily be extended to individual
tokens. M

Parisi-Presicce et al. use a structured alphabet for labeling places with
tokens. This alphabet has to allow changes of node labels in rule morphisms.
In the case of high-level Petri nets, multiple and individual tokens can be rep-
resented using multisets as labels and the multiset inclusion as the structure of
th Bﬁ%@bet' A further step is to allow arbitrary categories to label the places.
In% modeled tokens in AHL nets as arbitrary algebraic data types which
are attributes of Token nodes.

We consider a Petri net as the set of all sentences over the Petri net language
with the same net structure whose markings are given by an initial marking and
all possible successor markings that can be reached by arbitrary transition firing
steps. The behavior of a P/T net is defined by a visual grammar, called behavior
grammar: the start sentence corresponds to the initial system state (the initial
marking), and the behavior rules capture all possible transition firing steps in
the net. When constructing a behavior grammar whose rules correspond to firing
of the transitions of the net we have to ensure that

— a transition in the net is enabled if and only if the corresponding rule is
applicable to the net,

— firing a transition in the net corresponds to a derivation step in the grammar
and vice versa.

The token game then can be simulated by applying the rules of the grammar to a
Petri net. The left-hand side defines the applicability condition, i.e. the marking
corresponding to the transition’s pre-domain. The right-hand side describes the
effect of the transition, i.e. the marking of the pre domain places is removed, and
the required tokens are added to the post domain places. This approach to Petri
net simulatio Eolfe applied to various types of low-level and high-level Petri
nets (see e.g. . For each Petri net type, therefore, a specific net’s behavior

14

grammar can be generated automatically according to the Petri net type’s firing
behavior.

E?ca k%hihrgn?)n%l%avior Grz.immar for Producer/Consumer System).
Fig. :” 1 Iusfrafe.s the !oghgvmr grammar for the .Prodl.lcer/. Copsuper System.
The start graph is the initially marked net as depicted in Fig. E Nofe that the

P/T net behavior grammar is defined on top of the visual P/T net grammar of
our P/T net language using the same visual alphabet.

L reatliy to R ready to L ready to] R ready to
deliver : deliver deliver .~ buffer deliver
‘ filled . buffer
10, (® O ' @) flled
produce
E——— deliver @
(® O
@ »O O buffer @ buft
reac:jy o ready to ready to empty ~Iready to el;ngtry
produce produce produce produce
L ready to R ready to L[readyto R[readyto
buffer consume buffer _consume consume consume
filled ! filled
@)) remove consume
— _—
Zﬂ:{y ready to b”ffe{ ready to ready to ready to
remove emply remove remove remove

amamrmar for the Producer/Consumer Net

4.2 Animation View

In our approach, both the Petri net and its animation view consist of visual
sentences based on the same abstract visual alphabet. They differ in the concrete
syntax, i.e. we define different layouts for the same underlying process model. We
suggest the following guidelines for the definition of an animation view layout for Alohabet
all symbols and links from a Petri net alphabet (like the alphabet from Fig. g!

— Places in a Petri net give meanings to tokens by defining their properties. In
a net-independent animation view, places are not needed any more because
properties of tokens now are incorporated in the concrete layout of the tokens
themselves. Therefore, we visualize places as symbols of the ”fized part”
of the animation view, i.e. the part of the view which is not changed by
animation.

— The animated part consists of the symbols which are changed during anima-
tion and corresponds to the token game of the Petri net.

15

— Transitions are replaced by rule names in the animation view which are the
user interface to trigger a state transformation step corresponding to a firing
step of the transition in the Petri net view.

— Arcs in the Petri net have the function to define the firing behavior in a
static way. They are not needed in the animation view as the behavior now
is defined by the animation rules and visualized by their application (the
animation). Thus, arcs are not visualized in the animation view.

exa:Av-pc| Example 2 (Animation View). ProdCons . . p/T
Z, 1S one sentence of our

The Producer/Consumer net as Ulusgrated in Fig.
net language we defined in g('e_f Wmatlon view of this sentence has been

already motivated by Fig. B where two people in a kitchen are visualized. ThBT—Al habet
abstract syntax of the alphabet of the animation view is equal to that of Fig.

but the concrete layout differs.

The fixed part of the animation view consists of the symbols for the mother
standing besides the stove (corresponding to the producer places ready to produce
and ready to deliver), the table (the buffer places buffer filled and buffer empty) and
the child sitting on a chair (the consumer places ready to remove and ready to
consume). The tokens — corresponding to the animated part of the animation
view — model the different locations of a cake. A token on place ready to produce
means that a cake may be taken out of the stove but is not yet to be seen. In
the concrete syntax of the animation view, the token is marked as invisible. The
same holds for tokens on the places buffer empty (no cake on the table) and ready

to remove (the child has ggE rhnlmeblq—:é)w Therefore, in the animation view of the

initially marked net C(Flg no cakeis to be seen.
PC-AnimView . . . L.

Fig. [T shows our net with the only possible successor marking of the initial
marking. Here, a token lies on place ready to deliver: the cake has been taken out
of the stove and is visible in the animation view on top of the stove. Successor
markings would be visualized by the cake put onto the table (token on place buffer
filled) and the cake on the lap of the child (token on place ready to consume). The
abstr.act syntax pnd(?rlylglagA%%big%%vgﬁe(the Petri net and th(? animatiog view)
also is depicted in Fig. [TT, together with some of the respective connections to
the different layouts.

¢

Based on the abstract syntax, we define the generation of an animation view
by grammar rules that transform all possible states of the Petri net into an appro-
priate state of the animation view é;{/ailwvgg%nsformation ru ggl.:gel}ﬁ“generation
of the animation view in Example 271s described in Section

The behavior of the system in the animation view is given by a set of ani-
mation rules on the VL sentences of the animation view. The abstract syntax
of the animation rules equalg the abstract syntax of the behavior rules for the
Petri net (see e.g. Example [T for a behavior grammar of a specific Petri net).
We call the grammar containing the animation rules, the animation grammar.

16

ready to ready to
« deliver buffer consume

filed

ready to

: empt
ready to : Py % remove

produce

“
INamg—={Piace

[AcceT | -
ArcTP ArcPT -

Transiton }/

Fig. 11. r\mm&gﬂﬂm@aﬁéﬂe Animation View of the Petri Net Producer/Consumer

exa:AG-PC E?ca n:LmG{EAnlmatlon Grammar).
ig shows th

Fig. e animation grammar for our producer/consumer system. Each

animation rule corresponc@%‘ggey&gmp“ggpvior rule of the same name from the

behavior grammar in Fig.

=" =¥
A@/o

deliver ‘ o consume o
H —= n

Fig. 12. Lm}m:lﬁjnﬂrﬁnmrhar for the Producer/Consumer System

9

B¢
B¢

17

4.3 Generating Animation Views

The aim, of course, is to construct the animation grammar in a way that the
animation is consistent to the behavior specification. Therefore, we now define
the generation of an animation view by grammar rules that transform all possible
states of the system model into an appropriate state of the animation view (view
transformation rules). The view transformation rules must be defined by the
animation view designer. On the basis of these rules it is possible to enforce
coherence between the behavior grammar of the original visual process model
(the Petri net) and the animation grammar of the animation view. The view
transformation rules allow to transform the VL sentences from the old layout to
the new layout and the behavior rules into the animation rules.

In general, each of the view transformation rules transforms a part of the
Petri net to a part of the animation view by combining elements of the abstract
syntax with new concrete syntax elements (i.e. by giving them a different lay-
out). The concrete syntax of the Petri net transitions, arcs and the attributes
is invisible in the animation view. After application of all view transformation
rules in a suitable way, the VL sentence denoting the initially marked Petri net
is transformed into a corresponding animation view.

Formally, view transformation rules operate on the union of the visual syntax
of the Petri net and the visual syntax of its animation view because both of
them contain different graphics. In the following example, therefore, graphics
from both concrete syntax definitions (net layout and animation view layout)
are shown in the same rules.

exa:PC-Traf oGrammar | Exa lﬁéog{ligsw Transformation Rules).
Fig. ig shows the view transforrr%jgn.rvles needed for the generation gf t(h,e
5 i X . R X nimViéw X R X X gro ons
animation view depicted in Fig. 3 from the Petri net depicted in Fig. 2. We

define a view transformation rule for each part of the animation view that has
a symbol for an underlying fixed part, i.e. for the producer, the buffer and the
consumer. Note that the layout of a token in the animation view depends on the
place it belongs to. For example, a token on place buffer filled is shown as a cake
on the table, whereas a token on place buffer e pOCIS }%Xuiﬁi?sl.e in the animation
view. In the view transformation rules in Fig. i3, the absfract syntax remains,
but the symbols are re-linked to the new animation view graphics as they are
introduced in the right-hand sides of the rules.

O

By applying the view transf%gcrél?gég?rggcl) from the vhg% d%ransformation

rammar ons

grammar described in Exampl pE_iQ:EhG Letri et in Fig. 2, we generate the
animation view depicted in Fig. % The behavior of a Petri net now can be trans-

ferred consistently to the animation view by applying the view transformation
rules to the LHSs and RHSs of the behavior rules.

Exa%pﬁgévxggﬁl‘ﬁ%ating Animation Rules).
Fig. T4 illustrates the derivation %Ej{lr%%i)lﬁluafeign rule by applyyfqgé“éﬁg% af};}gg% the
transformation grammar in Fig. o a behavior rule in Fig. [IU.
Y

18

— ot 1|
P

ar~frc]

\

entume ready to
remove

:
\J

ready to
remove

ready to
consume

\
ready to
A

ready to
consume

remove

rea(.iy to ready to ' A< -
ldehver produce ! buffer buffer gen-
/ i O | filled @\ O empty Buffer1
1 AN 1Y gen- i 4 T~ A
| NN 5 Prod1 | | - + / =
‘ R e i Y
‘ L buffer buffer Name)>{piace| €EIName){piace
PiName, filled empty \ /
V EY buffer buffer
ready to ready to \l filled empty [Token |
deliver produce ready to ready to
deliver produce
ready to ready to 1 /@>/. 1 P ——
. i i | I
ldellver produce ! \) 3 buffer buffer gen- ' 1
g 1 @ on- ' ! filled empty | ‘\
‘ A\ 4 g W | i T Y\ | Buffer2 ' [eN
T ' T d ! 1 N
3 . ! ' I ! ' ' N o< e
| R L= T . €iName)
I \ oy [\l AN
L S ! N buffer buffer buffer buffer
@Nano) filed emply fled empty
| \J Y
ready to ready to ready to
deliver produce produce
**** 1 T
; i
ready to ready to ! ! ready to ready to y '
remove consume 1 ! remove consume @ ;
A @ Q ’ gen- ! ' A i AN} gen- N !
| N v i : + — j N
I L I ~oY Cons1 4 . ' ' NPl Cons2 | SN
' s e I INamé)—={ place LN U
;

v

ready to
consume

ready to
remove

Fig.13. tion Rules for the Producer/Consumer System

ready to
deliver

deliver

Behavior Rule

ready to
deliver

buffer
filled

®

O buffer ,@
empty buffer
ready to ready to empty
produce produce
| |
Transformation Rules : Transformation Rules :
for L: I for R I
I I
gen-Prod2 | gen-Prod1 |
gen-Buffer1 : gen-Buffer2 :
y Animation Rule V

Yy
A A
3

deliver

AN
W4

Fig. 14. Dﬂébaﬁbml\nﬁmhulm*mation Rule with View Transformation Rules

5-Implementation ‘

19

A first rough animation of the system can be performed by applying the
animation rules in the animation view of the system model. A nice extension of
the approach towards a more sophisticated animation would be the presentation
of system behavior not as discrete steps but as a movie (”smooth” animation),
i.e. showing a series of intermediate states for the firing fwogsotransition. With
this aim in mind, an animation framework as proposed in could be combined
with the GENGED environment.

5 Implementation

According to the co éc%wnsvof a VL-specification, the GENGED environment
as sketched in Fig. i5 comprises two major components: the Alphabet Editor
and the Grammar FEditor for the visual definition of VLs. From the VL defini-
tion using these editors, a VL specification is generated which is the input of
the Graphical Editor for syntax-directed diagram drawing. This means that the
language-specific editing commands of the Graphical Editor are given by the
grammar rules of the visual grammar. Hence, not only a VL is specified but the
VL-specific Graphical Editor also. Note that we distinguish two kinds of users,
namely users defining a VL (language-designer), and those who use a Graphical
Editor.

Tool Level

Alphabet Editor Alphabet VL-Spec.

| | Grammar |y | Graphical
Symbol |Connection Editor Editor

Editor Editor

[[<<uses>> | <<uses>>
i/ <<uses>> ¢ .
AGG
PARCON Graph Transformation System
Constraint Solver

Machine Level

Fig. 15. out the GENGED environment

To assure the graph'celljyggorrect drawing, all GENGED editors use the con-
straint solver PARCON %ﬁ.—"l"he transformation of diagrams via rule application
in the Grammar Edit, E (g the Graphical Editor is done by the graph transfor-
mation system AGa . The GENGED environment is implemented in Java,
so is the AGa system. The PARCON constraint solver — implemented in C — is
available for Linux and Solaris, thus GENGED runs on these two platforms.

20

5.1 The Visual Syntax

The specification of a Visual Alphabet is implemented as Alphabet Editor which
is a bundle of two sub-editors — the Symbol Editor and the Connection Editor.

A snapsthholfl the both the Symbol Editor and the Connection Editor is shown

in Figure 6.

= ::: Symbol Editor :::: i — i - O X
Eile Edit View Tools Extras Help _ File Edit View Extras Help
Cl=T0] [x/m/a#] [] [a[e] Blals] 6 [Df[a [#/e]e[a] = Z
?:S;T:; IR el g ?%Z”:“““ ‘:EE T
oo e | &l [an ol EEEEREE
O Ellipse i fgr -] § 3 source 4 - B
?g,mz:ma\(pla:e) ; ’%’%% J @ -;CPT -
: 3 Line B 3
g e e & imemaarcrr) [E
123 Datatypes — ? ?T.arglﬁt ag]
Lo IName T ace —
&g 'Prr’:lame . O Ellipse 1
. B Internal(Place) —
] ® &3 Constraints 4
1551 M AnchorstartPaint -
: = ig‘; B : wrl o
H . || 4 e 4 » - e e e
o IEEIE i oL I D
[e [[e |

Fig. 16. mu@mabmmmqr and the Connection Editor of the Alphabet Editor

In the Symbol editor, the language elements are defined: For each symbol
type in the abstract syntax the user gives a unique symbol name (e.g. Place)
and a symbol graphic (e.g. an ellipse) and possibly some symbol constraints.
For the definition of the symbol graphics, the Symbol Editor works similar to
well-known vector editors except that the grouping of symbols is handled using
graphical constraints to connect the primitives in a symbol graphic. Available
primitives are e.g. lines, poly-lines, rectangles, ellipses, images (GIF/JPEG) and
text. The primitives’ properties like color, line width or text properties can be
edited, too. Attribute symbols appear as independent graphical objects in the
Symbol Editor.

The Connection Editor supports the definition of links between symbols. In
order to define a link, the user can select any two symbols as source and target
of the link in the abstract syntax (e.g. Place and ArcPT). A constraint dialog
supports the definition of link constraints in the concrete syntax.

The definition of a visual syntax grammar is supported by the Grammar
Editor available in the GENGED environment. The Grammar Editor gets an
alphabet as input. From this input, so-called alphabet rules are generated defin-
ing the editing commands of the Grammar Editor. The set of alphabet rules
comprises rules for the insertio%%&da}g@%g%&]i of symbols. In the snapshot of the
Grammar Editor shown in Fig. [[7 one can see the alphabet rule for the insertion
of a transition name in the upper part.

The lower part of the Grammar Editor denotes the working areas: here we
build the start diagram, and the LHS and RHS (or LHS and NACs, respectively)

21

—_ {11 Grammar Editor:::

| File .g.m(Match Extras Help
DzRe] =l-Blml¢wpl& [+ =]x]=]]

FaRules Insert ArcPT ()

R Insert ArcPT 4| Insert ArcPT: LHS Insert ArcPT: RHS

R Delete ArcPT r 00 T

|5 NG AT AN ARNEEEE RN NENNEY!

R Delete ArcTR =2 FED
R Insert Place x0: PIName g

R Delete Place

]
-]

Bl

IFD

3

-

Ty NACL

T NaC2

T NACS
R Change FINa
R Insert Token
R Delete Token
R Insert Transiti IE]
R Delete Transit| =

E: ::E; New Rule: LHS
R Change Tria 100
R New Rule [RERRREE EREEET

123 Disgrams
Pl 2
1 2

Start Diagram
® 5 |5 Qi S

x1: TrName x1 TrNam

4|

[D

-

Al (ESE]

T

o 200
[ERNENERERRNERN

-
o =

D

|EREmE]

g

I
IHH‘%IIIHII\

Ledh}
e
i

Fig. 17. ’(Sl;alﬂmﬂrﬂlﬁdldxtor

of a VL-rule, add mappings between the two rule sides and edit the rule param-
eters. Applying a rule with rule parameter to a diagram in one of the working
areas, the user is first asked to define the match morphism, i.e., to map the sym-
bols of the rule’s LHS to type-consistent symbols in the diagram. Then, the user
has to give a value (or a variable) for the parameter such that the expressions
in the RHS can be evaluated during transformation.

The next step is to export the set of VL-rules and the start diagram into
a visual language grammar?. Then, the Graphic Editor _%E}elgigg%mmar rules
to provide the language-specific editing commands. Fig. ig shows the generated
Graphic Editor where our Producer/Consumer Petri net is drawn in the edit
panel using the visual grammar rules of the syntax grammar. The syntax gram-
mar rules can be selected in the tree view at the left-hand side in order to edit
symbols.

5.2 Behavior and Animation

It is possible to generate behavior rules for arbitrary Petri nets automatically
according to the general definition of firing %5%%(;5%0% in nets of the specific
Petri net class. (For the class of AHL nets see [5]). The al rithm for generating
behavior rules for Elementary nets is sketched in Def. E T will Be used for
the implementation of our simulation and animation concepts in the GENGED
environment. Then, for the well-known Petri net types, it is not necessary for
the user to specify the behavior for each specific net. Instead, the behavior rules
for the transitions of a net can be generated by the tool.

2 The alphabet is added automatically, so in fact we export a VL-specification.

def .en2agg

22

R {42 WL Editor 2

| File Edit Match Extras Help
e = «aja] +]=]x ==
FE Aules :[Tnsert ArcPT O
R Insert ArcPT H Insert ArcPT: LHS Insert ArcPT: RHS
R Delete ArcPT 3 A
2 e YD Ll
R Delete ArcTP
R Insert Place o3
@ R Delere Place
B NACL o) o
T NaC2
T NACS
R Change PIName ; []
R Insert Token Slaws
R Delete Token i[Producer/Consumer
R Insert Transition ||i 200 I BT
R Delete Transition NN NN NS N
T NACL =
T NACZ
R cChange Triame
=5 Diagrams
S(ar’t Dizgram
2]

Producer/Consumel| || 2

200

o 200
[T RN
T

o

pt

LILLLLLLL
)
D

4 S

< D

]

e o -

| (e |

\ =
|

Offers operations far match dafinitian

Fig. 18. for Petri nets

Definition 4 (Translation of Elementary Nets to Graph Grammars).
Each transition ¢ € T is translated to an attributed graph grammar rule r; :
L; — R;. The attributed graphs in the LHS L; and the RHS R; of such a rule
both contain nodes for all places in the pre and post domain of ¢. In L;, the places
in the post domain are not marked. The marking of the pre domain places p; is
computed as follows:

for each arc a : p; >t
generate a Token vertex;
connect the Token vertex by an edge of type tok to place p;;

Analogously, in Ry, only places in the post domain p; become marked:

for each arc a : t = p;
generate a Token vertex;
connect the Token vertex by an edge of type tok to place p;;

Moreover, an NAC is added to the rule r; : L; — R; containing the places
from the post domain post(t) marked by one token each. This NAC ensures that
the rule is applied only if the places in the post domain of the transition are
unmarked. A

As the automatic generation of behavior rules is not yet implemented in the
GENGED environment, we define them in the same way as the syntax rules: For
the definition of Petri net behavior, again the Grammar Editor is started. After
editing the behavior rules the Petri net simulator (similar to the Graphic Editor

23

PN-Simulator
but with behavior rules instead of syntax rules) is generated. Fig. Emm
the simulator for our Producer/Consumer net. Applying a rule this time means
to simulate the firing of a transition. In the screenshot, rule produce is selected
and the match is indicated by equal numbers for corresponding objects. The
application of the rule removes the token from the place ready to produce and
adds a new token to the place ready to deliver.

- i

Feee VL Editor EEE

File Edit Match Extras Help

z]@ [=]~-mla) [+]=-[x]=]=]

[S rRules produce {
R produce 4| produce: LHS prod uce: RHS
R deliver I 200 200
2 T T
R remove | A AN A Pl
R consume = —— = et PN
aDwagrams E: 10

=] Start Diagram
Producer/Consume

Producer/Consumer

200 ano 500

°

gy to delier

10 — B
o { 7
produce dellver _
1z

N2

Offers operations for match definition

Fig. 19. Siinfivhoi d6pthe Producer/Consumer Net

In the corresponding animation grammar the animation rules have the layout
of the animation view. The implementation of support for defining the view
transformation grammar is still work in progress. Here, we need a user interface
allowing the animation view designer to define the view transformation rules.
These rules are to be applied suitably (in a user-controlled order) to the LHSs
and RHSs of each behavior rule. Thus, the view transformation interface has to
support the application of rules to rules in order to generate animation rules from
behavior rules. Moreover, we need to define rule constraints to ensure specific
layouts for symbol connections which are valid only if a specific rule is applied.
For instance, in the Producer/Consumer animation view, the cake symbol is
placed on top of the table symbol when applying rule deliverAPﬁiﬁaégc}E placed
on top of the stove symbol when applying rule produce. Fig. E(rﬂ'lﬁtﬁtes the
desired animation view interface.

24

B Grammar Editor B

File Edit Match Extras Help

D@l o]~ 7w &) [+]-]x]x]>]

£ rules | deliver
R Insert Buffer | 4| deliver: LHS deliver: RHS
R Delete Buffer 20 | =00, =00,

=

N
u J=
LA

=

N
u J=
LA

R Insert Cake

R Delete Cake |

R Insert Consumer||:

R Delete Consumer|

R Insert Producer

R Delete pProducer

R produce

R consume

R deliver

R remove : :
{=y Ciagrams =

=] ProducerjConsun|

[EERIERE I ENR R [EERIERE I ENR R
- -

Fig. 20. iew for the Producer/Consumer Net

6 Conclusion

We have presented the GENGED approach supporting the generic description of
visual languages and provided concepts for an extension of GENGED in order
to allow the description and implementation of application-specific animation
views for communication-based systems modeled as Petri nets. An animation of
the Petri net behavior then shows directly the state transitions in the layout of
the application domain. An animation view is realized by graphical icons cor-
responding to parts of the system. During animation, some icons are changed
according to the selected state transition. GENGED is based on graph trans-
formation. This provides a natural formal basis to express Petri nets and their
animation views as graphs, whereas the behavior of the model (i.e. transition
firing steps resp. state transitions in the animation view) can be formalized as
graph grammars.

A specification of a specific Petri net type has to be provided once as visual
language specification (graphical symbols and syntax rules) and allows the gen-
eration of a graphical editor for arbitrary nets of the specified Petri net type.
The specifications of different Petri net types all have the same basis (places,
transitions, arcs and tokens as symbols) and only differ in the representation of
tokens (black dots or strings) and in their firing rule.

The behavior grammar for a specific Petri net can be generated automatically
according to the firing rule of the corresponding net type: Each transition is
converted to a graph grammar rule whose left/right-hand side corresponds to
the transition’s pre/post domain.

gBar00

gBEEOO

gBEO1la

gBEEO1

PBEP02

gBEROOa

25

The designer of an animation view therefore only has to specify the correspon-
dence of tokens to icons from the animation view representing the application
domain. This relation of a Petri net and its animation view is defined as view
transformation graph grammar and allows to map the behavior of the Petri net
consistently to the animation view. Due to the generic and modular definition
of syntax, behavior and animation for different Petri net types, the presented
framework reduces considerably the amount of work to realize an application-
domain animation of a system modeled as a specific Petri net.

It remains to develop a formal theory to handle behavior and animation of
visual process models in general (i.e. covering other Petri net classes and model-
ing techniques like statecharts or message sequence charts). The theory should
include formal definitions for an automatic generation of behavior rules for well-
known Petri net classes and a formal transformation of the states and behavior
rules of a general visual process model into is animation view. Implementational
work is still in progress, i.e., concerning the user interface for defining view
transformation rules, rule constraintg Qot'zhe mapping of rules to rules.

Within the Petri Net Baukasten e proposed animation framework will
be an extension of the functionality provided by the Petri net tool infrastructure
PNK and by the external tools integrated over the PNK. In order to offer the
features of the extended GENGED tool environment to PNK users, an XML
conversion between the %E% fll(selégﬁ%(ihange formats of the PNK and GENGED
has been implemented , . Thus, it becomes possible on the one hand to
use the editing, simulation and analysis features provided by the PNK and on
the other hand to have a visual environment for the definition of domain-specific
animation views for Petri nets provided by GENGED.

References

[1] R. Bardohl. GENGED - Visual Definition of Visual Languages based on Algebraic
Graph Transformation. Verlag Dr. Kovac, 2000. PhD thesis, Technical University
of Berlin, Dept. of Computer Science, 1999.

[2] R. Bardohl, H. Ehrig, and C. Ermel. Generic Description, Behaviour and Ani-
mation of Visual Modeling Languages. In Proc. Integrated Design and Process
Technology (IDPT 2000), Dallas (Texas), USA, June 2000.

[3] R. Bardohl and C. Ermel. Visual Specification and Parsing of a Statechart Variant
using GENGED. In Proc. Symposium on Visual Languages and Formal Methods
(VLFM’01), Stresa, Italy, September 5-7 2001.

[4] R. Bardohl, C. Ermel, and H. Ehrig. Generic Description of Syntax, Behavior and
Animation of Visual Models. TR 2001/19, TU Berlin, 2001. ISSN 1436-9915.

[5] R. Bardohl, C. Ermel, and J. Padberg. Formal Relationship between Petri Nets
and Graph Grammars as Basis for Animation Views in GenGED. In Proc. IDPT
2002: Sizth World Conference on Integrated Design and Process Technology, 2002.
To appear.

[6] R. Bardohl, C. Ermel, and L. Ribeiro. Towards Visual Specification and An-
imation of Petri Net Based Models. In Proc. GRATRA 2000 - Joint APPLI-
GRAPH and GETGRATS Workshop on Graph Transformation Systems, pages
22-31. Technische Universitat Berlin, March 2000.

gBNS00

gBSTO1

gCM95

o]
[z2]
j==]
=~
+
©
~

PWER+02
sKEhr01

pEBEO1

gEBPO1

gERTOS

sGri96

gKR95a

gKre81
gLow93

gPEM87

gSch94b

sWeiOO0

26

[7]

(8]

[9]

[10]

[11]
[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]

[20]

[21]

[22]

R. Bardohl, M. Niemann, and M. Schwarze. GENGED - A Development Environ-
ment for Visual Languages. In Int. Workshop on Applications of Graph Trans-
formations with Industrial Relevance (AGTIVE’99), LNCS 1779, pages 233-240.
Springer, 2000.

R. Bardohl, T. Schultzke, and G. Taentzer. Visual Language Parsing in GENGED.
Electronic Notes of Theoretical Computer Science, Vol. 50, No. 3, June 12-13 2001.
A. Corradini and U. Montanari. Specification of Concurrent Systems: From Petri
Nets to Graph Grammars. In G. Hommel, editor, Proc. Workshop on Quality of
Communication-Based Systems, Berlin, Germany. Kluwer, 1995.

H. Ehrig, R. Heckel, M. Korff, M. Lowe, L. Ribeiro, A. Wagner, and A. Corradini.
Algebraic Approaches to Graph Transformation II: Single Pushout Approach and
Comparison with Double Pushout Approach. In G. Rozenberg, editor, Hand-
book of Graph Grammars and Computing by Graph Transformation, Volume 1:
Foundations, chapter 4, pages 247-312. World Scientific, 1997.

H. Ehrig, W. Reisig, and H. Weber et al. The Petri Net Baukasten of the DFG-
Forschergruppe PETRI NET TECHNOLOGY. In this Volume.

K. Ehrig. Converting XML Files with XSLT and XPath, http://tfs.cs.
tu-berlin.de/lehre/SS01/gragra.html, 2001. Student’s Project Status Report.
C. Ermel, R. Bardohl, and H. Ehrig. Specification and Implementation of Anima-
tion Views for Petri Nets. In Weber et al., editors. 2nd Int. Colloguium on Petri
Net Technologies for Modelling Communication Based Systems, Berlin, Germany,
Sept. 2001. Fraunhofer Gesellschaft ISST, pages 75-92.

C. Ermel, R. Bardohl, and J. Padberg. Visual Design of Software Architec-
ture and Evolution based on Graph Transformation. In Int. Workshop on Uni-
form Approaches to Graphical Process Specification Techniques (UNIGRA01), at
ETAPS’01, 2001. Electronic Notes in Theoretical Computer Science, Vol. 44, No.
4.

C. Ermel, M. Rudolf, and G. Taentzer. The AGG-Approach: Language and Tool
Environment. In H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg, editors,
Handbook of Graph Grammars and Computing by Graph Transformation, volume
2: Applications, Languages and Tools, pages 551-603. World Scientific, 1999.

P. Griebel. Paralleles Losen von grafischen Constraints. PhD thesis, University
of Paderborn, Germany, February 1996.

M. Korff and L. Ribeiro. Formal Relationship between Graph Grammars and
Petri nets. In 5th Int. Workshop on Graph Grammars and their Application to
Computer Science, Williamsburg 94, LNCS 1073, pages 288 — 303. Springer, 1995.
H.-J. Kreowski. A Comparison between Petri-nets and Graph Grammars. In
LNCS 100, pages 1-19. Springer Verlag, 1981.

M. Loéwe. Algebraic Approach to Single-Pushout Graph Transformation. TCS,
109:181-224, 1993.

F. Parisi-Presicce, H. Ehrig, and U. Montanari. Graph Rewriting with Unifi-
cation and Composition. In 3rd Int. Workshop on Graph Grammars and their
Application to Computer Science, LNCS 291, Berlin, 1987. Springer Verlag.

H. J. Schneider. Graph Grammars as a Tool to Define the Behaviour of Pro-
cess Systems: From Petri Nets to Linda. In Proc. Fifth International Workshop
on Graph Grammars and their Application to Computer Science, pages 7—12,
Williamsburg, Va., USA, 1994.

C. Weidauer. Animations-Framework in Java. Systematische Animationsentwick-
lung mit Mehrschichtenarchitektur. Informatik - Forschung und Entwicklung,
Band 15, Heft 2, pages 83 —91, June 2000.

