
Generation of Animation Views for Petri Netsin GenGED?Claudia Ermel, Roswitha Bardohl, and Hartmut EhrigInstitut f�ur Theoretishe Informatik und Softwaretehnik,Tehnishe Universit�at Berlin,Email: flieske,rosi,ehrigg�s.tu-berlin.de,WWW home page: http://tfs.s.tu-berlin.deAbstrat. Formal spei�ation tehniques like Petri nets allow for theformal desription and analysis of systems. Tool support exists for manydi�erent Petri net lasses for editing, simulating and analyzing formalmodels. A domain-spei� animation of net behavior going beyond thewell-known token game, however, is not yet supported in most ases. Inthis paper, we present a formal approah for the generi spei�ation ofanimation views for di�erent Petri net lasses based on GenGED andgraph transformation.The GenGED approah, developed at the TU Berlin, allows for thegeneri desription of visual modeling languages inluding di�erent Petrinet lasses. In our framework, the animation view of a system modeled asa Petri net onsists of a domain-spei� visual layout and an animationview aording to the �ring behavior of the Petri net lass. The basiidea is to generate visual animation rules based on visual syntax rulesde�ning the orresponding Petri net language. We propose a view trans-formation from the lassial Petri net layout to the animation layout.The well-known produer/onsumer system modeled as an elementaryPetri net serves as running example. We provide an animation view forthe appliation domain kithen where produing and onsuming is visu-alized by ions for baking and eating akes, respetively.1 Introdution1-Intro The use of visual modeling tehniques today is indispensable in software systemspei�ation and development. Espeially, spei�ation tehniques for ommu-niation-based systems must provide means for modeling distributed systemsand onurrent behavior. Petri nets allow already the formal spei�ation andanalysis of onurrent or distributed systems and the visual desription of netmodels by the graphial notation of nets. This kind of graphial visualization ofnets, however, is not always suÆient.? This work is supported by the joint researh projet \DFG-Forshergruppe PetriNet Tehnology" (H. Weber, Coordinator) at TU Berlin and HU Berlin and bythe projet Graphit (DLR, Germany / CNPq, Brazil).



2 In order to support an intuitive understanding of Petri net behavior, espe-ially for non-Petri net experts, it is desirable to have a layout of the modelin the appliation domain. However, there are no spei� tools to support anappliation-spei� layout of system states and transformations modeled by Petrinets. Moreover, a formal relationship between the system model based on Petrinets and a orresponding layout of the model as ions from the appliation do-main is missing. Suh a support, alled animation view for Petri nets in ourframework, is presented in this paper based on our general framework for an-imation of visual languages in gBEE00,gBEE01[2, 4℄ and in pEBE01[13℄. The animation view showsdiretly the states and dynami hanges of a system. In our sample appliationdomain of a kithen, the animation view of the well-known produer/onsumersystem visualizes produing as baking and onsuming as eating akes. Our pa-per is based on a generi approah how to visualize behavior and animation of asystem given as a diagram of a spei� visual language (VL) whih de�nes e.g. aPetri net lass. For this purpose, we use GenGED gBar00[1℄ as generi desription ofVLs, espeially we onsider di�erent types of Petri nets (low-level and high-levelPetri nets).The GenGED approah is based on algebrai graph transformation andgraphial onstraint solving tehniques and tools gBar00,gERT98,sGri96[1, 15, 16℄ and has been su-essfully applied to a variety of VLs, inluding di�erent versions of UML lassdiagrams, Nassi-Shneiderman diagrams, stateharts as well as low-level and high-level Petri nets gBST01,gBar00,gBE01a,gBER00a,gBEE00[8, 1, 3, 6, 2℄. The orresponding visual environment gBar00,gBNS00[1, 7℄ sup-ports the generi desription of VLs and the generation of language-spei�graphial editors.Our approah to de�ne the animation of Petri nets relies on the formal basisof GenGED for speifying VLs, inluding visual modeling tehniques like Petrinets. In order to larify the neessities for suh desriptions let us take a loserlook on diagrams like those shown in Figure f.VMTs1. On the one hand, we have somegraphial symbols like lasses and assoiations in a UML lass diagram or likeplaes, transitions and ars in a Petri net. On the other hand, there are spatialrelations between symbols, e.g. an assoiation arrow must start at the border ofa lass symbol, or an ar in a Petri net always onnets a plae and a transition.In analogy to formal textual languages, for a spei� VL an alphabet is de�nedover whih sentenes (diagrams), an be onstruted. This visual alphabet ap-tures all information about symbols, their relations and layout onditions. Yet,it is not suÆient to onstrut diagrams over an alphabet. In this ase, therewould be diagrams with illegal syntatial onstellations (like multiple tokens onone plae in a diagram over an alphabet for elementary Petri nets). Thus, likein formal textual languages, we have to give some rules de�ning the generationof syntatially legal diagrams over an alphabet. Together with a start diagram,these rules form a syntax grammar. The alphabet and the grammar of a VLestablish a VL spei�ation over whih diagrams an be generated. Using graphgrammars as underlying formal basis, we have a natural visual formalism for



3
Nassi-Shneiderman

Diagram

L1 L2

C2C1
after(C1) after(C2)

switch

red1 red-yellow

AHL Net

Class Diagram Statechart

while x>1

x := 3x-1x := x/2

y

input x

nx even ?

Company

T

V
S

U

a

b

cd

works_for

Job Tasks

Employee

Fig. 1. f.VMTsDiagrams from Visual Languages
the de�nition of VLs. Moreover, the well-de�ned onepts of VL spei�ationsin GenGED o�er the basis for the spei�ation of animation.The behavior of a Petri net is given in our proposed GenGED framework bya set of behavior rules whih orrespond to the �ring behavior of the transitions(pBEP02,gCM95,gKR95a[5, 9, 17℄). An animation view for a Petri net basially is de�ned by a newlayout of the Petri net tokens in eah marking, i.e. a ombination of suitableions aording to the spei� appliation domain of the model. Additionally,the behavior rules modeling the �ring behavior are transformed into animationrules for the animation view de�ning the state transitions of the system in thenew animation layout. In order to have ompatibility with the behavior rules, wede�ne view transformation rules leading from the behavior rules to the anima-tion rules of the animation view. In the ase of our simple produer/onsumerexample, the animation rules diretly de�ne the prodution and onsumption ofakes in the kithen.The paper is organized as follows: In Setion 2-Example2 we introdue our runningexample, a produer/onsumer system spei�ed as elementary Petri net. Wepresent an animation view of the system in the domain of a kithen wheretwo persons are baking (produing) and eating (onsuming) akes, respetively.Setion 3-GenGEd3 at �rst reviews the formal spei�ation tehnique of algebrai graphgrammars. Then we go into more detail and explain the GenGED approahapplying its onepts to the spei�ation of the visual syntax of a Petri netlanguage. The GenGED framework is extended to inorporate the spei�ationof behavior and animation of Petri nets in our main setion 4-Animation4. The urrent stateof the implementation of the onepts in the GenGED environment is skethedin Setion 5-Implementation5.



42 Example: A Produer/Consumer System2-Example As running example for the formal spei�ation of a system model and its anima-tion view, we use the well-known spei�ation of a produer/onsumer systemas elementary Petri net. This example is (like the reader/writer protool) one ofthe basi models for ommuniation-based systems: two independent agents (theproduer and the onsumer) ommuniate via a hannel (the bu�er). The pro-duer sends messages (writes) to the hannel, and the onsumer reeives (reads)them from the hannel. Rather than visualizing the ow (reading/writing) ofmessages, we suggest an animation view where real goods are produed andonsumed. Thus, the underlying idea is visualized in a more onrete way.The visual language (VL) we speify by using theGenGED approah de�nesthe ommon graphial representation of elementary nets.Fig. ProdCons2 shows the Petri net modeling the behavior of a produer who is produ-ing and delivering goods, and a lient (onsumer) who is removing the goods froma bu�er and onsuming them. The plaes modeling the di�erent bu�er states onthe one hand ensure that goods are delivered only if the onsumer needs them(the bu�er is empty). On the other hand, the onsumer an onsume a newgood only if the bu�er was �lled by the produer in advane. The left subnetonsisting of the plaes ready to deliver and ready to produe and the transitionsprodue and deliver is the spei�ation part orresponding to the produer. Anal-ogously, the right subnet (the plaes ready to onsume and ready to remove andthe transitions remove and onsume) orresponds to the onsumer. The plaesbu�er �lled and bu�er empty and the ars to the produer and onsumer subnetsmodel the bu�er, i.e. the interfae between produer and onsumer.
produce

deliver

ready to

deliver

filled
buffer

empty
buffer

remove
consume

ready to
consume

remove
ready to

produce
ready toFig. 2. ProdConsElementary Net Produer/ConsumerA possible animation view of the net is illustrated in Fig. PC-AnimView3. The produerand the onsumer are visualized as symbols representing a mother and her hildin a kithen. The mother is produing akes and the hild is onsuming them.The produer subnet orresponds to the mother standing near the stovebaking (produing) akes, and putting (delivering) them onto the table (thebu�er), whereas the onsumer subnet is visualized as a hild taking (removing)the akes from the table and eating (onsuming) them. As the Petri net markingmodels a state of the system where both produer and onsumer are ready



5
Fig. 3. PC-AnimViewAnimation View for Produer/Consumer(waiting) to produe respetively onsume, and the bu�er is empty, there is noake to be seen in our animation view, but the mother is ready to produe one,and the hild is waiting for it.The transitions of the Petri net in Fig. ProdCons2 are not visualized in the animationview. In the user interfae of the GenGED environment they orrespond toanimation rules visualized in an extra menu (see Setion 5-Implementation5). The animation thenis triggered by the user who selets an animation rule whereupon an ation isperformed (if the respetive transition is enabled in the orresponding Petri netmarking). Thus the behavior of the Petri net (the token game) an be simulatedin the animation view.Of ourse, di�erent animations for the same system model are feasible. Forexample, ommuniation between two partners in general might be visualizedby speial symbols for requests and answers, or by animating the ontents of amessage appropriately.3 De�ning Petri Net Languages within GenGED3-GenGEd In this setion we review the basi onepts used for generi desription of syntax,behavior and animation of Petri nets using GenGED. In general these basionepts are given by algebrai graph transformation whih is briey introduedin Setion 3.1-Review3.1. In the GenGED approah graph transformation is applied tothe generi desription of visual languages (VLs) onsisting of a visual alphabetand a visual grammar. We review the GenGED onepts with the fous onthe spei�ation of a plae/transition Petri net language: in Setion alphabet3.2 we givea visual alphabet of Petri nets, and in Setion grammar3.3 we propose a visual syntaxgrammar whih is based on the visual alphabet.3.1 Review of Graph Transformation3.1-Review InGenGED, diagrams as the Petri net in Fig. ProdCons2 are visual sentenes of a VL, i.e.they onsist of an abstrat syntax level (the symbols and links) and a onretesyntax level (their layout). Diagrams are formalized as attributed graph stru-tures, a generalization of attributed graphs. Attributed graph strutures allow tode�ne arbitrary graphial symbols as sorts and their onnetions as operations ina orresponding attributed graph struture signature. The formalization of ruleappliations as ategorial pushout onstrution in the ategory of attributed



6graph strutures is slightly di�erent to the onstrution for graphs and allowsa leaner separation of operations on graphs and data type attributes. In thispaper, it is suÆient to keep in mind that all attributed graphs are attributedgraph strutures and that the transformation of visual sentenes by rules ofa visual grammar works in a way similar to attributed graph transformation.Hene, in this setion we review the main onepts of attributed graph trans-formation gLow93[19℄ as they are used within GenGED. A detailed disourse on theformal bakgrounds an be found in gBar00[1℄.We illustrate the use of attributed graph grammars in GenGED by spe-ifying simple plae/transition nets (P/T nets) as graphs and skething theirmanipulation as graph rules. Our P/T nets allow multiple blak tokens for eahplae, but restrit the ar weight to one for all ars, therefore we have no arinsriptions in a net. The sample elementary net in Fig. ProdCons2 then an be expressedas a sentene of our spei�ed P/T net language.In the theory of algebrai graph transformation, a graph is given by twodisjoint sets (graph objets), alled nodes (verties) and edges (direted ars)from a soure node to a target node. Every graph objet is typed over a typegraph. Fig. typegraph4 (a) represents a graph with six nodes and �ve ars (between them).The nodes are of type Plae (white irles), Transition (retangles) and Token(blak dots). The ars representing Petri net ars are of type ArPT and ArTP(solid lines), whereas tokens belonging to a plae are represented by Token nodesonneted to a Plae node by ars of type tk. The orresponding type graph isshown in Fig. typegraph4 (b). Here, the nodes and ars represent the types themselves,whereas the graph objets in Fig. typegraph4 (a) an be seen as instanes of these types.Note that the type graph poses some restritions on possible instanes as, e.g.instanes must not have ars onneting two plaes or two transitions.
p2t

(a)

p1

(b)

tk
ArcTP

Token
trName

StringString

plName

ArcPTPlace Transition

Fig. 4. typegraphA Graph (a) typed over the Type Graph (b)Nodes and ars may be additionally labeled by attributes whih are usedto store data together with the graph objets. In this paper we will only useattributes for nodes. In the type graph attributes are denoted by an edge arryingan attribute type name onneting a node to its attribute type (a set). In theinstane graphs an attribute edge will onnet a node with the urrent value ofthat attribute. In Fig. typegraph4, the type graph (b) spei�es that a Plae node ontainsan attribute named plName of data type String denoting the name of a plae.In the instane graph (a) the value of this attribute is a onrete name foreah plae. We allow abstrat data types for attributes, i.e. we onsider notonly the sets of types, but also operations on these types. In partiular, the use



7of abstrat data types allows us to use variables and terms as attributes (byhoosing a term algebra as attribute algebra). As we will see later on, this isuseful for a spei�ation of behavior as graph grammar.A relationship between two graphs an be expressed by a graph morphismg whih maps the nodes and ars of the �rst graph G to nodes and ars of theseond graphH , denoted by g : G! H . The graph objets in G are alled originsand in H images. The mappings have to be type ompatible (nodes and ars aremapped to nodes and ars of the same type) and ompatible with struture (thesoure/target node of an ar is mapped to the soure/target node of the ar'simage). Attribute values (if any) also have to oinide.Graph transformation de�nes a rule-based manipulation of graphs1. Graphgrammars (onsisting of a start graph and a set of graph rules) generalize Chom-sky grammars from strings to graphs. The start graph represents the initial stateof the system, whereas the set of rules desribes the possible state hanges thatan our in the system. A rule omprises two graphs: a left-hand side L (orLHS) and a right-hand side R (or RHS), and a graph morphism r : L ! Rbetween the graph objets of L and R. Graph objets in L whih do not havean image via r in R are deleted; graph objets in R without original in L arereated, and graph objets in L whih are mapped to R by r are preserved bythe rule.The appliation of a rule to a graph G (derivation) requires a mapping fromthe rule's left-hand side L to this graph G. This mapping, alled math, is agraph morphism m : L ! G. A math marks the graph objets in the workinggraph that partiipate in the rule appliation, namely the graph objets in theimage of m. The rule appliation itself onsists of three steps. First, the graphobjets marked in the rule for deletion are deleted. Thereafter, the new graphobjets are appended to the graph. As a last step, all dangling ars are deletedfrom the graph. The graph transformation results in a transformed graph H .Fig. graphruleappl5 shows the appliation of a rule inserting an ar between a plae and atransition to a graph G representing a Petri net. The resulting graph H ontainsthe Petri net after the appliation of the rule, i.e. the ar has been inserted.
L R

match

rule

G HFig. 5. graphruleapplAppliation of a Graph RuleRules may ontain variables and terms as attributes. Using attributed graphs,the attribute values or variables of the rule's left-hand side have to math as1 We here follow the Algebrai Single-Pushout approah to graph grammars gLow93,gEHK+97[19, 10℄.



8well. An attribute variable is bound to an attribute value in the mapped graphobjet by the math. In the transformed graph, the attribute values are evaluateddepending on the rule's right-hand side and result in a onstant value.The GenGED approah allows the generi desription of visual languagesbased on VL spei�ations. A VL spei�ation onsists of a visual alphabet ofpitorial objets and a visual syntax grammar. VL sentenes (diagrams) an bederived from the start graph by applying the grammar rules.3.2 The Visual Alphabetalphabet In general, a diagram onsists of a set of symbol graphis that are spatiallyrelated. We o�er graphial onstraints for these spatial relationships, alled linkonstraints. Symbol graphis and link onstraints onern the layout of diagrams,alled onrete syntax. The logial part of diagrams is alled abstrat syntax. Theombination of both syntatial levels is alled visual syntax level and an berepresented by attributed graphs.A visual alphabet establishes a type system for symbols and links, i.e. it de�nesthe voabulary of a VL. Note that in an alphabet, the symbol and link typeshave to be unique as well as the link ars have to be ayli.Symbol graphis and graphial onstraints speify layout onditions. In ad-dition to logial (node) attributes as onsidered in Setion 3.1-Review3.1, symbol graph-is de�ne a further kind of attributes for all abstrat symbol nodes. Graphialonstraints speify layout onditions. They are given by (in-)equations over on-straint variables denoting the positions and sizes of graphial objets. For exam-ple, the onstraint "point p1 lies always to the left of point p2" an be expressedas in-equation p1.x � p2.x over the x oordinates of both points. The set ofall onstraint variables and onstraints de�ne a onstraint satisfation problem(Csp) that has to be solved by an adequate variable binding in a diagram overthe alphabet.De�nition 1 (Visual P/T Net Alphabet).exa:VisPT The visual alphabet of the P/T net language, alled P/T net alphabet, is brieyillustrated as a graph in Fig. PT-Alphabet6. We use retangles for the abstrat syntax of lexialsymbols and rounded retangles for the abstrat syntax of attribute symbols. Thedashed arrows mark the onnetions of the abstrat syntax and the onretesyntax level.In the P/T net alphabet, the attribute symbol for the plae name is alledPlName and linked by pn to the lexial symbol Plae. The attribute symbol forthe transition name is alled TrName and linked by tn to the lexial symbolTransition. Eah name is given by a String data type that is to be written ina ertain text font and text size. We distinguish ars that run from plaes totransitions (ArPT) and ars that run from transitions to plaes (ArTP). Bothkinds of ars have a ertain soure and target symbol where they are linked to(depited by the edges spt, tpt, ttp, stp, short for soure/target of plae-transitionar resp. transition-plae ar).



9
Transition

String

ArcTP

Place

String

pn

spt ArcPT

stp

tpt

ttp
tok

Concrete

Syntax

Abstract

Syntax
TrNamePlName

tn

aop

Token

aop

String,12pt,HelveticaString,12pt,HelveticaFig. 6. PT-AlphabetAbstrat and Conrete Syntax of the P/T Net AlphabetSome link onstraints are illustrated by dotted arrows between the symbollayouts. The onstraints fore a spei� layout of diagrams typed over the visualalphabet. For example, one onstraint ensures that the plae name is always\near" the ellipse. Another onstraint on the onnetion of a token symbol andits plae states that a token is always visualized "inside" the orresponding plaesymbol. 4Note that the visual alphabet of the AHL net language gBEE01[4℄ is similar to thevisual alphabet of P/T nets presented above. The di�erene is given by arinsriptions and the modeling of tokens. In the AHL net alphabet, tokens aremodeled as string data types instead of pitorial objets as in the P/T net al-phabet. Ar insriptions are modeled as string data types, too. Obviously, thede�nition of alphabets for di�erent Petri net lasses in GenGED is straight-forward. Espeially for the design of visualizations of new Petri net features,GenGED o�ers a simple way to generate a prototype editor. For an example,see gEBP01[14℄ where a visual language for model evolution is de�ned onsisting of aombination of AHL nets and lass diagrams.Let us proeed with the P/T net language. An example for a visual senteneover our P/T net alphabet is our produer/onsumer system in Fig. ProdCons2. Here, onlysymbols and links from our alphabet are used and onneted aording to thealphabet (the type graph). All graphial onstraints are satis�ed. For illustrationwe show the visual syntax of a subnet of this system in Fig. PT-Sentene7.As already mentioned, the visual alphabet establishes a type system for allpossible instanes. Suh instanes also our in visual syntax grammars we on-sider in the following setion.3.3 The Visual Syntax Grammargrammar The visual alphabet is the basis to de�ne the syntax grammar for our P/T netlanguage. The syntax grammar is represented by a graph grammar: it onsists ofa start diagram and a �nite set of graph rules. The start diagram and both sides ofa rule are diagrams typed over a spei� alphabet, as well as the diagrams whih



10
ArcPT

Transition

ArcTP

Place

ArcPT

ArcTP

Place

Transition

ready to

TrName TrName

PlName

PlName

deliver

Syntax

Abstract

Syntax

Concrete
deliverproduce

ready to
produce

Token

Fig. 7. PT-SenteneVisual Sentene over the P/T Net Alphabetan be derived by applying grammar rules. In our graph grammar rules, we usein addition to the left-hand rule sides so-alled negative appliation onditions(NACs) whih restrit the appliation of a rule. An NAC is a graph ontaininga forbidden graph pattern. The rule must not be applied to a graph if there isa math from the NAC to the graph, i.e. the forbidden pattern is found in thegraph.In Def. exa:PN-VG2 we de�ne the syntax grammar for the P/T net language. Thisde�nition has to be �xed one and allows the generation of a syntax-diretededitor for arbitrary P/T nets (sentenes orresponding to the de�ned syntax ofthe language). We de�ne the insertion of the symbols Plae, Transition, ArPT,ArTP and Token, as well as their graphial relation.De�nition 2 (P/T Net Syntax Grammar).exa:PN-VG Fig. PN-lang8 illustrates a syntax grammar for our P/T net language whih is basedon the visual alphabet in Def. exa:VisPT1. In our P/T net grammar, the start senteneis empty. The �rst rule supports the insertion of a plae together with a plaename; the NAC requires that the plae with the user-de�ned name is not alreadyin the sentene where the rule is going to be applied to. The seond rule anal-ogously supports the insertion of a transition symbol. The next two rules allowfor the insertion of ars, either running from a plae to a transition (insArPT) orrunning from a transition to a plae (insArTP). The NACs forbid the appliationif there is already an ar. Last but not least, tokens an be inserted by applyingthe rule addToken. 4The appliation of a rule to a diagram G is obtained via a math morphismon the abstrat syntax level as explained in Setion 3.1-Review3.1. The derivation of theabstrat syntax of diagramH has to be extended by its onrete syntax aordingto the alphabet. The diagram-spei� Csp of H is derived from the Csp of thealphabet, and a Csp satisfation (a solution) is omputed. Fig. PT-RuleAppl9 illustratesthe appliation of the rule InsArPT . This rule allows the insertion of an ar



11

addToken

PlName

  Place

PlName

TrName  TransTrName

RL

  Place

 Trans

 Trans

ArcPT

ArcTPArcTP

  Place

 Trans

  Place

 Trans

tn

R

NAC

ArcPT

L R

  Place

NAC

 Trans

LNAC

NAC RL

insTrans(tn)

 Place

  Place

pn

 Trans

pn
insPlace(pn)

  Place

RL

  Place

 Place

pn

pn

Token

tntn

tn

 Trans

insArcPT

insArcTP

Fig. 8. PN-langVisual Syntax Grammar for the P/T Net Languagebetween a plae and a transition in our visual P/T net language. The math andrule morphisms are indiated by the numbers of orresponding nodes.A VL is generated by applying syntax grammar rules. The sentenes our-ring in the grammar as well as those whih are derived by applying grammarrules are typed over the orresponding visual alphabet. Hene, a VL is generatedby a VL spei�ation.De�nition 3 (Visual P/T Net Language).exa:PN-VL The visual P/T net language is given by the VL spei�ationP/T Net Spei�ation = (P/T Net Alphabet, P/T Net Syntax Grammar)where the P/T Net Alphabet has been de�ned in Def. exa:VisPT1, and the P/T NetSyntax Grammar is given in Def. exa:PN-VG2. 4The visual P/T net language as regarded so far is the basis to de�ne behaviorrules and domain-spei� animation views as explained in the following setion.



12

TrName

L

G

H

PlName

1:Token

2:Token

R

InsArcPT

m

TrName

p1
t2

PlName

1:Token

2:Token

p1
t2

1:Place

2:Transition1:Place

2:Transition

3:ArcPT

1:Place 2:Transition

3:ArcPT

2:Transition1:Place

Fig. 9. PT-RuleApplAppliation of the Rule InsArPT4 Animation of Petri Nets within GenGED4-Animation In order to bridge the gap between the underlying formal, desriptive spei�a-tion of a proess model (i.e. a Petri net) and a natural dynami visual represen-tation of proesses being simulated, we suggest the de�nition of an animationview for a visual proess model. On the one hand, this animation view has tobe readily omprehensible; people who are non-speialists in the modeling teh-nique of Petri nets should be able to observe funtional behavior of the model.On the other hand, the behavior shown in the animation view has to orrespondto the behavior de�ned in the original proess model. In Setion 4.1-Behavior4.1, we onsiderthe graph grammar based onepts for the behavior spei�ation of Petri nets.These onepts are explained along our Produer/Consumer net. Thereafter, inSetion se:AnimView4.2 we give guidelines for the spei�ation of an animation view for aspei� Petri net and present an appliation-spei� animation grammar for ourProduer/Consumer net. To ensure a onsistent mapping of the Petri net be-havior, we propose in Setion se:GenAV4.3 a graph grammar based view transformationfrom the Petri net to its animation view.4.1 Behavior of Petri Nets4.1-Behavior In Petri nets and similar visual proess models, two aspets an be onsidered.The �rst aspet onerns the topologial struture of the model, i.e., whih visualelements exist and how are they linked to eah other. The seond aspet onernsthe behavior of the modeled system, i.e., the ow of ontrol within proesses andthe ow of ommuniation between proesses. In the previous setion, we dealt



13with the visual spei�ation of the Petri net language, i.e. we spei�ed what aPetri net is, but not what it does. Therefore, in this setion we fous on simulatingthe dynami behavior of P/T nets by a visual grammar approah based on ourP/T net language.In the literature one an �nd several graph grammar based approahes forthe spei�ation of Petri net behavior: Shneider gSh94b[21℄ summarizes di�erent ap-proahes to de�ne the behavior of proess systems (e.g. Petri nets, event stru-tures and ators) by graph grammars. He states that graph grammars are wellsuited to desribe in a uniform way not only the syntatial struture of visualproess models but also their semanti properties. In Petri nets, the basi form ofa state transformation is the �ring of a transition. The straightforward tehniquefor behavior simulation therefore is playing the token game.One of the �rst who disussed the relationship between graph grammars andPetri nets is Kreowski gKre81[18℄. He assoiates a graph rule to eah transition, with therule being appliable if and only if the transition is allowed to �re. Tokens withina plae are modeled as a bundle of new nodes onneted to the node representingthe plae. This approah is able to handle both plaes with bounded apaityand plaes with unbounded apaity and an easily be extended to individualtokens.Parisi-Presie et al. gPEM87[20℄ use a strutured alphabet for labeling plaes withtokens. This alphabet has to allow hanges of node labels in rule morphisms.In the ase of high-level Petri nets, multiple and individual tokens an be rep-resented using multisets as labels and the multiset inlusion as the struture ofthe alphabet. A further step is to allow arbitrary ategories to label the plaes.In gBEE00[2℄, we modeled tokens in AHL nets as arbitrary algebrai data types whihare attributes of Token nodes.We onsider a Petri net as the set of all sentenes over the Petri net languagewith the same net struture whose markings are given by an initial marking andall possible suessor markings that an be reahed by arbitrary transition �ringsteps. The behavior of a P/T net is de�ned by a visual grammar, alled behaviorgrammar: the start sentene orresponds to the initial system state (the initialmarking), and the behavior rules apture all possible transition �ring steps inthe net. When onstruting a behavior grammar whose rules orrespond to �ringof the transitions of the net we have to ensure that{ a transition in the net is enabled if and only if the orresponding rule isappliable to the net,{ �ring a transition in the net orresponds to a derivation step in the grammarand vie versa.The token game then an be simulated by applying the rules of the grammar to aPetri net. The left-hand side de�nes the appliability ondition, i.e. the markingorresponding to the transition's pre-domain. The right-hand side desribes thee�et of the transition, i.e. the marking of the pre domain plaes is removed, andthe required tokens are added to the post domain plaes. This approah to Petrinet simulation an be applied to various types of low-level and high-level Petrinets (see e.g. gBEE01[4℄). For eah Petri net type, therefore, a spei� net's behavior



14grammar an be generated automatially aording to the Petri net type's �ringbehavior.Example 1 (Behavior Grammar for Produer/Consumer System).exa:beh Fig. PN-BehGrammar10 illustrates the behavior grammar for the Produer/Consumer System.The start graph is the initially marked net as depited in Fig. ProdCons2. Note that theP/T net behavior grammar is de�ned on top of the visual P/T net grammar ofour P/T net language using the same visual alphabet.
ready to

consume

remove
ready to

ready to
consume

remove
ready to

remove

L R

deliver

ready to

produce
ready to

L

deliver

R

deliver

ready to

produce
ready to

deliver

ready to

produce
ready to

filled
buffer

empty
buffer

filled
buffer

empty
buffer

R

produce

deliver

ready to

produce
ready to

L

ready to
consume

remove
ready to

L R

consume

ready to
consume

remove
ready to

buffer
filled filled

buffer

buffer
empty

buffer
emptyFig. 10. PN-BehGrammarBehavior Grammar for the Produer/Consumer Net �4.2 Animation Viewse:AnimView In our approah, both the Petri net and its animation view onsist of visualsentenes based on the same abstrat visual alphabet. They di�er in the onretesyntax, i.e. we de�ne di�erent layouts for the same underlying proess model. Wesuggest the following guidelines for the de�nition of an animation view layout forall symbols and links from a Petri net alphabet (like the alphabet from Fig. PT-Alphabet6):{ Plaes in a Petri net give meanings to tokens by de�ning their properties. Ina net-independent animation view, plaes are not needed any more beauseproperties of tokens now are inorporated in the onrete layout of the tokensthemselves. Therefore, we visualize plaes as symbols of the "�xed part"of the animation view, i.e. the part of the view whih is not hanged byanimation.{ The animated part onsists of the symbols whih are hanged during anima-tion and orresponds to the token game of the Petri net.



15{ Transitions are replaed by rule names in the animation view whih are theuser interfae to trigger a state transformation step orresponding to a �ringstep of the transition in the Petri net view.{ Ars in the Petri net have the funtion to de�ne the �ring behavior in astati way. They are not needed in the animation view as the behavior nowis de�ned by the animation rules and visualized by their appliation (theanimation). Thus, ars are not visualized in the animation view.Example 2 (Animation View).exa:AV-PC The Produer/Consumer net as illustrated in Fig. ProdCons2, is one sentene of our P/Tnet language we de�ned in Def. exa:PN-VL3. The animation view of this sentene has beenalready motivated by Fig. PC-AnimView3 where two people in a kithen are visualized. Theabstrat syntax of the alphabet of the animation view is equal to that of Fig. PT-Alphabet6but the onrete layout di�ers.The �xed part of the animation view onsists of the symbols for the motherstanding besides the stove (orresponding to the produer plaes ready to produeand ready to deliver), the table (the bu�er plaes bu�er �lled and bu�er empty) andthe hild sitting on a hair (the onsumer plaes ready to remove and ready toonsume). The tokens { orresponding to the animated part of the animationview { model the di�erent loations of a ake. A token on plae ready to produemeans that a ake may be taken out of the stove but is not yet to be seen. Inthe onrete syntax of the animation view, the token is marked as invisible. Thesame holds for tokens on the plaes bu�er empty (no ake on the table) and readyto remove (the hild has got no ake). Therefore, in the animation view of theinitially marked net (Fig. PC-AnimView3), no ake is to be seen.Fig. PC-AnimViewCake11 shows our net with the only possible suessor marking of the initialmarking. Here, a token lies on plae ready to deliver: the ake has been taken outof the stove and is visible in the animation view on top of the stove. Suessormarkings would be visualized by the ake put onto the table (token on plae bu�er�lled) and the ake on the lap of the hild (token on plae ready to onsume). Theabstrat syntax underlying both views (the Petri net and the animation view)also is depited in Fig. PC-AnimViewCake11, together with some of the respetive onnetions tothe di�erent layouts. �Based on the abstrat syntax, we de�ne the generation of an animation viewby grammar rules that transform all possible states of the Petri net into an appro-priate state of the animation view (view transformation rules). The generationof the animation view in Example exa:AV-PC2 is desribed in Setion se:GenAV4.3.The behavior of the system in the animation view is given by a set of ani-mation rules on the VL sentenes of the animation view. The abstrat syntaxof the animation rules equals the abstrat syntax of the behavior rules for thePetri net (see e.g. Example exa:beh1 for a behavior grammar of a spei� Petri net).We all the grammar ontaining the animation rules, the animation grammar.



16
ArcTP

ArcTP

ArcPT

ArcPT

PlName

PlacePlName

Place

PlName

Transition

ArcTP

TrName

Place

ArcPT

PlName
Place

ArcPT TrName

ArcTP

TrName

Place

ArcPT

PlName

Place

TrName

Transition Transition

ArcTP

Transition

ArcTP ArcPT

PlName

buffer

filled

remove
empty

produce

deliver

ready to

deliver

ready to

buffer

remove
consume

ready to
consume

produce
ready to

Token

TokenToken

Fig. 11. PC-AnimViewCakeVisual Syntax of the Animation View of the Petri Net Produer/ConsumerExample 3 (Animation Grammar).exa:AG-PC Fig. PC-AnimGrammar12 shows the animation grammar for our produer/onsumer system. Eahanimation rule orresponds to the behavior rule of the same name from thebehavior grammar in Fig. PN-BehGrammar10.
consumedeliver

produce
remove

Fig. 12. PC-AnimGrammarAnimation Grammar for the Produer/Consumer System �



174.3 Generating Animation Viewsse:GenAV The aim, of ourse, is to onstrut the animation grammar in a way that theanimation is onsistent to the behavior spei�ation. Therefore, we now de�nethe generation of an animation view by grammar rules that transform all possiblestates of the system model into an appropriate state of the animation view (viewtransformation rules). The view transformation rules must be de�ned by theanimation view designer. On the basis of these rules it is possible to enforeoherene between the behavior grammar of the original visual proess model(the Petri net) and the animation grammar of the animation view. The viewtransformation rules allow to transform the VL sentenes from the old layout tothe new layout and the behavior rules into the animation rules.In general, eah of the view transformation rules transforms a part of thePetri net to a part of the animation view by ombining elements of the abstratsyntax with new onrete syntax elements (i.e. by giving them a di�erent lay-out). The onrete syntax of the Petri net transitions, ars and the attributesis invisible in the animation view. After appliation of all view transformationrules in a suitable way, the VL sentene denoting the initially marked Petri netis transformed into a orresponding animation view.Formally, view transformation rules operate on the union of the visual syntaxof the Petri net and the visual syntax of its animation view beause both ofthem ontain di�erent graphis. In the following example, therefore, graphisfrom both onrete syntax de�nitions (net layout and animation view layout)are shown in the same rules.Example 4 (View Transformation Rules).exa:PC-TrafoGrammar Fig. PC-TrafoRules13 shows the view transformation rules needed for the generation of theanimation view depited in Fig. PC-AnimView3 from the Petri net depited in Fig. ProdCons2. Wede�ne a view transformation rule for eah part of the animation view that hasa symbol for an underlying �xed part, i.e. for the produer, the bu�er and theonsumer. Note that the layout of a token in the animation view depends on theplae it belongs to. For example, a token on plae bu�er �lled is shown as a akeon the table, whereas a token on plae bu�er empty is invisible in the animationview. In the view transformation rules in Fig. PC-TrafoRules13, the abstrat syntax remains,but the symbols are re-linked to the new animation view graphis as they areintrodued in the right-hand sides of the rules. �By applying the view transformation rules from the view transformationgrammar desribed in Example exa:PC-TrafoGrammar4 to the Petri net in Fig. ProdCons2, we generate theanimation view depited in Fig. PC-AnimView3. The behavior of a Petri net now an be trans-ferred onsistently to the animation view by applying the view transformationrules to the LHSs and RHSs of the behavior rules.Example 5 (Generating Animation Rules).exa:deriv.TL Fig. PC-DerivAnimRule14 illustrates the derivation of an animation rule by applying rules from thetransformation grammar in Fig. PC-TrafoRules13 to a behavior rule in Fig. PN-BehGrammar10. �



18

Place

PlName Place

PlName

Place

PlName PlacePlace

Place

Place

Place

Place

Place

PlName PlName

PlNamePlName

Place

Place

PlacePlName PlName

PlacePlace

PlNamePlName Place

PlName

Place

PlName

Place

PlName

PlNamePlName

PlName

Place

Place Place

PlName PlName

Place

PlName

PlName

Place

PlName

PlName PlName

Place

empty
buffer 

filled
buffer 

empty
buffer 

filled

buffer 

buffer 

filled
buffer 
empty Buffer1

gen-
produce

ready to

empty
buffer 

filled

buffer 

consume
ready to

deliver

gen-

produce ready to

deliver

ready to

produce

ready toready to

produce

gen-

ready to

gen-

Prod1

remove

remove
ready to

ready to

ready to

Prod2

ready to

deliver

ready to

deliver produce

remove
ready to

produce

consume

consume
ready to

remove

deliver

ready to 

ready to

deliver

ready to

remove
ready to

Cons1

gen-

Buffer2

ready to

consume

consume
ready to 

filled empty

ready to

consume

ready to

buffer 

ready to
remove

ready to

buffer 

buffer 
filled

buffer 
empty

gen-

Cons2

Token

Token

Token

Token
Token

Token

Token

Token

Token

Token

Token

Token

Fig. 13. PC-TrafoRulesView Transformation Rules for the Produer/Consumer System
deliver

ready to
ready to

deliver

gen-Buffer1

gen-Prod2

   for L:

Transformation Rules

gen-Buffer2

gen-Prod1

    for R:
Transformation Rules

deliver

Animation Rule 

produce
ready to

produce
ready to

filled
buffer

empty
buffer

filled
buffer

empty
buffer

deliver

RL

Behavior Rule

Fig. 14. PC-DerivAnimRuleDerivation of an Animation Rule with View Transformation Rules



19A �rst rough animation of the system an be performed by applying theanimation rules in the animation view of the system model. A nie extension ofthe approah towards a more sophistiated animation would be the presentationof system behavior not as disrete steps but as a movie ("smooth" animation),i.e. showing a series of intermediate states for the �ring of one transition. Withthis aim in mind, an animation framework as proposed in sWei00[22℄ ould be ombinedwith the GenGED environment.5 Implementation5-Implementation Aording to the onstituents of a VL-spei�ation, the GenGED environmentas skethed in Fig. GenGEdEnv15 omprises two major omponents: the Alphabet Editorand the Grammar Editor for the visual de�nition of VLs. From the VL de�ni-tion using these editors, a VL spei�ation is generated whih is the input ofthe Graphial Editor for syntax-direted diagram drawing. This means that thelanguage-spei� editing ommands of the Graphial Editor are given by thegrammar rules of the visual grammar. Hene, not only a VL is spei�ed but theVL-spei� Graphial Editor also. Note that we distinguish two kinds of users,namely users de�ning a VL (language-designer), and those who use a GraphialEditor.
<<uses>>

<<uses>>

<<uses>>

ARP CON

Editor

EditorAlphabet

Symbol
Editor

Connection

AGG
Graph Transformation System

Editor
Graphical

Constraint Solver

Grammar
Editor

Alphabet VL−Spec.

Tool Level

Machine LevelFig. 15. GenGEdEnvOverview about the GenGED environmentTo assure the graphially orret drawing, all GenGED editors use the on-straint solver ParCon sGri96[16℄. The transformation of diagrams via rule appliationin the Grammar Editor and the Graphial Editor is done by the graph transfor-mation system Agg gERT98[15℄. The GenGED environment is implemented in Java,so is the Agg system. The ParCon onstraint solver { implemented in C { isavailable for Linux and Solaris, thus GenGED runs on these two platforms.



205.1 The Visual SyntaxThe spei�ation of a Visual Alphabet is implemented as Alphabet Editor whihis a bundle of two sub-editors { the Symbol Editor and the Connetion Editor.A snapshot of the both the Symbol Editor and the Connetion Editor is shownin Figure AlphabetEditor16.

Fig. 16. AlphabetEditorThe Symbol Editor and the Connetion Editor of the Alphabet EditorIn the Symbol editor, the language elements are de�ned: For eah symboltype in the abstrat syntax the user gives a unique symbol name (e.g. Plae)and a symbol graphi (e.g. an ellipse) and possibly some symbol onstraints.For the de�nition of the symbol graphis, the Symbol Editor works similar towell-known vetor editors exept that the grouping of symbols is handled usinggraphial onstraints to onnet the primitives in a symbol graphi. Availableprimitives are e.g. lines, poly-lines, retangles, ellipses, images (GIF/JPEG) andtext. The primitives' properties like olor, line width or text properties an beedited, too. Attribute symbols appear as independent graphial objets in theSymbol Editor.The Connetion Editor supports the de�nition of links between symbols. Inorder to de�ne a link, the user an selet any two symbols as soure and targetof the link in the abstrat syntax (e.g. Plae and ArPT). A onstraint dialogsupports the de�nition of link onstraints in the onrete syntax.The de�nition of a visual syntax grammar is supported by the GrammarEditor available in the GenGED environment. The Grammar Editor gets analphabet as input. From this input, so-alled alphabet rules are generated de�n-ing the editing ommands of the Grammar Editor. The set of alphabet rulesomprises rules for the insertion and deletion of symbols. In the snapshot of theGrammar Editor shown in Fig. SyntaxGramEditor17 one an see the alphabet rule for the insertionof a transition name in the upper part.The lower part of the Grammar Editor denotes the working areas : here webuild the start diagram, and the LHS and RHS (or LHS and NACs, respetively)



21

Fig. 17. SyntaxGramEditorGrammar Editorof a VL-rule, add mappings between the two rule sides and edit the rule param-eters. Applying a rule with rule parameter to a diagram in one of the workingareas, the user is �rst asked to de�ne the math morphism, i.e., to map the sym-bols of the rule's LHS to type-onsistent symbols in the diagram. Then, the userhas to give a value (or a variable) for the parameter suh that the expressionsin the RHS an be evaluated during transformation.The next step is to export the set of VL-rules and the start diagram intoa visual language grammar2. Then, the Graphi Editor uses the grammar rulesto provide the language-spei� editing ommands. Fig. PN-VLeditor18 shows the generatedGraphi Editor where our Produer/Consumer Petri net is drawn in the editpanel using the visual grammar rules of the syntax grammar. The syntax gram-mar rules an be seleted in the tree view at the left-hand side in order to editsymbols.5.2 Behavior and AnimationIt is possible to generate behavior rules for arbitrary Petri nets automatiallyaording to the general de�nition of �ring transitions in nets of the spei�Petri net lass. (For the lass of AHL nets see pBEP02[5℄). The algorithm for generatingbehavior rules for Elementary nets is skethed in Def. def.en2agg4. It will be used forthe implementation of our simulation and animation onepts in the GenGEDenvironment. Then, for the well-known Petri net types, it is not neessary forthe user to speify the behavior for eah spei� net. Instead, the behavior rulesfor the transitions of a net an be generated by the tool.2 The alphabet is added automatially, so in fat we export a VL-spei�ation.



22

Fig. 18. PN-VLeditorGraphi Editor for Petri netsDe�nition 4 (Translation of Elementary Nets to Graph Grammars).def.en2agg Eah transition t 2 T is translated to an attributed graph grammar rule rt :Lt ! Rt. The attributed graphs in the LHS Lt and the RHS Rt of suh a ruleboth ontain nodes for all plaes in the pre and post domain of t. In Lt, the plaesin the post domain are not marked. The marking of the pre domain plaes pi isomputed as follows:for eah ar a : pi ! tgenerate a Token vertex;onnet the Token vertex by an edge of type tok to plae pi;Analogously, in Rt, only plaes in the post domain pj beome marked:for eah ar a : t! pjgenerate a Token vertex;onnet the Token vertex by an edge of type tok to plae pj ;Moreover, an NAC is added to the rule rt : Lt ! Rt ontaining the plaesfrom the post domain post(t) marked by one token eah. This NAC ensures thatthe rule is applied only if the plaes in the post domain of the transition areunmarked. 4As the automati generation of behavior rules is not yet implemented in theGenGED environment, we de�ne them in the same way as the syntax rules: Forthe de�nition of Petri net behavior, again the Grammar Editor is started. Afterediting the behavior rules the Petri net simulator (similar to the Graphi Editor



23but with behavior rules instead of syntax rules) is generated. Fig. PN-Simulator19 illustratesthe simulator for our Produer/Consumer net. Applying a rule this time meansto simulate the �ring of a transition. In the sreenshot, rule produe is seletedand the math is indiated by equal numbers for orresponding objets. Theappliation of the rule removes the token from the plae ready to produe andadds a new token to the plae ready to deliver.

Fig. 19. PN-SimulatorSimulator for the Produer/Consumer Net
In the orresponding animation grammar the animation rules have the layoutof the animation view. The implementation of support for de�ning the viewtransformation grammar is still work in progress. Here, we need a user interfaeallowing the animation view designer to de�ne the view transformation rules.These rules are to be applied suitably (in a user-ontrolled order) to the LHSsand RHSs of eah behavior rule. Thus, the view transformation interfae has tosupport the appliation of rules to rules in order to generate animation rules frombehavior rules. Moreover, we need to de�ne rule onstraints to ensure spei�layouts for symbol onnetions whih are valid only if a spei� rule is applied.For instane, in the Produer/Consumer animation view, the ake symbol isplaed on top of the table symbol when applying rule deliver, but it is plaedon top of the stove symbol when applying rule produe. Fig. Animation20 illustrates thedesired animation view interfae.



24

Fig. 20. AnimationAnimation View for the Produer/Consumer Net6 Conlusion6-Conlusion We have presented the GenGED approah supporting the generi desription ofvisual languages and provided onepts for an extension of GenGED in orderto allow the desription and implementation of appliation-spei� animationviews for ommuniation-based systems modeled as Petri nets. An animation ofthe Petri net behavior then shows diretly the state transitions in the layout ofthe appliation domain. An animation view is realized by graphial ions or-responding to parts of the system. During animation, some ions are hangedaording to the seleted state transition. GenGED is based on graph trans-formation. This provides a natural formal basis to express Petri nets and theiranimation views as graphs, whereas the behavior of the model (i.e. transition�ring steps resp. state transitions in the animation view) an be formalized asgraph grammars.A spei�ation of a spei� Petri net type has to be provided one as visuallanguage spei�ation (graphial symbols and syntax rules) and allows the gen-eration of a graphial editor for arbitrary nets of the spei�ed Petri net type.The spei�ations of di�erent Petri net types all have the same basis (plaes,transitions, ars and tokens as symbols) and only di�er in the representation oftokens (blak dots or strings) and in their �ring rule.The behavior grammar for a spei� Petri net an be generated automatiallyaording to the �ring rule of the orresponding net type: Eah transition isonverted to a graph grammar rule whose left/right-hand side orresponds tothe transition's pre/post domain.



25The designer of an animation view therefore only has to speify the orrespon-dene of tokens to ions from the animation view representing the appliationdomain. This relation of a Petri net and its animation view is de�ned as viewtransformation graph grammar and allows to map the behavior of the Petri netonsistently to the animation view. Due to the generi and modular de�nitionof syntax, behavior and animation for di�erent Petri net types, the presentedframework redues onsiderably the amount of work to realize an appliation-domain animation of a system modeled as a spei� Petri net.It remains to develop a formal theory to handle behavior and animation ofvisual proess models in general (i.e. overing other Petri net lasses and model-ing tehniques like stateharts or message sequene harts). The theory shouldinlude formal de�nitions for an automati generation of behavior rules for well-known Petri net lasses and a formal transformation of the states and behaviorrules of a general visual proess model into is animation view. Implementationalwork is still in progress, i.e., onerning the user interfae for de�ning viewtransformation rules, rule onstraints and the mapping of rules to rules.Within the Petri Net Baukasten pWER+02[11℄ the proposed animation framework willbe an extension of the funtionality provided by the Petri net tool infrastruturePNK and by the external tools integrated over the PNK. In order to o�er thefeatures of the extended GenGED tool environment to PNK users, an XMLonversion between the XML �le interhange formats of the PNK and GenGEDhas been implemented pEBE01,sKEhr01[13, 12℄. Thus, it beomes possible on the one hand touse the editing, simulation and analysis features provided by the PNK and onthe other hand to have a visual environment for the de�nition of domain-spei�animation views for Petri nets provided by GenGED.ReferenesgBar00 [1℄ R. Bardohl. GenGEd { Visual De�nition of Visual Languages based on AlgebraiGraph Transformation. Verlag Dr. Kova, 2000. PhD thesis, Tehnial Universityof Berlin, Dept. of Computer Siene, 1999.gBEE00 [2℄ R. Bardohl, H. Ehrig, and C. Ermel. Generi Desription, Behaviour and Ani-mation of Visual Modeling Languages. In Pro. Integrated Design and ProessTehnology (IDPT 2000), Dallas (Texas), USA, June 2000.gBE01a [3℄ R. Bardohl and C. Ermel. Visual Spei�ation and Parsing of a Statehart Variantusing GenGEd. In Pro. Symposium on Visual Languages and Formal Methods(VLFM'01), Stresa, Italy, September 5{7 2001.gBEE01 [4℄ R. Bardohl, C. Ermel, and H. Ehrig. Generi Desription of Syntax, Behavior andAnimation of Visual Models. TR 2001/19, TU Berlin, 2001. ISSN 1436-9915.pBEP02 [5℄ R. Bardohl, C. Ermel, and J. Padberg. Formal Relationship between Petri Netsand Graph Grammars as Basis for Animation Views in GenGED. In Pro. IDPT2002: Sixth World Conferene on Integrated Design and Proess Tehnology, 2002.To appear.gBER00a [6℄ R. Bardohl, C. Ermel, and L. Ribeiro. Towards Visual Spei�ation and An-imation of Petri Net Based Models. In Pro. GRATRA 2000 - Joint APPLI-GRAPH and GETGRATS Workshop on Graph Transformation Systems, pages22{31. Tehnishe Universit�at Berlin, Marh 2000.



26gBNS00 [7℄ R. Bardohl, M. Niemann, and M. Shwarze. GenGEd { A Development Environ-ment for Visual Languages. In Int. Workshop on Appliations of Graph Trans-formations with Industrial Relevane (AGTIVE'99), LNCS 1779, pages 233{240.Springer, 2000.gBST01 [8℄ R. Bardohl, T. Shultzke, and G. Taentzer. Visual Language Parsing in GenGEd.Eletroni Notes of Theoretial Computer Siene, Vol. 50, No. 3, June 12{13 2001.gCM95 [9℄ A. Corradini and U. Montanari. Spei�ation of Conurrent Systems: From PetriNets to Graph Grammars. In G. Hommel, editor, Pro. Workshop on Quality ofCommuniation-Based Systems, Berlin, Germany. Kluwer, 1995.gEHK+97 [10℄ H. Ehrig, R. Hekel, M. Kor�, M. L�owe, L. Ribeiro, A. Wagner, and A. Corradini.Algebrai Approahes to Graph Transformation II: Single Pushout Approah andComparison with Double Pushout Approah. In G. Rozenberg, editor, Hand-book of Graph Grammars and Computing by Graph Transformation, Volume 1:Foundations, hapter 4, pages 247{312. World Sienti�, 1997.pWER+02 [11℄ H. Ehrig, W. Reisig, and H. Weber et al. The Petri Net Baukasten of the DFG-Forshergruppe PETRI NET TECHNOLOGY. In this Volume.sKEhr01 [12℄ K. Ehrig. Converting XML Files with XSLT and XPath, http://tfs.s.tu-berlin.de/lehre/SS01/gragra.html, 2001. Student's Projet Status Report.pEBE01 [13℄ C. Ermel, R. Bardohl, and H. Ehrig. Spei�ation and Implementation of Anima-tion Views for Petri Nets. In Weber et al., editors. 2nd Int. Colloquium on PetriNet Tehnologies for Modelling Communiation Based Systems, Berlin, Germany,Sept. 2001. Fraunhofer Gesellshaft ISST, pages 75{92.gEBP01 [14℄ C. Ermel, R. Bardohl, and J. Padberg. Visual Design of Software Arhite-ture and Evolution based on Graph Transformation. In Int. Workshop on Uni-form Approahes to Graphial Proess Spei�ation Tehniques (UNIGRA'01), atETAPS'01, 2001. Eletroni Notes in Theoretial Computer Siene, Vol. 44, No.4.gERT98 [15℄ C. Ermel, M. Rudolf, and G. Taentzer. The AGG-Approah: Language and ToolEnvironment. In H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg, editors,Handbook of Graph Grammars and Computing by Graph Transformation, volume2: Appliations, Languages and Tools, pages 551{603. World Sienti�, 1999.sGri96 [16℄ P. Griebel. Paralleles L�osen von gra�shen Constraints. PhD thesis, Universityof Paderborn, Germany, February 1996.gKR95a [17℄ M. Kor� and L. Ribeiro. Formal Relationship between Graph Grammars andPetri nets. In 5th Int. Workshop on Graph Grammars and their Appliation toComputer Siene, Williamsburg '94, LNCS 1073, pages 288 { 303. Springer, 1995.gKre81 [18℄ H.-J. Kreowski. A Comparison between Petri-nets and Graph Grammars. InLNCS 100, pages 1{19. Springer Verlag, 1981.gLow93 [19℄ M. L�owe. Algebrai Approah to Single-Pushout Graph Transformation. TCS,109:181{224, 1993.gPEM87 [20℄ F. Parisi-Presie, H. Ehrig, and U. Montanari. Graph Rewriting with Uni�-ation and Composition. In 3rd Int. Workshop on Graph Grammars and theirAppliation to Computer Siene, LNCS 291, Berlin, 1987. Springer Verlag.gSh94b [21℄ H. J. Shneider. Graph Grammars as a Tool to De�ne the Behaviour of Pro-ess Systems: From Petri Nets to Linda. In Pro. Fifth International Workshopon Graph Grammars and their Appliation to Computer Siene, pages 7{12,Williamsburg, Va., USA, 1994.sWei00 [22℄ C. Weidauer. Animations-Framework in Java. Systematishe Animationsentwik-lung mit Mehrshihtenarhitektur. Informatik - Forshung und Entwiklung,Band 15, Heft 2, pages 83 {91, June 2000.


