
Generation of Animation Views for Petri Netsin GenGED?Claudia Ermel, Roswitha Bardohl, and Hartmut EhrigInstitut f�ur Theoretis
he Informatik und Softwarete
hnik,Te
hnis
he Universit�at Berlin,Email: flieske,rosi,ehrigg�
s.tu-berlin.de,WWW home page: http://tfs.
s.tu-berlin.deAbstra
t. Formal spe
i�
ation te
hniques like Petri nets allow for theformal des
ription and analysis of systems. Tool support exists for manydi�erent Petri net
lasses for editing, simulating and analyzing formalmodels. A domain-spe
i�
 animation of net behavior going beyond thewell-known token game, however, is not yet supported in most
ases. Inthis paper, we present a formal approa
h for the generi
 spe
i�
ation ofanimation views for di�erent Petri net
lasses based on GenGED andgraph transformation.The GenGED approa
h, developed at the TU Berlin, allows for thegeneri
 des
ription of visual modeling languages in
luding di�erent Petrinet
lasses. In our framework, the animation view of a system modeled asa Petri net
onsists of a domain-spe
i�
 visual layout and an animationview a

ording to the �ring behavior of the Petri net
lass. The basi
idea is to generate visual animation rules based on visual syntax rulesde�ning the
orresponding Petri net language. We propose a view trans-formation from the
lassi
al Petri net layout to the animation layout.The well-known produ
er/
onsumer system modeled as an elementaryPetri net serves as running example. We provide an animation view forthe appli
ation domain kit
hen where produ
ing and
onsuming is visu-alized by i
ons for baking and eating
akes, respe
tively.1 Introdu
tion1-Intro The use of visual modeling te
hniques today is indispensable in software systemspe
i�
ation and development. Espe
ially, spe
i�
ation te
hniques for
ommu-ni
ation-based systems must provide means for modeling distributed systemsand
on
urrent behavior. Petri nets allow already the formal spe
i�
ation andanalysis of
on
urrent or distributed systems and the visual des
ription of netmodels by the graphi
al notation of nets. This kind of graphi
al visualization ofnets, however, is not always suÆ
ient.? This work is supported by the joint resear
h proje
t \DFG-Fors
hergruppe PetriNet Te
hnology" (H. Weber, Coordinator) at TU Berlin and HU Berlin and bythe proje
t Graphit (DLR, Germany / CNPq, Brazil).

2 In order to support an intuitive understanding of Petri net behavior, espe-
ially for non-Petri net experts, it is desirable to have a layout of the modelin the appli
ation domain. However, there are no spe
i�
 tools to support anappli
ation-spe
i�
 layout of system states and transformations modeled by Petrinets. Moreover, a formal relationship between the system model based on Petrinets and a
orresponding layout of the model as i
ons from the appli
ation do-main is missing. Su
h a support,
alled animation view for Petri nets in ourframework, is presented in this paper based on our general framework for an-imation of visual languages in gBEE00,gBEE01[2, 4℄ and in pEBE01[13℄. The animation view showsdire
tly the states and dynami

hanges of a system. In our sample appli
ationdomain of a kit
hen, the animation view of the well-known produ
er/
onsumersystem visualizes produ
ing as baking and
onsuming as eating
akes. Our pa-per is based on a generi
 approa
h how to visualize behavior and animation of asystem given as a diagram of a spe
i�
 visual language (VL) whi
h de�nes e.g. aPetri net
lass. For this purpose, we use GenGED gBar00[1℄ as generi
 des
ription ofVLs, espe
ially we
onsider di�erent types of Petri nets (low-level and high-levelPetri nets).The GenGED approa
h is based on algebrai
 graph transformation andgraphi
al
onstraint solving te
hniques and tools gBar00,gERT98,sGri96[1, 15, 16℄ and has been su
-
essfully applied to a variety of VLs, in
luding di�erent versions of UML
lassdiagrams, Nassi-Shneiderman diagrams, state
harts as well as low-level and high-level Petri nets gBST01,gBar00,gBE01a,gBER00a,gBEE00[8, 1, 3, 6, 2℄. The
orresponding visual environment gBar00,gBNS00[1, 7℄ sup-ports the generi
 des
ription of VLs and the generation of language-spe
i�
graphi
al editors.Our approa
h to de�ne the animation of Petri nets relies on the formal basisof GenGED for spe
ifying VLs, in
luding visual modeling te
hniques like Petrinets. In order to
larify the ne
essities for su
h des
riptions let us take a
loserlook on diagrams like those shown in Figure f.VMTs1. On the one hand, we have somegraphi
al symbols like
lasses and asso
iations in a UML
lass diagram or likepla
es, transitions and ar
s in a Petri net. On the other hand, there are spatialrelations between symbols, e.g. an asso
iation arrow must start at the border ofa
lass symbol, or an ar
 in a Petri net always
onne
ts a pla
e and a transition.In analogy to formal textual languages, for a spe
i�
 VL an alphabet is de�nedover whi
h senten
es (diagrams),
an be
onstru
ted. This visual alphabet
ap-tures all information about symbols, their relations and layout
onditions. Yet,it is not suÆ
ient to
onstru
t diagrams over an alphabet. In this
ase, therewould be diagrams with illegal synta
ti
al
onstellations (like multiple tokens onone pla
e in a diagram over an alphabet for elementary Petri nets). Thus, likein formal textual languages, we have to give some rules de�ning the generationof synta
ti
ally legal diagrams over an alphabet. Together with a start diagram,these rules form a syntax grammar. The alphabet and the grammar of a VLestablish a VL spe
i�
ation over whi
h diagrams
an be generated. Using graphgrammars as underlying formal basis, we have a natural visual formalism for

3
Nassi-Shneiderman

Diagram

L1 L2

C2C1
after(C1) after(C2)

switch

red1 red-yellow

AHL Net

Class Diagram Statechart

while x>1

x := 3x-1x := x/2

y

input x

nx even ?

Company

T

V
S

U

a

b

cd

works_for

Job Tasks

Employee

Fig. 1. f.VMTsDiagrams from Visual Languages
the de�nition of VLs. Moreover, the well-de�ned
on
epts of VL spe
i�
ationsin GenGED o�er the basis for the spe
i�
ation of animation.The behavior of a Petri net is given in our proposed GenGED framework bya set of behavior rules whi
h
orrespond to the �ring behavior of the transitions(pBEP02,gCM95,gKR95a[5, 9, 17℄). An animation view for a Petri net basi
ally is de�ned by a newlayout of the Petri net tokens in ea
h marking, i.e. a
ombination of suitablei
ons a

ording to the spe
i�
 appli
ation domain of the model. Additionally,the behavior rules modeling the �ring behavior are transformed into animationrules for the animation view de�ning the state transitions of the system in thenew animation layout. In order to have
ompatibility with the behavior rules, wede�ne view transformation rules leading from the behavior rules to the anima-tion rules of the animation view. In the
ase of our simple produ
er/
onsumerexample, the animation rules dire
tly de�ne the produ
tion and
onsumption of
akes in the kit
hen.The paper is organized as follows: In Se
tion 2-Example2 we introdu
e our runningexample, a produ
er/
onsumer system spe
i�ed as elementary Petri net. Wepresent an animation view of the system in the domain of a kit
hen wheretwo persons are baking (produ
ing) and eating (
onsuming)
akes, respe
tively.Se
tion 3-GenGEd3 at �rst reviews the formal spe
i�
ation te
hnique of algebrai
 graphgrammars. Then we go into more detail and explain the GenGED approa
happlying its
on
epts to the spe
i�
ation of the visual syntax of a Petri netlanguage. The GenGED framework is extended to in
orporate the spe
i�
ationof behavior and animation of Petri nets in our main se
tion 4-Animation4. The
urrent stateof the implementation of the
on
epts in the GenGED environment is sket
hedin Se
tion 5-Implementation5.

42 Example: A Produ
er/Consumer System2-Example As running example for the formal spe
i�
ation of a system model and its anima-tion view, we use the well-known spe
i�
ation of a produ
er/
onsumer systemas elementary Petri net. This example is (like the reader/writer proto
ol) one ofthe basi
 models for
ommuni
ation-based systems: two independent agents (theprodu
er and the
onsumer)
ommuni
ate via a
hannel (the bu�er). The pro-du
er sends messages (writes) to the
hannel, and the
onsumer re
eives (reads)them from the
hannel. Rather than visualizing the
ow (reading/writing) ofmessages, we suggest an animation view where real goods are produ
ed and
onsumed. Thus, the underlying idea is visualized in a more
on
rete way.The visual language (VL) we spe
ify by using theGenGED approa
h de�nesthe
ommon graphi
al representation of elementary nets.Fig. ProdCons2 shows the Petri net modeling the behavior of a produ
er who is produ
-ing and delivering goods, and a
lient (
onsumer) who is removing the goods froma bu�er and
onsuming them. The pla
es modeling the di�erent bu�er states onthe one hand ensure that goods are delivered only if the
onsumer needs them(the bu�er is empty). On the other hand, the
onsumer
an
onsume a newgood only if the bu�er was �lled by the produ
er in advan
e. The left subnet
onsisting of the pla
es ready to deliver and ready to produ
e and the transitionsprodu
e and deliver is the spe
i�
ation part
orresponding to the produ
er. Anal-ogously, the right subnet (the pla
es ready to
onsume and ready to remove andthe transitions remove and
onsume)
orresponds to the
onsumer. The pla
esbu�er �lled and bu�er empty and the ar
s to the produ
er and
onsumer subnetsmodel the bu�er, i.e. the interfa
e between produ
er and
onsumer.
produce

deliver

ready to

deliver

filled
buffer

empty
buffer

remove
consume

ready to
consume

remove
ready to

produce
ready toFig. 2. ProdConsElementary Net Produ
er/ConsumerA possible animation view of the net is illustrated in Fig. PC-AnimView3. The produ
erand the
onsumer are visualized as symbols representing a mother and her
hildin a kit
hen. The mother is produ
ing
akes and the
hild is
onsuming them.The produ
er subnet
orresponds to the mother standing near the stovebaking (produ
ing)
akes, and putting (delivering) them onto the table (thebu�er), whereas the
onsumer subnet is visualized as a
hild taking (removing)the
akes from the table and eating (
onsuming) them. As the Petri net markingmodels a state of the system where both produ
er and
onsumer are ready

5
Fig. 3. PC-AnimViewAnimation View for Produ
er/Consumer(waiting) to produ
e respe
tively
onsume, and the bu�er is empty, there is no
ake to be seen in our animation view, but the mother is ready to produ
e one,and the
hild is waiting for it.The transitions of the Petri net in Fig. ProdCons2 are not visualized in the animationview. In the user interfa
e of the GenGED environment they
orrespond toanimation rules visualized in an extra menu (see Se
tion 5-Implementation5). The animation thenis triggered by the user who sele
ts an animation rule whereupon an a
tion isperformed (if the respe
tive transition is enabled in the
orresponding Petri netmarking). Thus the behavior of the Petri net (the token game)
an be simulatedin the animation view.Of
ourse, di�erent animations for the same system model are feasible. Forexample,
ommuni
ation between two partners in general might be visualizedby spe
ial symbols for requests and answers, or by animating the
ontents of amessage appropriately.3 De�ning Petri Net Languages within GenGED3-GenGEd In this se
tion we review the basi

on
epts used for generi
 des
ription of syntax,behavior and animation of Petri nets using GenGED. In general these basi

on
epts are given by algebrai
 graph transformation whi
h is brie
y introdu
edin Se
tion 3.1-Review3.1. In the GenGED approa
h graph transformation is applied tothe generi
 des
ription of visual languages (VLs)
onsisting of a visual alphabetand a visual grammar. We review the GenGED
on
epts with the fo
us onthe spe
i�
ation of a pla
e/transition Petri net language: in Se
tion alphabet3.2 we givea visual alphabet of Petri nets, and in Se
tion grammar3.3 we propose a visual syntaxgrammar whi
h is based on the visual alphabet.3.1 Review of Graph Transformation3.1-Review InGenGED, diagrams as the Petri net in Fig. ProdCons2 are visual senten
es of a VL, i.e.they
onsist of an abstra
t syntax level (the symbols and links) and a
on
retesyntax level (their layout). Diagrams are formalized as attributed graph stru
-tures, a generalization of attributed graphs. Attributed graph stru
tures allow tode�ne arbitrary graphi
al symbols as sorts and their
onne
tions as operations ina
orresponding attributed graph stru
ture signature. The formalization of ruleappli
ations as
ategori
al pushout
onstru
tion in the
ategory of attributed

6graph stru
tures is slightly di�erent to the
onstru
tion for graphs and allowsa
leaner separation of operations on graphs and data type attributes. In thispaper, it is suÆ
ient to keep in mind that all attributed graphs are attributedgraph stru
tures and that the transformation of visual senten
es by rules ofa visual grammar works in a way similar to attributed graph transformation.Hen
e, in this se
tion we review the main
on
epts of attributed graph trans-formation gLow93[19℄ as they are used within GenGED. A detailed dis
ourse on theformal ba
kgrounds
an be found in gBar00[1℄.We illustrate the use of attributed graph grammars in GenGED by spe
-ifying simple pla
e/transition nets (P/T nets) as graphs and sket
hing theirmanipulation as graph rules. Our P/T nets allow multiple bla
k tokens for ea
hpla
e, but restri
t the ar
 weight to one for all ar
s, therefore we have no ar
ins
riptions in a net. The sample elementary net in Fig. ProdCons2 then
an be expressedas a senten
e of our spe
i�ed P/T net language.In the theory of algebrai
 graph transformation, a graph is given by twodisjoint sets (graph obje
ts),
alled nodes (verti
es) and edges (dire
ted ar
s)from a sour
e node to a target node. Every graph obje
t is typed over a typegraph. Fig. typegraph4 (a) represents a graph with six nodes and �ve ar
s (between them).The nodes are of type Pla
e (white
ir
les), Transition (re
tangles) and Token(bla
k dots). The ar
s representing Petri net ar
s are of type Ar
PT and Ar
TP(solid lines), whereas tokens belonging to a pla
e are represented by Token nodes
onne
ted to a Pla
e node by ar
s of type tk. The
orresponding type graph isshown in Fig. typegraph4 (b). Here, the nodes and ar
s represent the types themselves,whereas the graph obje
ts in Fig. typegraph4 (a)
an be seen as instan
es of these types.Note that the type graph poses some restri
tions on possible instan
es as, e.g.instan
es must not have ar
s
onne
ting two pla
es or two transitions.
p2t

(a)

p1

(b)

tk
ArcTP

Token
trName

StringString

plName

ArcPTPlace Transition

Fig. 4. typegraphA Graph (a) typed over the Type Graph (b)Nodes and ar
s may be additionally labeled by attributes whi
h are usedto store data together with the graph obje
ts. In this paper we will only useattributes for nodes. In the type graph attributes are denoted by an edge
arryingan attribute type name
onne
ting a node to its attribute type (a set). In theinstan
e graphs an attribute edge will
onne
t a node with the
urrent value ofthat attribute. In Fig. typegraph4, the type graph (b) spe
i�es that a Pla
e node
ontainsan attribute named plName of data type String denoting the name of a pla
e.In the instan
e graph (a) the value of this attribute is a
on
rete name forea
h pla
e. We allow abstra
t data types for attributes, i.e. we
onsider notonly the sets of types, but also operations on these types. In parti
ular, the use

7of abstra
t data types allows us to use variables and terms as attributes (by
hoosing a term algebra as attribute algebra). As we will see later on, this isuseful for a spe
i�
ation of behavior as graph grammar.A relationship between two graphs
an be expressed by a graph morphismg whi
h maps the nodes and ar
s of the �rst graph G to nodes and ar
s of these
ond graphH , denoted by g : G! H . The graph obje
ts in G are
alled originsand in H images. The mappings have to be type
ompatible (nodes and ar
s aremapped to nodes and ar
s of the same type) and
ompatible with stru
ture (thesour
e/target node of an ar
 is mapped to the sour
e/target node of the ar
'simage). Attribute values (if any) also have to
oin
ide.Graph transformation de�nes a rule-based manipulation of graphs1. Graphgrammars (
onsisting of a start graph and a set of graph rules) generalize Chom-sky grammars from strings to graphs. The start graph represents the initial stateof the system, whereas the set of rules des
ribes the possible state
hanges that
an o

ur in the system. A rule
omprises two graphs: a left-hand side L (orLHS) and a right-hand side R (or RHS), and a graph morphism r : L ! Rbetween the graph obje
ts of L and R. Graph obje
ts in L whi
h do not havean image via r in R are deleted; graph obje
ts in R without original in L are
reated, and graph obje
ts in L whi
h are mapped to R by r are preserved bythe rule.The appli
ation of a rule to a graph G (derivation) requires a mapping fromthe rule's left-hand side L to this graph G. This mapping,
alled mat
h, is agraph morphism m : L ! G. A mat
h marks the graph obje
ts in the workinggraph that parti
ipate in the rule appli
ation, namely the graph obje
ts in theimage of m. The rule appli
ation itself
onsists of three steps. First, the graphobje
ts marked in the rule for deletion are deleted. Thereafter, the new graphobje
ts are appended to the graph. As a last step, all dangling ar
s are deletedfrom the graph. The graph transformation results in a transformed graph H .Fig. graphruleappl5 shows the appli
ation of a rule inserting an ar
 between a pla
e and atransition to a graph G representing a Petri net. The resulting graph H
ontainsthe Petri net after the appli
ation of the rule, i.e. the ar
 has been inserted.
L R

match

rule

G HFig. 5. graphruleapplAppli
ation of a Graph RuleRules may
ontain variables and terms as attributes. Using attributed graphs,the attribute values or variables of the rule's left-hand side have to mat
h as1 We here follow the Algebrai
 Single-Pushout approa
h to graph grammars gLow93,gEHK+97[19, 10℄.

8well. An attribute variable is bound to an attribute value in the mapped graphobje
t by the mat
h. In the transformed graph, the attribute values are evaluateddepending on the rule's right-hand side and result in a
onstant value.The GenGED approa
h allows the generi
 des
ription of visual languagesbased on VL spe
i�
ations. A VL spe
i�
ation
onsists of a visual alphabet ofpi
torial obje
ts and a visual syntax grammar. VL senten
es (diagrams)
an bederived from the start graph by applying the grammar rules.3.2 The Visual Alphabetalphabet In general, a diagram
onsists of a set of symbol graphi
s that are spatiallyrelated. We o�er graphi
al
onstraints for these spatial relationships,
alled link
onstraints. Symbol graphi
s and link
onstraints
on
ern the layout of diagrams,
alled
on
rete syntax. The logi
al part of diagrams is
alled abstra
t syntax. The
ombination of both synta
ti
al levels is
alled visual syntax level and
an berepresented by attributed graphs.A visual alphabet establishes a type system for symbols and links, i.e. it de�nesthe vo
abulary of a VL. Note that in an alphabet, the symbol and link typeshave to be unique as well as the link ar
s have to be a
y
li
.Symbol graphi
s and graphi
al
onstraints spe
ify layout
onditions. In ad-dition to logi
al (node) attributes as
onsidered in Se
tion 3.1-Review3.1, symbol graph-i
s de�ne a further kind of attributes for all abstra
t symbol nodes. Graphi
al
onstraints spe
ify layout
onditions. They are given by (in-)equations over
on-straint variables denoting the positions and sizes of graphi
al obje
ts. For exam-ple, the
onstraint "point p1 lies always to the left of point p2"
an be expressedas in-equation p1.x � p2.x over the x
oordinates of both points. The set ofall
onstraint variables and
onstraints de�ne a
onstraint satisfa
tion problem(Csp) that has to be solved by an adequate variable binding in a diagram overthe alphabet.De�nition 1 (Visual P/T Net Alphabet).exa:VisPT The visual alphabet of the P/T net language,
alled P/T net alphabet, is brie
yillustrated as a graph in Fig. PT-Alphabet6. We use re
tangles for the abstra
t syntax of lexi
alsymbols and rounded re
tangles for the abstra
t syntax of attribute symbols. Thedashed arrows mark the
onne
tions of the abstra
t syntax and the
on
retesyntax level.In the P/T net alphabet, the attribute symbol for the pla
e name is
alledPlName and linked by pn to the lexi
al symbol Pla
e. The attribute symbol forthe transition name is
alled TrName and linked by tn to the lexi
al symbolTransition. Ea
h name is given by a String data type that is to be written ina
ertain text font and text size. We distinguish ar
s that run from pla
es totransitions (Ar
PT) and ar
s that run from transitions to pla
es (Ar
TP). Bothkinds of ar
s have a
ertain sour
e and target symbol where they are linked to(depi
ted by the edges spt, tpt, ttp, stp, short for sour
e/target of pla
e-transitionar
 resp. transition-pla
e ar
).

9
Transition

String

ArcTP

Place

String

pn

spt ArcPT

stp

tpt

ttp
tok

Concrete

Syntax

Abstract

Syntax
TrNamePlName

tn

aop

Token

aop

String,12pt,HelveticaString,12pt,HelveticaFig. 6. PT-AlphabetAbstra
t and Con
rete Syntax of the P/T Net AlphabetSome link
onstraints are illustrated by dotted arrows between the symbollayouts. The
onstraints for
e a spe
i�
 layout of diagrams typed over the visualalphabet. For example, one
onstraint ensures that the pla
e name is always\near" the ellipse. Another
onstraint on the
onne
tion of a token symbol andits pla
e states that a token is always visualized "inside" the
orresponding pla
esymbol. 4Note that the visual alphabet of the AHL net language gBEE01[4℄ is similar to thevisual alphabet of P/T nets presented above. The di�eren
e is given by ar
ins
riptions and the modeling of tokens. In the AHL net alphabet, tokens aremodeled as string data types instead of pi
torial obje
ts as in the P/T net al-phabet. Ar
 ins
riptions are modeled as string data types, too. Obviously, thede�nition of alphabets for di�erent Petri net
lasses in GenGED is straight-forward. Espe
ially for the design of visualizations of new Petri net features,GenGED o�ers a simple way to generate a prototype editor. For an example,see gEBP01[14℄ where a visual language for model evolution is de�ned
onsisting of a
ombination of AHL nets and
lass diagrams.Let us pro
eed with the P/T net language. An example for a visual senten
eover our P/T net alphabet is our produ
er/
onsumer system in Fig. ProdCons2. Here, onlysymbols and links from our alphabet are used and
onne
ted a

ording to thealphabet (the type graph). All graphi
al
onstraints are satis�ed. For illustrationwe show the visual syntax of a subnet of this system in Fig. PT-Senten
e7.As already mentioned, the visual alphabet establishes a type system for allpossible instan
es. Su
h instan
es also o

ur in visual syntax grammars we
on-sider in the following se
tion.3.3 The Visual Syntax Grammargrammar The visual alphabet is the basis to de�ne the syntax grammar for our P/T netlanguage. The syntax grammar is represented by a graph grammar: it
onsists ofa start diagram and a �nite set of graph rules. The start diagram and both sides ofa rule are diagrams typed over a spe
i�
 alphabet, as well as the diagrams whi
h

10
ArcPT

Transition

ArcTP

Place

ArcPT

ArcTP

Place

Transition

ready to

TrName TrName

PlName

PlName

deliver

Syntax

Abstract

Syntax

Concrete
deliverproduce

ready to
produce

Token

Fig. 7. PT-Senten
eVisual Senten
e over the P/T Net Alphabet
an be derived by applying grammar rules. In our graph grammar rules, we usein addition to the left-hand rule sides so-
alled negative appli
ation
onditions(NACs) whi
h restri
t the appli
ation of a rule. An NAC is a graph
ontaininga forbidden graph pattern. The rule must not be applied to a graph if there isa mat
h from the NAC to the graph, i.e. the forbidden pattern is found in thegraph.In Def. exa:PN-VG2 we de�ne the syntax grammar for the P/T net language. Thisde�nition has to be �xed on
e and allows the generation of a syntax-dire
tededitor for arbitrary P/T nets (senten
es
orresponding to the de�ned syntax ofthe language). We de�ne the insertion of the symbols Pla
e, Transition, Ar
PT,Ar
TP and Token, as well as their graphi
al relation.De�nition 2 (P/T Net Syntax Grammar).exa:PN-VG Fig. PN-lang8 illustrates a syntax grammar for our P/T net language whi
h is basedon the visual alphabet in Def. exa:VisPT1. In our P/T net grammar, the start senten
eis empty. The �rst rule supports the insertion of a pla
e together with a pla
ename; the NAC requires that the pla
e with the user-de�ned name is not alreadyin the senten
e where the rule is going to be applied to. The se
ond rule anal-ogously supports the insertion of a transition symbol. The next two rules allowfor the insertion of ar
s, either running from a pla
e to a transition (insAr
PT) orrunning from a transition to a pla
e (insAr
TP). The NACs forbid the appli
ationif there is already an ar
. Last but not least, tokens
an be inserted by applyingthe rule addToken. 4The appli
ation of a rule to a diagram G is obtained via a mat
h morphismon the abstra
t syntax level as explained in Se
tion 3.1-Review3.1. The derivation of theabstra
t syntax of diagramH has to be extended by its
on
rete syntax a

ordingto the alphabet. The diagram-spe
i�
 Csp of H is derived from the Csp of thealphabet, and a Csp satisfa
tion (a solution) is
omputed. Fig. PT-RuleAppl9 illustratesthe appli
ation of the rule InsAr
PT . This rule allows the insertion of an ar

11

addToken

PlName

 Place

PlName

TrName TransTrName

RL

 Place

 Trans

 Trans

ArcPT

ArcTPArcTP

 Place

 Trans

 Place

 Trans

tn

R

NAC

ArcPT

L R

 Place

NAC

 Trans

LNAC

NAC RL

insTrans(tn)

 Place

 Place

pn

 Trans

pn
insPlace(pn)

 Place

RL

 Place

 Place

pn

pn

Token

tntn

tn

 Trans

insArcPT

insArcTP

Fig. 8. PN-langVisual Syntax Grammar for the P/T Net Languagebetween a pla
e and a transition in our visual P/T net language. The mat
h andrule morphisms are indi
ated by the numbers of
orresponding nodes.A VL is generated by applying syntax grammar rules. The senten
es o

ur-ring in the grammar as well as those whi
h are derived by applying grammarrules are typed over the
orresponding visual alphabet. Hen
e, a VL is generatedby a VL spe
i�
ation.De�nition 3 (Visual P/T Net Language).exa:PN-VL The visual P/T net language is given by the VL spe
i�
ationP/T Net Spe
i�
ation = (P/T Net Alphabet, P/T Net Syntax Grammar)where the P/T Net Alphabet has been de�ned in Def. exa:VisPT1, and the P/T NetSyntax Grammar is given in Def. exa:PN-VG2. 4The visual P/T net language as regarded so far is the basis to de�ne behaviorrules and domain-spe
i�
 animation views as explained in the following se
tion.

12

TrName

L

G

H

PlName

1:Token

2:Token

R

InsArcPT

m

TrName

p1
t2

PlName

1:Token

2:Token

p1
t2

1:Place

2:Transition1:Place

2:Transition

3:ArcPT

1:Place 2:Transition

3:ArcPT

2:Transition1:Place

Fig. 9. PT-RuleApplAppli
ation of the Rule InsAr
PT4 Animation of Petri Nets within GenGED4-Animation In order to bridge the gap between the underlying formal, des
riptive spe
i�
a-tion of a pro
ess model (i.e. a Petri net) and a natural dynami
 visual represen-tation of pro
esses being simulated, we suggest the de�nition of an animationview for a visual pro
ess model. On the one hand, this animation view has tobe readily
omprehensible; people who are non-spe
ialists in the modeling te
h-nique of Petri nets should be able to observe fun
tional behavior of the model.On the other hand, the behavior shown in the animation view has to
orrespondto the behavior de�ned in the original pro
ess model. In Se
tion 4.1-Behavior4.1, we
onsiderthe graph grammar based
on
epts for the behavior spe
i�
ation of Petri nets.These
on
epts are explained along our Produ
er/Consumer net. Thereafter, inSe
tion se
:AnimView4.2 we give guidelines for the spe
i�
ation of an animation view for aspe
i�
 Petri net and present an appli
ation-spe
i�
 animation grammar for ourProdu
er/Consumer net. To ensure a
onsistent mapping of the Petri net be-havior, we propose in Se
tion se
:GenAV4.3 a graph grammar based view transformationfrom the Petri net to its animation view.4.1 Behavior of Petri Nets4.1-Behavior In Petri nets and similar visual pro
ess models, two aspe
ts
an be
onsidered.The �rst aspe
t
on
erns the topologi
al stru
ture of the model, i.e., whi
h visualelements exist and how are they linked to ea
h other. The se
ond aspe
t
on
ernsthe behavior of the modeled system, i.e., the
ow of
ontrol within pro
esses andthe
ow of
ommuni
ation between pro
esses. In the previous se
tion, we dealt

13with the visual spe
i�
ation of the Petri net language, i.e. we spe
i�ed what aPetri net is, but not what it does. Therefore, in this se
tion we fo
us on simulatingthe dynami
 behavior of P/T nets by a visual grammar approa
h based on ourP/T net language.In the literature one
an �nd several graph grammar based approa
hes forthe spe
i�
ation of Petri net behavior: S
hneider gS
h94b[21℄ summarizes di�erent ap-proa
hes to de�ne the behavior of pro
ess systems (e.g. Petri nets, event stru
-tures and a
tors) by graph grammars. He states that graph grammars are wellsuited to des
ribe in a uniform way not only the synta
ti
al stru
ture of visualpro
ess models but also their semanti
 properties. In Petri nets, the basi
 form ofa state transformation is the �ring of a transition. The straightforward te
hniquefor behavior simulation therefore is playing the token game.One of the �rst who dis
ussed the relationship between graph grammars andPetri nets is Kreowski gKre81[18℄. He asso
iates a graph rule to ea
h transition, with therule being appli
able if and only if the transition is allowed to �re. Tokens withina pla
e are modeled as a bundle of new nodes
onne
ted to the node representingthe pla
e. This approa
h is able to handle both pla
es with bounded
apa
ityand pla
es with unbounded
apa
ity and
an easily be extended to individualtokens.Parisi-Presi

e et al. gPEM87[20℄ use a stru
tured alphabet for labeling pla
es withtokens. This alphabet has to allow
hanges of node labels in rule morphisms.In the
ase of high-level Petri nets, multiple and individual tokens
an be rep-resented using multisets as labels and the multiset in
lusion as the stru
ture ofthe alphabet. A further step is to allow arbitrary
ategories to label the pla
es.In gBEE00[2℄, we modeled tokens in AHL nets as arbitrary algebrai
 data types whi
hare attributes of Token nodes.We
onsider a Petri net as the set of all senten
es over the Petri net languagewith the same net stru
ture whose markings are given by an initial marking andall possible su

essor markings that
an be rea
hed by arbitrary transition �ringsteps. The behavior of a P/T net is de�ned by a visual grammar,
alled behaviorgrammar: the start senten
e
orresponds to the initial system state (the initialmarking), and the behavior rules
apture all possible transition �ring steps inthe net. When
onstru
ting a behavior grammar whose rules
orrespond to �ringof the transitions of the net we have to ensure that{ a transition in the net is enabled if and only if the
orresponding rule isappli
able to the net,{ �ring a transition in the net
orresponds to a derivation step in the grammarand vi
e versa.The token game then
an be simulated by applying the rules of the grammar to aPetri net. The left-hand side de�nes the appli
ability
ondition, i.e. the marking
orresponding to the transition's pre-domain. The right-hand side des
ribes thee�e
t of the transition, i.e. the marking of the pre domain pla
es is removed, andthe required tokens are added to the post domain pla
es. This approa
h to Petrinet simulation
an be applied to various types of low-level and high-level Petrinets (see e.g. gBEE01[4℄). For ea
h Petri net type, therefore, a spe
i�
 net's behavior

14grammar
an be generated automati
ally a

ording to the Petri net type's �ringbehavior.Example 1 (Behavior Grammar for Produ
er/Consumer System).exa:beh Fig. PN-BehGrammar10 illustrates the behavior grammar for the Produ
er/Consumer System.The start graph is the initially marked net as depi
ted in Fig. ProdCons2. Note that theP/T net behavior grammar is de�ned on top of the visual P/T net grammar ofour P/T net language using the same visual alphabet.
ready to

consume

remove
ready to

ready to
consume

remove
ready to

remove

L R

deliver

ready to

produce
ready to

L

deliver

R

deliver

ready to

produce
ready to

deliver

ready to

produce
ready to

filled
buffer

empty
buffer

filled
buffer

empty
buffer

R

produce

deliver

ready to

produce
ready to

L

ready to
consume

remove
ready to

L R

consume

ready to
consume

remove
ready to

buffer
filled filled

buffer

buffer
empty

buffer
emptyFig. 10. PN-BehGrammarBehavior Grammar for the Produ
er/Consumer Net �4.2 Animation Viewse
:AnimView In our approa
h, both the Petri net and its animation view
onsist of visualsenten
es based on the same abstra
t visual alphabet. They di�er in the
on
retesyntax, i.e. we de�ne di�erent layouts for the same underlying pro
ess model. Wesuggest the following guidelines for the de�nition of an animation view layout forall symbols and links from a Petri net alphabet (like the alphabet from Fig. PT-Alphabet6):{ Pla
es in a Petri net give meanings to tokens by de�ning their properties. Ina net-independent animation view, pla
es are not needed any more be
auseproperties of tokens now are in
orporated in the
on
rete layout of the tokensthemselves. Therefore, we visualize pla
es as symbols of the "�xed part"of the animation view, i.e. the part of the view whi
h is not
hanged byanimation.{ The animated part
onsists of the symbols whi
h are
hanged during anima-tion and
orresponds to the token game of the Petri net.

15{ Transitions are repla
ed by rule names in the animation view whi
h are theuser interfa
e to trigger a state transformation step
orresponding to a �ringstep of the transition in the Petri net view.{ Ar
s in the Petri net have the fun
tion to de�ne the �ring behavior in astati
 way. They are not needed in the animation view as the behavior nowis de�ned by the animation rules and visualized by their appli
ation (theanimation). Thus, ar
s are not visualized in the animation view.Example 2 (Animation View).exa:AV-PC The Produ
er/Consumer net as illustrated in Fig. ProdCons2, is one senten
e of our P/Tnet language we de�ned in Def. exa:PN-VL3. The animation view of this senten
e has beenalready motivated by Fig. PC-AnimView3 where two people in a kit
hen are visualized. Theabstra
t syntax of the alphabet of the animation view is equal to that of Fig. PT-Alphabet6but the
on
rete layout di�ers.The �xed part of the animation view
onsists of the symbols for the motherstanding besides the stove (
orresponding to the produ
er pla
es ready to produ
eand ready to deliver), the table (the bu�er pla
es bu�er �lled and bu�er empty) andthe
hild sitting on a
hair (the
onsumer pla
es ready to remove and ready to
onsume). The tokens {
orresponding to the animated part of the animationview { model the di�erent lo
ations of a
ake. A token on pla
e ready to produ
emeans that a
ake may be taken out of the stove but is not yet to be seen. Inthe
on
rete syntax of the animation view, the token is marked as invisible. Thesame holds for tokens on the pla
es bu�er empty (no
ake on the table) and readyto remove (the
hild has got no
ake). Therefore, in the animation view of theinitially marked net (Fig. PC-AnimView3), no
ake is to be seen.Fig. PC-AnimViewCake11 shows our net with the only possible su

essor marking of the initialmarking. Here, a token lies on pla
e ready to deliver: the
ake has been taken outof the stove and is visible in the animation view on top of the stove. Su

essormarkings would be visualized by the
ake put onto the table (token on pla
e bu�er�lled) and the
ake on the lap of the
hild (token on pla
e ready to
onsume). Theabstra
t syntax underlying both views (the Petri net and the animation view)also is depi
ted in Fig. PC-AnimViewCake11, together with some of the respe
tive
onne
tions tothe di�erent layouts. �Based on the abstra
t syntax, we de�ne the generation of an animation viewby grammar rules that transform all possible states of the Petri net into an appro-priate state of the animation view (view transformation rules). The generationof the animation view in Example exa:AV-PC2 is des
ribed in Se
tion se
:GenAV4.3.The behavior of the system in the animation view is given by a set of ani-mation rules on the VL senten
es of the animation view. The abstra
t syntaxof the animation rules equals the abstra
t syntax of the behavior rules for thePetri net (see e.g. Example exa:beh1 for a behavior grammar of a spe
i�
 Petri net).We
all the grammar
ontaining the animation rules, the animation grammar.

16
ArcTP

ArcTP

ArcPT

ArcPT

PlName

PlacePlName

Place

PlName

Transition

ArcTP

TrName

Place

ArcPT

PlName
Place

ArcPT TrName

ArcTP

TrName

Place

ArcPT

PlName

Place

TrName

Transition Transition

ArcTP

Transition

ArcTP ArcPT

PlName

buffer

filled

remove
empty

produce

deliver

ready to

deliver

ready to

buffer

remove
consume

ready to
consume

produce
ready to

Token

TokenToken

Fig. 11. PC-AnimViewCakeVisual Syntax of the Animation View of the Petri Net Produ
er/ConsumerExample 3 (Animation Grammar).exa:AG-PC Fig. PC-AnimGrammar12 shows the animation grammar for our produ
er/
onsumer system. Ea
hanimation rule
orresponds to the behavior rule of the same name from thebehavior grammar in Fig. PN-BehGrammar10.
consumedeliver

produce
remove

Fig. 12. PC-AnimGrammarAnimation Grammar for the Produ
er/Consumer System �

174.3 Generating Animation Viewsse
:GenAV The aim, of
ourse, is to
onstru
t the animation grammar in a way that theanimation is
onsistent to the behavior spe
i�
ation. Therefore, we now de�nethe generation of an animation view by grammar rules that transform all possiblestates of the system model into an appropriate state of the animation view (viewtransformation rules). The view transformation rules must be de�ned by theanimation view designer. On the basis of these rules it is possible to enfor
e
oheren
e between the behavior grammar of the original visual pro
ess model(the Petri net) and the animation grammar of the animation view. The viewtransformation rules allow to transform the VL senten
es from the old layout tothe new layout and the behavior rules into the animation rules.In general, ea
h of the view transformation rules transforms a part of thePetri net to a part of the animation view by
ombining elements of the abstra
tsyntax with new
on
rete syntax elements (i.e. by giving them a di�erent lay-out). The
on
rete syntax of the Petri net transitions, ar
s and the attributesis invisible in the animation view. After appli
ation of all view transformationrules in a suitable way, the VL senten
e denoting the initially marked Petri netis transformed into a
orresponding animation view.Formally, view transformation rules operate on the union of the visual syntaxof the Petri net and the visual syntax of its animation view be
ause both ofthem
ontain di�erent graphi
s. In the following example, therefore, graphi
sfrom both
on
rete syntax de�nitions (net layout and animation view layout)are shown in the same rules.Example 4 (View Transformation Rules).exa:PC-TrafoGrammar Fig. PC-TrafoRules13 shows the view transformation rules needed for the generation of theanimation view depi
ted in Fig. PC-AnimView3 from the Petri net depi
ted in Fig. ProdCons2. Wede�ne a view transformation rule for ea
h part of the animation view that hasa symbol for an underlying �xed part, i.e. for the produ
er, the bu�er and the
onsumer. Note that the layout of a token in the animation view depends on thepla
e it belongs to. For example, a token on pla
e bu�er �lled is shown as a
akeon the table, whereas a token on pla
e bu�er empty is invisible in the animationview. In the view transformation rules in Fig. PC-TrafoRules13, the abstra
t syntax remains,but the symbols are re-linked to the new animation view graphi
s as they areintrodu
ed in the right-hand sides of the rules. �By applying the view transformation rules from the view transformationgrammar des
ribed in Example exa:PC-TrafoGrammar4 to the Petri net in Fig. ProdCons2, we generate theanimation view depi
ted in Fig. PC-AnimView3. The behavior of a Petri net now
an be trans-ferred
onsistently to the animation view by applying the view transformationrules to the LHSs and RHSs of the behavior rules.Example 5 (Generating Animation Rules).exa:deriv.TL Fig. PC-DerivAnimRule14 illustrates the derivation of an animation rule by applying rules from thetransformation grammar in Fig. PC-TrafoRules13 to a behavior rule in Fig. PN-BehGrammar10. �

18

Place

PlName Place

PlName

Place

PlName PlacePlace

Place

Place

Place

Place

Place

PlName PlName

PlNamePlName

Place

Place

PlacePlName PlName

PlacePlace

PlNamePlName Place

PlName

Place

PlName

Place

PlName

PlNamePlName

PlName

Place

Place Place

PlName PlName

Place

PlName

PlName

Place

PlName

PlName PlName

Place

empty
buffer

filled
buffer

empty
buffer

filled

buffer

buffer

filled
buffer
empty Buffer1

gen-
produce

ready to

empty
buffer

filled

buffer

consume
ready to

deliver

gen-

produce ready to

deliver

ready to

produce

ready toready to

produce

gen-

ready to

gen-

Prod1

remove

remove
ready to

ready to

ready to

Prod2

ready to

deliver

ready to

deliver produce

remove
ready to

produce

consume

consume
ready to

remove

deliver

ready to

ready to

deliver

ready to

remove
ready to

Cons1

gen-

Buffer2

ready to

consume

consume
ready to

filled empty

ready to

consume

ready to

buffer

ready to
remove

ready to

buffer

buffer
filled

buffer
empty

gen-

Cons2

Token

Token

Token

Token
Token

Token

Token

Token

Token

Token

Token

Token

Fig. 13. PC-TrafoRulesView Transformation Rules for the Produ
er/Consumer System
deliver

ready to
ready to

deliver

gen-Buffer1

gen-Prod2

 for L:

Transformation Rules

gen-Buffer2

gen-Prod1

 for R:
Transformation Rules

deliver

Animation Rule

produce
ready to

produce
ready to

filled
buffer

empty
buffer

filled
buffer

empty
buffer

deliver

RL

Behavior Rule

Fig. 14. PC-DerivAnimRuleDerivation of an Animation Rule with View Transformation Rules

19A �rst rough animation of the system
an be performed by applying theanimation rules in the animation view of the system model. A ni
e extension ofthe approa
h towards a more sophisti
ated animation would be the presentationof system behavior not as dis
rete steps but as a movie ("smooth" animation),i.e. showing a series of intermediate states for the �ring of one transition. Withthis aim in mind, an animation framework as proposed in sWei00[22℄
ould be
ombinedwith the GenGED environment.5 Implementation5-Implementation A

ording to the
onstituents of a VL-spe
i�
ation, the GenGED environmentas sket
hed in Fig. GenGEdEnv15
omprises two major
omponents: the Alphabet Editorand the Grammar Editor for the visual de�nition of VLs. From the VL de�ni-tion using these editors, a VL spe
i�
ation is generated whi
h is the input ofthe Graphi
al Editor for syntax-dire
ted diagram drawing. This means that thelanguage-spe
i�
 editing
ommands of the Graphi
al Editor are given by thegrammar rules of the visual grammar. Hen
e, not only a VL is spe
i�ed but theVL-spe
i�
 Graphi
al Editor also. Note that we distinguish two kinds of users,namely users de�ning a VL (language-designer), and those who use a Graphi
alEditor.
<<uses>>

<<uses>>

<<uses>>

ARP CON

Editor

EditorAlphabet

Symbol
Editor

Connection

AGG
Graph Transformation System

Editor
Graphical

Constraint Solver

Grammar
Editor

Alphabet VL−Spec.

Tool Level

Machine LevelFig. 15. GenGEdEnvOverview about the GenGED environmentTo assure the graphi
ally
orre
t drawing, all GenGED editors use the
on-straint solver ParCon sGri96[16℄. The transformation of diagrams via rule appli
ationin the Grammar Editor and the Graphi
al Editor is done by the graph transfor-mation system Agg gERT98[15℄. The GenGED environment is implemented in Java,so is the Agg system. The ParCon
onstraint solver { implemented in C { isavailable for Linux and Solaris, thus GenGED runs on these two platforms.

205.1 The Visual SyntaxThe spe
i�
ation of a Visual Alphabet is implemented as Alphabet Editor whi
his a bundle of two sub-editors { the Symbol Editor and the Conne
tion Editor.A snapshot of the both the Symbol Editor and the Conne
tion Editor is shownin Figure AlphabetEditor16.

Fig. 16. AlphabetEditorThe Symbol Editor and the Conne
tion Editor of the Alphabet EditorIn the Symbol editor, the language elements are de�ned: For ea
h symboltype in the abstra
t syntax the user gives a unique symbol name (e.g. Pla
e)and a symbol graphi
 (e.g. an ellipse) and possibly some symbol
onstraints.For the de�nition of the symbol graphi
s, the Symbol Editor works similar towell-known ve
tor editors ex
ept that the grouping of symbols is handled usinggraphi
al
onstraints to
onne
t the primitives in a symbol graphi
. Availableprimitives are e.g. lines, poly-lines, re
tangles, ellipses, images (GIF/JPEG) andtext. The primitives' properties like
olor, line width or text properties
an beedited, too. Attribute symbols appear as independent graphi
al obje
ts in theSymbol Editor.The Conne
tion Editor supports the de�nition of links between symbols. Inorder to de�ne a link, the user
an sele
t any two symbols as sour
e and targetof the link in the abstra
t syntax (e.g. Pla
e and Ar
PT). A
onstraint dialogsupports the de�nition of link
onstraints in the
on
rete syntax.The de�nition of a visual syntax grammar is supported by the GrammarEditor available in the GenGED environment. The Grammar Editor gets analphabet as input. From this input, so-
alled alphabet rules are generated de�n-ing the editing
ommands of the Grammar Editor. The set of alphabet rules
omprises rules for the insertion and deletion of symbols. In the snapshot of theGrammar Editor shown in Fig. SyntaxGramEditor17 one
an see the alphabet rule for the insertionof a transition name in the upper part.The lower part of the Grammar Editor denotes the working areas : here webuild the start diagram, and the LHS and RHS (or LHS and NACs, respe
tively)

21

Fig. 17. SyntaxGramEditorGrammar Editorof a VL-rule, add mappings between the two rule sides and edit the rule param-eters. Applying a rule with rule parameter to a diagram in one of the workingareas, the user is �rst asked to de�ne the mat
h morphism, i.e., to map the sym-bols of the rule's LHS to type-
onsistent symbols in the diagram. Then, the userhas to give a value (or a variable) for the parameter su
h that the expressionsin the RHS
an be evaluated during transformation.The next step is to export the set of VL-rules and the start diagram intoa visual language grammar2. Then, the Graphi
 Editor uses the grammar rulesto provide the language-spe
i�
 editing
ommands. Fig. PN-VLeditor18 shows the generatedGraphi
 Editor where our Produ
er/Consumer Petri net is drawn in the editpanel using the visual grammar rules of the syntax grammar. The syntax gram-mar rules
an be sele
ted in the tree view at the left-hand side in order to editsymbols.5.2 Behavior and AnimationIt is possible to generate behavior rules for arbitrary Petri nets automati
allya

ording to the general de�nition of �ring transitions in nets of the spe
i�
Petri net
lass. (For the
lass of AHL nets see pBEP02[5℄). The algorithm for generatingbehavior rules for Elementary nets is sket
hed in Def. def.en2agg4. It will be used forthe implementation of our simulation and animation
on
epts in the GenGEDenvironment. Then, for the well-known Petri net types, it is not ne
essary forthe user to spe
ify the behavior for ea
h spe
i�
 net. Instead, the behavior rulesfor the transitions of a net
an be generated by the tool.2 The alphabet is added automati
ally, so in fa
t we export a VL-spe
i�
ation.

22

Fig. 18. PN-VLeditorGraphi
 Editor for Petri netsDe�nition 4 (Translation of Elementary Nets to Graph Grammars).def.en2agg Ea
h transition t 2 T is translated to an attributed graph grammar rule rt :Lt ! Rt. The attributed graphs in the LHS Lt and the RHS Rt of su
h a ruleboth
ontain nodes for all pla
es in the pre and post domain of t. In Lt, the pla
esin the post domain are not marked. The marking of the pre domain pla
es pi is
omputed as follows:for ea
h ar
 a : pi ! tgenerate a Token vertex;
onne
t the Token vertex by an edge of type tok to pla
e pi;Analogously, in Rt, only pla
es in the post domain pj be
ome marked:for ea
h ar
 a : t! pjgenerate a Token vertex;
onne
t the Token vertex by an edge of type tok to pla
e pj ;Moreover, an NAC is added to the rule rt : Lt ! Rt
ontaining the pla
esfrom the post domain post(t) marked by one token ea
h. This NAC ensures thatthe rule is applied only if the pla
es in the post domain of the transition areunmarked. 4As the automati
 generation of behavior rules is not yet implemented in theGenGED environment, we de�ne them in the same way as the syntax rules: Forthe de�nition of Petri net behavior, again the Grammar Editor is started. Afterediting the behavior rules the Petri net simulator (similar to the Graphi
 Editor

23but with behavior rules instead of syntax rules) is generated. Fig. PN-Simulator19 illustratesthe simulator for our Produ
er/Consumer net. Applying a rule this time meansto simulate the �ring of a transition. In the s
reenshot, rule produ
e is sele
tedand the mat
h is indi
ated by equal numbers for
orresponding obje
ts. Theappli
ation of the rule removes the token from the pla
e ready to produ
e andadds a new token to the pla
e ready to deliver.

Fig. 19. PN-SimulatorSimulator for the Produ
er/Consumer Net
In the
orresponding animation grammar the animation rules have the layoutof the animation view. The implementation of support for de�ning the viewtransformation grammar is still work in progress. Here, we need a user interfa
eallowing the animation view designer to de�ne the view transformation rules.These rules are to be applied suitably (in a user-
ontrolled order) to the LHSsand RHSs of ea
h behavior rule. Thus, the view transformation interfa
e has tosupport the appli
ation of rules to rules in order to generate animation rules frombehavior rules. Moreover, we need to de�ne rule
onstraints to ensure spe
i�
layouts for symbol
onne
tions whi
h are valid only if a spe
i�
 rule is applied.For instan
e, in the Produ
er/Consumer animation view, the
ake symbol ispla
ed on top of the table symbol when applying rule deliver, but it is pla
edon top of the stove symbol when applying rule produ
e. Fig. Animation20 illustrates thedesired animation view interfa
e.

24

Fig. 20. AnimationAnimation View for the Produ
er/Consumer Net6 Con
lusion6-Con
lusion We have presented the GenGED approa
h supporting the generi
 des
ription ofvisual languages and provided
on
epts for an extension of GenGED in orderto allow the des
ription and implementation of appli
ation-spe
i�
 animationviews for
ommuni
ation-based systems modeled as Petri nets. An animation ofthe Petri net behavior then shows dire
tly the state transitions in the layout ofthe appli
ation domain. An animation view is realized by graphi
al i
ons
or-responding to parts of the system. During animation, some i
ons are
hangeda

ording to the sele
ted state transition. GenGED is based on graph trans-formation. This provides a natural formal basis to express Petri nets and theiranimation views as graphs, whereas the behavior of the model (i.e. transition�ring steps resp. state transitions in the animation view)
an be formalized asgraph grammars.A spe
i�
ation of a spe
i�
 Petri net type has to be provided on
e as visuallanguage spe
i�
ation (graphi
al symbols and syntax rules) and allows the gen-eration of a graphi
al editor for arbitrary nets of the spe
i�ed Petri net type.The spe
i�
ations of di�erent Petri net types all have the same basis (pla
es,transitions, ar
s and tokens as symbols) and only di�er in the representation oftokens (bla
k dots or strings) and in their �ring rule.The behavior grammar for a spe
i�
 Petri net
an be generated automati
allya

ording to the �ring rule of the
orresponding net type: Ea
h transition is
onverted to a graph grammar rule whose left/right-hand side
orresponds tothe transition's pre/post domain.

25The designer of an animation view therefore only has to spe
ify the
orrespon-den
e of tokens to i
ons from the animation view representing the appli
ationdomain. This relation of a Petri net and its animation view is de�ned as viewtransformation graph grammar and allows to map the behavior of the Petri net
onsistently to the animation view. Due to the generi
 and modular de�nitionof syntax, behavior and animation for di�erent Petri net types, the presentedframework redu
es
onsiderably the amount of work to realize an appli
ation-domain animation of a system modeled as a spe
i�
 Petri net.It remains to develop a formal theory to handle behavior and animation ofvisual pro
ess models in general (i.e.
overing other Petri net
lasses and model-ing te
hniques like state
harts or message sequen
e
harts). The theory shouldin
lude formal de�nitions for an automati
 generation of behavior rules for well-known Petri net
lasses and a formal transformation of the states and behaviorrules of a general visual pro
ess model into is animation view. Implementationalwork is still in progress, i.e.,
on
erning the user interfa
e for de�ning viewtransformation rules, rule
onstraints and the mapping of rules to rules.Within the Petri Net Baukasten pWER+02[11℄ the proposed animation framework willbe an extension of the fun
tionality provided by the Petri net tool infrastru
turePNK and by the external tools integrated over the PNK. In order to o�er thefeatures of the extended GenGED tool environment to PNK users, an XML
onversion between the XML �le inter
hange formats of the PNK and GenGEDhas been implemented pEBE01,sKEhr01[13, 12℄. Thus, it be
omes possible on the one hand touse the editing, simulation and analysis features provided by the PNK and onthe other hand to have a visual environment for the de�nition of domain-spe
i�
animation views for Petri nets provided by GenGED.Referen
esgBar00 [1℄ R. Bardohl. GenGEd { Visual De�nition of Visual Languages based on Algebrai
Graph Transformation. Verlag Dr. Kova
, 2000. PhD thesis, Te
hni
al Universityof Berlin, Dept. of Computer S
ien
e, 1999.gBEE00 [2℄ R. Bardohl, H. Ehrig, and C. Ermel. Generi
 Des
ription, Behaviour and Ani-mation of Visual Modeling Languages. In Pro
. Integrated Design and Pro
essTe
hnology (IDPT 2000), Dallas (Texas), USA, June 2000.gBE01a [3℄ R. Bardohl and C. Ermel. Visual Spe
i�
ation and Parsing of a State
hart Variantusing GenGEd. In Pro
. Symposium on Visual Languages and Formal Methods(VLFM'01), Stresa, Italy, September 5{7 2001.gBEE01 [4℄ R. Bardohl, C. Ermel, and H. Ehrig. Generi
 Des
ription of Syntax, Behavior andAnimation of Visual Models. TR 2001/19, TU Berlin, 2001. ISSN 1436-9915.pBEP02 [5℄ R. Bardohl, C. Ermel, and J. Padberg. Formal Relationship between Petri Netsand Graph Grammars as Basis for Animation Views in GenGED. In Pro
. IDPT2002: Sixth World Conferen
e on Integrated Design and Pro
ess Te
hnology, 2002.To appear.gBER00a [6℄ R. Bardohl, C. Ermel, and L. Ribeiro. Towards Visual Spe
i�
ation and An-imation of Petri Net Based Models. In Pro
. GRATRA 2000 - Joint APPLI-GRAPH and GETGRATS Workshop on Graph Transformation Systems, pages22{31. Te
hnis
he Universit�at Berlin, Mar
h 2000.

26gBNS00 [7℄ R. Bardohl, M. Niemann, and M. S
hwarze. GenGEd { A Development Environ-ment for Visual Languages. In Int. Workshop on Appli
ations of Graph Trans-formations with Industrial Relevan
e (AGTIVE'99), LNCS 1779, pages 233{240.Springer, 2000.gBST01 [8℄ R. Bardohl, T. S
hultzke, and G. Taentzer. Visual Language Parsing in GenGEd.Ele
troni
 Notes of Theoreti
al Computer S
ien
e, Vol. 50, No. 3, June 12{13 2001.gCM95 [9℄ A. Corradini and U. Montanari. Spe
i�
ation of Con
urrent Systems: From PetriNets to Graph Grammars. In G. Hommel, editor, Pro
. Workshop on Quality ofCommuni
ation-Based Systems, Berlin, Germany. Kluwer, 1995.gEHK+97 [10℄ H. Ehrig, R. He
kel, M. Kor�, M. L�owe, L. Ribeiro, A. Wagner, and A. Corradini.Algebrai
 Approa
hes to Graph Transformation II: Single Pushout Approa
h andComparison with Double Pushout Approa
h. In G. Rozenberg, editor, Hand-book of Graph Grammars and Computing by Graph Transformation, Volume 1:Foundations,
hapter 4, pages 247{312. World S
ienti�
, 1997.pWER+02 [11℄ H. Ehrig, W. Reisig, and H. Weber et al. The Petri Net Baukasten of the DFG-Fors
hergruppe PETRI NET TECHNOLOGY. In this Volume.sKEhr01 [12℄ K. Ehrig. Converting XML Files with XSLT and XPath, http://tfs.
s.tu-berlin.de/lehre/SS01/gragra.html, 2001. Student's Proje
t Status Report.pEBE01 [13℄ C. Ermel, R. Bardohl, and H. Ehrig. Spe
i�
ation and Implementation of Anima-tion Views for Petri Nets. In Weber et al., editors. 2nd Int. Colloquium on PetriNet Te
hnologies for Modelling Communi
ation Based Systems, Berlin, Germany,Sept. 2001. Fraunhofer Gesells
haft ISST, pages 75{92.gEBP01 [14℄ C. Ermel, R. Bardohl, and J. Padberg. Visual Design of Software Ar
hite
-ture and Evolution based on Graph Transformation. In Int. Workshop on Uni-form Approa
hes to Graphi
al Pro
ess Spe
i�
ation Te
hniques (UNIGRA'01), atETAPS'01, 2001. Ele
troni
 Notes in Theoreti
al Computer S
ien
e, Vol. 44, No.4.gERT98 [15℄ C. Ermel, M. Rudolf, and G. Taentzer. The AGG-Approa
h: Language and ToolEnvironment. In H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg, editors,Handbook of Graph Grammars and Computing by Graph Transformation, volume2: Appli
ations, Languages and Tools, pages 551{603. World S
ienti�
, 1999.sGri96 [16℄ P. Griebel. Paralleles L�osen von gra�s
hen Constraints. PhD thesis, Universityof Paderborn, Germany, February 1996.gKR95a [17℄ M. Kor� and L. Ribeiro. Formal Relationship between Graph Grammars andPetri nets. In 5th Int. Workshop on Graph Grammars and their Appli
ation toComputer S
ien
e, Williamsburg '94, LNCS 1073, pages 288 { 303. Springer, 1995.gKre81 [18℄ H.-J. Kreowski. A Comparison between Petri-nets and Graph Grammars. InLNCS 100, pages 1{19. Springer Verlag, 1981.gLow93 [19℄ M. L�owe. Algebrai
 Approa
h to Single-Pushout Graph Transformation. TCS,109:181{224, 1993.gPEM87 [20℄ F. Parisi-Presi

e, H. Ehrig, and U. Montanari. Graph Rewriting with Uni�-
ation and Composition. In 3rd Int. Workshop on Graph Grammars and theirAppli
ation to Computer S
ien
e, LNCS 291, Berlin, 1987. Springer Verlag.gS
h94b [21℄ H. J. S
hneider. Graph Grammars as a Tool to De�ne the Behaviour of Pro-
ess Systems: From Petri Nets to Linda. In Pro
. Fifth International Workshopon Graph Grammars and their Appli
ation to Computer S
ien
e, pages 7{12,Williamsburg, Va., USA, 1994.sWei00 [22℄ C. Weidauer. Animations-Framework in Java. Systematis
he Animationsentwi
k-lung mit Mehrs
hi
htenar
hitektur. Informatik - Fors
hung und Entwi
klung,Band 15, Heft 2, pages 83 {91, June 2000.

