
Simulating Algebraic High-Level Nets by
Parallel Attributed Graph Transformation:

Long Version

Claudia Ermel, Gabriele Taentzer, and Roswitha Bardohl

Technische Universität Berlin, Germany
Intern. Center for Computer Science, Schloss Dagstuhl, Germany

lieske|gabi@cs.tu-berlin.de, rosi@dagstuhl.de

Abstract. The “classical” approach to represent Petri nets by graph
transformation systems is to translate each transition of a specific Petri
net to a graph rule (behavior rule). This translation depends on a con-
crete model and may yield large graph transformation systems as the
number of rules depends directly on the number of transitions in the net.
Hence, the aim of this paper is to define the behavior of Algebraic High-
Level nets, a high-level Petri net variant, by a parallel, typed, attributed
graph transformation system. Such a general parallel transformation sys-
tem for AHL nets replaces the translation of transitions of specific AHL
nets. After reviewing the formal definitions of AHL nets and parallel
attributed graph transformation, we formalize the classical translation
from AHL nets to graph transformation systems and prove the correct-
ness of the translation. The translation approach then is contrasted to
a definition for AHL net behavior based on parallel graph transforma-
tion. We show that the resulting amalgamated rules correspond to the
behavior rules from the classical translation approach.

1 Introduction

Visual modeling languages (like the Unified Modeling Language (UML), Petri
nets, Statecharts, and many more) play a central role for software and system
modeling. Visual models are used for system design, simulation, validation, and
code generation. Apart from developing visual models, the simulation of a model
on the basis of a formal specification is an important issue for testing and validat-
ing the system behavior. The simulation of Petri nets, for example, is realized
by playing the token game: a transition can fire if it is enabled, a firing step
removes tokens from the transition’s predomain places and adds tokens to its
postdomain places.

Petri net behavior can be defined as graph transformation system where each
transition is translated to a graph rule modeling the corresponding change of the
marking (deleting and/or adding tokens) in a firing step [15, 3]. This “classical”
way to define Petri net behavior by graph transformation assumes a specific
Petri net before compiling its transitions into graph rules (compiler approach).

1



Yet, for related visual behavior modeling languages, it is often possible to
define a general graph transformation system which is independent of a specific
model and can be used to interpret arbitrary models of a visual language (inter-
preter approach). An example is a graph transformation system for describing
the behavior of a Statechart variant given in [2]. In general, the interpreter ap-
proach is much more flexible and scalable than the compiler approach. As it is
independent of a concrete model, the graph transformation system defined for
the interpreter approach is fixed once for the complete visual language, i.e. the
number of behavior rules is finite and does not grow with the size of the model
(scalability). In contrast, using the compiler approach, each specific model must
be translated to get the model-specific graph transformation system.

Unfortunately, it is difficult to give a general graph transformation system to
simulate Petri nets as there may be arbitrary many places connected to a tran-
sition, leading to an arbitrary number of behavior rules. Hence, parallel graph
transformation concepts have been used to simulate the behavior of Condition-
Event nets in [20] and of Timed Transition Petri Nets in [4].

Parallel graph transformation was introduced by Ehrig and Kreowski in [6],
later generalized to parallel high-level replacement systems [11] by Ehrig and
Taentzer, further elaborated and applied to communication-based systems in
[20]. The essence of parallel graph transformation is that (possibly infinite) sets of
rules which have a certain regularity, so-called rule schemes, can be described by
a finite set of rules modeling the elementary actions. For instance, when modeling
the firing of a Petri net transition, the elementary actions would be the removal
of a token from a place in the transition’s predomain and the addition of a token
to a postdomain place. For the description of such rule schemes the concept
of amalgamating rules at subrules is used which is based on synchronization
mechanisms for rules developed first in [5].

The aim of this paper is to present a formal interpreter approach to define
the behavior of high-level Petri nets. A specific, well-defined variant of high-level
nets are Algebraic High-Level nets, AHL nets for short, introduced by Ehrig,
Padberg and Ribeiro in [18]. We present an interpreter approach for the behavior
of AHL nets based on parallel attributed graph transformation. Thus, a general
graph transformation system for simulating AHL nets replaces the translation
of transitions of specific AHL nets. The resulting parallel behavior specification
is formally proven to be semantically equivalent to the corresponding compiler
approach translating each specific AHL net to a corresponding attributed graph
transformation system. This compiler approach for AHL nets has been presented
in [1] and is reviewed in a slightly modified form in this paper.

In Section 2, the formal definitions of AHL nets and their behavior are re-
viewed, using the well-known Dining Philosophers as running example. Section
3 presents the concepts of sequential (classical) and parallel attributed graph
transformation. The concepts are the basis in Section 4 to formalize the trans-
lation from AHL nets to sequential graph transformation systems according to
the compiler approach. We prove the semantical compatibility of an AHL net
and its translation to a graph transformation system, i.e. we show that a fir-

2



ing sequence in the net corresponds to a graph transformation sequence in the
translated graph transformation system. The compiler approach is contrasted by
the interpreter approach based on parallel attributed graph transformation, in
Section 5. An interaction scheme is presented specifying the elementary actions
when simulating an AHL net. From this scheme, amalgamated rules are defined
for AHL nets, and it is proven that these rules correspond semantically to the
behavior rules of the sequential graph transformation system given in Section 4.
The conclusion (Section 6) gives an outlook on how the simulating graph trans-
formation systems for AHL nets are used in the visual language environment
GenGED for simulating and animating the behavior of AHL nets. A shorter
version of this paper (without proofs) has been published in [13].

2 Algebraic High-Level Nets

An AHL net is a combination of a place/transition net [19] and an algebraic
datatype specification SPEC describing operations used as arc inscriptions. To-
kens are elements of a corresponding SPEC-algebra [8, 7]. In this section, we re-
view the definition of AHL nets and their behavior as given in [18], and present
our running example, the well-known Dining Philosophers.

In contrast to other variants of AHL nets [14, 16] we do not label places with
sorts. The pre- and postdomain of a transition is given by a multiset of pairs of
terms and places, i. e. as elements of a commutative monoid.

Definition 1 (Algebraic High-Level Net).
An algebraic high-level net N = (SPEC, P, T, pre, post, cond, A) consists of an
algebraic specification SPEC = (S, OP,E;X) with equations E and additional
variables X over the signature (S, OP ), sets P and T of places and transitions
respectively, pre- and postdomain functions pre, post : T → (TOP (X) × P )⊕

assigning to each transition t ∈ T the pre- and postdomains pre(t) and post(t),
respectively, a firing condition function cond : T → Pfin(EQNS(S, OP,X))
assigning to each transition t ∈ T a finite set cond(t) of equations over the
signature (S,OP) with variables X, and an (S, OP,E)-algebra A.

Remarks

– TOP (X) is the set of terms with variables X over the signature (S, OP ), and
M⊕ is the free commutative monoid over a set M . Thus, TOP (X) × P =
{(term, p)|term ∈ TOP (X), p ∈ P}.

– The predomain function pre(t) (and similar postdomain function post(t))
have the form pre(t) =

∑n
i=1(termi, pi) with (n ≥ 0), pi ∈ P, termi ∈

TOP (X). This means that {p1, ...pn} is the predomain of t with arc-inscription
termi for the arc from pi to t if all p1, ..., pn differ (unary case) and arc-
inscription termi1⊕ ...⊕ termik for pi1 = ... = pik (multi case). Note that in
our sample AHL net (see Example 1) we have the multi case, but as drawing
convention we draw separate arcs, each inscribed by one term only. Hence,

3



we allow to draw more than one arc in one direction between a place and a
transition.

– AHL nets together with AHL net morphisms build a category AHLnet [18].

Definition 2 (Marking and Firing Behavior of AHL Nets).
Let N = (SPEC, P, T, pre, post, cond, A) be an AHL net according to Def. 1.

– A marking m is an element m ∈ M⊕ with M = A × P = {(a, p)|a ∈⋃
s∈S As, p ∈ P}

– Enabling and firing of transitions is defined as follows: For any t ∈ T let
V ar(t) be the set of local variables occurring in pre(t), post(t) and cond(t).
An assignment asgA : V ar(t) → A is called consistent wrt. t ∈ T if the
equations cond(t) are satisfied in A under asgA. Transition t is enabled
under a consistent assignment asgA : V ar(t) → A and a marking m ∈
(A × P )⊕, if preA(t, asgA) ≤ m. The marking preA(t, asgA) – analogously
postA(t, asgA) – is defined for pre(t) =

∑n
i=1(termi, pi) by preA(t, asgA) =∑n

i=1(asgA(termi), pi), where asgA : TOP (V ar(t))→ A is the extended eval-
uation of terms under assignment asgA. The successor marking m′ is defined
in the case of t being enabled by m′ = m 	 preA(t, asgA) ⊕ postA(t, asgA)
and gives raise to a firing step m[t, asgA〉m′.

Example 1 (The Dining Philosophers as AHL Net).
As example we show the AHL net for The Dining Philosophers in Fig. 1 (see [19,
18] for the corresponding place/transition net). We identify the five philosophers
as well as their chopsticks by numbers. Fig. 1 (a) shows the initial situation where
all philosophers are thinking and all chopsticks are lying on the table. Fig. 1 (b)
shows the AHL net with the corresponding initial marking. For this marking,
the transition take is enabled as a thinking philosopher and his left and right
hand side chopsticks are available. The firing of transition take with the variable
binding p = 2, for example, removes token 2 from place thinking and adds it
to place eating, whereas tokens 2 and 3 are removed from place table, as the
chopstick computing operation (p mod 5) +1 is evaluated to 3.

???

???
???

??? ???

2

1 3

4

1

2 3

4

5

(a)

5

(b)

2 34
5

1

2 34
5

1
take

BASIS

p p

(p mod 5) +1

p p

(p mod 5) +1

p
p

put

SPEC

table

eating

thinking

Fig. 1. The Dining Philosophers (a) modeled as AHL Net (b)

4



As datatype specification we take a basic specification for all AHL nets
SPECBASIS consisting of the union of specifications NAT for natural num-
bers, BOOL for boolean operations, and STRING for strings. The tokens on
all places are elements of a corresponding SPECBASIS-algebra, i.e. natural num-
bers in our example. The arcs are inscribed each by one variable or term from
TOP (X) denoting computation operations to be executed on token values.

3 Parallel Attributed Graph Transformation

3.1 Attributed graph transformation

In the following, we present attributed graph structures as defined in [9]. For
graph transformations in the category of attributed graph structures and ho-
momorphisms with a distinguished class M of morphisms, the Church-Rosser,
Parallelism and Concurrency Theorem have been shown in [9].

Definition 3 (Attributed Graph Structure Signatures). A graph struc-
ture signature GSIG = (SG, OPG) is an algebraic signature with unary op-
erations op : s → s′ in OPG only. An attributed graph structure signature
ASSIG = (GSIG, DSIG) consists of a graph structure signature GSIG and
a data signature DSIG = (SD, OPD) with attribute value sorts S′D ⊆ SD such
that S′D = SD ∩ SG and OPD ∩OPG = ∅.
ASSIG is called well-structured if for each op : s→ s′ in OPG we have s /∈ SD.

ASSIG-algebras and ASSIG-homomorphisms build up a category [9] which
is denoted by ASSIG-Alg. In the following, we call ASSIG-algebras attributed
graphs and ASSIG-homomorphisms attributed graph morphisms.

As an example for an attributed graph structure signature we define the sig-
nature ASSIGAHL for AHL nets. AHL nets are considered as ASSIGAHL-algebras.

Definition 4 (Attributed Graph Structure Signature for AHL Nets).

The attributed graph structure signa-
ture for AHL nets (shown visually
in Fig. 2) is given by ASSIGAHL =
(GSIGAHL, DSIGAHL). In Fig. 2, the
sorts of GSIGAHL are represented as
nodes. The operations are the arcs be-
tween the sort nodes (the op-links be-
tween graph sorts) and from sort nodes
to data nodes, (the attr-links between
graph sorts and attribute sorts). The
DSIG part (data signature) consists of
the attribute value sorts of the basic
specification, i.e. String, Nat and Bool
and their usual operations.

ArcPT

Place

ArcTP

TransitionToken

Nat Nat Nat

opsPT

Bool

EdgeTkattrtv

optPT

optTP opsTPopsTk
optTk

attriTPattriPT

attrcond

Fig. 2. Abstract Syntax Graph visualizing
the ASSIG for AHL Nets

The attribute values are used for the arc inscriptions, tokens and transition
firing conditions.

5



Next, we define the double-pushout approach to graph transformation on the
basis of category ASSIG-Alg.

Proposition 1 (Pushouts of ASSIG-Homomorphisms). Let M be a dis-
tinguished class of all homomorphisms f which is defined by f ∈M if fGSIG is
injective and fDSIG = idDSIG for f in ASSIG-Alg. Given f : A → B ∈ M
and a : A→ C then there exists their pushout in ASSIG-Alg.

Proof: See [9].
Category ASSIG-Alg and class M are fixed throughout this section.

Definition 5 (Typed Attributed Graph Transformation System). A
typed attributed graph transformation system GTS = (S, P ) based on (ASSIG-Alg,
M) consists of an ASSIG-algebra S, called start graph and a set P of rules,
where

1. a rule p = (L l← I
r→ R) of ASSIG-algebras L, I and R attributed over the

term algebra TDSIG(X) with variable set X of variables (Xs)s∈SDSIG
, called

left-hand side L, interface I and right-hand side R, and homomorphisms
l, r ∈M , i.e. l and r are injective and identities on the data type TDSIG(X),

2. a direct transformation G
p,m
=⇒ H

via a rule p and a homomorphism
m : L → G, called match, is given by the
diagram to the right, called double-pushout
diagram, where (1) and (2) are pushouts in
ASSIG-Alg (the triple (m, i,m∗) is called
rule embedding),

L

(1)m

��

I

(2)

loo r //

i

��

R

m∗

��
G Dg

oo
h

// H

3. a typed attributed graph transformation, short transformation, is a sequence
G0 ⇒ G1 ⇒ ...⇒ Gn of direct transformations, written G0

∗⇒ Gn,
4. the language L(GTS) is defined by L(GTS) = {G | S ∗⇒ G}.

Now we add the concept of attribute conditions.

Definition 6 (Attribute Condition). Given a rule p attributed over the term
algebra TDSIG(X), an attribute condition C consists of a set of equations (a =
b) over TDSIG(X). An ASSIG-morphism m : L → G satisfies an attribute
condition C, if mDSIG(a) = mDSIG(b) for all (a = b) ∈ C.

Definition 7 (Conditional Rule and Transformation). Let p = (L l← I
r→

R) be a rule attributed over the term algebra TDSIG(X), and C an attribute
condition over TOP (X). Then, p̂ = (p, C, X) is a conditional rule. The direct

conditional transformation G
p̂,m
=⇒ H is given by the direct transformation G

p,m
=⇒

H if m satisfies C.

A transformation sequence as well as a graph transformation system and its
language based on conditional rules are defined as in Def. 5.

6



3.2 Parallel Graph Transformation

Parallel graph transformation in the double-pushout approach has been intro-
duced in [20] on the basis of labeled graphs. Here, we extend the concepts to
attributed graphs and rules with attribute conditions. The main idea of parallel
graph transformation is to apply a number of rules in one parallel step. Their
matches are allowed to overlap and can even be conflicting in the general case.
Common subactions are described by subrules. Therefore, the notion of subrule
embedding is basic to the whole approach.

Definition 8 (Subrule Embedding).

Given a conditional rule p̂ = ((L l← I
r→ R), A, Y ),

a conditional rule ŝ = ((Ls
ls← I

rs→ Rs), As, X) is
called subrule of p̂ if X ⊆ Y and there are injective
morphisms e : Ls → L, f : Is → I and g : Rs → R
in M such that e ◦ ls = l ◦ f and g ◦ rs = r ◦ f , i.e.
the diagram to the right commutes.

Ls

=e

��

Is

=

lsoo rs //

f

��

Rs

g

��
L I

l
oo

r
// R

The triple t = (e, f, g) from ŝ to p̂ (short t : ŝ→ p̂) is called subrule embed-
ding. In this context, p̂ is called extending rule. Subrule embedding t is called
quasi-identical, if e, f , and g are isomorphisms. In this case, ŝ is called isomor-
phic to p̂. Two subrule embeddings t1 : ŝ1 → p̂1 and t2 : ŝ2 → p̂2 are called
isomorphic, if there are quasi-identical subrule embeddings from ŝ1 to ŝ2 and
from p̂1 to p̂2 such that they commute with t1 and t2.

All conditional rules and their subrule embeddings build up a category which
we call RuleASSIG−Alg. Three rule functors are defined to extract the LHS
embeddings, the embeddings of interfaces and the RHS embeddings.

Definition 9 (Rule Functors). The forgetful functors VL, VI , VR :
RuleASSIG−Alg → ASSIG−Alg, called rule functors, are defined in the obvi-

ous way, e.g. VL(p̂) = VL((L l← I
r→ R), C, Y ) = L.

To apply a set of rules in parallel in a synchronized way, we have to decide
how and how often the rules can be applied to a host graph G. One possibility
is to allow a rule to be applied at all different matches it has in G. This would
result in a massively parallel application of rules which is not always wanted.
To restrict the degree of parallelism, two control features are introduced: the
interaction scheme and the covering construction. The interaction scheme is
a set of subrule embeddings and restricts the synchronization possibilities of
rule applications. The covering construction restricts the matching possibilities
for the rules of the interaction scheme. One special covering construction, called
local, allows to match a subrule s exactly once to a part m(s) of G, and to match
all rules extending s as often as possible to the surroundings of m(s). In this
way, a kernel action can be described in a variable context. Another important
covering construction, called fully synchronized forbids conflicting rule matches,
i.e. two rule matches of rules extending the same subrule s have to overlap
completely at a match of their common subrule.

7



Formally, a covering is described by an instance interaction scheme and a
set of matches. The instance interaction scheme contains the concrete number
of instances of each rule in the scheme, depending on how many matches into
G have been found for each rule of the interaction scheme. Thus, an interaction
scheme can be seen as type information for instance interaction schemes.

Definition 10 (Interaction Scheme). An interaction scheme IS consists of
a set of subrule embeddings such that the following conditions hold:

1. for each two subrule embeddings t1 : ŝ1 → p̂1 and t2 : ŝ2 → p̂2 we have
ŝ1 6= ŝ2 or p̂1 6= p̂2,

2. for each two subrule embeddings t1 : ŝ → p̂1 and t2 : ŝ → p̂2 in IS with
ŝ = (ps, Cs, X), p̂1 = (p1, C1, Y1) and p̂2 = (p2, C2, Y2) we have Y1∩Y2 = X.

IS is called local interaction scheme, if there is one subrule ŝ being the source
of at least one subrule embedding to each extending rule.

Definition 11 (Instance Interaction Scheme). Given an interaction scheme
IS, an interaction scheme IIS is an instance interaction scheme of IS, if there
is a mapping ins : IIS → IS such that ∀t ∈ IIS: if there is an isomorphic
subrule embedding t

∼−→ u then ins(t) = u.

Definition 12 (Covering Construction). Let IS be an interaction scheme
and G an ASSIG-algebra. A partial covering COV = (IIS, MA) consists of an
instance interaction scheme IIS of IS and a set MA of matches from all rules
of all subrule embeddings in IIS to G such that they commute with the subrule
embeddings, i.e. for any two subrule embeddings t1 : ŝ → p̂1 and t2 : ŝ → p̂2

in IIS there are two matches ms : Ls → G and mp : Lp → G in MA with
mp ◦ e = ms. Let t1 : ŝ → p̂1 and t2 : ŝ → p̂2 be any two subrule embeddings in
IIS and mp1 : Lp1 → G and mp2 : Lp2 → G corresponding matches in MA.

1. COV is called local, if IIS is local, and if p̂1 is isomorphic to p̂2, then mp1

has to be non-isomorphic to mp2 .
2. COV is called fully synchronized, if there are two subrule embeddings u1 :

ŝ′ → p̂1 and u2 : ŝ′ → p̂2 such that mp1(Lp1) ∩mp2(Lp2) = ms′(Ls′).

Since category ASSIG-Alg has initial objects being empty graphs attributed
over TDSIG(X), and pushouts, it is finitely cocomplete [17], i.e. has all finite
colimits. This is the basis to build the amalgamated rule of any partial covering
which glues all parallel rules according to their subrule embeddings. Applying
the amalgamated rule afterwards according to Def. 5 completes a parallel graph
transformation step.

Definition 13 (Amalgamated Rule and Transformation). Let G be a
graph and COV = (IIS, MA) be a covering construction with IIS =

⋃
n∈IN (tn :

ŝn → p̂n) being an instance interaction scheme with ŝn = ((Lsn

lsn← Isn

rsn→
Rsn), Csn , Ysn) and p̂n = ((Ln

ln← In
rn→ Rn), Cn, Yn) and MA = ∪n∈IN mn :

Ln → G. The amalgamated rule p̂COV = ((L l← I
r→ R), C, Y ) is constructed by

the following steps:

8



1. Let L be the colimit object of
⋃

n∈IN VL(tn) : VL(sn) → VL(pn) with an :
VL(pn)→ L.

2. Let I be the colimit object of
⋃

n∈IN VI(tn) : VI(sn) → VI(pn) with bn :
VI(pn)→ I.

3. Let R be the colimit object of
⋃

n∈IN VR(tn) : VR(sn) → VR(pn) with cn :
VR(pn)→ R.

4. Morphisms l and r are uniquely determined by the universal property of
colimit (I, bn) such that an ◦ ln = l ◦ bn and cn ◦ rn = r ◦ bn.

5. C =
⋃

n∈IN Csn
∪

⋃
n∈N Cn.

6. Y =
⋃

n∈IN Ysn
∪

⋃
n∈N Yn.

Match mCOV : L → G is uniquely determined by the universal property of
colimit (L, an), i.e. m ◦ an = mn. An amalgamated graph transformation is a

direct transformation G
p̂COV ,mCOV=⇒ H applying amalgamated rule p̂ at match m.

A parallel attributed graph transformation system PAGTS = (S, IScheme)
based on (ASSIG-Alg, M) consists of an ASSIG-algebra S, called start graph
and a set IScheme of interaction schemes.

Parallel transformation sequences and the language of a parallel attributed
graph transformation system are defined analogously to Def. 5.

4 Translating AHL Nets to Sequential Graph
Transformation Systems

The translation of AHL nets to attributed graph transformation systems gen-
eralizes that of P/T nets into graph transformation systems as proposed in the
literature [3, 15] and reviews in a slightly modified form the concepts and results
in [1]. An initially marked AHL net N together with its behavior is translated
to an attributed graph transformation system AGT = (G, P ) with start graph
G being the translation of the AHL net N with initial marking to an attributed
graph typed over the type graph for AHL nets ASSIGAHL (Def. 4), and the set
of rules P being behavior rules p̂t, one for each transition t ∈ T where L and R
contain the transition’s pre- and postdomain, and the rule application condition
corresponds to the firing condition of t.

Definition 14 (Translation of a marked AHL net to an Attributed
Graph). Given an AHL net N = (SPEC, P, T, pre, post, cond, A) with mark-
ing m ∈ (A × P )⊕. The translation Tr of (N,m) is given by the function
Tr : (AHLnet, (A × P )⊕) → ASSIGAHL-Alg from the set of pairs of AHL nets
plus markings to the set of algebras wrt. the attributed graph structure signature
ASSIGAHL (Def. 4) with

Tr(N,m) = G = (GPlace, GTrans, GToken, GEdgeTk, GArcPT , GArcTP ,
opsPT , optPT , opsTP , optTP , opsTk, optTk,
attrtv, attriPT , attriTP , attrcond), where

9



GDSIG = TOP (X) ] A (disjoint union of the term algebra with variables over
ASSIGAHL and A),

GPlace = P (the place nodes), GTrans = T (the transition nodes),
GToken = {tk|tk = (a, p, i) ∈ ∼

m}. The multiset m ∈ (A × P )⊕ is given by the
set

∼
m = {(a, p, i) ∈ A×P × IN |0 < i ≤ m(a, p)}, where multiple occurrences

of the same element in m are numbered by i in
∼
m,

GEdgeTk = {etk|tk ∈ GToken},
GArcPT = {arcPT |arcPT = (term, p, i) ∈ PreSet},
GArcTP = {arcTP |arcTP = (term, p, i) ∈ PostSet}, where the multisets of

terms in arc inscriptions are given by the sets PreSet = ∪t∈T PreSett and
PostSet = ∪t∈T PostSett where PreSett = {(term, p, i)|pre(t)(term, p) ≥
i > 0} corresponds to pre(t) and, analogously, PostSett to post(t).

opsPT : GArcPT → GPlace with opsPT (term, p, i) = p ∀(term, p, i) ∈ GArcPT ,
optPT : GArcPT → GTrans with optPT (term, p, i) = t, if (term, p, i) ∈ PreSett,
∀(term, p, i) ∈ GArcPT ,

opsTP : GArcTP → GPlace, optTP : GArcTP → GTrans: analogously,
opsTk : GEdgeTk → GToken with opsTk(e(a,p,i)) = (a, p, i) ∀e(a,p,i) ∈ GEdgeTk,
optTk : GEdgeTk → GPlace with optTk(e(a,p,i)) = p ∀e(a,p,i) ∈ GEdgeTk,

attrtv : GToken → IN with attrtv((a, p, i)) = a ∀(a, p, i) ∈ GTV ,
attriPT : GArcPT → TOP (X) with attriPT ((term, p, i)) = term ∀(term, p, i) ∈

GArcPT , attriTP : GArcTP → TOP (X): analogously,
attrcond : GTrans → Pfin(EQNS(X)) with attrcond(t) = cond(t) ∀t ∈ GTrans

Example 2 (AHL net Dining Philosophers translated to an attributed graph).
Fig. 3 shows the attributed graph re-
sulting from the translation of the ini-
tially marked AHL net presented in
Fig. 1 (b). We visualize Place nodes
as ellipses, Transition nodes as rect-
angles, and Token nodes as coloured
circles containing the token value at-
tributes. Token nodes are connected to
their places by EdgeTk arcs. ArcPT
and ArcTP symbols are drawn as edges
which are attributed by the arc inscrip-
tion terms. In this example we have no
firing conditions.

1
2 3 4

5

1 2 3 4 5

thinking

table

eating

takeput

p p

p

pp

p

(p mod 5) +1 (p mod 5) +1

Fig. 3. Translation of AHL net Dining
Philosophers with initial marking

In addition to the statical structure of the AHL net and the net marking, we
now define the translation of a net’s firing behavior into a set of graph rules PTr,
the so-called behavior rules. Each behavior rule encorporates the firing behavior
of one transition: the left-hand side contains its predomain, the right-hand side
its postdomain. The firing condition cond(t) is translated to the attribute con-
dition of the behavior rule for transition t. The firing rules PTr together with

10



the translated initially marked AHL net Tr(N,m) form an attributed graph
transformation system, the translation of the AHL net N including its behavior.

Definition 15 (Translation of AHL net firing behavior to graph rules).
Let N = (SPEC, P, T, pre, post, cond) be an AHL net. We translate the firing
behavior of N to a set of behavior rules PTr = {pt = (Lt

lt← It
rt→ Rt)|t ∈ T}

where for each transition t ∈ T the rule components Lt, It and Rt are attributed
graphs over ASSIGAHL (Def. 4), defined as follows:
The interface It contains only nodes of sort Place (the environment of transition
t) and no operations. All sorts and operations in Lt and Rt are empty, except
Place, Token, EdgeTk and the adjacent operations:

– LPlace = IPlace = RPlace = {p|p ∈ pre(t) ∪ post(t)}
– LToken[RToken] = {tk|tk = (term, p, i) ∈ PreSett[PostSett]}
– LEdgeTk = {etk|tk ∈ LToken},

– opL
sTK : LEdgeTk → LToken with opL

sTk(e(term,p,i)) = (term, p, i),
– opL

tTK : LEdgeTk → LPlace with opL
tTk(e(term,p,i)) = p,

– attrL
tv : LToken → TOP (X) with attrtv((term, p, i)) = term

(analogously for REdgeTk, opR
sTK , opR

tTK and attrR
tv)

The rule morphisms Lt
lt← It and It

rt→ Rt are given by (pPlace, pTrans, pToken,
pArcPT , pArcTP , pEdgeTk) = (idPlace, ∅, ∅, ∅, ∅, ∅). Let C = cond(t) be a set of
attribute conditions over TOP (X) as defined in Def. 6. Then, p̂t = (pt, C,X) is
the conditional rule corresponding to the firing behavior of transition t.

Remarks. Both Lt and Rt contain only the places of the transition’s environ-
ment and tokens connected to these places, where the tokens are attributed by
terms of TOP (X). The difference between Lt and Rt is that Lt corresponds to
pre(t) whereas Rt corresponds to post(t). The Token symbols are not in the in-
terface It as the rule models the deletion of tokens from the predomain (Lt) and
the addition of tokens to the postdomain (Rt).

Combining the translations of a marked AHL net and of its firing behavior,
we obtain a complete translation of a marked AHL net including its behavior to
an attributed graph transformation system:

Definition 16 (Translation of a marked AHL net and its Firing Be-
havior to an Attributed Graph Transformation System). Let N be
an AHL net and m its initial marking. Then the translation TrAGT (N,m) :
(AHLnet,M⊕)→ AGT from the set of pairs of AHL nets plus markings to the
set AGT of attributed graph transformation systems over graph structure signa-
ture ASSIGAHL (Def. 4) is defined by TrAGT (N,m) = (STr, PTr) where start
graph STr = Tr(N,m) is the translated AHL net marked by m according to
Def. 14, and the set of conditional behavior rules PTr = {(p̂t, C, X)|t ∈ T} is the
translation of the firing behavior of all transitions t ∈ T as defined in Def. 15.

11



Example 3 (Attributed graph transformation system for the Dining Philosophers).
Let N be our AHL net as shown in Fig.1 (b), and STr = Tr(N,m) be its transla-
tion to an attributed graph as shown in Fig. 3. Then, the behavior transformation
system for our AHL net is given by TrAGT (N) = (STr, PTr) with PTr being the
set of two behavior rules constructed according to Def. 15. These behavior rules
are shown in Fig. 4. Note that place nodes are preserved by the rule mapping
(equal numbers for an object in L and R means that this object is contained in
the interface I), and token nodes are deleted (predomain tokens) or generated
(postdomain tokens).

thinking

table

eating

thinking

table

eating

put

p

p

(p mod 5) +1

p

p

p

(p mod 5) +1

p

thinking

table

eating

thinking

table

eating

take

1

2

3

1

2

3

1

3

1

2

3

2

Fig. 4. Translated firing behavior of the AHL net Dining Philosophers

In TrAGT (N) the model behavior is simulated by applying the behavior rules
from PTr to the start graph STr and to the sequentially derived graphs which
correspond to different markings of N .

Proposition 2 (Semantical Compatibility of AHL net N and its trans-
lation to an Attributed Graph Transformation System). The seman-
tics of an AHL net N with initial marking minit and the semantics of the
translation TrAGT (N,minit) are compatible, denoted by SemAHL(N,minit) ∼=
SemAGT (TrAGT (N,minit)), where the semantics of an AHL net is given by a
set of firing sequences (firing steps), and the semantics of an attributed graph
transformation system by a set of transformation sequences.

For the proof of Proposition 2 we need to translate an attributed graph
Tr(N,m), which is the translation of the marked AHL net (N,m), back to a
marked AHL net Nback. In Lemma 1 we show that the marking of Nback is the
same as the marking of the original net N .

Definition 17 (Backward Translation of the Attributed Graph Tr(N,m)
to a Marked AHL Net). Given an AHL net N = (P, T, pre, post, SPEC, cond, A)
with marking m ∈ (A× P )⊕ and its translation, the attributed graph Tr(N,m),
constructed as defined in Def. 14. Then the backward translation Back of Tr(N,m)
is the marked AHL net Nback with:

Pback = GPlace, Tback = GTrans,
∀t ∈ T : preback(t) =

∑|GArcP T |
j=1 (termi, pi) with (termj , pj , i) ∈ GArcPT ,

∀t ∈ T : postback(t) =
∑|GArcP T |

j=1 (termi, pi) with (termj , pj , i) ∈ GArcTP ,

12



∀t ∈ T : condback(t) = attrcond(t),
mback =

∑
tk∈GT oken

(attrtv(opsTk(etk), optTk(etk)))

Lemma 1 (Compatibility of Markings of N and Back(Tr(N,m))).
Let m ∈ (A × P )⊕ be a marking of an AHL net N , G = Tr(N,m) be the
translation of N with marking m according to Def. 14, and Back(G) the backward
translation as defined in Def. 17. Then, the marking of Back(G) is the same as
the marking of N , i.e. mback = m.

Proof of Lemma 1:

mback =
∑

etk∈GEdgeT k
(attrtv(opsTk(etk)), optTk(etk))

=
∑

e(a,p,i)∈GEdgeT k
(a, p) =

∑
(a,p,i)∈GT oken

(a, p) = m
4

Proof of Proposition 2

We show that

1. For each firing step m[t, asg〉m′ and for G = Tr(N,m) there is a transfor-
mation step d : G

pt=⇒ H where pt is the behavior rule corresponding to
transition t, such that the marking m′ is the same as the marking of the
backward translated AHL net Back(H).

2. Each firing sequence σ ∈ SemAHL(N,minit) corresponds to a transforma-
tion sequence σ′ ∈ SemAGT (TrAGT (N,minit)). This means, for all firing
sequences σi = (mi[ti, asgi〉m′

i) ∧ 1 ≤ i ≤ n such that m′
i−1 = mi, we have

Tr(N,m′
i−1) = Tr(N,mi) in the corresponding transformation sequence

Tr(N,mi)
rti=⇒ Tr(N,m′

i), for 1 ≤ i ≤ n.

ad (1)
Let m[t, asg〉m′ be a firing step, G = Tr(N,m) the translation of N,m to an
attributed graph and pt : Lt → Rt the behavior rule for transition t as defined
in Def. 15.

We define the match masg : Lt → G as follows: masg is the identity on the
sorts GPlace, GTransition, GArcTP and GArcPT . For tokens in GToken we define
masg((term, p, i)) = (asgA(term), p, i) and for token edges in GEdgeTk we define
masg(e(term,p,i)) = e(asgA(term),p,i). masgA

: TOP (X) → TOP (X) ∪ A maps each
term in TOP (X) to its extended assignment in A: masgA

(term) = asgA(term).
We show that the match masg satisfies the graph morphism properties for the
token edges e(term,p,i) ∈ GEdgeTk:
masg(opsTk(e(term,p,i))) = masg((term, p, i)) = (asgA(term), p, i) =
opsTk(e(asgA(term),p,i)) = opsTk(masg(e(term,p,i))).
Analogously, masg(optTk(e(term,p,i))) = optTk(masg(e(term,p,i))).

The transformation step d : G
pt=⇒ H is constructed as follows: Using rule pt

and match masg, we obtain for G = Tr(N,m) a transformation step as double

13



pushout of pt : Lt
lt←− It

rt−→ Rt and masg in ASSIG-Alg due to Def. 5. The
gluing object It just contains all places of Lt as these are the only nodes preserved
by the rule. As the masg is injective, the pushout object H is constructed by
H

∼=G−masg(Lt)+masg(lt(It))+m∗
asg(Rt)−m∗

asg(rt(It)). As D
∼=G−masg(Lt)+

masg(lt(It)) and g : D → G, h : D → H are inclusions, we have H
∼=G −

masg(Lt) + m∗
asg(R).

Places are preserved by the rule, i.e. if p ∈ G then p ∈ H. The transi-
tion and its adjacent arcs of type ArcPT and ArcTP are deleted and gener-
ated again. This means, if t ∈ G then t ∈ H and if eArcTP , eArcPT ∈ G then
eArcTP , eArcPT ∈ H. Tokens tk ∈ GToken which are in the match of masg are
deleted. All other tokens are preserved, i.e. they are in D. Tokens in RToken

are generated, i.e. if tk ∈ RToken then m∗
asg(tk) ∈ HToken. For token values of

tk ∈ m∗
asg(RToken) we have attrH

tv(tk) = m∗
asg(attrR

tv(tk)) and for the token edges
etk ∈ m∗

asg(REdgeTk) we have attrH
tv(opH

sTk(etk)) = m∗
asg(attrR

tv(opsTk(etk))).
We show now that H = Tr(N,m′). We know that H = Tr(N) for all sorts

except Token, EdgeTk and the adjacent operations, because rule pt preserves all
places and deletes and generates the transition and arcs of type ArcPT and
ArcTP . Concerning the tokens in H, we have to show that mback, the marking
of Back(H), equals m′, the resulting marking after the firing step.

mback =
∑

etk∈HEdgeT k

(attrH
tv(opH

sTk(etk)), opH
tTk(etk))

(due to the definition of mback in Def. 17)

=
∑

etk∈GEdgeT k

(attrG
tv(opG

sTk(etk)), opG
tTk(etk))

−
∑

etk∈masg(L)

(attrL
tv(opL

sTk(etk)), opL
tTk(etk))

+
∑

etk∈m∗
asg(R)

(attrR
tv(opR

sTk(etk)), opR
tTk(etk))

(due to definition of H as pushout)

= m−
∑

e(asgA(term),p,i)∈masg(L)

(asgA(term, p))

+
∑

e(asgA(term),p,i)∈m∗
asg(R)

(asgA(term, p))

(due to def. of m as marking of Back(G), and of attrtv, opsTk and optTk)

= m−
∑

(term,p,i)∈PreSett

(asgA(term), p)

+
∑

(term,p,i)∈PostSett

(asgA(term), p)

(due to def. of LEdgeTk, REdgeTk in Def. 15)

14



= m−
n∑

j=1

(asgA(termi), pi)with (termj , pj , i) ∈ PreSett, n = |PreSett|

+
n∑

j=1

(asgA(termi), pi)with (termj , pj , i) ∈ PostSett, n = |PostSett|

= m	 preA(t, asgA)⊕ postA(t, asgA)
(due to def. of preA, postA in Def. 2)

= m′

(due to definition of m′ in Def. 2)

4
ad (2)
We prove the correspondence of firing sequences and transformation sequences
by structural induction over the length of the sequences.

Induction Anchor
For the length of 0, there is no firing sequence. We only have to show that for a
marking m of N and the translation G = Tr(N,m) the marking of the backward
translation B = Back(Tr(N,m)) equals m. We have shown this in Prop. 1.

For the length of 1, we have one firing step m[t, asg〉m′ and we have to show
that for G = Tr(N,m) there is a transformation step d : G

pt=⇒ H where pt is
the behavior rule corresponding to transition t, s.t. the marking m′ corresponds
to the marking of the backward translated AHL net Back(H). We have proven
this in part 1 (ad (1)) of this proof.

Induction Step
We have to show that if there is a correspondence of firing sequences and transfor-
mation sequences of length n, then there is also a correspondence of sequences of
length n+1. We know that the n’th firing step from the firing sequence of length
n, mn[tn, asgn〉m′

n corresponds to a transformation Tr(N,mn)
rtn=⇒ Tr(N,m′

n).
For the firing step mn+1[tn+1, asgn+1〉mn+1 with m′

n = mn+1 the corresponding

transformation step is defined by Tr(N,mn+1)
rtn+1=⇒ Tr(N,m′

n+1).
We have to show that the marking of Back(Tr(N,mn+1)) equals the marking

of Back(Tr(N,mn′)). By the definition of backward translation we know that the
marking of Back(Tr(N,mn+1)) equals mn+1 and the marking of Back(Tr(N,m′

n))
equals m′

n. As we know that m′
n = mn+1, the transformation sequence is now

of length n+1 and because the marking of Back(Tr(N,m′
n+1)) equals m′

n+1, it
has the desired property.

4
Up to now we discussed an approach of simulating AHL net behavior by

graph transformation which is based on compiling the behavior of AHL nets
into graph rules. The disadvantage of this approach is that for Petri nets in
contrast to other visual languages there is no general behavior transformation
system which can be applied to all language elements, but that for each different

15



model (i.e. for each AHL net), the compilation or translation to its corresponding
graph transformation system has to be performed according to Def. 16.

In order to have a more general approach for modeling Petri net behavior by
graph transformation, we propose to use parallel graph transformation and thus
avoid the model-specific translation of transitions to behavior rules.

5 AHL Net Simulation by Parallel Graph Transformation

In this section, we define AHL net behavior by parallel graph transformation
(interpreter approach) and compare this approach to the compiler approach
presented in Section 4.

For the construction of the covering construction for behavior rules we need
a graph to define the set of matches MA from all subrules and rules in the in-
teraction scheme (see Def. 12). This graph needs to supply all the information
we need for the behavior rule construction. It contains the predomains of all
transitions in form of virtual tokens, i.e. tokens being the terms in PreSet corre-
sponding to the ArcPT inscriptions, and the information about the postdomains
in form of ArcTP inscriptions. As we use only “virtual” tokens, we call this graph
V virtually marked AHL net graph. The amalgamation construction over V then
yields amalgamated rules containing the transitions and the adjacent arcs. Thus
we apply a restriction functor after the amalgamation and show that the result
is equivalent to the sequential behavior rules. Note that so far we do not consider
firing conditions in the amalgamation, i.e. the correspondence result (Prop. 4)
holds only for AHL nets without firing conditions like the Dining Philosophers.

Definition 18 (Virtually marked AHL net graph). Let N be an AHL net,
and Tr(N,m) the corresponding attributed graph (acc. to Def. 14). The virtu-
ally marked AHL net graph V corresponds to Tr(N,m), but is marked by terms
(term, p, i) ∈ PreSet (which virtually enables all transitions):

V = Tr(N,m) for all sorts except Token, EdgeTk and the adjacent arc operations:

VToken = {tk|tk = (term, p, i) ∈ PreSet}, VEdgeTk = {etk|tk ∈ VToken},
and the operations opsTK , optTK , and attrtv are defined as the corresponding
operations for the behavior rule sides in Def. 15.

Example 4 (Virtually marked AHL net graph for the Dining Philosophers). The
bottom graph in Fig. 6 shows the virtually marked AHL net graph VDIPHI for
our sample AHL net modeling the Dining Philosophers. Note that the marking
of the virtually marked AHL net graph denotes the union of predomains of all
transitions and has nothing to do with a specific marking as e.g. shown in Fig. 3.

Next, we define an interaction scheme for AHL nets according to Def. 10.

Definition 19 (Interaction Scheme for AHL Nets).
The interaction scheme ISAHL consists of two subrules glueTrans and gluePlace,

16



two extending rules get and put, and four subrule embeddings t1 : glueTrans →
get, t2 : glueTrans→ put, t3 : gluePlace→ get and t4 : gluePlace→ put.

Fig. 5 shows the interaction scheme ISAHL, i.e. the definitions of the sub-
rules, the extending rules, and the four embeddings. For each rule, the algebra
is the term algebra TOP (Y ) where Y is the set of variables depicted at graph ob-
jects in Fig. 5. The interaction scheme ISAHL is local, as e.g. subrule glueTrans

is source of embeddings to both extending rules get and put.

1 2

glueTrans

1 2

gluePlace

3,4 3,4

1 23 3

x

1
puty

4 2

y
4

x

t1
t2 t3 t4

get

x y

Fig. 5. Interaction Scheme for AHL nets

Example 5 (Partial Covering for the AHL net Dining Philosophers).
Given interaction scheme ISAHL as defined in Def. 19. An instance interaction
scheme IIStake is shown in the upper part of Fig. 6. (Note that the detailed
presentation on the left does not include all gluePlace copies.) Then, COVtake =
(IIStake,MAtake) is a partial covering with MAtake being a set of matches from
ISAHL into VDIPHI as shown at the bottom of Fig. 6. The matches in MAtake

are indicated in Fig.6 by a fat arc inscribed by MAtake and given precisely by
node numbers. All matches from all extending rules of all subrule embeddings
in IIStake commute with the matches of the subrules.

COVtake is local as IIStake is local (the subrule glueTrans is embedded in
all extending rules) and because the matches from the left-hand sides of all three
extending rule instances of get into GAHLDIP HI

are non-isomorphic. COVtake is
additionally fully synchronized, because for each pair of extending rules we find
a subrule s.t. the matches of their left-hand sides into GAHLDIP HI

overlap only
in the match of this common subrule.

Note that, if a graph G and an interaction scheme are given and the covering
is characterized (as e.g. for AHL nets the covering must be local, and fully
synchronized), then the set of all partial coverings, i.e. the instance interaction
schemes and the set of matches MA from all rules and subrules from the instance
interaction scheme into G can be computed automatically.

For the covering construction for the AHL net Dining Philosophers this
means that we can find two basic partial coverings – one for transition take in
VDIPHI (as shown in Fig. 6), and the other one for transition put. In the second
case, a different instance interaction scheme is computed with three instances of
rule put and one instance of rule get. From one instance of the subrule gluePlace

17



there are embeddings into two of the put instances, and from one instance of the
subrule glueTrans there are embeddings into all get and put instances.

A desired property of our AHL net covering construction is that it can be
computed deterministically in the sense that the rules resulting from the amal-
gamation are unique. This property will be shown in Proposition 3.

Example 6 (Amalgamated Rule for the AHL net Dining Philosophers).
Let COVtake = (IIStake,MAtake) be the partial covering construction as defined
in Def. 5. The LHS (RHS) of the amalgamated rule ptake for this partial covering
is constructed according to Def. 13 by gluing the instances of the LHS (RHS) of
get and put along the objects of the LHS (RHS) of their common subrules.

In the center of Fig. 6, the construction of the amalgamated rule pamalgtake

from COVtake is shown. The embeddings of rules and subrules into the amalga-
mated rule are indicated by dashed arrows and given precisely by numbers.

1 2

glueTranstake

1 2

gluePlacetable

3,4

1 23 3

x1

1

put(p, eating)

6 2
6

get((p mod 5) +1, table)

thinking

table

eating

takeput

p
p

p

pp
p

(p mod 5) +1 (p mod 5) +1

1 24 4

x2 get(p, table)

1

2
5

5

3,4
1

5

6

7

8

8

9

7

9

10

10

MAtake

glueTranstake gluePlacetable

x1

x2

3,4

x3

y1

p

p(p mod 5) + 1 p

x1 x2

x3

x3 y1 y1

IIStake

VDIPHI

gluePlacethinking

gluePlaceeating

pamalgtake

x3

x2

x1

3,4 1

5

6
8

7

9 x3

x1

10y1
x2 y1

x3

x2

x1

3,4 1

5

6 y1

get(p, table)

get((p mod 5) +1, table)

get(p, thinking)

get(p, thinking)

put(p, eating)

Fig. 6. Covering Construction COVtake and Amalgamated Rule pamalgtake

The result of the amalgamation, pamalgtake
, is a rule corresponding to the

behavior rule for transition take with two slight differences. The variables x1, .., x3

18



and y1 used in the amalgamated rule have to be replaced by the right terms from
TOP (X), and the transition and arcs must not appear in the behavior rule. The
rewriting step for the variables is given by the matches in MAtake, where x1 is
matched to (p mod 5) + 1, and x2, x3 and y1 are matched to p. The transition
and arcs disappear by applying a functor restricting an ASSIG algebra such that
the sorts Trans,ArcPT and ArcTP and the adjacent arc operations are empty.

The general construction of a partial covering for a transition t ∈ T is the
basis for the correspondence proof in Proposition 4.

Construction 1 (Partial Coverings for Amalgamated Rules modeling
the Firing Behavior of AHL Net Transitions).
Let V be the virtually marked AHL net graph for net N defined in Def. 18. Let
COVt = (IISt,MAt) be the partial covering for a transition t ∈ VTrans with
IISt being an instance interaction scheme of ISAHL as defined in Def. 19 and
MAt the set of matches from IISt into V . IISt and MAt are defined as follows:

– Extending rule instances: For each edge arcPT ∈ VArcPT there is one in-
stance getarcPT of the extending rule get. For each edge arcTP ∈ VArcTP

there is one instance putarcTP of the extending rule put.
– Subrule instances: There is one instance of subrule glueTrans for transition

t which is embedded into all get and put instances as defined in Def. 19.
For each place p ∈ NEnvt there is one gluePlace instance, called gluePlacep,
which is embedded into all those extending rule instances getarcPT with
opsPT (arcPT ) = p similar as in Def. 19. Analogously, gluePlacep is embedded
into all those extending rule instances putarcTP with optTP (arcTP ) = p.

– Matches in MAt: The transitions of all rules and subrules in IISt are
mapped to t ∈ VTrans. The place nodes from get instances are mapped
to place nodes in pre(t) such that the arc inscription and the token value are
mapped to the same term and the mappings overlap only in the matches of
their subrules in IISt. Place nodes from put instances are mapped to place
nodes in post(t) such that the mappings overlap only in the matches of their
subrules.

Proposition 3 (Existence and Uniqueness of Partial Covering COVt).
Let V be the virtually marked AHL net graph for net N defined in Def. 18. For
each transition t ∈ VTrans a local, fully synchronized partial covering COVt =
(IISt,MAt) constructed as in Construction 1, exists and is unique.

Proof

We show that

1. there is at least one partial covering COVt which is local and fully synchro-
nized (due to the instance of glueTrans in IISt).

2. COVt is unique by assuming that there are two different partial coverings
COV 1t and COV 2t and by showing that they are equal.

ad (1)
Taking an arbitrary transition t ∈ GTransition we show that there exists exactly
one partial covering COVt = (IISt,MAt).

19



There is at least one partial covering. According to Def. 1 there is one instance of
subproduction glueTrans in IISt. Since its left and right-hand sides contain only
a transition node each, there exists a match of glueTrans to G. For all extending
production instances in IISt we know that their matches overlap in the match
of glueTrans. Thus, a partial covering COVt exists (independent of the number
of extending productions).

COVt is local, since glueTrans is a subproduction of all instances of get and
put. Moreover, each two instances of get match to two different arcPT1, arcPT2 ∈
GArcPT with optPT (arcPT1) = optPT (arcPT2) = t and each two instances of
put match to two different arcTP1, arcTP2 ∈ GArcTP with opsTP (arcTP1) =
opsTP (arcTP2) = t.

COVt is fully synchronized, since for each two instances i1, i2 of get or put

one of the following cases holds:

– Both instance matches overlap only in transition node t. Then, their matches
overlap only in the match of glueTrans.

– Both instance matches overlap also in their place node p. Then, there is an
instance of gluePlace such that its match is the intersection of the matches
of i1 and i2.

ad (2)
The partial covering is unique. Assume we have two different partial coverings
COV 1t and COV 2t. Since both are local and fully synchronized, they have to
differ in the set of instances of get, put, or gluePlace. Due to Def. 1 in IISt, we have
one instance getarcPT of get for all arcPT ∈ GArcPT with optPT (arcPT ) = t,
one instance of putarcTP of put for all arcTP ∈ GArcTP with opsTP (arcTP ) = t,
and one instance of gluePlacep of gluePlace for all p ∈ GP . There are no conflicts
between any two instances of get and put, since we have shown in the first part
that COVt is fully synchronized, independent of the number of instances of get

and put. In the case that both instance matches overlap in more than transition
t, this is only true, if there is an instance of gluePlace such that its match is
the intersection of both instance matches. This holds, since there is an instance
gluePlacep for all p ∈ NEnvt

.
4

On the basis of the unique construction of the amalgamated rule pamalg :
Lamalgt → Ramalgt using the virtually marked AHL net V as host graph (step
(1) in Fig. 7), we get the match mcov : Lamalgt → V by gluing the matches in
MAt along the matches of the subrules (step (2) in Fig. 7). Then we apply the
amalgamated rule pamalg at match mcov to V (step (3) in Fig. 7). The resulting
span V ← VI → V ′ can be interpreted as rule again. This rule still contains all
AHL net places, arcs and the transitions due to V being constructed once for
the complete AHL net N . So we now restrict V ← VI → V ′ to the elements of
the environment of transition t. This transformation step is depicted as step (4)
in Fig. 7. The result is the span V |codom(mcov) ← VI |codom(i) → V ′|codom(m∗

cov)

which looks similar to our sequential behavior rule pt with the difference that it
still contains the transition and the adjacent arcs. Thus, in a last step (step (5)
in Fig. 7) we apply a functor which forgets the transition and its adjacent arcs.

20



ISAHL IISt

Lamalg t Ramalg t

V V’

V |codom(mcov) V’ |codom(m*cov)

( F(V |codom(mcov)) F(V’ |codom(m*cov)))

mcov m*cov

restrict restrict

F F

≈ 

instance

MAt

COVt

(1)
COVt

(2)

(4)

Iamalg t

VI (3)

VI |codom(i)

F(VI |codom(i))(Lt Rt)pt  = It (5)

i

Fig. 7. Correspondence of Amalgamated Rules and Behavior Rules

Proposition 4 now formally states that the rule resulting from this functor
application is isomorphic to the sequential behavior rule pt as defined in Def. 15.

Proposition 4 (Correspondence of Amalgamated Rules and Behavior
Rules for AHL Net Simulation).

Let N be an AHL net and m ∈ M⊕ its initial marking. Let GTSN =
TrAGT (N,m) = (STr, PTr) be the translation of the AHL net marked by m
according to Def. 16, with the set of behavior rules PTr = {p̂t : Lt → Rt|t ∈ T}.
Let V be the virtually marked AHL net graph for N acc. to Def. 18.

Then for each transition t ∈ T the following holds: Given COVt = (IISt,MAt),
the partial covering for transition t constructed as in Constr. 1, and pamalgt :
Lamalgt → Ramalgt , the amalgamated rule for COVt. Let mcov be the match from
Lamalgt to V , with mcov being the gluing of MAt, and let V

pamalgt ,mcov−→ V ′ be the
transformation step. Performing an epi-mono-factorization of the corresponding
rule embedding (mcov, i,m∗

cov) leads to a new rule pcodom = (codom(mcov) ←
codom(i) → codom(m∗

cov)). Let F be a functor that forgets transition and arcs,
i.e. the sorts Trans,ArcPT, ArcTP and all adjacent operations are empty. Then,
F (pcodom)∼=pt.

Proof

We construct pamalgt and mcov : Lamalgt → V and show that

1. the transformation step V
pamalgt ,mcov−→ V ′ restricted to the codomain of rule

embedding (mcov, i,m∗
cov) corresponds to pt except that it still contains the

transition and adjacent arcs.
2. F ((pcodom) is isomorphic to pt.

ad (1)
Given partial covering COVt for a transition t ∈ T , the amalgamated rule

ˆpamalgt
= ((pamalgt

: Lamalgt

lamalgt← Iamalgt

ramalgt→ Ramalgt
), ∅, Y ) has to be

constructed first. Due to the fact that colimit constructions are unique up to
isomorphisms, the construction of pamalgt

is also unique to isomorphism.

21



First, we have to show that Lamalgt
is isomorphic to Tr(NEnvt

) for all sorts
except Token, EdgeTk and the adjacent operations as well as operations arciPT

and arciTP . We have one transition node, since COVt is local, i.e. subproduction
glueTrans is embedded into all extending production instances of get and put.
Thus, in the colimit construction all transition nodes are glued to one. For all
places p in PreSet(t), we know that there is at least one token required from
p. Thus, there is at least one instance of get with a place node mapped to p. If
there are more such instances of get, they are glued by an instance of gluePlace,
since for each place p in NEnvt there is a production gluePlace. Similarly for all
places p in PostSet(t), at least one token is put to p after firing t. Thus, there
is at least one instance of put with a place node mapped to p. If there are more
such instances of put, they are again glued by an instance of gluePlace. All place
nodes glued occur only once in Lamalgt

. Edges between place and transition
nodes as well as tokens and their place-assigning edges in Lamalgt are not glued,
i.e. they occur in Lamalgt as often as instances of productions get and put are in
COVt. Compare Def. 1 for the number of instances. Since there is an instance
of get in COVt for each (term, p, i) ∈ PreSett and an instance of put in COVt

for each (term, p, i) ∈ PostSett, we get for sorts Token, EdgeTk and the adjacent
operations as well as operations arciPT and arciTP :

– LamalgtT oken
= {tk|tk = (term, p, i) ∈ PreSett}

– LamalgtEdgeT k
= {etk|tk ∈ LamalgtT oken

},

– opsTK : LamalgtEdgeT k
→ LamalgtT oken

with opsTk(e(term,p,i)) = (term, p, i),
– optTK : LamalgtEdgeT k

→ LamalgtP lace
with optTk(e(term,p,i)) = p,

– attrtv : LamalgtT oken
→ IN with attrtv((term, p, i)) = x(term,i)

– attriPT : LamalgtArcP T
→ IN with attriPT ((term, p, i)) = x(term,i)

– attriTP : LamalgtArcT P
→ IN with attriTP ((term, p, i)) = y(term,i)

Iamalgt
just contains all places of Lamalgt

. These are the only nodes preserved
by the productions in IISt.

Since there is an instance of put in COVt for each (term, p, i) ∈ PostSett,
Ramalgt is constructed similarly to Lamalgt except for sort Token and operation
attrtv.

– RamalgtT oken
= {tk|tk = (term, p, i) ∈ PostSett}

– attrtv : RamalgtT oken
→ IN with attrtv((term, p, i)) = y(term,i)

lamalgt
and ramalgt

are the obvious embeddings. They result from gluing the
embeddings of interfaces in productions of IISt.

Variable set Y to sort Nat consists of variables {xi}∪{yi} for i, j ∈ TOP (X)×
IN .

The match mcov : Lamalgt
→ V is given by identical mappings on the places,

transitions and arcs. For the tokens, we have mcovDSIG
: Y → TOP (X) as-

signing each variable in Y a term in TNat(X) with mNat(y(term,i)) = term if
(term, p, i) ∈ PreSett. Otherwise, y(term,i) is mapped to some variable in X not

22



used in V . The codomain of mcov is the subgraph of V containing the places,
transitions and arcs of NEnvt

and all tokens from V connected to place nodes
from NEnvt .

In Def. 15, we defined Lt = Tr(NEnvt
) for all sorts except Token, EdgeTk and

the adjacent operations. Thus, codom(mcov and Lt represent the same net struc-
ture (except for arc inscriptions). Moreover, there is a token in codom(mcovT oken

for each tk = (term, p, i) ∈ PreSett, since for each (term, p, i) ∈ PreSett there
is an arc arcPT ∈ VArcPT , and thus one instance getarcPT , due to Def. 1.

Applying pamalgt
at match mcov to codom(mcov), we must show that the

result graph is isomorphic to codom(m∗
cov). As stated above, Lamalgt and Ramalgt

differ only in their token sets and adjacent edges and attributes. The same is
true for codom(mcov) and codom(m∗

cov) because here the application of pamalgt
is

reflected. The only difference are the token attributes which are terms in TOP (X)
here. It is obvious that mcovDSIG

= m∗
covDSIG

.
The only difference between codom(mcov) and Lt [codom(m∗

cov) and Rt] is
that Lt [Rt] contains no arc inscriptions.
ad (2)
Applying the restriction functor F to the rule pcodom : codom(mcov)→ codom(m∗

cov),
we have to show that F (pcodom) is isomorphic to pt. As the arc inscription opera-
tions are empty for F (codom(mcov), the restricted rule F (pcodom) equals pcodom

without arc inscriptions, and hence is isomorphic to pt.
4

6 Conclusion

In this paper we have shown how to define the behavior of AHL nets by parallel,
typed and attributed graph transformation systems. This yields the advantage
of an interpreter approach for simulating AHL nets. Using parallel graph trans-
formation, possibly infinite rule sets can be described by a finite set of rules (rule
schemes) modeling the elementary actions like the firing of a transition in a Petri
net. The description of a rule scheme and hence of an infinite rule set is given in a
purely categorical way. For AHL nets we defined an interaction scheme and con-
structed partial coverings. We proved the semantical compatibility between the
resulting amalgamated productions and the behavior rules from the sequential
graph transformation systems. The categorical definition of sequential AHL net
behavior using parallel graph transformation can be extended to define parallel
firing behavior of AHL nets. Here, the interaction scheme ISAHL needs to be
extended by an empty subrule to allow the construction of amalgamated rules
containing more than one transition. The instance interaction schemes are still
fully synchronized, but do not have to be local anymore. The amalgamation for
parallel firing then yields behavior rules for combinations of different transitions
and model their parallel firing.

Some restrictions had to be made when defining the behavior of AHL nets by
parallel graph transformation. As we provide a general rule scheme (which is not
specific to a certain net), we decided to use a fixed data signature, ASSIGAHL for

23



all AHL nets, to make use of the attribute evaluation in attributed graph trans-
formation. Thus we use directly ASSIGAHL terms and avoid to define higher-order
functions operating on terms. In our running example all tokens are attributed by
natural numbers. Extending the interaction scheme by variants of rules get and
put allowing tokens with further kinds of attributes would increase the flexibility
of the AHL net simulator. Another restriction concerns the firing conditions for
transitions. In this paper, the construction of amalgamated rules and the corre-
spondence result (Prop. 4) are defined for AHL nets without firing conditions,
only. As firing conditions are translated to rule conditions in sequential graph
transformation systems, this should be reflected also in the amalgamated rule
construction, an extension which is planned as future work.

Tool support for AHL net simulation has been realized using GenGED [2],
a tool for generating visual modeling environments. In GenGED, an alphabet
editor supports the definition of the language vocabulary (alphabet) as graph
structure signature and the layout of alphabet symbols by graphical constraints.
A visual grammar editor allows to define different kinds of grammars based on
the alphabet, e.g. for syntax-directed editing, parsing and/or simulation. Alpha-
bet and grammars configure a specific VL environment, including an editor for
the specified language (e.g. an AHL net editor). The behavior rules are used for
simulation, where the underlying graph transformations are performed by Agg
[21]. Moreover, they are the basis for the definition of an application-specific an-
imation view [12]: the original alphabet for AHL nets is merged with a so-called
view alphabet containing e.g. graphical symbols and layout definitions for the
Dining-Philosophers example, i.e. icons for philosophers, a table and chopsticks.
In addition, a so-called view transformation grammar is used to extend the AHL
net and its behavior rules by corresponding view-specific icons. Applying the
view transformation grammar to the AHL net in Fig. 1 (b) yields the animation
view shown in Fig. 1 (a), and the application to the behavior rules yields the cor-
responding animation rules. These rules can be enhanced by specific animation
operations defining e.g. the smooth movement of the philosophers’ chopsticks.

In GenGED, the generated environment supports simulation/animation by
applying the corresponding simulation/animation rules. Animation scenarios can
be exported to the SVG format [22] and viewed by an external SVG viewer which
shows continuous state changes according to the defined animation operations.
Due to the generic and modular definition of syntax, behavior and animation for
behavior models, the GenGED approach reduces considerably the amount of
work to realize a domain-specific animation of a system’s behavior. Yet, it would
be even more desirable to have an interconnection between GenGED and other
tools supporting the definition of visual models, e.g. the world of Petri net or
UML tools. The motivations for such a tool interconnection are obvious: Petri
net tools which are focused on formal analysis could profit from the animation
view support offered by GenGED, whereas GenGED might export a Petri
net to a Petri net tool for formal analysis. In the DFG researcher group “Petri
Net Technology” [10], guided by Ehrig, Reisig and Weber, the Petri net tool
infrastructure Petri Net Kernel (PNK) has been developed. As a first step towards

24



tool interchange, an XML-based file exchange between GenGED and the PNK
has been realized for place/transition nets.

Last but not least, work is in progress to implement parallel graph transfor-
mation in Agg. This extension can serve in future to simulate behavior models
such as AHL nets using the interpreter approach as described in this paper.

References

1. R. Bardohl, C. Ermel, and J. Padberg. Formal Relationship between Petri Nets and
Graph Grammars as Basis for Animation Views in GenGED. In Proc. IDPT 2002:
Sixth World Conference on Integrated Design and Process Technology. Society for
Design and Process Science (SDPS), 2002.

2. R. Bardohl, C. Ermel, and I. Weinhold. GenGED - A Visual Definition Tool for
Visual Modeling Environments. In J. Pfaltz and M. Nagl, editors, Proc. Appli-
cation of Graph Transformations with Industrial Relevance (AGTIVE’03), Char-
lottesville/Virgina, USA, September 2003.

3. A. Corradini and U. Montanari. Specification of Concurrent Systems: From Petri
Nets to Graph Grammars. In G. Hommel, editor, Proc. Workshop on Quality of
Communication-Based Systems, Berlin, Germany. Kluwer Academic Publishers,
1995.

4. J. de Lara, C. Ermel, G. Taentzer, and K. Ehrig. Parallel Graph Transformation
for Model Simulation applied to Timed Transition Petri Nets. In Proc. Graph
Transformation and Visual Modelling Techniques (GTVMT) 2004, 2004.

5. P. Degano and U. Montanari. A model of distributed systems based on graph
rewriting. Journal of the ACM, 34(2):411–449, 1987.

6. H. Ehrig and H.-J. Kreowski. Parallel graph grammars. In A. Lindenmayer and
G. Rozenberg, editors, Automata, Languages, Development, pages 425–447. Ams-
terdam: North Holland, 1976.

7. H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 1: Equations and
Initial Semantics, volume 6 of EATCS Monographs on Theoretical Computer Sci-
ence. Springer Verlag, Berlin, 1985.

8. H. Ehrig, B. Mahr, F. Cornelius, M. Grosse-Rhode, and P. Zeitz. Mathematisch
Strukturelle Grundlagen der Informatik. Springer Verlag, 1998.

9. H. Ehrig, U. Prange, and G. Taentzer. Fundamental theory for typed attributed
graph transformation. In F. Parisi-Presicce, P. Bottoni, and G. Engels, editors,
Proc. 2nd Int. Conference on Graph Transformation (ICGT’04), Rome, Italy,
pages 161–177. LNCS 3256, Springer, October 2004.

10. H. Ehrig, W. Reisig, G. Rozenberg, and H. Weber, editors. Advances in Petri Nets:
Petri Net Technology for Communication Based Systems. LNCS 2472. Springer,
2003.

11. H. Ehrig and G. Taentzer. From parallel graph grammars to parallel high- level
replacement systems. In Lindenmayer Systems, pages 283–303. Springer, 1992.

12. C. Ermel and R. Bardohl. Scenario Animation for Visual Behavior Models: A
Generic Approach. Software and System Modeling: Special Section on Graph Trans-
formations and Visual Modeling Techniques, 5, 2004.

13. C. Ermel, G. Taentzer, and R. Bardohl. Simulating Algebraic High-Level Nets
by Parallel Attributed Graph Transformation. In H.-J. Kreowski, U. Montanari,
F. Orejas, G. Rozenberg, and G. Taentzer, editors, Formal Methods in Software
and Systems Modeling: Essays Dedicated to Hartmut Ehrig on the Occasion of His
60th Birthday, volume 3393 of LNCS. Springer, 2005.

25



14. U. Hummert. Algebraische High-Level Netze. PhD thesis, Technische Universität
Berlin, 1989.

15. H.-J. Kreowski. A Comparison between Petri Nets and Graph Grammars. In 5th
International Workshop on Graph-Theoretic Concepts in Computer Science, pages
1–19. LNCS 100, Springer, 1981.

16. J. Lilius. On the Structure of High-Level Nets. PhD thesis, Helsinki University of
Technology, 1995. Digital Systems Laoratory, Research Report 33.

17. S. MacLane. Categories for the Working Mathematician, volume 5 of Graduate
Texts in Mathematics. Springer, New York, 1971.

18. J. Padberg, H. Ehrig, and L. Ribeiro. Algebraic high-level net transformation
systems. Mathematical Structures in Computer Science, 5:217–256, 1995.

19. W. Reisig. Petri Nets, volume 4 of EATCS Monographs on Theoretical Computer
Science. Springer Verlag, 1985.

20. G. Taentzer. Parallel and Distributed Graph Transformation: Formal Description
and Application to Communication-Based Systems. PhD thesis, TU Berlin, 1996.
Shaker Verlag.

21. G. Taentzer. AGG: A Graph Transformation Environment for System Modeling
and Validation. In T. Margaria, editor, Proc. Tool Exihibition at ‘Formal Methods
2003’, Pisa, Italy, September 2003.

22. WWW Consortium (W3C). Scalable Vector Graphics (SVG) 1.1 Specification.,
2003.

26


