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Abstract. Model transformation is one of the key activities in model-driven soft-
ware development. An increasingly popular technology to define modeling lan-
guages is provided by the Eclipse Modeling Framework (EMF). Several EMF
model transformation approaches have been developed, focusing on different
transformation aspects. To validate model transformations wrt. functional behav-
ior and correctness, a formal foundation is needed. In this paper, we define EMF
model transformations as a special kind of typed graph transformations using
node type inheritance. Containment constraints of EMF model transformations
are translated to a special kind of EMF model transformation rules such that their
application leads to consistent transformation results only. Thus, we identify a
kind of EMF model transformations which behave like algebraic graph trans-
formations. As a consequence, the rich theory of algebraic graph transformation
can be applied to these EMF model transformations to show functional behavior
and correctness. We illustrate our approach by selected refactorings of simplified
statechart models.

Keywords: model-driven software development, Eclipse Modeling Framework, model
transformation, graph transformation.

1 Introduction

Model-driven software development is considered as a promising paradigm in software
engineering. Models are ideal means for abstraction and enable developers to master the
increasing complexity of software systems. Since models are central artifacts in model-
driven software development, the quality of generated software is directly dependent
on the quality of models. Modifying models (i.e. performing model refactoring [10])
to improve the understandability and refine the model structure is an important part of
model development. Throughout this work, we use model refactoring as an example for
precisely specifying model transformations.

The Eclipse Modeling Framework (EMF) [4] has evolved to one of the standard
technologies to define modeling languages. EMF provides a modeling and code genera-
tion framework for Eclipse applications based on structured data models. The modeling
approach is similar to that of MOF, actually EMF supports Essential MOF (EMOF) as
part of the OMG MOF 2.0 specification.

Containment relations, i.e. aggregations, define an ownership relation between ob-
jects. Thereby, they induce a tree structure in model instantiations. In MOF and EMF,
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this tree structure is further used to implement a mapping to XML, known as XMI
(XML Meta data Interchange) [13]. Containment always implies a number of con-
straints for model instantiations that must be ensured at run-time. As semantical con-
straints for containment edges, the MOF specification states the following:

– ”An object may have at most one container.”
– ”Cyclic containment is invalid.”

As mentioned earlier, EMF provides full implementations of instance models. These
implementations always ensure these constraints. A third constraint may be useful for
storing EMF models: ”There is a distinguished object, the root object, which contains
(transitively) all other model objects.”

Model-driven development relies heavily on model transformations. EMF models
can be manipulated by several approaches to rule-based model transformations. A trans-
formation framework for EMF models which follows the concepts of algebraic graph
transformation [5] as far as possible, is presented in [2]. But EMF model transforma-
tion does not always behave like algebraic graph transformation. The main reason is the
difficulty to always satisfy the containment constraints of EMF.

In this paper, we define EMF models as typed graphs with containment edges. We
identify a kind of model transformation rules which lead to consistent EMF model
graphs, if applied as normal graph transformation rules to consistent EMF model graphs.
Thus, we identify a kind of EMF model transformations which behave like algebraic
graph transformations. The advantage of this approach is that we can apply the rich
theory of algebraic graph transformation to EMF model transformations for validation.

Our approach is illustrated by selected refactorings of simplified statechart models.
The abstract syntax definition of statechart models mostly follows that in the UML2
EMF model [6], but does not consider regions, state actions, and structured transition
inscriptions. Thus, we concentrate on the main statechart structure. Structural improve-
ments of statecharts might comprise a number of refactoring steps. The theory provided
by graph transformation helps us to identify a certain refactoring order by analyzing de-
pendencies between refactoring rules. Moreover, refactoring steps might be in conflict
to each other. Here, the graph transformation theory is helpful in analyzing potential
conflicts between refactoring rules (see also [9]). Last but not least, a complex refactor-
ing cannot be realized by just one rule. Therefore, termination is another issue which
will be shown by checking sufficient termination criteria.

2 EMF Models as Graphs

In this section, we start to lay the basis for the application of graph transformation
theory to EMF model transformations. As first step, we consider EMF instance models3

as typed graphs with containment edges. Typing is expressed by a so-called type graph.
It has some similarities to a metamodel, but does not contain multiplicities and other
constraints. Those have to be expressed by graph constraints, as done in [11].

3 Note that the EMF community uses the terms “EMF model” for metamodel and “EMF instance
model” for a model conforming to a metamodel.
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Since containment plays a special role in EMF models, we distinguish a special
kind of edge types defining containments. For being able to check for containment
cycles later, we identify containment types (called cycle-capable) which may be part of
containment cycles, summarized in CCycle

4. Type graphs with containment types are
called sound, if there is a root type which transitively contains all other concrete types.

Definition 1 (Graph). A graph G = (GN , GE , sG, tG) consists of a set GN of nodes,
a set GE of edges, as well as source and target functions sG, tG : GE → GN .

Definition 2 (Type graph). A type graph TG = (T, I, A,C) consisting of graph
T = (N,E, s, t), a graph I , called inheritance graph sharing the same set of nodes
N with T (but not the edges), a set A ⊆ N of abstract nodes, and a set C ⊆ E of
containment edges.
For each node n in I the inheritance clan is defined by clanI(n) = {n′ ∈ N |
∃ path n′ ∗−→ n in I} where path of length 0 is included, i.e. n ∈ clanI(n).
Furthermore we define a containment relation5

containsTG = {(n, m) ∈ N ×N | ∃c ∈ C ∧ x, y ∈ N : s(c) = x with n ∈ clan(x)
∧ t(c) = y with m ∈ clan(y)} ∪

{(x, y) ∈ N ×N | ∃z ∈ N : (x containsTG z ∧ z containsTG y)}
Based on containsTG we create the equivalence relation
equivcontains = r(containsTG)− {(x, y) ∈ containsTG|(y, x) /∈ containsTG}.
with r being the reflexive closure of containsTG. Then we define
CCycle = {c ∈ C|∃vs ∈ clan(s(c)) ∧ ∃vt ∈ clan(t(c)) : (vs, vt) ∈ equivcontains}

as a subset of cycle-capable containment edges that might be part of containment
cycles.
Type graph TG is called sound, if there is a type node r ∈ N − A, called root type,
such that the following holds: ∀n ∈ N −A− {r} : (r, n) ∈ containsTG

Example 1 (EMF model for simplified statecharts). In the running example, we con-
sider the refactoring of a simplified form of statecharts. In Fig. 1 an EMF model for
a simplified statecharts variant is shown. Events, actions, and parallel regions are not
shown. Nevertheless, this model is interesting from the containment point of view: The
type graph is sound, since type StateMachine contains all concrete types, i.e. is the
root type. Type V ertex is contained in StateMachine as well as in State. Since
State inherits from V ertex, it is again contained in State. Due to the same reason,
Pseudostate is contained in State. Moreover, Transition and FinalState are con-
tained in State. Please note that NamedElement is abstract and does not have to be
contained in the root type. The containment edge of types superState subState can be
part of containment cycles because a State is either the source of the edge or it is in the
clan of V ertex (the target of the edge). Pairs (State, State), (State, F inalState), and
(FinalState, State) are in the equivalence relation. Thus, a State (resp. FinalState)
may contain States (resp. FinalStates) and form containment cycles.

4 Cycle-capable containment types would be containment loops in a flattened type graph without
inheritance.

5 If there is no confusion, we use infix notation for containsTG, e.g. (x containsTG y) instead
of (x, y) ∈ containsTG.
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Please note that the multiplicities shown in Fig. 1 are not formalized by type graphs,
but have to be expressed by additional graph constraints [11] (not shown here).

Fig. 1. EMF model for simplified statecharts

Now we define EMF instance models as typed graphs where each object node has at
most one container and no containment cycles do occur. Graphs fulfilling these require-
ments are called graphs with containment. Although EMF instance models do not need
to be rooted in general, this property is important for storing them, or more general, to
define the model’s extent.

Definition 3 (Typed Graph). Given a type graph TG = (T, I, A,C) and a graph G.
Graph G is typed over TG, written type : G → TG, if for all e ∈ GE holds

typeGN
◦sG(e) ∈ clanI(sT ◦typeGE

(e)) and typeGN
◦tG(e) ∈ clanI(tT ◦typeGE

(e)).

type is called a clan morphism. It is called concrete if ∀n ∈ GN : typeGN
(n) 6∈ A.

Given a second clan morphism type′ : G → TG, type′ is finer than type, if

type′GN
(n) ∈ clanI(typeGN

(n)) for all n ∈ GN and type′E = typeE .

Definition 4 (Graph with containment (C-graph)). A graph with containment, short
C-graph, is a graph G with a distinguished set of containment edges GC ⊆ GE . The
containment edges induce the following transitive binary relation containsG:

– containsG = {(x, y) ∈ GN ×GN | ∃e ∈ GC : (sG(e) = x ∧ tG(e) = y) } ∪
{(x, y) ∈ GN ×GN | ∃z ∈ GN : (x containsG z ∧ z containsG y)}

All containment edges must fulfill the following properties (containment constraints):

– e1, e2 ∈ GC : tG(e1) = tG(e2) ⇒ e1 = e2 (at most one container).
– (x, x) /∈ containsG for all x ∈ GN (no containment cycles).

If G is typed over TG = (T, I, A,C), there is a clan morphism type : G → TG
which is consistent with containment, i.e. ∀e ∈ GC : typeGE

(e) ∈ C

Please note that type graph TG is no C-graph.
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Definition 5 (Rooted graph). A C-graph G is called rooted, if there is a node r ∈ GN ,
called root node, such that ∀x ∈ GN with x 6= r : r containsG x.

Example 2 (EMF instance model). Fig. 2 shows the main parts of a simple statechart
modeling a phone. The containment can be well seen in the tree-like representation.
However, source and target states of transitions are not shown in the tree view, but in a
separate properties view (at the right bottom). It shows the properties of transition caller
hangs up from state DialTone to state Idle. In addition, a purely graphical view of the
same statechart is depicted on the right which is especially helpful to understand the
transition structure inside of state Phone. This instance model fulfills both containment
constraints and is rooted by a node of type StateMachine.

Fig. 2. EMF instance model of a simple phone

In this paper, we concentrate on the structural issues of EMF models and their for-
malization. Needless to say that objects also may have typed attributes. They can be
formalized by attributed graphs as done in [5]. For the application of graph transforma-
tion theory presented in Section 5, attributes will play a minor role.

3 EMF Transformation Rules as Consistent Graph Rules

In this section, we start to define a special kind of graph transformation which formal-
izes a form of EMF model transformation leading always to EMF models consistent
with typing and containment constraints. For that purpose, the form of allowed trans-
formation rules has to be restricted. Consistent transformation rules allow the following
kinds of actions which change containments:

1. Delete an object node with its containment relation.
2. Create a new object node and connect it immediately to its container.
3. Delete a containment relation together with its contained object node or change the

container.
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4. Create a containment relation with the contained object node or change the con-
tainer.

5. Create cycle-capable containment edges only, if the old and the new container are
both transitively contained in the same container.

Before we are able to precisely define consistent graph rules, we have to define
relations between typed C-graphs, so-called C-graph morphisms. They define mappings
of nodes and edges respectively, such that they are compatible with typing, source, and
target functions. C-graph morphisms are needed to define graph rules such that the left
(LHS) and the right-hand sides (RHS) are specified as well as the mapping from left to
right. While the LHS defines the pattern to be found in the model, its relation to RHS
formulates the actions to be performed. All object nodes and edges which occur in LHS
but not in RHS are deleted, while all elements occurring in the RHS and not in the LHS
are newly created. Elements occurring in both LHS and RHS have to be identified but
are not changed. Moreover, negative application conditions (NACs) can be formulated.
A NAC consists of an extension of the LHS where the structure not being part of the
LHS is prohibited to occur in the model.

Definition 6 (C-graph morphism). Given two C-graphs G, H , a pair of functions
(fN , fE) with fN : GN → HN and fE : GE → HE forms a valid C-graph morphism
f : G → H , if it has the following properties:

– fN ◦ sG(e) = sH ◦ fE(e), fN ◦ tG(e) = tH ◦ fE(e), and
– ∀e ∈ GC ⇒ fE(e) ∈ HC (containment edges are preserved).

If G and H are typed over TG, f must be type compatible, i.e. typeG = typeH ◦ f .
If fN and fE are inclusions, then G is called a subgraph of H , denoted by G ⊆ H .

The conditions in Def. 7 are due to the use of abstract types for rule elements and
express that 1. retyping of elements is not allowed, 2. newly created object nodes must
be concretely typed, and 3. node types occurring in NACs may be finer than in the LHS.

Definition 7 (Graph rule). A graph rule typed over a type graph TG = (T, I, A,C)
is given by p = (L ⊇ K ⊆ R, type, NAC), where L,K and R are C-graphs,
type is a triple of typing clan morphisms type = (typeL : L → TG, typeK : K →
TG, typeR : R → TG), and NAC is a set of pairs naci = (Ni, typeNi

), i ∈ N
with L ⊆ Ni, and typeNi

: Ni → TG a typing clan morphism, such that the following
conditions hold:

1. typeL ⊇ typeK ⊆ typeR

2. typeRN
(R′

N ) ∩A = ∅ where R′
N := RN −KN , and

3. typeNi is finer than typeL for all (Ni, typeNi) ∈ NAC

In the following definition, we formalize all actions that preserve consistent con-
tainment relations which have been described in the beginning of this section.

Definition 8 (Consistent graph rule). Let R′
C := RC −KC , L′

N := LN −KN and
L′

C := LC − KC . A graph rule p = (L ⊇ K ⊆ R, type, NAC) is consistent wrt.
containment if the following constraints are satisfied:
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1. (node deletion) ∀n ∈ L′
N : ∃e ∈ L′

C with tL′
C
(e) = n,

2. (node creation) ∀n ∈ R′
N : ∃e ∈ R′

C with tR(e) = n,
3. (containment edge deletion) ∀e ∈ L′

C with tL(e) = n:
n ∈ L′

N ∨ (n ∈ KN ∧ ∃e′ ∈ R′
C with tR(e′) = n)

4. (containment edge creation) ∀e ∈ R′
C with tR(e) = n:

n ∈ R′
N ∨ (n ∈ KN ∧ ∃e′ ∈ L′

C with tL(e′) = n)
5. (creation of cycle-capable containment edges)
∀e ∈ R′

C with s(e) = n ∧ t(e) = m : ∃e′ ∈ L′
C with s(e′) = o ∧ t(e′) = m :

((o, n) ∈ containsL ∧ (m,n) /∈ containsL) ∨ (n, o) ∈ containsL

Example 3 (Refactoring rules). In Figs. 3 to 5, we show three statecharts refactorings
specified as EMF rules. Please note that object nodes with the same number mean that
they are equal. The first one in Fig. 3 removes an isolated state from a composite state.
Isolated means that no state or transition is contained and no transition starts or ends at
this state. These constraints are guaranteed by the so-called dangling condition which
allows the application of a graph transformation rule only if no edges are connected
to nodes which are deleted by the rule (see Def. 9). This rule is consistent, since the
isolated state node is deleted together with its containment edge. Two transitions with

Fig. 3. Refactoring “Remove isolated state”

the same source, the same target, and the same name are considered as redundant and
can be removed by the graph rule in Fig. 4. This rule is consistent, since the redundant
transition node is deleted together with its containment edge. The third refactoring

Fig. 4. Refactoring “Delete redundant transition”

folds two transitions with the same name if the original target states are contained in
the same super state. This refactoring consists of two rules, depicted in Fig. 5 which
are applied as long as possible. While the upper rule folds two transitions both going to
substates, the rule at the bottom folds a transition to a substate with the transition to its
superstate having the same name. The application of both rules together allows folding
of an arbitrary number of such transitions. The upper rule in Fig. 5 has to be equipped
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with a NAC isomorphic to the right-hand side to be sure that a transition like the new
one does not already exist. This rule is consistent, since both transitions are deleted with
their containment edges, while the new transition comes along with a new containment
edge. The rule at the bottom of Fig. 5 is also consistent, since a transition is deleted
together with its containment edge.

Fig. 5. Refactoring “Fold incoming transitions”

The last refactoring moves a state out of a composite state up to the surrounding one.
This is possible, if all adjacent transitions already belong to the surrounding state. This
condition is checked by two similar NACs, one of which is shown together with the rule
in Fig. 6. The second NAC differs from the first one only in checking a similar condition
for incoming transitions. This rule changes the containment relation of a state, i.e. its

Fig. 6. Refactoring “Move State Up”

containment edge is deleted and a new one is created. Therefore, cond. 3 and 4 of Def. 8
are fulfilled. Since superState is cycle-capable, Cond. 5 has to be checked, too. The edge
from State 1 to 3 is newly created, thus there has to be a containment relation from State
1 to State 2 in LHS and no containment relation from State 3 to 1. These two conditions
are fulfilled, thus this rule is also consistent.
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Summarizing, all refactorings can be formalized as consistent graph rules, since
containment edges are deleted only if their corresponding containments are deleted. All
newly created object nodes are created together with their containment edges. In the
last refactoring rule, the container is changed consistently.

4 EMF Model Transformation as Consistent Graph
Transformation Sequence

Having specified the kind of transformation rules which obey containment constraints,
we define EMF model transformations as sequences of consistent graph transformation
steps now. Thereafter, the main result of this contribution is presented. We show that
each graph transformation step applying a consistent graph rule keeps the consistency
of containment edges. Furthermore, we show that the application of consistent graph
rules does not destroy roots.

A consistent rule may be applied to a graph (cf. Def. 9) if

1. Nodes are deleted only, if all adjacent edges occur in the rule as items to be deleted,
2. rule items may be matched with one and the same graph item if they are preserved,
3. more abstractly typed nodes may be mapped to finer typed nodes, and
4. all NACs are fulfilled where NAC-nodes may also be more abstractly typed than

graph nodes.

Definition 9 (Matching and application of graph rules). Let p = (L ⊇ K ⊆
R, type, NAC) be a graph rule typed over TG, (G, typeG) a typed C-graph with
typeG : G → TG being a concrete clan morphism, and m : L → G a C-graph mor-
phism. Then m is a match with respect to p and (G, typeG), if
1. m fulfills the so-called dangling condition, i.e. ∀n ∈ L′

N :6 ∃e ∈ GE − mG(LE)
with sG(e) = mN (n) ∨ tG(e) = mN (n)

2. m fulfills the identification condition for nodes, i.e. ∀x1, x2 ∈ LN with mN (x1) =
mN (x2) : x1, x2 ∈ KN (analogously for edges)

3. typeG ◦m is finer than typeL.
4. m satisfies NAC, i.e. for each naci = (Ni, typeNi

) ∈ NAC, i ∈ J there does
not exists a C-graph morphism oi : Ni → G such that oi|L = m and typeG ◦ oi is
finer than typeNi

.

Given a match m, rule p can be applied to (G, typeG) yielding a direct transformation
(G, typeG)

p,m
=⇒ (H, typeH) with concretely typed graph (H, typeH) defined as in [5].

The transformation definition in [5] is based on the double-pushout construction in
the category of typed graphs and graph morphisms which is unique up to isomorphism.
Result graph H is constructed as by taking the original graph G, deleting all items in
the LHS and not in the RHS, and then adding all RHS-items not being in the LHS,
disjointly. That means all newly created items get new identifiers:

– HN = GN −mN (LN −KN ) ] (RN −KN )
– HE = (GE −mE(LE −KE) ] (RE −KE)
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– sH(e) = if e ∈ GE then sG(e) else: if sR(e) ∈ KN then mN (sR(e)) else sR(e)
– analogously for tH
– typeHN

(n) = if n ∈ GN then typeGN
(n) else typeRN

(n)
– analogously for typeHE

Example 4 (Result model). Fig. 7 shows the main parts of the simple statechart in Fig. 2
after applying refactoring Fold incoming transitions. All the transitions going to state
Idle have been replaced by only one from state Active. This is possible, since all these
transitions had the same name. Again the tree-like and the diagram view are shown,
together with the properties view for the new transition caller hangs up.

Fig. 7. EMF instance model of Fig. 2 after refactoring

Theorem 1 (Consistent graph transformation step). Given a consistent graph rule
p = (L ⊇ K ⊆ R, type, NAC) and a match L

m−→ G to a C-graph G which is
concretely typed by typeG : G → TG. Then, the result graph (H, typeH) of direct
transformation (G, typeG)

p,m
=⇒ (H, typeH) is a C-graph.

Proof. See Section A.1 in the appendix.

Theorem 2 (Rooted graph transformation step). Given a consistent graph rule p =
(L ⊇ K ⊆ R, type, NAC) and a match L

m−→ G to a rooted graph G which is
concretely typed by typeG : G → TG and satisfies NAC. Then, the result graph
(H, typeH) of the direct transformation (G, typeG)

p,m
=⇒ (H, typeH) is rooted.

Proof. See Section A.2 in the appendix.

5 Towards Formal Validation of EMF Transformations

Having clarified the kind of EMF model transformations that can be formalized by
algebraic graph transformation, we sketch how the rich graph transformation theory [5]
can be applied to EMF model transformations. The theory is presented informally, just
to give an idea how it can be applied in the context of EMF model transformations.
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5.1 Conflicts and Dependencies

Graph transformation theory allows us to compute conflicts and dependencies of trans-
formations by relying on the idea of critical pair analysis. The general-purpose graph
transformation tool AGG [1] provides an algorithm implementing this analysis.

Critical pair analysis is known from term rewriting and can be used to check if a
rewriting system contains conflicting computations. Critical pairs formalize the idea of
showing a conflicting situation in a minimal context. From the set of all critical pairs
we can extract the objects and links which cause conflicts or dependencies.

To construct minimal critical graphs, we basically consider all overlapping graphs
of the left-hand sides of two rules with the obvious matches. If one of the rules contains
NACs, extensions of the left-hand sides by parts of the corresponding NACs also have
to be considered for the construction of overlapping graphs. The reasons why graph
rules can be in conflict are threefold:

1. One rule application deletes a graph item which is in the match of another rule
application (delete-use conflict).

2. One rule application produces a graph item that gives rise to a graph structure that
is forbidden by a NAC of another rule application (produce-forbid conflict).

3. One rule application changes attributes being in the match of another rule.

AGG supports critical pair analysis for typed attributed graph transformations. As an
important observation of the critical pair analysis, we can conclude that there is a pre-
ferred order for rule applications and reduce the number of actual conflicts in a transfor-
mation sequence. This is important for complex transformation sequences consisting of
a number of steps to reach a certain goal. If all critical pairs can be resolved such that
they can lead to the same result, the transformation system is called locally confluent.

Example 5 (Analyzing EMF model refactorings). Since all refactoring rules in the run-
ning example are consistent graph rules, the critical pair analysis is also available for
EMF model refactorings. In [9], we have shown that critical pair analysis can be used
to detect conflicts and dependencies between refactorings of class models. A formal
specification of refactorings as graph transformation rules allows us to reason about de-
pendencies between different types of refactorings. Due to the results presented in this
paper, such an analysis is now available for EMF model refactorings.

Consider for example the application of refactoring rule MoveStateUp in Fig. 6 two
times in parallel. It might happen that a state (2) which shall be moved out has a substate
(6) that shall also be moved out. In that case, the substates relation between state (2)
and its superstate (1) has to be deleted and is also used. Thus, we can identify a delete-
use conflict here. Fig. 8 shows the critical pair for this conflict6. This conflict can be
resolved by moving inner states up at first.

6 Note that rules and graphs are no longer shown as EMF instance models but as AGG graphs.
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Fig. 8. Conflicting applications of Rule MoveStateUp two times

5.2 Termination Criteria

Besides conflicts and dependencies, we can also apply the developed termination crite-
ria for graph transformation to consistent EMF model transformations. A locally con-
fluent and terminating transformation system is confluent in general and thus shows a
functional behavior. That means for each input there is a unique transformation result.
In general, termination is undecidable for graph transformation systems. But if a system
meets certain termination criteria, we can conclude that it is terminating.

The proof for termination of graph transformation systems [5] is based on layered
graph transformation systems with deletion and non-deletion layers. Informally, the
deletion layer conditions express that the last creation of a node of a certain type should
precede the first deletion of a node of the same type. Furthermore, each rule application
should delete more items of a certain type than it creates. Non-deletion layer conditions
ensure that if an element of a certain type occurs in the LHS of a rule then all elements
of the same type were already created in previous layers.

Termination of statechart refactorings Considering again the refactoring rules in Sec-
tion 3, we like to check if the first three refactorings can be applied automatically to
optimize a statechart as far as possible. Since the first three rules are deleting ones and
each rule decreases the number of model elements, the deletion layer conditions are sat-
isfied and thus the refactoring is terminating. Refactoring rule “Move State Up” is of a
different kind. It does not make sense to apply this refactoring automatically, since that
would lead to statecharts where all states are contained in the uppermost state. Thus,
we do not have to check the termination of applying this rule as long as possible.
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6 Related Work and Conclusion

A precise specification of EMF model transformations can be advantageously used to
validate important properties such as functional behavior. In this paper, we identified
a variant of EMF model transformation that can be defined as algebraic graph trans-
formation with node type inheritance. This result can be used to validate EMF model
transformation based on the rich graph transformation theory available. These valida-
tion facilities are illustrated by selected model refactorings, formulated for a restricted
form of statechart models.

The consistency constraints for transformation rules limit our approach, but not dra-
matically, since they mostly emerge directly from EMF containment constraints. How-
ever, the deletion of a containment relation without contained object might be attractive
as it could lead to a detachment of a complete subtree. This kind of implicit deletion
is not allowed, hence the deletion of an object tree has to be performed explicitly by
applying rules which delete stepwise.

There are a number of model transformation engines which can modify EMF mod-
els: ATL [7], Tefkat [8], VIATRA2 [12], MOMEMT [3], etc. Each of these projects
can be used to specify model transformations such as the statechart refactorings pre-
sented. In contrast to most model transformation engines, MOMEMT has a formal ba-
sis given by Maude which might be exploited for validation of EMF model transforma-
tions. But to the best of our knowledge, none of the existing transformation approaches
supports confluence and termination analysis of EMF model transformations yet. The
EMF Transformation Framework [2] currently supports the generation of transforma-
tion code in Java and the translation of EMF models and rules to AGG [1], a tool envi-
ronment for algebraic graph transformation. However, a validation tool for EMF model
transformations which seamlessly integrates analysis techniques provided by AGG, is
left to future work.

Further valuable forms of quality assurance for EMF model transformation such as
guidelines and refactoring as syntactical techniques as well as testing and debugging
as semantical forms would make a comprehensive development environment for EMF
model transformations perfect.
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A Proofs

A.1 Proof of Theorem 1

To be shown:
1. ∀e1, e2 ∈ HC : tH(e1) = tH(e2) =⇒ e1 = e2

2. (x, x) /∈ containsH for all x ∈ HN

1. Assuming ∃e1, e2 : tH(e1) = tH(e2) and e1 6= e2

Case 1 e1 ∈ GC and e2 ∈ GC :
Since G is C-Graph, we have e1 = e2. This contradicts the assumption.

Case 2 e1 ∈ GC and e2 ∈ R′
C :

Subcase 1 t(e2) ∈ R′
N :

e1 is in G and is preserved by p and t(e1) is preserved as well. So tH(e1) =
tH(m′(e2)) contradicts t(e2) ∈ R′

N .
Subcase 2 ∃e′2 ∈ L′

C with t(e′2) = t(e2) (due to Cond. 3 and 4 in Def. 8):
t(e′2) = t(e2) = t(e1) =⇒ e1 = e′2 ∈ L′

C because L is a C-Graph.
Therefore e1 is deleted which contradicts its existence in H .

Case 3 e1 ∈ R′
C and e2 ∈ R′

C .
Due to Cond. 1, 3 and 4 in Def. 8, we have three subcases:

Subcase 1 t(e1) ∈ R′
C and t(e2) ∈ R′

C :
t(e1) = t(e2) =⇒ e1 = e2 because R is C-graph.

Subcase 2 t(e1) ∈ R′
C and ∃e′2 ∈ L′

C with t(e′2) = t(e2)
t(e2) is preserved by p and t(e1) is created. Therefore t(e1) 6= t(e2) which
contradicts the assumption.

Subcase 3 ∃e′1 ∈ L′
C with t(e′1) = t(e1) and ∃e′2 ∈ L′

C with t(e′2) = t(e2)
R is a C-Graph and e1 and e2 ∈ RC . So tR(e1) = tR(e2) implies e1 = e2

and further implies tH(m′(e1)) = tH(m′(e2))

2. Assuming ∃m ∈ HN : (m,m) ∈ containsH . Then, there is a newly generated
containment path n

∗−→ m such that (m,n) ∈ containsG ∧ (n, m) /∈ containsG.
Due to Cond. 5 of Def. 8, we have to consider the following two cases for the cre-
ation of the last edge e ∈ R′

C of the path n
∗−→ m, i.e. either an edge e′ ∈ L′

C is
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“shifted down” (Case 1), or it is “shifted up” (Case 2) in the containment hierarchy.

Case 1 ∃e′ ∈ L′
C with s(e′) = o ∧ t(e′) = m : (o, n) ∈ containsL ∧ (m,n) /∈

containsL

(m,n) ∈ containsG ∧ (o, n) ∈ containsL ∧ (o,m) ∈ containsL =⇒
(m,n) ∈ containsL because of the uniqueness of a containment path (since
G and L are C-graphs). This contradicts the assumption  .

Case 2 ∃e′ ∈ L′
C with s(e′) = o ∧ t(e′) = m : (n, o) ∈ containsL

(o,m) ∈ containsL ∧ (n, o) ∈ containsL =⇒ (n, m) ∈ containsL =⇒
(n, m) ∈ containsG contradicts the assumption  .

A.2 Proof of Theorem 2

Assume that G
p,m
=⇒ H with G being a rooted graph and H a non-rooted graph. Root

node x of G is preserved by each consistent graph rule due to cond. 1 of Def. 8. Hence,
x ∈ D =⇒ x ∈ H with x being root node in H . Since H is non-rooted, there exists
at least one other node y ∈ H with x 6= y and (x, y) /∈ containsH . There are two
possible ways how this situation may result from applying rule p:

1. Node y is generated by p: ∃y ∈ R′.
2. The containment edge eG with t(eG) = y is deleted: ∃eL ∈ L′ : m(eL) = eG.

Case 1: According to Cond. 2 in Def. 8, for the newly generated node y, there is a
containment edge eR ∈ R′

C with tR(eR) = y. The source node of this newly gener-
ated containment edge is either another new node zR ∈ R′ or an already existing node
nK ∈ K. Since only a finite number of new nodes can be generated by p, there is al-
ways one already existing node nK ∈ K, which is the uppermost node of the newly
generated containment path with y at the end, i.e. (nK , y) ∈ containsR. By comatch

R
m′

−→ H we get n = m′(nK) and (n, y) ∈ containsH . Since n is preserved by p,
we have m(nK) = n such that (x, n) ∈ containsG =⇒ (x, n) ∈ containsH . From
(x, n) ∈ containsH and (n, y) ∈ containsH we conclude that (x, y) ∈ containsH

which contradicts the assumption  .

Case 2:
Subcase 2.1: Target node t(eG) = y is deleted together with eG. Due to the dangling
condition, rule p may be applied only if y does not itself contain a node: 6 ∃z : (y, z) ∈
containsG, or if all nodes contained recursively in y are also deleted by the rule:
∀z : (y, z) ∈ containsG : ∃zL ∈ L′ with m(zL) = z. So, no nodes from the discon-
nected subtree (starting with y) remain in the graph which contradicts the assumption  .

Subcase 2.2: Target node t(eG) = y is preserved by rule p, and by Cond. 3 of Def. 8,
a new containment path n

∗−→ y is created. According to Def. 8, Cond. 3, the source
node n of the first edge e ∈ R′

C of path n
∗−→ y is a node preserved by rule p, i.e.

nK ∈ K with m(nK) = n = m′(nK). Hence, we have (x, n) ∈ containsH and
(n, y) ∈ containsH and conclude that (x, y) ∈ containsH which contradicts the
assumption  .


