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Abstract. Graph constraints were introduced in the area of graph transforma-
tion, in connection with the notion of (negative) application conditions, as a form
to limit the applicability of transformation rules. However, we believe that graph
constraints may also play a significant role in the area of visual software mod-
elling or in the specification and verification of semi-structured documents or
websites (i.e. HTML or XML sets of documents). In this sense, after some dis-
cussion on these application areas, we concentrate on the problem of how to prove
the consistency of specifications based on this kind of constraints. In particular,
we present proof rules for three classes of (increasingly more powerful) graph
constraints and show that our proof rules are sound and (refutationally) complete
for each class.

1 Introduction

Graph constraints were introduced in the area of graph transformation, together with
the notion of (negative) application conditions, as a form to limit the applicability of
transformation rules [7,9,12,6,10,11]. More precisely, a graph constraint is the graphi-
cal description of some kind of pattern that must be present (or must not be present) on
the graphs that we are transforming. In particular, a transformation would be illegal if
the resulting graph would violate any of the given constraints. Graph constraints have
been studied mainly in connection with negative application conditions. These condi-
tions are constraints that are associated to the left-hand side or the right-hand side of
a graph transformation rule. Then, one such rule would be applicable to a given graph
if the left-hand side application conditions are satisfied by the given graph (or rather
by the rule matching) and the right-hand side application conditions are satisfied by
the result of the transformation. In this context, most of the above-mentioned work has
been related to the extension of the basic graph transformation concepts and results to
the use of application conditions and constraints and to show how one can transform a
set of constraints into application conditions for the given transformation rules. Other
work related to these notions has studied the detection of conflicts for graph transforma-
tion with application conditions [15], or the expressive power of some kinds of graph
constraints [17].

We believe that graph constraints can go beyond their use in connection to graph
transformation. More precisely, there are two areas in which we think that graph
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constraints may play an interesting role. The first one is the area of visual software mod-
elling. The second one is the specification and verification of classes of semi-structured
documents, including the specification and verification of websites (i.e. HTML or XML
sets of documents).

In the area of visual modelling, especially in the context of UML modelling, models
are designed using different kinds of diagrams. However, if we have to impose some
specific constraints on the models then we have to use a textual notation as OCL. We
consider that this situation is quite inconvenient. Especially in the case when we want
to express constraints on the structure of the model, we think that using a graphical
notation which is close to the visual description of the model is much more clear and
intuitive than using some textual expression where one has to previously code or repre-
sent that structure.

On the other hand, we know two kinds of approaches for the specification and veri-
fication of semi-structured documents. The first one [2,8] is based on extending a frag-
ment of first-order logic allowing us to refer to the components of the given class of
documents (in particular, using XPath notation). This approach, in our opinion, poses
two kinds of problems. On one hand, from a technical point of view, the extension of
first-order logic to represent XML patterns has to make use of associative-commutative
operators. This may make deduction difficult to implement efficiently, since using unifi-
cation in inference rules may be very costly (in general, two arbitrary atoms may have a
doubly exponential amount of most general unifiers). As a consequence, the approaches
presented in [2,8] present specification languages that allow us to specify classes of
documents and tools that allow us to check if a given document (or a set of documents)
follows a specification. However, they do not consider the problem of defining deduc-
tive tools to analyze specifications, for instance for looking for inconsistencies. On the
other hand, from a pragmatic point of view, XPath expressions can be quite verbose and
this may make the resulting specifications unpleasant to read and to write.

The other approach that we know [13], which we consider especially interesting,
has a more practical nature. Schematron is a language and a tool that is part of an ISO
standard (DSDL: Document Schema Description Languages). The language allows us
to specify constraints on XML documents by describing directly XML patterns (using
XML) and expressing properties about these patterns. Then, the tool allows us to check
if a given XML document satisfies these constraints. However, we consider that there
are two problems with this approach. The most important one is that this work lacks
proper foundations. The other one is that the kind of patterns that can be expressed in
the Schematron language could be a bit limited. On the other hand, as in the approaches
mentioned above, Schematron provides no deductive capabilities.

In this paper we start the study of graph constraints as a specification formalism. In
particular, we study their underlying logic, providing inference rules that would allow
us to prove the consistency (or satisfiability) of specifications. Actually, we show that
these rules are sound and refutationally complete for the class of constraints considered.
It must be noted that, as it is well-known, the fact that our inference rules are refuta-
tionally complete means that we have a complete method to prove consequences of our
specifications. In particular, if we want to check if a given property is a consequence
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of a specification then it is enough to see if the given specification, together with the
negation of the property, is inconsistent.

It must also be noted that the results that we present are quite more general than
what they actually may seem. Following recent work on algebraic graph transforma-
tion (see, e.g., cite [5]), our results apply not only to plain graphs, but generalize to
a large class of structures including typed and attributed graphs (we discuss this issue
in more detail in the conclusion). In particular, instead of a logic of graph constraints
we could speak of a logic of pattern constraints, since our results would also apply to
reasoning about constraints based on other kinds of patterns, like XML patterns. In this
sense, we consider that the work that we present in this paper provides the basis for
defining the logical foundations of Schematron, and for extending it with more power-
ful constraints and with deduction capabilities. In particular, the XML patterns that are
used in Schematron can be seen just as the textual representation (or, rather, the XML
representation) of a subclass of the graph constraints that we consider. In particular,
our work could be used to provide deductive capabilities to analyze the consistency of
Schematron specifications.

The work that we present is not the first logic to reason about graphs. In particu-
lar, with different aims, Courcelle in a series of papers has studied in detail the use of
monadic second-order logic (MSOL) to express graph properties (for a survey, see [4]).
That logic is quite more powerful than the one that we study in this paper. For instance,
we cannot express global properties about graphs (e.g that a graph is connected), but
using MSOL we can. Actually, we think that MSOL is too powerful for the kind of ap-
plications that we have in mind. On the other hand, in [3] Courcelle’s logic is extended
with temporal operators. In this case, the intention is to present a logic that can be used
for the verification of graph transformation systems. Again, this logic goes far beyond
our aims.

The paper is organized as follows. In the following section we present the kind of
graph constraints that we consider in this paper and present a small example to motivate
their use in connection with visual modelling or website specification. This example
will be used as a running example in the rest of the paper. The following section is
the core of the paper. It presents inference rules for three classes of graph constraints
with increasing expressive power, showing, for all cases, their soundness and complete-
ness. Finally, in the conclusion we discuss several issues concerning the results that
we present, in particular, their generality and different issues concerning the possible
implementation of a deductive tool.

2 Graphs and Graph Constraints

In this section we present the basic notions that are used in this paper. First we present
some notation and terminology needed, and then, in the second subsection we introduce
the kind of graph constraints that we consider. For simplicity, we present our definitions
in terms of plain directed graphs, although in some examples, for motivation, we deal
with typed or attributed graphs. Anyhow, following the approach used in [5], it is not
difficult to show that our results generalize to a large class of (graphical) structures,
including typed, labelled or attributed graphs. In Section 4 we discuss this issue in
more detail.
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2.1 Graphs

As said above, all our notions and results will be presented in terms of plain directed
graphs, i.e.:

Definition 1 (Graphs). A graph G = (GV ,GE ,s,t) consists of a set GV of nodes, a set
GE of edges, a source function s : GE → GV , and a target function t : GE → GV .

It may be noted that we do not explicitly state that the sets of nodes and edges of a graph
are finite sets. That is, according to our definition, unless it is explicitly stated, graphs
may be infinite. This issue is discussed in some detail in Section 3.

All over the paper we will have to express that a certain graph G1 is included into
another graph G2. Obviously, we could have done this through a subgraph relationship.
However, G2 may include several instances of G1. For this reason, in order to be precise
when specifying the specific instance in which we may be interested, we will deal with
these inclusions using the notion of graph monomorphism:

Definition 2 (Graph morphisms). Given the graphs G = (GV ,GE ,s, t) and G ′ =
(G ′

V ,G ′
E ,s′,t ′), a graph morphism f : G → G ′ is a pair of mappings, fV : GV →

G ′
V , fE : GE → G ′

E such that f commutes with the source and target functions, i.e. the
diagrams below are commutative.

GE s
��

fE
��

GV

fV
��

G ′
E s′

�� G ′
V

GE t
��

fE
��

G ′
V

fV
��

G ′
E t′

�� G ′
V

A graph morphism f : G → G ′ is a monomorphism if fV and fE are injective
mappings.

In several results of the paper, given two graphs G,G ′ we will need to put them together
in all possible ways. This will be done using the construction G⊗ G ′:

Definition 3 (Jointly surjective morphisms). Two graph morphisms m : H → G and
m′ : H ′ → G are jointly surjective if mV (HV ) ∪ m′

V (H ′
V ) = GV and mE(HE) ∪ m′

E
(H ′

E) = GE.
Given two graphs G and G ′, the set of all pairs of jointly surjective monomorphisms

from G and G ′ is denoted G ⊗ G ′, that is:

G⊗ G ′ = {m : G → H ← G ′ : m′ | m and m′ are jointly surjective monomorphisms}.

The definition of G ⊗ G ′ in terms of sets of pairs of monomorphisms may look a bit
more complex than needed but, as in the case of the inclusions, we often need to identify
the specific instances of G and G ′ inside H. However, in many occasions it is enough
to consider that G⊗ G ′ is the set of all graphs that can be seen as the result of putting
together G and G ′.

Note that if G and G ′ are finite graphs then G ⊗ G ′ is a also finite set. This is
needed because in several inference rules (see Section 3) the result is a clause involving
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a disjunction related to a set of this kind. In particular, if G⊗G ′ is infinite so would be
the corresponding disjunction.

The above operation can be extended for putting together arbitrary (finite) sequences
of graphs.

2.2 Graph Constraints

The underlying idea of a graph constraint is that it should specify that certain structures
must be present (or must not be present) in a given graph. For instance, the simplest
kind of graph constraint, ∃C, specifies that a given graph G should include (a copy of)
C. For instance, the constraint:

∃
( )

specifies that a graph should include at least one edge. Obviously, ¬∃C specifies that a
given graph G should not include (a copy of) C. For instance, the constraint:

¬ ∃
( )

specifies that a given graph G should not include two different edges between any two
nodes. A slightly more complex kind of graph constraints are atomic constraints of
the form ∀(c : X → C) where c is a monomorphism (or, just, an inclusion). This con-
straint specifies that whenever a graph G includes (a copy of) the graph X it should
also include (a copy of) its extension C. However, in order to enhance readability (the
monomorphism arrow may be confused with the edges of the graphs), in our exam-
ples we will display this kind of constraints using an if - then notation, where the two
graphs involved have been labelled to implicitly represent the given monomorphism.
For instance, the constraint:

if a b c then a b c

specifies that a graph must be transitive, i.e. the constraint says that for every three
nodes, a,b,c if there is an edge from a to b and an edge from b to c then there should
be an edge from a to c.

Obviously, graph constraints can be combined using the standard connectives ∨ and
¬ (as usual, ∧ can be considered a derived operation). In addition, in [6,17] a more com-
plex kind of constraints, namely nested constraints, is defined, but we do not consider
them in this paper.

Definition 4 (Syntax of graph constraints). An atomic graph constraint ∀(c : X →
C) is a graph monomorphism c : X → C. An atomic graph constraint ∀(c : X → C),
where X = /0, is called a basic atomic constraint (or just a basic constraint) and will be
denoted ∃C.

Graph constraints are logic formulas defined inductively as usual:

– Every atomic graph constraint is a graph constraint.
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– If α is a graph constraint then ¬α is also a graph constraint.
– If α1 and α2 are graph constraints then α1 ∨α2 is also a graph constraint.

Satisfaction of constraints is defined inductively following the intuitions described
above.

Definition 5 (Satisfaction of graph constraints). A graph G satisfies a constraint α,
denoted G |= α if:

– G |= ∀(c : X → C) if for every monomorphism h : X → G there is a monomorphism
f : C → G such that h = f ◦ c.

– G |= ¬α if G does not satisfy α.
– G |= α1 ∨α2 if G |= α1 or G |= α2.

In this paper, for simplicity, we will assume that our specifications consist only of
atomic constraints and negated atomic constraints (negative constraints). However, our
results should extend straightforwardly to clausal specifications, i.e. sets of formulas of
the form L1 ∨ ·· · ∨ Ln, where each literal Li is either an atomic constraint (a positive
literal) or a negative atomic constraint (a negative literal). Actually, this would mean
that we could deal with arbitrary formulas since they could always be transformed into
clausal form.

It may be noted that in the case of basic constraints the above definition specializes
as expected:

Fact 1 (Satisfaction of basic constraints)
G |= ∃C if there is a monomorphism f : C → G.

It may also be noted that, according to these definitions, the constraint ∃ /0, where /0
denotes the empty graph, is satisfied by any graph, i.e. ∃ /0 may be considered the trivial
true constraint.

Remark 1. Atomic constraints can be generalized by allowing its definition in terms
of arbitrary morphisms. That is, we could have defined atomic graph constraints ∀(c :
X →C) where c is an arbitrary morphism. However, with our notion of satisfaction, this
generalization does not add any additional power to our logic, since it can be proved
[10] that if c is not a monomorphism then the constraint ∀(c : X → C) is logically
equivalent to the constraint ¬∃X . For instance, the two constraints below are equivalent.
In particular, both constraints specify that there can not be two different edges between
any two nodes.

(1) if 1 2
a
b

then 1 2ab (2) ¬∃
(

1 2
a
b

)

Analogously, we could have also generalized our notion of satisfaction by allowing
h and f to be also arbitrary morphisms and not just monomorphisms. This generalized
form of satisfaction has been studied in [11], where it is called A-satisfaction in contrast
with the notion of satisfaction that we use, which is called M -satisfaction in that paper.
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In particular, in [11], it is shown how to transform constraints such that A-satisfiability
for a certain constraint is equivalent to M -satisfiability for the transformed constraint
(and vice versa). This would mean that, again, working with A-satisfaction would not
add any additional power. Moreover, we believe that A-satisfaction is not very intuitive
implying that it may be not very appropriate for specification purposes.

As pointed out above, these notions can be defined not only for plain graphs but for other
classes of structures. In this sense, in the example below we will use typed attributed
graph constraints.

Example 1. Let us suppose that we want to model an information system describing
the lecturing organization of a department. Then the type graph of (part of) our system
could be the following one:

Sub ject
string Name

Lecturer
string Name

Room
int RoomNumber

int TimeSlot

This means that in our system we have three types of nodes: Rooms including two
attributes, the room number and a time slot, and Subjects and Lecturers, having its name
as an attribute. We also have two types of edges. In particular, an edge from a Subject S
to a Lecturer L means, obviously, that L is the lecturer for S. An edge from a Subject S
to to a Room means that the lecturing for S takes place on that room for the given time
slot. Now for this system we could include the following constraints:

(1) ∃
(

Sub ject
Name=CS1

)
(2) ∃

(
Sub ject

Name=CS2

)

meaning that the given system must include the compulsory subjects Computer Science
1 and Computer Science 2. Moreover we may have a constraint saying that every subject
included in the system must have some lecturer assignment and some room assignment:

(3) if
Sub ject
Name=N then

Sub ject
Name=N

Lecturer

Room

Then, we may also have constraints expressing some negative conditions. For in-
stance, that a room is not assigned at the same time to two subjects or that two different
rooms are assigned at the same time to the same subject:

(4) ¬∃
(

Room

Sub ject

Sub ject

)
(5) ¬∃

(
Sub ject

Room
TimeSlot=T

Room
TimeSlot=T

)
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or, similarly, that a lecturer does not have to lecture on two different subjects in two
different rooms at the same time:

(6) ¬∃
(

Lecturer

Sub ject

Sub ject

Room
TimeSlot=T

Room
TimeSlot=T

)

Finally, perhaps we may want to specify that not every lecturer has a teaching as-
signment, so that every semester there may be someone on sabbatical:

(7) ¬ if Lecturer
Name=N then Lecturer

Name=N
Sub ject

It may be noticed that the system that we are describing with these graphical con-
straints may be not an information system, but the set of web pages of a department,
where an arrow from a node of type t1 to a node of type t2 may mean that there is a
link between two web pages (for instance from the web page of a subject to the web
pages of the lecturers), or it may mean that the information of type t2 is a subfield of the
information of type t1 (for instance the room assignment may be a field of the subjects
web pages). In this case, we could have displayed our constraints not in terms of graphs,
but as HTML or XML expressions.

3 Satisfiability of Sets of Graph Constraints

In this section we will present several inference systems that provide sound and com-
plete refutation procedures for checking satisfiability for different classes of graph con-
straints. More precisely, after defining some standard basic concepts about refutation
procedures, we will study the case of (positive and negative) basic constraints. In par-
ticular, in this case the inference rules define a sound and complete procedure for check-
ing satisfiability that always terminate. Then, in the third subsection we will study the
case where we have positive and negative basic constraints and positive atomic con-
straints. Finally, we consider the satisfiability problem for specifications consisting of
arbitrary positive and negative atomic constraints. In this case, the inference rules deal
with a more general notion of constraint, which we call contextual literals consisting of
a positive literal with an associated context. In particular, this context is a finite set of
negative atomic constraints together with monomorphisms binding the conditional part
of each constraint to the corresponding literal. Using these contextual clauses, we prove
that our inference system defines a refutation procedure which is sound and complete.
In the last two cases, our refutation procedures may not terminate, which means that
the procedures are just refutationally complete. Moreover, in these two cases our pro-
cedures check satisfiability with respect to the class of finite and infinite graphs. In fact,
we show an example of a specification whose only models are infinite graphs. As a con-
sequence, we guess that satisfiability for this class of constraints is already undecidable
(but semi-decidable).
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3.1 Basic Concepts

As it is often done in the area of automatic reasoning, the refutation procedures that we
present in this paper are defined by means of some inference rules. More precisely, as
usual, each rule tells us that if certain premises are satisfied then a given consequence
will also hold. In this context, a refutation procedure can be seen as a (possibly nonter-
minating) nondeterministic computation where the current state is given by the set of
formula that have been inferred until the given moment and where a computation step
means adding to the given state the result of applying an inference rule to that state.

More precisely, in our case, we assume that the inference rules have the form:

Γ1 α
Γ2

where Γ1 and Γ2 are clauses of the form ∃G1 ∨ ·· · ∨ ∃Gn, where ∃G1, ∃Gn are basic
positive constraints and where α is an atomic constraint. Moreover, Γ1 is assumed to
belong to the current set of inferred clauses and α is assumed to belong to the original
specification. Then a refutation procedure for a set of constraints C is a sequence of
inferences:

C0 ⇒C C1 ⇒C · · · ⇒C Ci ⇒C . . .

where the initial state just includes the true clause (i.e. C0 = {∃ /0}) and where we write
Ci ⇒C Ci+1 if there is an inference rule like the one above such that Γ1 ∈ Ci, α ∈ C ,
and Ci+1 = Ci ∪{Γ2}. Moreover, we will assume that Ci ⊂ Ci+1, i.e. Γ2 /∈ Ci, to avoid
useless inferences.

It may be noted that our refutation procedures are linear, which means that no infer-
ences from derived clauses are needed. If we would generalize our approach, allowing
C to be a set of arbitrary graph constraints, then we would lose the linearity of the
refutation procedures.

In this framework, proving the unsatisfiability of a set of constraints means inferring
the f alse clause (which is represented by the empty clause, i.e. the empty disjunction,
denoted �), provided that the procedure is sound and complete. Since the procedures
are nondeterministic, there is the possibility that we never apply some key inference.
To avoid this problem we will always assume that our procedures are fair, which means
that if at any moment i, there is a possible inference Ci ⇒C Ci ∪{Γ}, for some clause Γ,
then at some moment j we have that Γ ∈ C j.

Then, a refutation procedure for C is sound if whenever the procedure infers the
empty clause we have that C is unsatisfiable. And a procedure is complete if, whenever
C is unsatisfiable, we have that the procedure infers. �
It may be noted that if a refutation procedure is sound and complete then we may know
in a finite amount of time if a given set of constraints is unsatisfiable. However, it may
be impossible to know in a finite amount of time if the set of constraints is satisfiable.
For this reason, sometimes the above definition of completeness is called refutational
completeness, using the term completeness when both satisfiability and unsatisfiability
are decidable.

As usual, for proving soundness of a refutation procedure it is enough to prove the
soundness of the inference rules. This means that for every rule as the one above and
every graph G, if G |= Γ1 and G |= α then G |= Γ2.
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3.2 Basic Constraints

In this section we study the case where specifications consist only of positive and neg-
ative basic constraints. This means that specifications are assumed to be sets of literals
of the form ∃C1 or ¬∃C1. However, as said above, in the deduction process we will deal
with clauses of the form ∃G1 ∨·· ·∨∃Gn. Now, for this case, satisfiability will be based
on two rules that can be found below (obviously, we assume disjunction to be commu-
tative and associative, which means that the literal ∃C1 in the premises of the rules is
not necessarily the leftmost literal in the given clause).

∃C1 ∨Γ ¬∃C2

Γ
(R1)

if there exists a monomorphism m : C2 → C1

∃C1 ∨Γ ∃C2

(
∨

G∈G ∃G)∨Γ
(R2)

if there is no monomorphism m : C2 → C1, where G = {G | 〈 f1 : C1 → G ← C2 : f2〉 ∈
(C1 ⊗C2)} and where (

∨
G∈G ∃G) denotes the (finite) disjunction ∃G1 ∨ ·· · ∨ ∃Gn, if

G = {G1, . . . ,Gn}.
The first rule is, in some sense, similar to resolution and is the rule that may allow

us to infer the empty clause. The reason is that it is the only rule that generates clauses
with fewer literals. The second one can be seen as a rule that, given two constraints,
builds a new constraint that subsumes them. More precisely, the graphs involved in the
new literals in the clause, i.e. the graphs G ∈ G satisfy both constraints ∃C1 and ∃C2.
This means that if we apply this rule repeatedly, using all the positive constraints in the
original set C , we would build (minimal) graphs that satisfy all the positive constraints
in C .

Example 2. If we consider the basic constraints that are included in the Example 1 (i.e.
the constraints (1), (2), (4), (5), and (6)) then it would only be possible to infer the
constraint below as follows. First, using rule (R2) on the trivial clause ∃ /0 and constraint
(1)we obtain a clause including only constraint (1). Then, using again rule (R2) on this
clause and constraint(2) we obtain the clause:

(8) ∃
(

Sub ject
Name=CS1

Sub ject
Name=CS2

)

meaning that the graph representing the system must include at least two Subject nodes
(with attributes CS1 and CS2). No further inference rule can be applied, which means
that these constraints are satisfiable, and indeed this constraint represents a (minimal)
model satisfying the constraints (1), (2), (4), (5), and (6).

These two rules are sound and complete. The soundness of the first rule is quite obvious.
If a graph G satisfies both premises and in addition we know that C2 is included in C1

then G cannot satisfy ∃C1. Therefore, it should satisfy Γ. The soundness of the second
rule is based on the so-called pair factorization property: Given two (mono)morphisms,
f1 : G1 → G, f2 : G2 → G, with the same codomain G there exists a graph H and
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monomorphisms g1 : G1 → H, g2 : G2 → H and h : H → G such that g1 and g2 are
jointly surjective and the diagram below commutes:

G1

g1

��

f1

���
��

��
��

�

H
h �� G

G2

g2

��

f2

����������

Then, if a graph G satisfies ∃C1 and ∃C2 the pair factorization property will tell us
that G will also satisfy ∃H, where H is a graph in G .

It may be noted that in the proof of soundness of rule (R2) we have not used the
condition that there is no monomorphism m : C2 → C1. The reason for such condition
is to limit the number of possible inferences, i.e. to make the refutation procedure a bit
more efficient since we do not lose completeness with this restriction.

Now, in this case, as said above, we can ensure not only the completeness of any fair
refutation procedure, but also its termination. The key property for proving complete-
ness and termination, related to the observation made above about the second inference
rule, is that if C0 ⇒∗

C C ′ and ∃C is an atom (different from the trivial constraint ∃ /0)
included in a clause in C ′ then C ∈ {G | 〈 f1 : H1 → G ← H2 : f2〉 ∈ (

⊗
Ci∈L Ci)}, where

L is a subset of C consisting only of positive constraints. Then, since there is a finite
number of these graphs, we can be sure that there is a finite number of clauses involving
these graphs and, hence, only a finite number of sets of clauses can be inferred using the
two rules. This ensures termination. On the other hand, if we know that the refutation
procedure terminates on the set of clauses Ck it is easy to see that either it includes the
empty clause or there is a clause involving a graph G that satisfies all the constraints
in C . Therefore, we have:

Theorem 1 (Termination, Soundness and Completeness). Given a set of basic (pos-
itive and negative) constraints C , any fair refutation procedure defined over C based on
the rules (R1) and (R2) will always terminate, i.e. there is an k such that C ⇒C C1 ⇒C
C2 ⇒C · · · ⇒C Ck and no rule can be applied on Ck. Moreover, C is unsatisfiable if and
only if the empty clause is in Ck.

3.3 Basic Constraints and Positive Atomic Constraints

In this section we extend the case studied in the previous subsection by allowing speci-
fications including positive atomic constraints. This means that the given specifications
are assumed to consist of literals of the form ∃C1, ¬∃C1, or ∀(c : X → C2). In this case,
satisfiability is based on the two rules presented in the previous subsection plus the
following new rule:

∃C1 ∨Γ ∀(c : X → C2)
(
∨

G∈G ∃G)∨Γ
(R3)

if there is a monomorphism m : X →C1 such that there is no monomorphism h : C2 →C1

such that m = h◦ c and where G is the set consisting of all the graphs G such that there
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are two jointly surjective monomorphisms f1 : C1 → G and f2 : C2 → G such that the
diagram below commutes:

C1
f1

���
��

��
��

X

c
���

��
��

��

m
���������

G

C2

f2

���������

This new rule is similar to rule (R2) in the sense that given a positive basic constraint
and a positive atomic constraint it builds a disjunction of literals representing graphs
that try to satisfy both constraints. However, in this case the satisfaction of the constraint
∀(c : X → C2) is not ensured. In particular, the idea of the rule is that if we know that
X is included in C1 then we build all the possible extensions of C1 which also include
C2 (each G would be one of such extensions). However, in this case we cannot be sure
that G satisfies ∀(c : X → C2), because G may include an instance of X which was not
included in C1. For instance, suppose that we have the following constraints:

(1) ∃
( )

(2) if a then a b

where the first one specifies that the given graph must include a node and where the
second one specifies that every node must have an outgoing edge. Then applying rule
(R3) to these constraints would yield a clause one of whose subterms is the constraint:

∃
(

a b
)

Now, in this graph node a has an outgoing edge, but node b does not have it, so the
graph still does not satisfy the second constraint. If we would apply again the third rule,
then we would infer a clause including a graph with three nodes and two edges, and so
on. This is the reason why, in this case, a refutation procedure may not terminate. More-
over, as we will also see, if the procedure does not refute the given set of constraints
then the completeness proof ensures that there will be a model that satisfies this set of
constraints, but this model may be an infinite graph built by an infinite colimit. One may
wonder whether there will also exist a finite model of that specification. In the case of
this example such a finite graph exists. Actually, the resulting clause after applying for
the second time the third rule to the graph above, would also include the graph below
that satisfies both constraints.

However, in general, we do not know if an arbitrary set of basic constraints and
positive atomic constraints which is satisfiable by an infinite graph, is also satisfied by
some finite graph. Nevertheless, in the general case (when dealing with positive and
negative atomic constraints) there are sets of constraints whose only models are infinite
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graphs, as we will see in the following subsection. For this reason we conjecture that in
this case the answer to this question will also be negative.

Example 3. Let us consider the basic constraints and the positive atomic constraints
that are included in Examples 1 and 2 (i.e. the constraints (1), (2), (3), (4), (5), (6), and
(8)). If we apply the third rule on constraints (8) and (3), and again on the resulting
clause and on constraint (3) then we would infer the following clause:

(9) ∃
(

Sub ject
Name=CS1

Lecturer

Room

Sub ject
Name=CS2

Lecturer

Room

)
∨ ∃

(
Sub ject

Name=CS1

Lecturer

Room

Sub ject
Name=CS2

Room

)
∨

∨ ∃
(

Sub ject
Name=CS1

Lecturer

Room

Sub ject
Name=CS2

Lecturer

)
∨ ∃

(
Sub ject

Name=CS1

Lecturer

Room

Sub ject
Name=CS2

)

This clause states that the graph should include two subjects (CS1 and CS2) and these
subjects may be assigned to two different rooms and to either two different lecturers, or
to the same lecturer, or they may be assigned to the same room, and to either different
lecturers, or the same lecturer. Obviously, the last two constraints in this clause violate
constraint (4), which means that we can eliminate them using twice rule (R1), yielding
the following clause:

(10) ∃
(

Sub ject
Name=CS1

Lecturer

Room

Sub ject
Name=CS2

Lecturer

Room

)
∨ ∃

(
Sub ject

Name=CS1

Lecturer

Room

Sub ject
Name=CS2

Room

)

Then, no further inferences can be applied, which means that this set of constraints is
satisfiable. Actually, the two graphs occurring in clause (10) would be (minimal) models
of the set of constraints (except constraint (7) which is considered in the following
subsection).
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The proof of soundness of the new rule (R3) is very similar to the proof for rule (R2). If
G satisfies ∃C1 and ∀(c : X → C2), using pair factorization we get the diagram below:

C1

f1 ���
��

��
��

�
h1

		��������������

X

c
���

��
��

��

m
���������

H �� G

C2

f2
���������� h2



��������������

then, G will also satisfy ∃H, where H is a graph in G .
In this case, the proof of completeness is a bit more involved as a consequence of the

possible nontermination of the refutation procedure. The underlying idea is inspired by
a technique called model construction used for proving completeness of some inference
systems for first-order logic with equality [16]. According to this technique, we see the
inference rules as steps for building a model of the given set of constraints. In particular,
given a set of constraints C , we consider sequences of graphs /0 ≺ C1 ≺ ·· · ≺ Ci ≺ . . . ,
where Ci ≺ Ci+1 if (a) ∃Ci+1 is a literal in the clause inferred after applying rules (R2)
or (R3) to ∃Ci and to some positive constraint in C (this means that Ci is included in
Ci+1) ; and (b) Ci+1 satisfies all the negative constraints in C . Each of these sequences
can be seen as a path for building a possible model of C . In this sense, condition (b) is
needed because if Ci+1 does not satisfy a negative constraint in C then it is useless to
continue this path. Moreover, we require these sequences to be fair, which means that if
we can have Ci ≺ C ′

i+1 via some inference an the sequence is infinite, then there would
be some j such that Cj includes C ′

i+1. Then, we have three cases:

– All maximal sequences of this kind are finite, and in all cases the last graph Ci in
each sequence does not satisfy all positive constraints in C . This means that no
path is useful for building a model. Then we can show that a fair procedure would
generate the empty clause for C .

– There is a finite sequence whose last graph Ci satisfies all the constraints in C . Then
we have built a finite model for C .

– There is an infinite fair sequence. Then we show that if we take the union of all the
graphs in the sequence (the colimit of the sequence) the result is a model for C .

As a consequence, we have:

Theorem 2 (Soundness and Completeness). Let C ⇒C C1 ⇒C · · · ⇒C Ck . . . be a
fair refutation procedure defined over a set of basic constraints and positive atomic
constraintsC , based on the rules (R1), (R2), and (R3). Then, C is unsatisfiable if and
only if there is a j such that the empty clause is in C j.

3.4 Atomic Constraints

In this section we study the case of general specifications including arbitrary positive
and negative atomic constraints. In this case, in order to ensure completeness, the in-
ference rules are defined over a generalized notion of clause, consisting of contextual
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literals, which are positive basic constraints with an associated context. More precisely,
given a constraint ∃C, a context for this constraint is a set of negative atomic constraints
¬∀(g : X → C1) such that X is included in C. Actually, C has to satisfy this negative
constraint. However, as usual, we need to know not only that X is a subgraph of C, but
also to identify the specific instance X that cannot be extended to C1. For this reason
we consider that a context is a finite set of negative atomic constraints together with
monomorphisms binding the conditional part of each constraint to the corresponding
literal. Below, when sketching the completeness proof, we will explain the need for
these contexts.

Definition 6 (Contextual Constraints). A contextual constraint ∃C[Q ] is a pair con-
sisting of a basic constraint, ∃C, and a set Q consisting of pairs 〈¬∀(g : X → C1),h :
X → C〉, where ¬∀(g : X → C1) is a negative atomic constraint and h is a monomor-
phism such that there is no monomorphism h′ : C1 → C such that h = h′ ◦ g.

Now, we have to define satisfaction for this kind of contextual constraints. The idea is
that a graph satisfies a contextual constraint ∃C[Q ] if it satisfies ∃C and all the con-
straints in its context:

Definition 7 (Satisfaction of Contextual Constraints). A graph G satisfies a contex-
tual constraint ∃C[Q ] via a monomorphism f : C → G , G |= f ∃C[Q ], if for every
〈¬∀(g : X → C1),h : X → C〉 ∈ Q there is no monomorphism h′ : C1 → G such that
f ◦ h = h′ ◦ g. G satisfies ∃C[Q ], G |= ∃C[Q ], if there is a monomorphism f : C → G
such that G |= f ∃C[Q ].

Finally, given a contextual constraint ∃C[Q ] and a graph G that satisfies it via a
monomorphism f : C → G, in our inference rules we need to be able to build a contex-
tual constraint whose left-hand side is ∃G and whose context includes the same negative
constraints as [Q ]. In order to do this we need to define the new binding of the negative
constraints in [Q ] with G:

Definition 8. Given a contextual constraint ∃C[Q ] and a monomorphism g : C → G,
we define the context g〈Q 〉 as the set {〈¬∀(g : X → C1),g ◦ h : X → G〉 | 〈¬∀(g : X →
C1),h : X → C〉 ∈ Q }.

In this case, satisfiability is based on four rules. The first three rules are a reformulation
(in terms of contextual constraints) of the rules defined in the previous sections. In
addition, a new rule describes the kind of inferences that can be done using negative
atomic constraints. The four rules are:

∃C1[Q ]∨Γ ¬∃C2

Γ
(R1’)

if there exists a monomorphism m : C2 → C1

∃C1[Q ]∨Γ ∃C2

(
∨

G∈G ∃G[ f1〈Q 〉])∨Γ
(R2’)
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if there is no monomorphism m : C2 → C1 and where G = {G | 〈 f1 : C1 → G ← C2 :
f2〉 ∈ (C1 ⊗C2),such that G |=id ∃G[ f1〈Q 〉]}.

∃C1[Q ]∨Γ ∀(c : X → C2)
(
∨

G∈G ∃G[ f1〈Q 〉])∨Γ
(R3’)

if there is a monomorphism m : X → C1 and there is no monomorphism h : C2 → C1

such that m = h ◦ c and where G is the set consisting of all the graphs G such that
there are two jointly surjective monomorphisms f1 : C1 → G and f2 : C2 → G such that
G |=id ∃G[ f1〈Q 〉]} and the diagram below commutes:

C1
f1

���
��

��
��

X

c
���

��
��

��

m
���������

G

C2

f2

���������

∃C1[Q ]∨Γ ¬∀(g : X → C2)
(
∨

G∈G ∃G[Q ′])∨Γ
(R4)

if (¬∀(g : X → C2)) /∈ Q and where G = {G | 〈 f1 : C1 → G ← X : f2〉 ∈ (C1 ⊗X), such
that G |=id ∃G[Q ′]}, and Q ′ = f1〈Q 〉∪{〈¬∀(g : X → C2), f2〉}.

This new rule is similar to (the reformulation of) rule (R2). The reason is that a
negative atomic constraint ¬∀(c : X → C2) (partly) specifies that there must be a copy
of X in the given graph, as it happens with the constraint ∃X . The main difference to
rule (R2’) is that, in the new rule, the negative constraint is added to the context of the
new constraints introduced in the clause inferred by the rule.

It may be noticed that with any of these four rules we may generate the empty clause,
since all the rules may delete a literal from a rule because of the contexts. In the previous
cases only rule (R1) would eliminate literals. However, in this case, in rules (R2’), (R3’)
and (R4) it may happen that no G ∈ G satisfies the resulting context. As a consequence,
in this situation, the resulting clause would be Γ.

Example 4. Let us consider all the constraints and clauses from Examples 1, 1, and 3.
If we apply twice the fourth rule on clause (10) and constraint (7) then we would infer
the following clause:

(11) ∃
(

Sub ject
Name=CS1

Lecturer

Room

Sub ject
Name=CS2

Lecturer Lecturer

Room

)
∨ ∃

(
Sub ject

Name=CS1

Lecturer

Room

Sub ject
Name=CS2

Room

Lecturer

)
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where the context associated to both literals (not displayed above) would consist of
constraint (7). Again, no further inferences can be applied, which means that this set of
constraints is satisfiable, and the two graphs occurring in clause (11) would be (mini-
mal) models of the set of constraints.

Now, with this new formulation, again we are able to show soundness and completeness
of our inference rules. In particular, the proofs of soundness for rules (R1’)-(R3’) are
very similar to the proofs for rules (R1)-(R3). The only difference is that we have to
take into account the contexts. Then the proof of soundness for rule (R4) also follows
the same pattern. In particular, if G |=h1 ∃C1[Q ] and G |= ¬∀(c : X → C2) then using
again the property of pair factorization we have:

C1

f1
��

h1

���
��

��
��

�

G ′ f �� G

X

f2

��

h2

����������

where f1 : C1 → G ′ and f2 : X → G ′ are jointly surjective. In this context, it is routine to
prove that, on one hand, G ′ |=id ∃G ′[Q ′] (so, G ′ ∈ G) and, on the other, G |= f G ′[Q ′].

The proof of completeness in this case is very similar to the previous completeness
proof. The main difference is in the key role played by the contexts. The idea in the
previous proof was to consider sequences of graphs /0 ≺ C1 ≺ ·· · ≺ Ci ≺ . . . , where
every Ci is included in Ci+1, that could be seen as the construction of a model for C ,
if the empty clause was never inferred. In particular, these sequences were associated
to the given inferences. Moreover, an important property in that proof is that it was
assumed that every graph in these sequences would satisfy all the negative constraints in
C . In particular, given a graph Ci, if a possible successor Ci+1 does not satisfy a negative
constraint ¬∃C in C then we know that a sequence /0 ≺C1 ≺ ·· · ≺Ci ≺Ci+1 ≺ . . . would
never yield a model of C . The reason is that any graph including Ci+1 will neither satisfy
¬∃C. However, this is not true for negative atomic constraints. If Ci+1 does not satisfy
¬∀(g : X → C) then some graphs G including Ci+1 may satisfy ¬∀(g : X → C). For this
reason it would be wrong to prune a sequence /0 ≺ C1 ≺ ·· · ≺ Ci ≺ . . . , if we know that
Ci does not satisfy a constraint ¬∀(g : X → C), because some graph Ck, with k > i, may
satisfy it. However, in this situation it is impossible to say if this sequence, in the limit
(or, rather, in the colimit) would yield a model of C and, especially, if it would satisfy
that constraint.

The use of contexts solves this problem. In particular, if Ci[Q ] does not satisfy a
constraint ¬∀(g : X →C) in its context Q then no larger graph would satisfy it. Then, in
a similar manner as in the previous completeness proof, we can define sequences /0[ /0] ≺
C1[Q1] ≺ ·· · ≺ Ci[Qi] ≺ Ci+1[Qi+1] ≺ . . . , where each Ci satisfies all the negative basic
constraints in C and all the negative constraints in Qi. Then, fairness of the sequences
ensure that for every sequence there is an i such that Qi includes all the negative atomic
constraints in C . This ensures that a fair sequence will yield a model of C , provided that
the empty clause cannot be inferred from C .
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As a consequence, we have:

Theorem 3 (Soundness and Completeness). Let C ⇒C C1 ⇒C · · · ⇒C Ck . . . be a fair
refutation procedure defined over a set of atomic constraints C , based on the rules
(R1’), (R2’), (R3’) and (R4). Then, C is unsatisfiable if and only if there is a j such that
the empty clause is in C j .

As discussed above, our completeness results show that a set of constraints is satisfiable
then a fair refutation procedure will never infer an empty clause from the given set
of constraints. However, in the proof of completeness, the model constructed to show
the satisfiability of the constraints is an infinite graph. One could wonder whether in
this situation it would always be possible to find an alternative finite model for these
constraints. The answer is no. As we can see in the counter-example below, there are
sets of atomic constraints which do not have finite models.

Example 5. The set of constraints below is not satisfied by any finite graph, but only by
infinite graphs:

(1) ∃
( )

(2) ¬∃
( )

(3) ¬∃
( )

(4) if a then a b (5) ¬ if a then b a

Let n be the number of nodes of a graph satisfying the constraints and e its number
of edges. The first constraint specifies that the graph must have at least a node, i.e.
n ≥ 1. The second and third constraints specify that every node must have at most one
incoming edge and one outgoing edge, i.e. n ≥ e. The fourth constraint specifies that
every node has an outgoing edge, , i.e., n ≤ e and, finally, the fifth constraint specifies
that not every node has an incoming edge, i.e., n > e. Now, obviously no finite graph
would satisfy these constraints. However the graph below does satisfy them:

. . . . . .1 2 n

4 Conclusion

In this paper we have shown how we can use graph constraints as a specification formal-
ism to define constraints associated to visual modelling formalisms or to specify classes
of semi-structured documents. In particular, we have shown how we can reason about
these specifications, providing inference rules that are sound and complete. Moreover,
as can be seen in our examples, the completeness proofs (only sketched in the paper)
show that our inference rules can also be used for the construction of minimal models
for the given sets of constraints.

As pointed out above, our results apply not only to plain graphs, but generalize to a
large class of structures including typed and attributed graphs. In this sense, in [6,5] the
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constraints that we consider have been defined for any adhesive HLR-category [14,5].
However, to be precise, to generalize our results we would need that the underlying
category of structures satisfies two properties that are not considered in [6,5]. On one
hand, we would need that G1 ⊗ G2 is finite provided that G1 and G2 are finite. It may
be noticed that this may be not the case if G1 and G2 are arbitrary attributed graphs.
However, if we restrict ourselves to the class of monomorphisms which are the identity
on the attributes then the property would hold. On the other hand, the second condition
that we need is the existence of infinite colimits (together with some additional technical
property).

We have not yet implemented these techniques, although it would not be too difficult
to implement them on top of the AGG system [1], given that the basic construction
that we use in our inference rules (i.e. building G1 ⊗ G2) is already implemented there.
However we think that, before doing this kind of implementation, it may be worth
to make our approach more “efficient”. In particular, in this paper we have defined
our rules caring mainly about completeness. However there are some other rules that,
although they do not help in ensuring completeness, may help to prove more rapidly the
(un)satisfiability of a set of constraints. In a different sense, in our refutation procedures
we never eliminate any clause from the given proof state. However, we know that we
can use some other rules for eliminating clauses, which means that we would reduce
the search space of the procedure.

Acknowledgements. This work has been partially supported by the CICYT project
FORMALISM (ref. TIN2007-66523) and by the AGAUR grant to the research group
ALBCOM (ref. 00516).

References

1. AGG.: The AGG, httptfs.cs.tu-berlin.de/agg
2. Alpuente, M., Ballis, D., Falaschi, M.: Automated Verification of Web Sites Using Partial

Rewriting. Software Tools for Technology Transfer 8, 565–585 (2006)
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