
Model Transformation of Model
Fragments Using Borrowed Context:

Extended Version

Hanna Schölzel

Bericht-Nr.
ISSN

Model Transformation of Model
Fragments Using Borrowed Context:

Extended Version

Hanna Schölzel

hannas@cs.tu-berlin.de, Institut für Softwaretechnik und Theoretische Informatik,
Technische Universität Berlin, Germany

Abstract

In this technical report we study the transformation of models in the context of
algebraic graph transformation and triple graph grammars. The new contribution of
the thesis is to define and analyze the transformation of model fragments in general
and the propagtion of graph constraints in particular.

With the borrowed context we developed a technique further to the model trans-
formation with triple graph grammars. This allows a transformation of incomplete
models which could not be transformed until now.

Moreover, we defined under which conditions a graph constraint can be propagated
with borrowed context transformations and the model properties are preserved. This
is also analyzed in the case study using the modeling framework ABT-Reo.

1

1 Introduction
In Computer Science models and visual languages become more and more important. They
are most commonly used in the progress of specification, as well as for maintaining existing
systems. Moreover, models and visual languages play an important role in other fields of
work as well, like construction plans or even business models, which are used in the first
case study of this thesis.

In contrast to a written language, the information provided through a visual language
can be gathered at a few glances. It is fast and easy to understand, because the observer
can make fast associations while viewing the picture.

But instead of mere pictures visual languages and their interpretation are defined.
This can be either descriptive or constructive, similiar to a spoken language. In this
diploma thesis the constructive approach of describing visual languages with algebraic
graph grammars will be used based on the Double Pushout Approach introduced by [Ehr79]
to transform graphs.

Furthermore, it focuses on model transformation with Triple Graph Grammars [Sch94].
This technique is commonly used for the algebraic transformation of complete, correct
models between model languages using Triple Graph Grammars. Since 1994, extensions
of the original TGG definitions have been published [KS06] and applications have been
presented [KW07]. However, one may stumble upon problems, if the model to transform
is incomplete, i.e., a model fragment, since the triple graph grammars with their rules are
designed for complete models and they are not necessarily applicable to model fragments.

In order to solve this problem the approach of the Borrowed Context approach [EK06]
is used in this thesis. Originally, this approach was developed for the purpose of deriving
bisimulation congruences from unlabelled reaction rules. It will be adjusted to the context
of model transformation in order to make graph transformation rules applicable in a smaller
context. Therefore, missing parts for the transformation are borrowed from the left-hand-
side of the transformation rule and added to the model fragment, resulting in a larger
model where the rule is applicable.

In practice, model fragments appear as parts of graph constraints, for instance. These
are Boolean formulas, which define specific conditions a model has to satisfy, i.e., it re-
quires or forbids certain structures in the model. Such structures are not necessarily
complete models, but parts of them. A main result of this thesis is the propagation of
graph constraints. With the use of the borrowed context approach a graph constraint can
be translated completely and it will be shown, under which conditions a model from the
target language satisfies the propagated constraint.

In a case study this theory will be applied, to transform a graph constraint in the
modeling framework ABT-Reo [BHE09], [BH09], which was invented for the organization
Credit Suisse for enterprise modeling. It combines IT and business models in a triple graph
grammar and we will show an example propagation of an IT constraint to the business
domain. Additionally, we will show, that the needed conditions are fulfilled, such that the
propagated model is an integrated constraint for both - IT and business - domains.

The thesis is structured as follows. In Section 2 Review of Model Transformation

2

with Triple Graph Grammars the basics of the algebraic graph transformation introduced
in [EEPT06] will be presented, which are essential for the definition of triple graphs.
The notion of triple graphs and triple graph transformation is the basis for the model
transformation technique used in this work and will also be presented in this Section.

The theory of the borrowed context will be introduced in Section 3 Model Transfor-
mation with Borrowed Context. Furthermore we will present conditions under which a
transformation with borrowed context can be extended to a standard double pushout
transformation. Additionaly we will show under which conditions a forward transforma-
tion with borrowed context is source consistent and introduce an on-the-fly construction for
model transformation sequences with borrowed context. In the last part of this Section we
will present the notion of correctness, completeness and termination for borrowed context
based transformations.

In Section 4 Propagation of Graph Constraints Using Borrowed Context we will intro-
duce our main result. We define how to propagate a graph constraint with the previously
introduced model transformation with borrowed context. Additionally we will show under
which conditions an integrated model satisfies the integrated constraint.

Section 5 Case Study presents in the first three subsections the propagation of a graph
constraint with the borrowed context approach in the modeling framework ABT-Reo. We
will give a short overview on the triple graph grammar ABT-Reo and show an example
transformation in the first part of the Section. Afterwards, the technique developed in the
previous section will be used to propagate a graph constraint. Moreover, we will show,
that the triple graph grammar satisfies the necessary conditions for the propagation by
analyzing it with the software tool AGG [AGG] for attributed graph grammar systems.

In the last part of this Section we present a case study on the tranformation of opera-
tional semantics with borrowed context transformations between State Machines [EEPT06]
and Petri Nets [Rei84]. We study the possibility to transform operational semantics and
preserving the model properties, i.e., the equivalence of first applying rules of the oper-
ational semantic to a State Machine and then transforming it into a Petri Net and vice
versa.

In Section 6 Conclusion we give an overview of the achieved results and of future work
based on the results of this thesis.

2 Review of Model Transformation with Triple Graph
Grammars

This section will be an introduction to the basics of model transformation. In section
2.1 Graph Transformation the general concept of graphs and the algebraic graph transfor-
maion based on the double-pushout approach will be introduced. An introduction to the
mechanics of model transformation with triple graphs grammar will be given in section 2.2
Triple Graphs.

3

2.1 Graph Transformation

The model transformation approach used in this thesis is algebraic graph transformation.
Because this is a formal approach, it is well suited for formal analyses. On the other hand,
due to the fact that graphs are visual and schematic, they are also a way of explaining
complex situations on an intuitive level. In this section we define the basic notion of graphs
and graph morphisms including typed graphs, which are also the basis for typed attributed
graphs (see [EEPT06]) used in our case study.

Definition 1 (Graph).
A graph G = (V, E, s, t) consists of a set V of nodes (also called vertices), a set E of edges,
and two functions s, t : E → V , the source and target functions:

E
s //
t

// V

Graphs can be related by mapping the nodes and edges of a graph to those of another
one under the condition, that the source and the target of each edge are preserved. The
formal construct for this is called graph morphism.

Definition 2 (Graph Morphism).
Given graphs G1, G2 with Gi = (Vi, Ei, si, ti) for i = 1, 2, a graph morphism f : G1 → G2,
f = (fV , fE) consists of two functions fV : V1 → V2 and fE : E1 → E2 that preserve the
source and target functions, i.e., fV ◦ s1 = s2 ◦ fE and fV ◦ t1 = t2 ◦ fE

E1

fT

��

s1 //

=

t1
// V1

fV

��
E2

s2 //
t2

// V2

A graph morphism f is injective (or surjective) if both functions fV , fE are injective (or
surjective, respectively); f is called isomorphic if it is bijective, which means both injective
and surjective.

Graphs and morphisms defined above lead to the category Graphs. In general, a
category is a mathematical structure that has objects and morphisms, with a composition
operation on the morphisms and an identity morphism for each object.

Definition 3 (The Category Graphs).
The category Graphs has the class of graphs as objects. Its morphisms are all graph
morphisms, with componentwise composition and identities.

4

By means of graph morphisms, graphs can be typed, e.g. one can define which type of
nodes can be the source or target of which type of edges and so on. Therefore a type graph
defines a set of types. To assign a type to the nodes and the edges of a graph a morphism
to the type graph is used.

Definition 4 (Typed Graphs and Typed Graph Morphism).
A type graph is a distinguished graph TG = (VTG, ETG, sTG, tTG). VTG and ETG are called
the vertex and the edge type alphabets, respectively.

A tuple (G, type) of a graph G together with a graph morphism type: G→ TG is then
called a typed graph.

Given typed graphs GT
1 = (G1, type1) and GT

2 = (G2, type2), a typed graph morphism
f : GT

1 → GT
2 is a graph morphism f : G1 → G2 such that type2 ◦ f = type1

G1 G2

TG

f

type1 type2
=

Typed graphs lead to another category GraphsTG.

Definition 5 (The Category GraphsTG).
Given a type graph TG, typed graphs over TG and typed graph morphisms form the
category GraphsTG.

Properties for graphs can be formulated with graph constraints. They specify the
condition that a graph G must or must not contain a certain subgraph G′. Furhtermore, if
a graph contains a certain premise P , we can require that it contains a certain conclusion
C.

Definition 6 (Graph Constraint).
An atomic graph constraint is of the form true or PC (a), where PC (a) : P

a−→ C is a graph
morphism.

A graph constraint is a Boolean formula over atomic graph constraints. This means that
true and every atomic graph constraint are graph constraints, and, for graph constraints c
and ci with i ∈ I for some finite index set I, ¬c, ∧i∈Ici, and ∨i∈Ici are graph constraints:

P

p
��@@@@@@@
a //

=

C

q
��~~~~~~~

G

A graph G satisfies a graph constraint c, written G |= c, if

5

• c = true;

• c = PC (a) and, fo every injective graph morphism p : P → G, there exists an
injective graph morphism q : C → G such that q ◦ a = p;

• c = ¬c′ and G does not satisfy c′;

• c = ∧i∈Ici and G satisfies all ci with i ∈ I;

• c = ∨i∈Ici and G satisfies some ci with i ∈ I;

For the rule based model transformation a technique is needed, which leads to the
generation of a new graph by the use of given graphs. Therefore we use the idea of a
pushout from category theory, where a pushout object emerges from gluing two objects
along a common subobject. In the context of the category of graphs, this technique is
called pushout, which enables us to glue two graphs together along a common subgraph.
Intuitively, this means, we use this common subgraph and add all other nodes and edges
from both graphs.

Definition 7 (Pushout).
Given morphisms f : A→ B and g : A→ C in a category C, a pushout (D, f ′, g′) over f
and g is defined by

• a pushout object D and

• morphisms f ′ : C → D and g′ : B → D with f ′ ◦ g = g′ ◦ f

such that the following universal property is fulfilled: For all objects X and morphisms
h : B → X and k : C → X with k ◦ g = h ◦ f , there is a unique morphism x : D → X such
that x ◦ g′ = h and x ◦ f ′ = k:

A

g

��

f //

=

B

g′

��
h

��

C
f ′ //

k //

D
x

 AAAAAAA

X

We shall often use the abbrevation “PO” for “pushout”.

6

Example 1 (Pushout in Category Graphs).
Given the graphs G1, G2 and G3 in Figure 1 with the morphisms depicted by the mor-
phisms from G1 to G3 by the node mappings. In G3 the nodes a and b of G1 are glued
together. Hence, by the morphism from G2 to the pushout object G4 these nodes are
glued together as well. Note that the diagram in Figure 1 commutes and has the universal
property required in Definition 7.

G1

G3

G2

G4

a

b

a

c b c

cc
a,b

a,b

Figure 1: Example for a pushout in Graphs

Additionally we will need some properties of pushouts, which are very important for
the theory of algebraic graph transformation.

Fact 1 (uniqueness, composition, and decomposition of POs).
Given a category C, we have the following:

1. The pushout object D is unique up to isomorphism.

2. The composition and decomposition of pushouts result again in a pushout, i.e., given
the following commutative diagram, the statements below are valid:

A

g

��

f //

(1)

B

g′

��

e //

(2)

E

e′′

��
C

f ′ // D
e′ // F

7

• Pushout composition: If (1) and (2) are pushouts, then (1) + (2) is also a
pushout.

• Pushout decompostion: If (1) and (1) + (2) are pushouts, then (2) is also a
pushout.

Proof see [EEPT06].

The dual construction of pushouts are pullbacks in category theory. Intuitively the
pushout can be seen as a union of two objects over a common object. The pullback can
be seen as an intersection of subobjects of a common object.

Definition 8 (Pullback).
Given morphisms f : C → D and g : B → D in a category C, a pushout (A, f ′, g′) over f
and g is defined by

• a pullback object A and

• morphisms f ′ : A→ B and g′ : A→ C with g ◦ f ′ = f ◦ g′

such that the following universal property is fulfilled: For all objects X and morphisms
h : X → B and k : X → C with f ◦ k = g ◦ h, there is a unique morphism x : X → A such
that f ′ ◦ x = h and g′ ◦ x = k:

X
x

 @@@@@@@@ h

""

k

��

=

=

A

g′

��

f ′ //

=

B

g

��
C

f // D

We shall often use the abbrevation “PB” for “pullback”.

According to the duality principle in category theory dually to uniqueness, composition,
and decomposition of pushouts described in Fact 1, there are corresponding properties for
pullbacks in Fact 2.

Fact 2 (Uniqueness, Composition, and Decomposition of PBs).
Given a category C, we have the following:

1. The pullback object A is unique up to isomorphism.

8

2. The composition and decomposition of pushouts result again in a pushout, i.e., given
the following commutative diagram, the statements below are valid:

A

g

��

f //

(1)

B

g′

��

e //

(2)

E

e′′

��
C

f ′ // D
e′ // F

• Pullback composition: If (1) and (2) are pulbacks, then (1) + (2) is also a
pullback.

• Pullback decompostion: If (1) and (1) + (2) are pullbacks, then (2) is also a
pullback.

Based on the above constructions, especially pushouts, we will now look at the tech-
niques of graph transformation. Graph productions are the basis for algebraic graph trans-
formation. They describe a general way how to transform certain patterns in a graph. If
the conditions needed for the application of the rule are satisfied, the pattern can be trans-
formed, resulting in a direct graph transformation. In the following, the concepts of graph
and typed graph transformation systems will be handeled both simultaneously. Therefore
we will use the abbreviated terminology, (typed) graph transformation systems.

Definition 9 (Graph Production).
A (typed) graph production p = (L

l←− K
r−→ R) consists of (typed) graphs L, K and

R, called the left-hand side, gluing graph, and the right-hand side respectively, and two
injective (typed) graph morphisms l and r.

Definition 10 (Graph Transformation).
Given a (typed) graph production p = (L

l←− K
r−→ R) and a (typed) graph G with a

(typed) graph morphism m : L → G, called the match, a direct (typed) graph transfor-
mation G =

p,m
==⇒ H from G to a (typed) graph H is given by the following double-pushout

(DPO) diagram, where (1) and (2) are pushouts in the category Graphs (or GraphsTG,
respectively):

L

m

��

(1)

K
loo

k

��

r //

(2)

R

n

��
G D

f
oo

g
// H

9

A sequence G0 =⇒ G1 =⇒ ... =⇒ Gn of direct (typed) graph transformations is called a (typed)
graph transformation and is denoted by G0 =⇒∗ Gn. For n = 0, we have the identical (typed)
graph transformation G0 =

id
=⇒ G0. Moreover, for n = 0 we allow also graph isomorphisms

G0
∼= G′0, because pushouts and hence also direct graph transformations are only unique

up to isomorphism.

To apply a (typed) graph production p = (L
l←− K

r−→ R) to a (typed) graph G via
a match m certain conditions have to be fulfilled. Given l : K → L and m : L → G we
hve to make sure the existence of a context graph D such that G becomes a pushout of
L and D over K. The existence of such a context graph, that leads to the first pushout,
allows us to construct the (typed) graph H in a second step as the pushout of D and R
over K. This is the intuitive introduction to the construction of the direct (typed) graph
transformation G =

p,m
==⇒ H.

Definition 11 (Applicability of a Production).
A (typed) graph production p = (L

l←− K
r−→ R) is applicable to a (typed) graph G via

the match m if there exists a context graph D such that (1) is a pushout in the sense of
Definition 10.

L

m

��

(1)

K
loo

k

��

r // R

G D
f

oo

Since this definition is a rather abstract view from the category theoretical point of view,
it gives no syntactical criterion to decide wheter a (typed) graph production is applicable
or not. Such a criterion is formulated by the gluing condition, which is necessary and
sufficiant for the existence of a context graph.

Definition 12 (Gluing Condition).
Given a (typed) graph production p = (L

l←− K
r−→ R), a (typed) graph G, and a match

m : L→ G with X = (VX , EX , sX , tX) for all X ∈ {L, K, R, G}, we can state the following
definitions:

• The gluing points GP are those nodes and edges in L that are not deleted by p, i.e
GP = lV (VK) ∪ lE(EK) = l(K).

• The identification points IP are those nodes and edges in L that are identified by m,
i.e. IP = {v ∈ VL | ∃w ∈ VL, w 6= v : mV (v) = mV (w)} ∪ {e ∈ EL | ∃f ∈ EL, f 6= e :
mE(e) = mE(f)}.

10

• The dangling points DP are those nodes in L whose images under m are the source
or target of an edge in G that does not belong to m(L), i.e. DP = {v ∈ VL | ∃e ∈
EG \mE(EL) : sG(e) = mV (v) ∨ tG(e) = mV (v)}.

p and m satisfy the gluing condition if all identification points and all dangling points are
also gluing points, i.e. IP ∪DP ⊆ GP .

If the gluing condition is not satisfied, the production p cannot be applied via the match
m. But if it is applicable, then the direct (typed) graph transformation can be constructed
as follows.

Fact 3 (Construction of Direct Graph Transformations).
Given a (typed) graph production p = (L

l←− K
r−→ R) and a match m : L → G such

that p is applicable to a (typed) graph G via m, the direct (typed) graph transformation
G =

p,m
==⇒ H can be constructed in two steps:

1. Delete those nodes and edges in G that are reached by the match m, but keep the
image of K, i.e. D = (G \m(L)) ∪m(l(K)). More precisely, construct the context
graph D and pushout (1) such that G = L +K D.

2. Add those nodes and edges that are newly created in R, i.e. H = D ·∪(R \ r(K)),
where the disjoint union ·∪ is used to make sure that we add the elements of R\r(K)
as new elements. More precisely, construct the pushout (2) of D and R via K such
that H = R +K D.

The constructions in step 1 and 2 are unique up to isomorphism.

L

m

��

(1)

K
loo

k

��

r //

(2)

R

n

��
G D

f
oo

g
// H

Example 2 (Direct Graph Transformation Step).
A simple example of a DPO graph transformation step is given in Figure 2. The letters
next to the nodes indicate how they are mapped by graph morphisms. Note that the gluing
condition is satisfied, because the dangling point a of L is also gluing point. Therefore,
the context graph C can be constructed, such that (1) is a pushout over L and C along K
in the category Graphs. Moreover, H is the pushout object of the pushout over C and R
along K.

11

m

l r
L

G

K

C

R

H

n

a

a

a

a

a

a

c

cc

cc

c

b

b

k

f g

(1) (2)

Figure 2: Example for a DPO transformation step

Under certain conditions two direct (typed) graph transformations applied to the same
(typed) graph can be applied in arbitrary order, leading to the same result. Here we use
the notion of sequential independendence of direct (typed) graph transformations and the
Local Church-Rosser Theorem.

Definition 13 (Sequential Independence).
Let d = (G0 =

p1,m1
===⇒ G1 =

p2,m2
===⇒ G2) be a sequence of graph transformations . Then, d1 =

G0 =
p1,m1
===⇒ G1 and d2 = G1 =

p2,m2
===⇒ G2 are two sequentially independent transformation

steps, if there exist i : R1 → D2, j : L2 → D1 in the diagram beneath, s.t. l′ ◦ i = m′1 and
r′ ◦ j = m2.

L1

��

K1
oo //

��

R1

m′1

��3
333333333333

i

$$

L2

m2

���������������

j

zz

K2
oo //

��

R2

��
G0 D1
oo

r′1 // G1 D2

l′2oo // G2

Theorem 1 (Local Church-Rosser).
Two sequentially independent derivation steps can be switched by the Local Church Rosser
Theorem (Thm. 5.12 in [EEPT06]) leading to the following diagram of direct transforma-
tions:

12

G1

p1,m1

v~ tttttttttt

tttttttttt
p2,m2

 (JJJJJJJJJJ

JJJJJJJJJJ

H1

p2,m′2 !)JJJJJJJJJJ

JJJJJJJJJJ H2

p1,m′1u} tttttttttt

tttttttttt

G′

The definition of sequential independence and the Local Church-Rosser Theorem leads
to the definition of switch equivalence, which enables us to switch derivation steps in a
derivation.

Definition 14 (Switch Equivalence).
Let d = (d1; ...; dk; dk+1; ...dn) be a derivation in grammar GG, where dk; dk+1 are two
sequentially independent derivation steps. Let d′ be derived from d by replacing (dk; dk+1)
by (d′k+1; d

′
k) according to the Local Church Rosser Theorem. Then, d′ is a switching of d,

written d
sw∼ d′. Switch-equivalence

sw
≈ is the union of the transitive closure of sw∼ and the

relation ∼= for isomorphic derivations.

It is essential to determine in which cases the application of a transformation rule to
graph in a given graph grammar prevents other rule from being applicable to the graph, e.g.,
by deleting parts of the graph such that a match cannot be found by another. Therefore
we need the notion of critical pairs.

Definition 15 (Critical Pairs).
A critical pair is a pair of parallel dependent direct transformations P1

p1,m1⇐= K
p2,m2
=⇒ P2

such that m1 : L1 → K and m2 : L2 → K are jointly surjective.

2.2 Triple Graphs

After the introduction to the basics of algebraic graph transformation in the last section, in
this section the concept of graphs will be extended to triple graphs in order to define model
transformation in the sense of [Sch94]. Triple graphs consist of three graphs, a source, a
correspondence, and a target graph. In the concept of model transformation with triple
graph grammars the source and the target graphs are models which are connected via the
intermediate correspondence graph and suitable graph morphisms.

Definition 16 (Triple Graph).
Three graphs GS, GC , and GT , called source, connection, and target graphs, together with
two graph morphisms sG : GC → GS and tG : GC → GT form a triple graph G = (GS sG←−
GC −tG−→ GT). G is called empty, if GS, GC , and GT are empty graphs.

13

Like graphs, triple graphs can be related to each other by combining three graph mor-
phisms to a triple graph morphisms under the condition, that the morphisms from the
correspondence graph are preserved.

Definition 17 (Triple Graph Morphism).
A triple graph morphism m = (s, c, t) : G → H between two triple graphs G = (GS sG←−
GC −tG−→ GT) and H = (HS sH←− HC −tH−→ HT) consists of three graph morphisms s : GS →
HS, c : GC → HC and t : GT → HT such that s ◦ sG = sH ◦ c and t ◦ tG = tH ◦ c.

The technique of triple graph transformation is based on the same approach as that of
graph transformations. The source, the target, and their correspondence graph are build
by triple rules, which are non-deleting, i.e., they only consist of a left-hand side and a
right-hand side without a gluing graph. Structure deletion to extract only parts of the
triple graphs is not necessary for triple rule applications. This avoids to check the gluing
condition for triple rule transformation steps.

Definition 18 (Triple Rule).
A triple rule tr consists of triple graphs L and R, called left-hand and right-hand sides,
and an injective triple graph morphism tr = (s, c, t) : L→ R.

L

tr

��

= (LS

s

��

LC
sLoo

c

��

tL // LT)

t
��

R = (RS RC
sR

oo
tR

// RT)

Definition 19 (Triple Transformation Step).
Given a triple rule tr = (s, c, t) : L → R, a triple graph G and an injective triple graph
morphism m = (sm, cm, tm) : L→ G, called triple match m, a triple graph transformation
step (TGT -step) G =

tr,m
==⇒ H from G to a triple graph H is given by three pushouts

(HS, s′, sn), (HC , c′, cn) and (HT , t′, tn) in the category Graph with induced morphisms
sH : HC → HS and tH : HC → HT . Morphism n = (sn, cn, tn) is called comatch.

LS

sm

}}zzzzzzzz

��

LCoo

��

//

cm

}}{{{{{{{{
LT

tm

}}zzzzzzzz

��

G

tr

��

= (GS

s′

��

GC
sGoo

c′

��

tG // GT)

t′

��

RS

sn

}}

RC

cn
}}

oo // RT

tn}}zzzzzzzz

H = (HS HC
sH

oo
tH

// HT)

14

A sequence of triple graph transformation steps is called triple (graph) transformation
sequence, short: TGT-sequence. Moreover, we obtained a triple graph morphism d : G→
H with d = (s′, c′, t′), called transformation morphism.

With triple rules triple languages can be defined, with their source and target language,
which are defined by projection to the source and target graphs respectively. This has been
defined in [EEH08]

Definition 20 (Triple, Source and Target Language).
A set of triple rules TR defines the triple language V L = {G | ∅ ⇒ G via TR} of triple
graphs. Source language V LS and target language V LT are derived by projection to the
triple components, i.e. V LS = projS(V L) and V LT = projT (V L), where projX is a
projection defined by restriction to one of the triple components, i.e. X ∈ {S,C, T}. The
languages generated by the source rules TRS and target rules TRF are denoted by V LS0

and V LT0 respectively, where V LS ⊆ V LS0 and V LT ⊆ V LT0.

For the creation and transformation of models in triple grammars, certain rules can be
derived from a given triple rule, which are only creating in one domain, either based on
empty models (source and target rules) or given models (forward and backward rules) in
the respective domain.

Definition 21 (Derived Triple Rules).
From each triple rule tr = L→ R as given in Definition 18 there are the following source,
target, forward and backward rules:

(LS

s ��

∅oo

��

// ∅)
��

(RS ∅oo // ∅)

(∅
��

∅oo

��

// LT)
t��

(∅ ∅oo // RT)

source rule trS target rule trT

(RS

id ��

LC
s◦sLoo

c
��

tL // LT)
t��

(RS RC
sRoo tR // RT)

(RS

id ��

LC
s◦sLoo

c
��

tL // LT)
t��

(RS RC
sRoo tR // RT)

forward rule trF backward rule trB

All elements of the source model language can be created with source rules. Since
they contain less restrictions for matches during transformation in comparison to their
corresponding complete triple rule, they possibly allow to generate more elements than the
source model language contains. From an existing source model a target model can be
derived with a sequence of forward rules.

In order to have correct and complete transformations based on triple graph grammars
we need the notion of match and source consistency from [EEHP09]. Thus, we can check,
if a forward sequence has a corresponding source sequence, such that the source and target

15

model are derived from the same triple rule sequence.

Definition 22 (Match and Source Consistency).
Let tr∗S and tr∗F be sequences of source rules triS and forward rules triF , which are derived
from the same triple rules tri for i = 1, ..., n. Let further G00 =

tr∗S=⇒ Gn0 =
tr∗F=⇒ Gnn be a

TGT -sequence with (miS, niS) being match and comatch of triS (respectively (miF , niF)

for triF) then match consistency of G00 =
tr∗S=⇒ Gn0 =

tr∗F=⇒ Gnn means that the S-component
of the match mi is uniquely determined by the comatch niS (i = 1, ..., n). A TGT-sequence
Gn0 =

tr∗F=⇒ Gnn is source consistent, if there is a match consistent sequence ∅ =
tr∗S=⇒ Gn0 =

tr∗F=⇒
Gnn. Note that by source sonsistency the application of the forward rules is controlled by
the source sequence, which generates the given source model.

For the notion of match and source consistency is is essential that each TGT-sequence
can be decomposed in transformation sequences by corredponding source and forward rules
and vice versa, provided that their matches are consistent (see [EEE+07]).

Theorem 2 (Decomposition and Composition of TGT-Sequences).
Given triple rules tri with source rule tri,S and forward rule tri,F for i = 1, ..., n:

1. Decomposition: For each TGT-sequence

G0 =
tr1=⇒ G1 =⇒ ... =

trn=⇒ Gn (1)

there is a corresponding match consistent TGT-sequence

G0 = G00 =
tr1S==⇒ G10 =⇒ ... =

trnS==⇒ Gn0 =
tr1F==⇒ Gn1 =⇒ ... =

trnF==⇒ Gnn = Gn (2)

2. Composition: For each match consistent transformation sequence (2) there is a
canonical transformation sequence (1).

3. Bijective Correspondence: Composition and decomposition are inverse to each
other.

Definition 23 (Model Transformation).
(GS, G =

tr∗F=⇒ H,HT) is a model transformation sequence from GS to HT , if G =
tr∗F=⇒ H

is source consistent, where GS and HT are the source and target graphs of G and H, re-
spectively. A model transformation MT : V LS0 V V LT0 consists of model transformation
sequences (GS, G =

tr∗F=⇒ H, HT) with GS ∈ V LS0, HT ∈ V LT0.

It is essential to determine, if a model transformation generates correct and complete
models in the given language. Furthermore, it is important, whether the transformation is
terminating. In [?] this has been defined.

16

Theorem 3 (Correctness, Completeness and Termination).
Each model transformation MT : V LS0 V V LT0 based on forward translation rules is

1. correct, i.e. for each model transformation sequence (GS, G0 =
tr∗F=⇒ Gn, GT) there is

G ∈ V L with G = (GS ← GC → GT), and hence GS ∈ V LS and GT ∈ V LT .

2. complete, i.e. for each GS ∈ V LS there is G = (GS ← GC → GT) ∈ V L with a
model transformation sequence (GS, G0 =

tr∗F=⇒ Gn, GT).

3. terminating, i.e. for a source model GS ∈ V LS (target model GT ∈ V LT) and
a set of triple rules such that GS (GT) and all rule components are finite on the
graph part and the triple rules are creating on the source (target) component. Then
each model transformation sequence (GS, G0 =

tr∗F=⇒ Gn, GT) is terminating, i.e. any

extended sequence G0 =
tr∗F=⇒ Gn =

tr
′∗
F==⇒ Gm is not source consistent.

3 Model Transformation with Borrowed Context
After introducing model transformation using triple graph grammars in the previous sec-
tion in this section a new approach for transforming model fragments using triple graph
grammars with borrowed context will be introduced. This is motivated by propagation
of graph constraints in Section 4, where premise and conclusion of graph constraints are
in general only model fragments. In Section 3.1 Definition we will define the notation
of the borrowed context. Then we will define source consistency for borrowed context
and we willshow under which conditions the borrowed context can be extended to a stan-
dard DPO-transformation in section 3.2 Extension of Borrowed Context Transformations
and Source Consistency. In section 3.3 Correctness, Completeness and Termination we
will define under which conditions a graph transformation system with borrowed context
transformations is correct, complete and terminating.

3.1 DPO-Transformation with Borrowed Context

For a standard algebraic graph transformation of a graph G with a transformation rule
p = (L ← K → R) total graph morphisms are required as matches m : L → G. The
borrowed context approach allows to apply a transformation rule also with partial matches
m : L ⇀ G. The idea behind this concept is to “borrow” the parts that are not in the
domain of the partial match. This will be done by gluing the graphs L and G over the
common part given by the injective match. Therewith we get a new graph G+ and a total
match m+ : L→ G+ so that a standard DPO-transformation step can be executed.

Definition 24 (BC-Transformations).
Given a DPO-Rule p = (L ← K → R) and a Graph G with partial match m− : L ⇀ G

given by an injective span (L
d←− D

m−→ G) then the total match m+ : L → G+ is defined

17

by PO(1) and a BC-transformation step G
p,d,m
=⇒BC H, short G

p,m
=⇒BC H is given by POs

(1)-(3), which includes a standard DPO-transformation step G+ p,m+

=⇒ H given by POs (2)
and (3).

D

m

��

d //

(1)

L

m+

��

(2)

K
loo

��

r //

(3)

R

n

��
G // G+ Coo // H

A BC-transformation is a sequence of BC-transformation steps.

G0 ⇒∗BC Gn = G0
p1,m1
=⇒BC G1

p2,m2
=⇒BC ...

pn−1,mn−1
=⇒ BC Gn

Remark
Intuitively the borrowed context is given by G+ \ G which is given by the graph F in
PO(4), where G is given together with an interface I → G and the interface J is con-
structed by PB(5) leading by composition in (6) to an interface J → H. Alltogether we
obtain a BC-transformation step for graphs with interfaces in the sense of [EK04], written

(G, I)
p,m,(I←F→J)

=⇒ (H, J), which is defined by POs(1) − (4) and PB(5), where C in (2)
and F in (4) have to be constructed as PO-complement, provided that the corresponding
gluing conditions are satisfied.

D

m

��

d //

(1)

L

m+

��

(2)

K
loo

��

r //

(3)

R

n

��
G //

(4)

G+

(5)

Coo //

(6)

H

I //

OO

F

OO

// J

OO >>

Example 3
In the following, Figure 3 shows an example for a BC-transformation step in a plain graph.
There exists no total injective match from the LHS of the rule L, because the node c can
not be matched. Hence, there exists only the partial match m− : L ⇀ G, matching the
nodes a and b and the edge and we get the graph D and morphisms d and m as injective
span. The pushout over this span gives us G+ and a total match match m+ : L → G+.
Finally, the DPO-transformation step can be executed, giving us as a result the graph H.

18

m- m+m

d l r
D

G

L

G+

K

C

R

H

n

a

a a

a

a

a

a

a

c

cc

cc

c
b

b b

b

Figure 3: Example for a DPO-transformation with BC

Given a BC-transformation G0 ⇒∗BC Gn via (p1, ...pn) it is interesting to find out
under which conditions this BC-transformation can be extended to a standard DPO-
transformation G0 ⇒∗ Gn via (p1, ...pn), where G0 → G0 is a suitable extension. This
problem is closely related to the Embedding and Extension Theorems. In our case G0

might be constructed as colimit of all the diagrams of G0 ⇒∗BC Gn, but we would need
suitable consistency conditions. The problem seems to be easier if all rules p1, ..., pn are
non-deleting. In this case the colimit is Gn and we could take G0 = Gn. It would be inter-
esting to find morphisms f0, f

+
0 , f1, f

+
1 , ..., fn−1, f

+
n−1 such that (3), (7), ..., (11) commutes

and (4), (8), ..., (12) are POs.

D1

��

d1 //

(1)

L1

��

p1 //

(2)

R1

 AAAAAA D2

��

d2 //

(5)

L2

��

p2 //

(6)

R2

��

Dn

��

d2 //

(9)

Ln

��

pn //

(10)

Rn

��
G0

g0 //

f0
��

(3)

G+
0

g+
0 //

f+
0

~~}}}}}}
(4)

G1

f1
��

g1 //

(7)

G+
1

f+
1

~~}}}}}}

g+
1 //

(8)

G2

��

Gn−1

fn−1
��

gn−1 //

(11)

G+
n−1

f+
n−1

{{wwwwww

g+
n−1//

(12)

Gn = G0

��

G0 h0

// G1 h1

// G2 Gn−1 hn−1

// Gn

This is easy for f+
0 = g+

n ◦gn−1◦ ...◦g+
1 ◦g1◦g+

0 and f0 = f+
0 ◦g0 such that (3) commutes,

and to define f1 by PO(4). But it is already non-trivial to find f+
1 such that (7) commutes

etc.
Later we will study this situation for triple graphs with BC-forward sequences, where

we have the special case that in the S-components p1, p2, ..., pn are identities and hence also
g+
0 , g+

1 , ..., g+
n−1 are identities in the S-component. In the C- and T -components d1, d2, ..., dn

are identities leading to identities in the C- and T -components for g0, g1, ..., gn−1. There are
straight forward constructions for the S-components on one hand and C- and T -components
of f1, f

+
1 , ..., fn−1, f

+
n−1 on the other hand and it essentially remains to show, that they are

triple graph morphisms (see Theorem 5 below).

19

3.2 Extension of Borrowed Context Transformations and Source
Consistency

After defining in Section 3.1 the DPO-transformation with borrowed context, in this section
we will introduce the notion of forward transformation in triple graph grammars. Furhter-
more, we will show, that such a transformation is consistent and that can be extended to
a forward transformation without borrowed context.

The idea of a forward transformation with borrowed context is to borrow only on the
source components, while the rule only makes changes to the correspondence and target
components.

Definition 25 (Forward Transformation with BC).
Given triple rules TR with corresponding forward rules TRF then a BC-forward transfor-
mation Ĝ0 ⇒∗BC Ĝn via TRF is given by BC-forward transformation steps Ĝi−1 =

tri,F , bmi,F ,di
=======⇒

Ĝi

Di

bmi,F

��

di //

(1)

Li,F

m+
i,F

��

tri,F //

(2)

Ri,F

ni,F

��

Ĝi−1 hi

// Ĝ+
i−1 h+

i

// Ĝi

for i = 1, ..., n with POs (1) and (2) of triple graphs with injective matches m̂i,F , where
the C- and T -components di,C and di,T of di are identities. Moreover, the S-component
tri,F,S is the identity of Ri,S by construction of TRF , i.e. tri,F,S = idRi,S

.

Furthermore, the trace of a BC-forward transformation step i is given by trace(Ĝi−1 =
tri,F , bmi,F ,di
=======⇒

Ĝi) = h+
i ◦ hi and the trace of a BC-forward transformation is given by trace(Ĝ0 =

tr∗F=⇒BC

Ĝn) = h+
n ◦ hn ◦ ... ◦ h+

1 ◦ h1.

We have to define under which conditions a forward transformation with borrowed con-
text is source consistent (see Definition 22), i.e., that there exists a sequence of source rules,
corresponding to the forward rules, which generates the model in the source component
after borrowing.

Definition 26 (Partial BC-Match and BC-Source Consistency).
A pair (G00 =

tr∗S=⇒ Gn0, Ĝ0 =
tr∗F=⇒BC Ĝn) of a source sequence G00 =

tr∗S=⇒ Gn0 and a BC-forward
transformation Ĝ0 =

tr∗F=⇒BC Ĝn with corresponding forward rules tr∗F defined by POs (1),
(2) and (3) respectively for i = 1, ..., n with G00 = ∅, ĜC

0 = ĜT
0 = ∅ is called partially

BC-match consistent, if we have for i = 1, ..., n inclusions d′i, gi−1, and ĝi−1, such that using

20

the inclusion Ri,S ↪→ Li,F the cube commutes and left face is PB, where (1) and (2) are
the POs in the front and (3) PO in the back face with inclusion Gi,0 ⊆ Ĝi. The pair
(G00 =

tr∗S=⇒ Gn0, Ĝ0 =
tr∗F=⇒BC Ĝn) is called total BC-match consistent, if we have in addition

GS
n,0 = ĜS

n

Li,S

mi,S

��

tri,S //

d′i

##HHHHHHHHH
Ri,S

ni,S

��

""EEEEEEEE

Di

mi,F

��

di // Li,F

bmi,f

��

tri,F // Ri,F

��

Gi−1,0
//

gi−1 ##FFFFFFFFF
Gi,0

bgi−1 ""DDDDDDDD

Ĝi−1
// Ĝ+

i−1
// Ĝi

A BC-forward sequence Ĝ0 =
tr∗F=⇒BC Ĝn is called BC-source consistent, if there is a

corresponding source sequence G00 =
tr∗S=⇒ Gn0, such that both together are total BC-match

consistent.

Remark
Commutativity of the right face shows that the S-component of the extended match m̂i,F is
compatible with the comatch ni,S. The PB-property of the left means m−1

i,F (Gi−1,0) = Li,S

In order to continue a source consistent forward sequence with another forward trans-
formation step such that the resulting forward sequence is source consistent, we need to
define when a BC-match is forward consistent.

Definition 27 (Forward Consistent BC-Match).
Given a partially BC-match consistent pair (G00 =

tr∗S=⇒ Gn−1,0, Ĝ0 =
tr∗F=⇒BC Ĝn−1) with gn−1 :

Gn−1,0 → Ĝn−1 then a partial match (Ln,F
dn←↩ Dn

mn,F−−−→ Ĝn−1) for trn,F : Ln,F → Rn,F

with trn,S : Ln,S → Rn,S is called forward consistent BC-match, if there is a source match
mn,S : Ln,S → Gn−1,0 and an inclusion d′n : Ln,S ↪→ Dn, such that (1) is PB and (2)
commutes.

Gn−1,0

gn−1

��

(1)

Ln,S
mn,Soo

d′n

��

trn,S //

(2)

Rn,S

��
Ĝn−1 Dn

mn,Foo dn // Ln,F

21

Remark
PB (1) means m−1

n,F (Gn−1,0) = Ln,S

Example 4 (Forward Consistent BC-Match).
Given the partially BC-match consistent pair (G00 =

tr∗S=⇒ Gn−1,0, Ĝ0 =
tr∗F=⇒BC Ĝn−1) shown

in Figure 4. On top is the source sequence and in the bottom the corresponding forward
sequence.

a b
c

∅ ∅∅ ∅∅
trS *

a b
∅ ∅

trF * a

c
b

G0
^

BC

Gn-1
^

G00 G0,n-1

Figure 4: Partially BC-Match Consistent Pair

a

c
b

Gn-1
^

Ln,F

a

mn,F
-

Figure 5: Forward Consistent BC-Match

Now we want to confirm, if the partial match m−n,F : Ln,F ⇀ Ĝn−1 shown in Figure 6 is
a forward consistent BC-match. Therefore we need the source rule trn,S : Ln,S → Rn,S. In
Figure 6 is in the bottom the span given by the partial match m−n,F and (1) is a pullback
and (2) commutes.

22

a b
c

∅ ∅

a

c
b

aa

aa ∅ ∅ ∅∅

Gn-1
^

Gn-1,0 Ln,S Rn,S

Ln,FDn

(1) (2)gn-1 d'n

dnmn,F

mn,S trn,S

Figure 6: Forward Consistent BC-Match

Since our aim is to execute model transformations using borrowed context, we not only
need forward transformation with borrowed context and consistency as seen above, but
also a borrowed context model transformation. Now we are able to define a BC-model
transformation.

Definition 28 (BC-Model Transformation).
A BC-model transformation sequence (GS, Ĝ0 =

tr∗F=⇒BC Ĝn, GT) consists of a source con-
sistent BC-forward transformation Ĝ0 =

tr∗F=⇒BC Ĝn via TRF with source model Gs = ĜS
n

and target model GT = ĜT
n . A BC-model transformation MTBC : V LS0 VBC V LT0 con-

sists of BC-model transformation sequences (GS, Ĝ0 =
tr∗F=⇒BC Ĝn, GT) with GS ∈ V LS0 and

GT ∈ V LT0.

After introducing in Definition 26 the partial BC-match and BC-source consistency,
which allows us to check after constructing a BC-forward sequence Ĝ0 =

tr∗F=⇒BC Ĝn, we
can check wether a transformation sequence with borrowed context is source consistent.
This method has the disadvantage of only being applicable after constructing a forward
sequence, which means we first have to construct sequences and possibly to trash them,
if we find out afterwards that they are not source consistent. Therefore, we define an
on-the-fly construction of a bc-model transformation sequences, which is already source
consistent by construction.

Theorem 4 (On-the-Fly Construction of BC-Model Transformation Sequences).
Given a triple graph Ĝ0 with ĜC

0 = ĜT
0 = ∅ execute the following steps:

1. Start with G00 = ∅ and inclusion g0 : G00 ↪→ Ĝ0.

2. For n > 0 and an already computed partial BC-match consistent pair (G00 =
tr∗S=⇒

23

Gn−1,0, Ĝ0 =
tr∗F=⇒BC Ĝn−1) with inclusion gn−1 : Gn−1,0 ↪→ Ĝn−1 find a rule trn,F :

Ln,F → Rn,F together with a partial match (Ln,F
dn←↩ Dn

mn,F−−−→ Ĝn−1), which is a
forward consistent BC-match, then the given pair can be extended to a partial BC-
match consistent pair (G00 =

tr∗S=⇒ Gn−1,0 =
trn,S
==⇒ Gn,0, Ĝ0 =

tr∗F=⇒BC Ĝn−1 =
trn,F
===⇒BC Ĝn)

with inclusion gn : Gn,0 ↪→ Ĝn. Repeat until Gn,0 = ĜS
n or no forward consistent

BC-match can be found.

3. If the procedure terminates with GS
n,0 = ĜS

n then we have a total BC-match con-

sistent pair (G00 =
tr∗S=⇒ Gn,0, Ĝ0 =

tr∗F=⇒ Ĝn) with GS
n,0 = ĜS

n leading to a BC-model

transformation sequence, i.e. (GS, Ĝ0 =
tr∗F=⇒BC Ĝn, GT) with GS = ĜS

n, ĜT
n = GT and

ĜS
n = Gn,0 for the corresponding source sequence G00 =

tr∗S=⇒ Gn,0 (see Definition 26).

Proof. We have to show that in step 2 the forward consistent BC-match (Ln,F
dn←− Dn

mn,F−−−→
Ĝn−1) leads to a partial BC-match consistent step for i = n. In the following diagram the
front faces are constructed as POs given by applying the forward consistent BC-match
(Ln,F

dn←− Dn

mn,F−−−→ Ĝn−1). The left face is PB (1) from Definition 27 and the top face
commutes by (2). Now the back face can be constructed as PO (3) leading to Gn−1,0 =

trn,S
==⇒

Gn,0. It remains to construct injective ĝn−1 : Gn,0 → Ĝ+
n−1, s.t. bottom and right faces

commute.

Ln,S

mn,S

��

trn,S //
� r

d′n

$$IIIIIIIII
Rn,S

nn,S

��

� q

##FFFFFFFF

Dn

mn,F

��

� � dn // Ln,F

bmn,F

��

trn,F // Rn,F

��

Gn−1,0
� � //

� q

gn−1 ##GGGGGGGGG
Gn,0

bgn−1 ""EEEEEEEE

Ĝn−1
� � // Ĝ+

n−1
� � // Ĝn

Since front left is PO with injective d′n it is also PB s.t. the composition of left and front
left is PB. The S-component of this composite PB is given by the following outer diagram,
where all morphisms are injective, including the matches mn,F by assumption leading to
injectivity of mn,S. The PO (3) implies by Theorem for effective unions [Her08],[LS04]
a unique f s.t. (4) and (5) commute and f is injective using that the outer diagram is
an injective PB. Moreover, the PO-object Gn,0 in PO (3) can be chosen s.t. f becomes
inclusion Gn,0 ⊆ Ĝ+S

n−1.

24

Ln,S
� � trn,S //

mn,S

��

(3)

Rn,S

��

id // LS
n,F

bmS
n,F

��

(4)

Gn,0

f

''
(5)

Gn−1,0

*

77ooooooooooooo
� �

gn−1

// ĜS
n−1

� � // Ĝ+S
n−1

Now we define ĝn−1 : Gn,0 → Ĝ+
n−1 by ĝn−1,S = f and ∅ for the C- and T -component

this implies that bottom and right face in the cube above are commutative. Hence, we
have also a partial BC-match consistent step for i = n with inclusion Gn,0 ⊆ Ĝ+

n−1 ⊆ Ĝn.

Remark
The on-the-fly construction can be executed y either depth-first search or breadth-first
search. It halts, if no rule is further applicable and GS

n,0 6= ĜS
n. This means, that a

transformation in this branch is not possible.

Now it would be interesting, in which way a forward transformation with borrowed
context could be extended to a standard forward transformation without borrowed context.
This is an essential Theorem of this thesis, because with such extension main parts of the
theory of graph transformation with triple graph grammars can be adapted to our approach.

Theorem 5 (Extension of BC-Forward Transformations).
Given a BC-forward transformation Ĝ0 =

tr∗F=⇒BC Ĝn with Ĝ0 = (ĜS
0 ← ∅ → ∅) there is an

extension to a forward transformation G0 =
tr∗F=⇒ Gn with G0 = (ĜS

n ← ∅ → ∅) and Gn = Ĝn.

Construction.

Given the BC-forward transformation Ĝ0 =
tr∗F=⇒ Ĝn with ĜC

0 = ĜT
0 = ∅ by POs (1)-(6)

and G0 = (Ĝn,S ← ∅ → ∅) we construct diagrams (7)-(12) in the S-, C-, and T-component
as follows, where all morphisms are injective:

D1

��

d1 //

(1)

L1,F

��

tr1,F //

(2)

R1,F

!!CCCCCCC
D2

��

d2 //

(3)

L2,F

��

tr2,F //

(4)

R2,F

��

Dn

��

d2 //

(5)

Ln,F

��

trn,F //

(6)

Rn,F

��

Ĝ0

g0 //

f0

��

(7)

Ĝ+
0

g+
0 //

f+
0}}{{{{{{{

(8)

Ĝ1

f1

��

g1 //

(9)

Ĝ+
1

f+
1}}{{{{{{{

g+
1 //

(10)

Ĝ2

��

Ĝn−1

fn−1

��

gn−1 //

(11)

Ĝ+
n−1

f+
n−1{{wwwwwww

g+
n−1 //

(12)

Ĝn

fn

��
G0 h0

// G1 h1

// G2 Gn−1 hn−1

// Gn

S-Component The S-components g+
0,S, g+

1,S, ..., g+
n−1,S are identical because of POs (2)-(6)

and identical tr1
F,S, tr2

F,S, ..., trn
F,S. Then h0,S, h1,S, ..., hn,S are constructed as identities

25

in view of POs (8), (10) and (12):

f1,S = gn−1,S ◦ ... ◦ g1,S : Ĝ1,S → Ĝn,S = G0,S = G1,S

...
fn,S = id : Ĝn,S → Ĝn,S = G0,S = G1,S

f+
0,S = f1,S : Ĝ+

0,S = Ĝ1,S → G1,S = G0,S

f+
1,S = f2,S : Ĝ+

1,S = Ĝ2,S → G2,S = G1,S

...
f+

n−1,S = fn,S : Ĝ+
n−1,S = Ĝn,S → Gn,S = Gn−1,S

C-Component The C-components g0,C , g1,C , ..., gn−1,C are identical because of POs (1),
(3), (5) and identical d1,C , d2,C , ..., dn,C . Then

f+
0,C = f0,C = ∅ with Ĝ0,C = Ĝ+

0,C = G0,C = ∅
f1,C , h0,C by PO (8) and f+

1,C = f1,C using g1,C = id

f2,C , h1,C by PO (10) and f+
1,C = f1,C using g2,C = id

...
fn,C , hn−1,C by PO (12)

T-Component Replace C by T in C-Component.

Proof. First we show that diagrams (7)-(12) commute componentwise and (8), (10) and
(12) are POs componentwise.

S-Component

(7) f+
0,S ◦ g0,S = f1,S ◦ g0,S = f0,S

(9) f+
1,S ◦ g1,S = f2,S ◦ g1,S = f1,S

(11) f+
n−1,S ◦ gn−1,S = fn,S ◦ gn−1,S = id ◦ gn−1,S = fn−1,S

(8), (10), and (12) are POs in the S-component because the horizontal morphisms
are identities.

C-Component (7), (9), and (11) commute by construction, e.g. f+
0,C ◦ g0,C = f+

0,C ◦ id =
f0,C .
(8), (10), and (12) are POs in the C-component by construction.

T-Component Similar to C-component.

26

Assume now that all new morphisms in (7)-(12) are TGG-morphisms such that (8),
(10), and (12) become TGG-POs. In this case the forward transformation G0 =

tr∗F=⇒ Gn is
given by POs (2)+(8), (4)+(10), and (6)+(12) with G0 = (Ĝn,S ← ∅ → ∅) and Gn = Ĝn,
because we have fn = id, with fn,S = id by construction and f+

0,C = id implies by POs (8),
(10), and (12) also fn,C = id and similar fn,T = id.

It remains to show step by step that all morphisms in (7)− (12) are TGG-morphisms
and G1, ..., Gn are well-defines such that (8), (10), and (12) become TGG-POs.

First of all G0 = (Ĝn,S ← ∅ → ∅) and f0 = (f0,S, ∅, ∅), f+
0 = (f+

0,S, ∅, ∅) are well-
defined TGG-morphisms. Since (8) is already PO in each component there are unique
graph morphisms Gi,C → Gi,S and Gi,C → Gi,T s.t. G1 = (G1,S ← G1,C → G1,T) is a
TGG-graph, f1 and h0 are TGG-morphisms, and (8) is a TGG-PO.

In order to show that f+
1 is TGG-morphism we have to show that (15), (16) com-

mute, while (13), (14) and the composite diagrams commute because g1 and f1 are TGG-
morphisms respectively.

Ĝ1,S

g1,S

��f1,S

��

(13)

Ĝ1,C
oo //

g1,C

��f1,C

��

(14)

Ĝ1,T

g1,F

��f1,T

��

Ĝ+
1,S

f+
1,S

��

(15)

Ĝ+
1,C

oo //

f+
1,C

��

(16)

Ĝ+
1,T

f+
1,T

��
G1,S G1,C

oo // G1,T

Since Ĝ+
1,C is PO in the C-component of (3) we have that g1,C and m̂+

2,F,C are jointly epi
and it is sufficient to show that (15) and (16) commute if they are composed with these
both morphisms. Concerning composition with g1,C this follows from commutativity of
(13), (14), the vertical composed diagrams and the triangles in each component.

For the composition of (15) and (16) with m̂+
2,F,C = m̂+

2,F,C◦idC we consider the following
diagrams corresponding to diagram (3) and (9) in the construction, where idC and idT are
identities by definition of BC-forward transformations.

27

D2,S

��

��

D2,C
oo //

idC

��

��

D2,T

idT

��

��

L2,F,S

��

L2,F,C
oo //

bm+
2,F,C

��

L2,F,T

��

Ĝ1,S

��

��

Ĝ1,C

��

g1,C

��

oo // Ĝ1,T

��

��

Ĝ+
1,S

��

(15)

Ĝ+
1,C

oo //

��

(16)

Ĝ+
1,T

��
G1,S G1,C

oo // G1,T

We know by construction that all subdiagrams except for (15) and (16) commute. This
implies that (15) and (16) composed with m̂+

2,F,C commute and hence also (15) and (16)
commute using (g1,C , m̂+

2,F,C) are jointly epi. This implies that f+
1 is TGG morphism.

Similar to f1 and h0 above using TGG-morphism f+
0 we can conclude now aunique

TGG-graph G2 s.t. (10) becomes TGG-PO with TGG-morphisms f2 and h1. Similar to
f+

1 also f+
2 is TGG-morphism. This can be iterated for all i = 0, ..., n s.t. the diagrams

(7)− (12) are TGG-diagrams with TGG-POs (8), (10), and (12).

With this extension of a BC-forward transformation to a standard forward transforma-
tion, we need the notion of partial match consistency for this as well.

Theorem 6 (Extension of Partial BC-Match Consistency).
Given a partially BC-match consistens pair (G00 =

tr∗S=⇒ Gn0, Ĝ0 =
tr∗F=⇒BC Ĝn) with G00 = ∅,

Gn0 ↪→ Ĝ+
n−1 ↪→ Ĝn then the extension construction leads to a partially match consistent

sequence G00 =
tr∗S=⇒ Gn0 ↪→ G0 =

tr∗F=⇒ Gn in the sense of [EEHP09].

Remark
Partial match consistency of G00 =

tr∗S=⇒ Gn0 ↪→ G0 =
tr∗F=⇒ Gn means that we have for each

i = 1, ..., n the following diagram where (1) and (3) are POs, (2) commutes and (1) + (2)
is PB.

28

Li,S
tri,S //

mi,S

��

(1)

Ri,S

��

� � //

(2)

Li,F

��

� � tri,F //

(3)

Ri,F

��
Gi−1,0

// Gi,0
� � // G0

� � // Gi−1
� � // Gi

Since (1) and (3) are POs by construction we essentially have to show that (1)+(2) is PB,
which is equivalent that the S-component of (1) + (2) shown in diagram (P) is a PB.

Li,S
tri,S //

mi,S

��

(P)

Ri,S = LS
i,F

mS
i,F

��
Gi−0,0

� � // GS
0 = GS

i−1

This means that we have to conclude from the diagram in definition 26 and the extension
construction in theorem 5 that (P) is PB.

Proof. The partially BC-match consistent pair

(G00 =
tr∗S=⇒ Gno, Ĝ0 =

tr∗F=⇒BC Ĝn)

with G00 = ∅, Gn0 ↪→ Ĝ+
n−1 ↪→ Ĝn laeds in the S-component to PBs (4) and (3) and PO

(2S) from PO (2), where (3) is PO and PB.

Li,S
//

mi,S

��

tri,S

&&
(5)

(4)

DS
i

//

��

(3)

LS
i,F

bmS
i,F

��

(2S)

Ri,S

trS
i,F // RS

i,F

��
Gi−1,0

// ĜS
i−1

gS
i−1 //

fS
i−1

��

(5)

Ĝ+S
i−1

//

f+S
i−1

{{wwwwwwwwwwwwwwwwww

(6)

ĜS
i

��
GS

i−1 = GS
0

// GS
i = GS

0

29

And from construction in Theorem 5 we have injective fi−1 and f+
i−1 leading in the S-

component to commutative (5) and PO (6). Now diagram (P) from the remark of Theorem
6 corresponds to the following outer diagram:

Li,S
tri,S //

��

(4)+(3)

(5)

Ri,S = LS
i,F

bmS
i,F

��

Ĝ+S
i−1

f+S
i−1

��
Gi−1,0

// ĜS
i−1

gS
i−1

99tttttttttt

fS
i−1

// GS
i−1

Because mS
i,F = f+S

i−1◦m̂S
i,F the inner part (4)+(3) is PB by partial BC-match consistency.

Now f+S
i−1 mono implies that also the outer diagrem (P) is PB (by extension property of

PBs by monos). Finally we have an inclusion Gn0 ↪→ Ĝ+
n−1 ↪→ Ĝn leading to Gn0 ↪→ G0

using G0 = (ĜS
n ← ∅ → ∅) and hence to partial match consistency of G00 =

tr∗S=⇒ Gn0 ↪→
G0 =

tr∗F=⇒ Gn.

In Theorem 5 we defined under which conditions a BC-forward transformation Ĝ0 =
tr∗F=⇒BC

Ĝn can be extended to a forward transformation G0 =
tr∗F=⇒ Gn. This leads to the Theo-

rem 7, which allows us to extend BC-model transformation sequences to standard model
transformation sequences.

Theorem 7 (Extension of BC-Model Transformation Sequences).
Each BC-model transformation (GS, Ĝ0 =

tr∗F=⇒BC Ĝn, GT) with GS = ĜS
n, GT = ĜT

n ac-
cording to Theorem 4 can be extended by Theorem 5 to a model transformation sequence
(GS, G0 =

tr∗F=⇒ Gn, GT) with the same GS, GT satisfying GS = GS
0 , GT = GT

n and Gn = Ĝn.

Proof. By definition of the BC-model transformation sequence in Theorem 4 (part 3) we
have for the BC-model transformation sequence given in our theorem a partial BC-match
consistent pair (G00 =

tr∗S=⇒ Gn0, Ĝ0 =
tr∗F=⇒BC Ĝn) with inclusion Gn,0 ↪→ Ĝn, GS = ĜS

n,
GT = ĜT

n and ĜS
n = Gn,0. By Theorem 6 we have a partially match consistent sequence

G00 =
tr∗S=⇒ Gn0 ↪→ G0 =

tr∗F=⇒ Gn. By Theorem 5 we have Gn = Ĝn and GS
0 = ĜS

n. Hence we
have Gn0 = ĜS

n = GS
0 , which means that according to Theorem 1 in [EEHP09] a model

transformation sequence (G′S, G0 =
tr∗F=⇒ Gn, G

′
T) with G′S = GS

0 and G′T = GT
n . Finally we

have G′S = GS
0 = ĜS

n = GS and G′T = GT
n = ĜT

n = GT by Theorem 4. Hence we have
model transformation (GS, G0 =

tr∗F=⇒ Gn, GT) with GS = GS
0 and GT = GT

n .

30

3.3 Correctness, Completeness and Termination

It essential to determine when a model transformation generates models that are correct,
complete and whether a transformation terminates. In Section 2.2 the Theorem 3 for
correctness, completeness and termination of a standard model transformation was given.
In this Section we will now define this for the BC-model transformation.

Definition 29 (Correctness).
A BC-model transformation is correct, if for all BC-model transformation sequences (GS, Ĝ0 =

tr∗F=⇒BC

Ĝn, GT) we have Ĝn ∈ V L with ĜS
0 ⊆ ĜS

n = GS ∈ V LS and ĜT
n = GT ∈ V LT .

Theorem 8
Each BC-model transformation is correct.

Proof. From Theorem 7 follows, that a model transformation with borrowed context (GS, Ĝ0 =
tr∗F=⇒BC

Ĝn, GT), where GS = ĜS
n, GT = ĜT

n , and ĜS
0 ⊆ ĜS

n, can be extended to a model transforma-
tion sequence (GS, G0 =

tr∗F=⇒ Gn, GT), where GS = GS
0 , GT = GT

n , and Gn = Ĝn. Addition-
ally, from Theorem 3 follows, that this transformation sequence is correct, i.e., Gn ∈ V L
with GS ∈ V LS and Gn ∈ V LT , using Gn = Ĝn this implies ĜS

0 ⊆ ĜS
n = GS ∈ V LS and

ĜT
n = GT ∈ V LT .

Definition 30 (Termination).
A model transformation with borrowed context based on forward translation rules termi-
nates, if each BC-source consistent sequence can not be extended further by any transfor-
mation step.

Theorem 9 (Termination of BC-model transformations).
The on-the-fly-construction (according to Theorem 4) at Ĝ0 = (GS ← ∅ −→ ∅) terminates
for all source models GS typed over TGS, i.e. only finitely many steps are performed, if
the following conditions are satisfied:

1. all source rules are creating

2. all matches mi,F are required to satisfy Di 6= Li,S (see below).

3. GS is finite, TR is finite and the rule component L and R of each triple rule tr ∈ TR
are finite.

Proof. Assume the procedure does not terminate for a finite GS typed over TG, i.e. the
derivation tree is infinite. Then we have

case 1: The procedure generates a partial BC-match consistent pair (∅ =
tr∗S=⇒ Gn,0, Ĝ0 =

tr∗F=⇒BC

31

Ĝn) with n > |GS| = |ĜS
n|, where |GS| denotes the amount of nodes and edges in GS.

From this follows:

a) in each step k elements are borrowed (nodes and edges): k = |Ĝ∗i−1 \ Ĝi−1| =
|Li,F \Di| = |RS

i \DS
i | and DS

i ⊆ RS
i

b) l elements are created in the source component in a step Gi−1,0 =
tri,S
==⇒ Gi,0: l =

|Gi,0 \Gi−1,0| = |Ri,S \ Li,S| = |RS
i \ LS

i | and LS
i ⊆ DS

i , LS
i 6= DS

i

From a) and b) follows, that l > k, i.e. in each step there are more elements created
than borrowed. So after n steps (G00 =

tr∗S=⇒ Gn0, Ĝ0 =
tr∗F=⇒BC Ĝn) we have that |GS

n0| >
|GS| = |ĜS

n|, because each source step created more element than the corresponding
forward step with BC. Hence, ĝS

n+1 is not injective and therefore ĝn+1 is not injective.

case 2: There are infinitely many steps Ĝn−1 =
trn,F
===⇒BC Gn with forward consistent BC-

matches, but each sequence is of finite length. Hence, we have infinitely many se-
quences starting at Ĝ0 and because the derivation tree is inifinite we have infinitely
many matches at one graph Ĝi.

We have a conflict because of the finiteness of TR. Furthermore, due to the fact that
for each trF ∈ TRF there exist finitely many matches, because Ĝi is finite, which is
because Ĝ0 is finite and rule compositions are finite.

4 Propagation of Graph Constraints Using Borrowed
Context

In this section another main result of this diploma thesis will be introduced. In Section 4.1
Graph Constraints we will see, how we can formulate properties for graphs. How we can
propagate such a constraint using the graph transformation with borrowed context will be
shown in Section 4.2 Model Transformation of Graph Constraints. Lastly in Section 4.3
Preservation of Model Properties we will show, under which conditions a model satisfies a
propagated graph constraint.

4.1 Graph Constraints

The notion of graph constraints for plain graphs was already introduced in Definition 6 in
Section 2.1. For triple graphs we need to lift this definition to triple graph constraints.

Definition 31 (triple graph constraints).
An atomic triple graph constraint is of the form PC (a) and consists of triple graphs P and
C, and a triple graph morphism a = (sa, ca, ta) : P → C.

32

A triple graph constraint is a Boolean formula over atomic triple graph constraints.
This means that true and every atomic triple graph constraint are graph constraints, and,
for triple graph constraints c and ci with i ∈ I for some index set I, ¬c, ∧i∈Ici, and ∨i∈Ici

are graph constraints:

(P S

sa

sp

$$HHHHHHHHHHHHHHHHHH PC
sPoo tP //

ca

cp

$$HHHHHHHHHHHHHHHHHHH P T)

ta

tp

$$HHHHHHHHHHHHHHHHHH
(CS

sq

zzvvvvvvvvvvvvvvvvvv
CC

sCoo tC //

cq

zzvvvvvvvvvvvvvvvvvvv
CT)

tq

zzvvvvvvvvvvvvvvvvvv

(GS GC
sGoo tG // GT)

A triple graph G : (GS ← GC → GT) satisfies a triple graph constraint c, written
G |= c, if

• c = true;

• c = PC (a) and, for every injective triple graph morphism p : P → G, there exists an
injective triple graph morphism q : C → G such that q ◦ a = p;

• c = ¬c′ and G does not satisfy c′;

• c = ∧i∈Ici and G satisfies all ci with i ∈ I;

• c = ∨i∈Ici and G satisfies some ci with i ∈ I;

Using the notion of triple graph constraints we can now formulate conditions and prop-
erties on triple graphs, i.e. on

4.2 BC-Model Transformation of Graph Constraints

When we want to transform a graph constraint, we not just have to transform a single
model fragment, but two fragments P and C with the morphism a : P → C simulatneously.
Moreover, we have to confirm, if the parts we borrow in P are already in C and hence
needs not to be borrowed or if C misses parts of them as well, so it need to be borrowed
in the same way. Additionally, the morphism a needs to be translated such that it maps
the borrowed parts as well.

Definition 32 (Propagation of a Graph Constraint).
Given a graph constraint PC (a) : P

a−→ C for the source language of a model transformation

33

with borrowed context MTBC . A propagated integrated constraint PC(â) : P̂ −ba→ Ĉ of
PC(a) satisfies the following conditions.

1. There is a BC-source consistent forward sequence

(S1) : ((P ← ∅ → ∅) =
tr∗F=⇒BC P̂l)

with P̂l = P̂ .

2. There is a BC-forward transformation sequence

(S2) : ((C ← ∅ → ∅) =
tr∗F=⇒BC Ĉl =

tr
′∗
F==⇒BC Ĉn)

with Ĉn = Ĉ s.t.

3. (S2) is an extension of (S1) as shown in the diagram below and the triple graph
morphism â : P̂ → Ĉ is given by â = trace(tr

′∗
F ◦ â0).

(P ∅oo // ∅) P̂0
tr∗ +3

(a,∅,∅)
��

P̂l

ba0

��

P̂ ba
��

(C ∅oo // ∅) Ĉ0
tr∗ +3 Ĉl

tr′∗F +3 Ĉn Ĉ

Moreover, for each propagated integrated constraint PC(â) we define the propagated
source constraint by PC(âS) : P̂ S −baS

−→ ĈS and the propagated target constraint by
PC(âT) : P̂ T −baT

−→ ĈT .

Remark
(S2) extension of (S1) means (S2) is a BC-forward transformation sequence via tr∗F , tr′∗F ,
where the matches m+

k,F,P : Lk,F → P̂k of sequence (S1) are extended in the first l steps to
matches m+

k,F,C : Lk,F → Ĉk with m+
k,F,C = â+

k−1 ◦m+
k,F,P and â+

k−1 induced by PO (a) as
shown in the diagram below. Moreover âk is induced by PO (1) and (2) becomes PO.

D′k

d′k

))

mk,F,C

��444444444444444444444444444444

=

Dke
oo

dk

//

mk,F,P

��

(a)

Lk,F

m+
k,F,P

��

trk,F //

(1)

m+
k,F,C

��

Rk,F

nk,F,P

��
nk,F,C

��

P̂k−1

bak−1

��

//

=

P̂+
k−1 tk−1,P

//

ba+
k−1

��

(2)

P̂k

bak

��

Ĉk−1
// Ĉ+

k−1 tk−1,C

// Ĉk

34

In the first step we have m+
1,F,C = (a, ∅, ∅)◦m1,F,P . At each step we require an e : Dk →

D′k with d′k ◦ e = dk and mk,F,C ◦ e = âk−1 ◦mk,F,P .

Remark
The propagation of graph constraints can be performed using the on-the-fly construction
for BC-model transformations according to Thm. 4, where termination can be ensured
according to Thm. 9. For a single graph constraint PC (a) : P

a−→ C there may be several
propagated constraints PC(â) : P̂ −ba→ Ĉ that differ in the derived premise P̂ and further-
more, they can differ in the derived conclusion Ĉ for a single derived P̂ . Moreover, there
may not exist a single propagated constraint for a graph constraint PC (a) : P

a−→ C .

Remark
The propagation of a graph constraint can be extended to the following commutative
diagram, where we replace the transformation sequences tr∗F , tr∗

′
F by the corresponding

traces trace(tr∗F), trace(tr∗
′

F).

(P ← ∅ → ∅) P̂0

tr∗F +3

(a,∅,∅)

��

xxrrrrrrrrrrrrrr P̂l = P̂

bal

��

ba

��

id

{{wwwwwwwwwww

(P̂ S ← ∅ → ∅) = P0

tr∗F +3

(baS ,∅,∅)

��

Pl

al

��

ba

��

Ĉ0

tr∗F +3

xxrrrrrrrrrrrrrr Ĉl

{{wwwwwwwwwww

tr
′∗
F +3 Ĉn = Ĉ

id
zzvvvvvvvvvvv

(ĈS ← ∅ → ∅) = C0

tr∗F +3 Cl

tr
′∗
F +3 Cn

Example 5 (Propagation of a Graph Constraint).
A simple graph constraint is given in Figure 7. The mapping of the morphism a is indicated
by the labelling of the nodes.

P

a b

C

a b
c

a

Figure 7: A graph constraint

Now assume, we want to transform the constraint according to Definition 32 with the
forward rule shown Figure 8 as the graphs L1 and R1. We find a partial match m−p1 : L1 ⇀

35

P̂0 leading to the span (P̂0 ← Dp1 → L1) and a pushout object P̂+
0 . Additionally, there

exists a partial match m−c1 : L1 ⇀ Ĉ0 (not in the figure), which leads to the span (Ĉ0 ←
Dc1 → L1) and a pushout object Ĉ+

0 . Moreover, there exists a morphism e : Dp1 → Dc1,
such that the triangle commutes. Therefore, the morphism â+

0 is induced as shown in the
Figure. Over the pushouts in the transformation step the morphism â1 is induced.

mp1
-

mp1
+mp1

dp1

Dp1

P0

L1

P0
+

R1

P1
np1

a

a a

a

a

a

c

c

c

c
b

b b

b

C0 C0
+ C1

a a
a

cc
b b

c

∅ ∅

∅ ∅

∅ ∅

∅ ∅

∅ ∅

∅ ∅

b

b

b

â0 â0
+ â1

Dc1

a
c

b ∅ ∅

=

dp2

mc1
+

^

^^^

^ ^

mc1

e =

nc1

Figure 8: First Step of a Propagation of a Graph Constraint

Now, the transformation of the premise is completed, but the edge in the conclusion at
the node a needs still to be translated. Therefore, we apply a borrowed context transfor-
mation to the triple graph Ĉ1 which is shown in Figure 9.

a

c

aa

a

c

a

a

c

D2 L2 R2

C1 C1+ C2

mc2
-

mc2
+mc2

dc2

nc2^^^

trc2

Figure 9: Second Step of a Propagation of a Graph Constraint

After we transformed both model fragments of the graph constraint completely, the

36

result is the propagated triple graph constraint shown in Figure 10, with P̂ = P̂1, Ĉ = Ĉ2,
and â = trc2 ◦ â1. In Theorem 10 we will show for each integrated model G that GS |=
PC(âS) implies G |= PC(â),. This means in our example, if we require in the source
component GS of a model G the two self loops at the node a in the given pattern, we
require one self loop at the corresponding node in the target component of the model G
with the pattern given.

a

c

C

a

c
b

P

â
b

^ ^

Figure 10: Propagated Constraint

In the following, we define some general properties of model transformations without
concerning borrowed context. These properties will be used to show the main result of this
chapter about the preservation of model properties by the propagation of graph constraints
in Thm. 10 in Sec. 4.3.

Definition 33 (Guaranteed Completion).
A model transformation MT : V LS0 V V LT0 based on forward rules guarantees comple-
tion, if each partially source consistent forward sequence G0 =

tr∗F=⇒ Gk can be extended to

a source consistent forward transformation G0 =
tr∗F=⇒ Gk =

tr
′∗
F==⇒ Gn.

Remark
A model transformation with guaranteed completion can be executed using the on-the-fly
construction [EEHP09] and the condition ensures that no backtracking is necessary.

Definition 34 (Source and Target Uniqueness of Morphisms).
A triple graph G ensures source uniqueness of morphisms, if for any two injective triple
morphism p : P → G and p′ : P → G we have that pS = p

′S ⇒ p = p′. Target uniqueness
of morphisms is defined analogously by replacing “S” with “T”. A language V L of integrated
models ensures source (resp. target) uniqueness of morphisms, if each triple graph G ∈ V L
ensures source (resp. target) uniqueness of morphisms.

Definition 35 (Strong Functional Behaviour).
A model transformation based on forward rules has strong functional behaviour, if for
each source model GS ∈ V LS and any two model transformation sequences (GS, G0 =

tr∗F=⇒

37

Gn, GT) and (GS, G0 =
tr
′∗
F==⇒ G′m, G′T) we have that Gn

∼= G′m and GT
∼= G′T . Moreover, the

transformation sequences G0 =
tr
′∗
F==⇒ Gn and G0 =

tr∗F=⇒ G′m are switch-equivalent.

4.3 Preservation of Model Properties

In this section we define the conditions under which a propagated graph constraint is a
constraint in the target language, i.e., under which conditions a model from the target
language satisfies the propagated constraint. We can show, that we can determine, when
an integrated model satisfies an propagated graph constraint, that is an integrated model
as well.

Theorem 10 (Translated Graph Constraint).
Given a graph constraint PC (a) : P

a−→ Cand a model transformation MT based on for-
ward rules with strong functional behaviour, guaranteed completion and source uniqueness
of morphisms for the triple language V L. Let PC (â) be a propagated integrated constraint
of PC (a) with PC(âS) and PC(âT) propagated source resp. target constraint. Then, an
integrated model G = (GS ← GC → GT) ∈ V L satisfies PC (â) and GT weakly satisfies
PC(âT), if the source model GS satisfies the source constraint PC(âS), i.e.

if GS |= PC(âS)
then G |= PC (â) and GT |=w PC(âT),

where weak satisfaction GT |=w PC(âT) means for all injective pT : P̂ T → GT which can
be extended to injective integrated morphism p : P̂ → G exists injective qT : ĈT → GT

with qT ◦ âT = pT .

Proof. Given p : P̂ � G we have to find q : Ĉ � G with

P̂

p
��>>>>>>>

ba //

=

Ĉ

q
��

G

By assumption we have qS : ĈS � GS with

P̂ S
!!

pS !!BBBBBBBB
baS

//

=

ĈS

qS}}
GS

By Remark (Extension of Propagation) we have commutative (1) and (2) where trans-
formation sequences are replaced by their traces.

38

(P̂ S ← ∅ → ∅) = P0

tr∗F +3

(baS ,∅,∅)

��

(pS ,∅,∅)

��

(1)(3)

Pl = P̂

al

��

ba
""EEEEEEEEEEEEEEEEE

(2)

p

��

(ĈS ← ∅ → ∅) = C0

tr∗F +3

(qS ,∅,∅)

��

(4)

Cl

tr
′∗
F +3

ql

��

(5)

Cn

qn

��

q

""FFFFFFFFFFFFFFFFFF

(6)

(7)

(GS ← ∅ → ∅) = G0

tr∗F +3 Gl

tr
′∗
F +3 Gn

tr
′′∗
F +3 Gm = G

(3) commutes by assumption above and tr∗F can be applied with match (pS, ∅, ∅) : P0 → G0

leading step by step to G0 =
tr∗F=⇒ with (4) commuting and furthermore to Gl =

tr
′∗
F==⇒ Gn =

tr
′′∗
F==⇒

Gm = G by guaranteed completion with (5) commuting.
Let injective q : Ĉ → G be defined by q = trace(tr

′′∗
F) ◦ qn s.t. (6) commutes. By

assumption on G we have ∅ =
tr
′′′∗

==⇒ G and by decomposition then a model transformation

sequence (GS, G0 =
tr
′′′∗
F==⇒ G, GT) where G0 =

tr
′′′∗
F==⇒ G and G0 =

tr∗F=⇒ Gl =
tr′∗F==⇒ Gn =

tr
′′∗
F==⇒ Gm = G

are equal up to switch equivalence by assumption on strong functional behaviour. This
means that the corresponding traces are equal.

Note that commutativity of (1) and (2) implies that âS in (1) is the S-component of â
in (2) and that of (4) − (6) that qS in (4) is the S-component of q in (6). It remains to
show q ◦ â = p in (7). Due to source uniqueness of morphisms qS ◦ âS = pS, which is valid
by assumption, implies q ◦ â = p.

Finally, given pT : P T � GT let p : P̂ � G be extension of pT then G |= PC(â) implies
q : Ĉ → G with g ◦ â = p. This implies qT ◦ âT = pT .

Remark
By Thm. 10 above we have shown that under the given side conditions all constraints that
are valid for a source model GS ∈ V LS are preserved and valid as integrated constraints for
an integrated model G ∈ V L containing GS and an target construct for the target model
GT . Intuitively, this means that properties of the source model are preserved during the
transformation and become valid for the integrated model and the target model.

Remark

1. According to Thm. 3 [HEOG10] functional behaviour of a model transformation
based on forward rules can be analyzed using critical pair analysis of the tool AGG
[AGG] with the derived forward translation rules, which extend the forward rules
by additional boolean valued translation attributes. As shown in [HEGO10], the
absence of significant critical pairs for the system of forward translation rules ensures

39

strong functional behaviour, which implies that there is no need for backtracking of
the on-the-fly construction, which implies guaranteed completion.

2. Furthermore, strong functional behaviour ensures that each source consistent forward
sequence is unique up to switch equivalence and therefore, the resulting triple graphs
are unique up to isomorphism.

3. If no significant critical pairs are present we can furthermore conclude that each
substructure of a graph GS ∈ V LS, which is translated by a sequence of forward
steps, can only be translated by a switch-equivalent sequence of these forward steps.
The reason is that critical pairs are complete (see [EEPT06]), i.e. for each paral-
lel dependent pair of transformation steps there is a critical pair. Therefore, each
substructure is uniquely translated implying source uniqueness of morphisms for the
triple language V L.

For this reason, we can check guaranteed completion (Def. 35), strong functional be-
haviour (Def. 35) and source uniqueness of the triple language V L (Def.34) by checking
the absence of critical pairs for the system of forward translation rules using the tool AGG.

5 Case Study
In this section to case studies will be introduced which will show examples for the model
transformation of model fragments. The visual language ABT-Reo for Enterprise mod-
elling will be introduced in section 5.1 Enterprise Modelling with ABT-Reo. We will first
show a standard model transformation in Section 5.2 Model Transformation of Models in
ABT-Reo, before showing in Section 5.3 Model Transformation of Constraints in ABT-Reo
how to transform a graph constraint of this language using borrowed context. Finally, in
section 5.4 Model Transformation of Operational Semantics: From State Machines to Petri
Nets we present a second case study on transforming operational semantics between State
Machines and Petri Nets.

5.1 Enterprise Modelling with ABT-Reo

Enterprise modeling encompasses the development of business and IT models of different
domain-specific modeling languages. For the organization Credit Suisse a new framework
was invented to connect both languages with triple graphs [Sch94]. This framework allows
on the one hand for intra-modelling, using graph grammars and graph constraints, and on
the other hand it allows for inter-modelling, with triple graph grammars used for model
transformation and integration, as well.

One main part of the modelling framework is the use of the ABT & Reo for IT &
Business service models, where ABT stands for abstract behaviour types and Reo stands
for Reo connectors. The connection between the business universe and the IT universe is
specified by a triple graph grammar (TGG).

40

AR

ElABT

CompABT

ExtP

IntP

IP

OP

ExtOPIntOPIntIPExtIP

ELABT CompABT

ABTReoPoint

OPIntPIPExtP

Port
glue

junction

TGABT-Reo

AR Stringname

Legend

ExtIP

IntIP

IntOP

ExtOP

= ABT/Reo

= Elementary ABT

= Composite ABT

= External Port

= Internal Port

= Input Port

= Output Port

= External Input Port

= Internal Input Port

= Internal Output Port

= External Output Port

= Inheritance relation

= Edge type

port

Figure 11: Type Graph TGABT−Reo for ABT-Reo models

VerteilungVerteilung

Source TargetCorrespondence

Name Name
...

TGABT-Reo TGC TGABT-Reo

...
P

A

Figure 12: Triple Type Graph TGABT−Reo for the Triple Graph Grammar

41

Since requirements for ABT-Reo models are specified by graph constraints, it is well
suited as a case study for a model transformation with the borrowed context approach.

A triple graph G = (GS sG←− GC tG−→ GT) in ABT-Reo consists of typed source and
target graphs GS and GT , where the business service models are in the source component
and the IT service models are in the target component and the graph GC defines the
correspondences. Both model views are ABT-Reo diagrams typed over the same type
graph (see Fig. 11) that specifies the general structure of the graphs. The type graph for
the integrated models in the triple graphs is shown in Figure 12.

Graphs typed over this graph are titled as ABT-Reo diagrams in abstract syntax.
The type graph contains the main types “ABT” for abstract behaviour type nodes, “Reo”
for Reo connectors, “Port” for ports and “Point” for points that glue together input and
output ports of ABT nodes and Reo connectors. Additionally, there are ports that are
used for external communication with other elements, i.e., other ABT nodes and Reo
connectors. But ABT nodes can also be composite, i.e. they contain a further specified
internal structure involving other ABT nodes and Reo connectors. The external ports
of such composite nodes are connected to complementery internal ports, such that the
communication is transferred through the borders of the composite ABT nodes.

Models based on such a graph in abstract syntax with the information of this graph
encoded in the shapes of the models are titled as ABT-Reo diagrams in concrete syntax.

In Figure 13, there is an example for a model of the IT Universe in concrete syntax
specifying the structure of a part of a network composed of local area networks (LANs).
It consists of four ABT elements, with the outer ABT elements representing the LANs
“NW4” and “NW7” and the two inner ones representing encoding/decoding nodes, i.e.the
communication between both LANs on public network connections is encoded. The edges
between the ABT elements are representations for the Reo connectors.

E/D
public

E/D
public

NW4:LAN

NW7:LAN

private

private

private

private

Figure 13: Example for an ABT-Reo model in concrete syntax of the IT Universe

To explain the relation between models in concrete and abstract syntax in further detail,

42

we can see in Figure 14 a fragment of the model in Figure 13 with the upper two ABT
elements and their Reo connectors on the left side and the same part in abstract syntax
on the right side.

The boxes in the left model correspond to the “ABT” nodes in the right, which have an
edge to a node containing their types as a string, e.g the upper ABT element corresponds
with the upper ABT node. The arrows on the left side correspond to the nodes of the
type “Reo” on the right side, e.g. the arrow on the left in the left model corresponds to
the Reo node on the left in the right model. The external input resp. output ports of the
ABT and Reo elements are represented as nodes as well in the abstract syntax, but are not
visualized in the concrete syntax. However, the left model contains bold bullets, gluing the
arrows and the boxes together, representing the nodes of the type “Point”, which connect
an output port of an ABT element with the input port of a Reo connector and vice versa,
e.g. the communication data exits an ABT element through its external output port and
enters a Reo connector through the external input port, which is glued to it.

E1:E/D

NW4:LAN

private

private

NW4 : ABT

LAN : String

:name

 : ExtIP :port

 : Point
:glue

 : ExtOP

:glue

 : Reo

 : ExtIP

:port

 : Point
:glue

:glue

 : ExtOP E1 : ABT

E/D : String

:name

:port

 : ExtOP:port

 : Point
:glue

 : ExtIP

:glue

 : Reo
:port

 : ExtOP

:port

 : Point
:glue
:glue

 : ExtIP:port

:port
:name :name

Abstract Syntax
Concrete

Syntax

private : String

Figure 14: A part of the model in figure 13 in concrete and abstract syntax

As the direct comparison of concrete and abstract syntax shows, the concrete syntax is
more compact. Therefore it is more intuitive, while the abstract syntax allows for a precise
and detailed specification and analysis.

43

We will genrally work with the concrete syntax in this case study, but it is important
to keep in mind, that it is just a curtailed version of the abstract syntax.

ABT-Reo has been modified to a triple graph grammar by [BHE09], where the models
between the IT and business domain are connected via a correspondence graph and the
one model as the source graph and the other as the target.

We first want to introduce the transformation rules. Because we work with a triple
graph grammar, we have only non-deleting rules, that generate models and we only have
a triple graph morphism from the left-hand-side (LHS) L of a rule to the right-hand-side
(RHS) R without a graph K lying in between. As we can see in figure 15, in the complete
notation, we have the representation of both sides. Whereas in the compact notation we
use green coloring and the sign of a double plus sign to indicate, which elements are created
by the rule, i.e. which elements are new on the RHS. In this study we will use rules in the
compact notation in the concrete syntax.

L=

R=

C
om

plete
notation

C
om

pact
notation

name = "LAN"
 : ABT

name = "Department"
 : ABT

name = "LAN"
 : ABT

name = "Department"
 : ABT
++ ++ ++ ++ ++

:LAN:Department
++ ++++++++

C
om

pact
notation

A
bstract S

yntax
C

oncrete
S

yntax

Figure 15: Different notations of the Triple Rule 0 - LAN2Department

For the transformation of the graph constraint later in this section we first need rules.
The first transformation rule is given by figure 16. It is a forward rule, which has nothing
in the LHS, shown by the fact, that there are only green elements with a double plus
sign in the compact notation. The generated elements are similar in both models. A Reo
connector with the name “public” with a gluing element at the beginning and at the end.
The correspondence graph connects both element through these gluing elements.

The transformation rule shown in Figure 17 does not have an empty LHS. The parts,
that are needed for this rule to be applicable, are the elements, generated by the rule pub-
lic2public, i.e. the public Reo connectors and its gluing elements, which are corresponding
with each other. The elements added then by the RHS are the encoding/decoding ABT

44

Figure 16: Triple Rule I - public2public

elements with their input, respective output port connected to the gluing elements from
the public Reo connector in the IT model. Meanwhile in the business model a filter ABT
element is created, corresponding to the two encoding/decoding ABT elements in the IT
model. The filter is connected to the input port of the public Reo connector by two other
Reo connector. Technically, this means that the messages arriving at the input port of the
public Reo connector are delivered to the filter which decides to forward the message to
the public Reo connector or to surpress it.

:Filter:E/D

:E/D

++ ++++

++++

++

1:public

++

S1:public

++

++++

Figure 17: Triple Rule II - E/D2Filter

The triple rule depicted in Figure 18 generates a private Reo connector in between a
department and a filter, that is in front of a public Reo connector, if on the corresponding
IT model there is a private Reo connector between a LAN element and an encoding element,
that is also in front of a public connector.

In Figure 19 the rule is shown, that attaches a public Reo connector with a gluing node
to a department ABT element. Note that the department corresponds to the LAN element
on the IT domain, that is the destination of the communication line. The notation for the
gluing in the concrete syntax with a dashed line and a node labelled “attach” is just used
for this rule, as the gluing of ports has no representation in this compact notation. If you

45

S2:FilterT2:E/D

T3:public

T1:LAN

private

S1:Department

private

S3:public

++

Figure 18: Triple Rule III - PrivateIn2PrivateIn

take a look at the type graph TGABT−Reo in Figure 11 you can see, that it represents the
adding of a edge of the type “glue” between the external input port of the department ABT
element and the node with the type “ point”

S1:FilterT1:E/D

T2:public

T3:E/D

T4:LAN

private

S2:Department

S3:public

++
attach

Figure 19: Triple Rule IV - PrivateOut2FilteredOut

5.2 Model Transformation of Models in ABT-Reo

In this section we will transform a simplified model from the one shown in Figure 13 where
the communication only works in one direction (see Figure 20) in order to explain to the
reader a standard model transformation in ABT-Reo.

The rules in the above section are all triple rules, i.e. they are rules to construct both
models simultaneously. As this work is dealing with the subject of model transformation,
we need rules to create a model in one domain from an existing model in the other domain.

46

E/D

public

E/D

NW4:LAN

NW7:LAN

private

private

Figure 20: The model before the transformation

Therefore, we need to create forward rules, i.e. rules transforming from the IT to the
business domain, derived from the given triple rules. For this purpose we assume, that all
the parts that are created by the source rule are already existing in the forward rule in one
model, here in the IT model. Figure 21 shows the forward rule created from “triple rule
I” in Figure 16. The black colored public Reo connector and gluing points are not created
by this rule, but they need to exist in the model to make this rule applicable. In the same
way the “triple rule II” in Figure 17 can be transformed into a forward rule, bringing the
encoding/decoding ABT elements into the LHS, i.e. coloring them black and removing the
double plus signs in the compact notation.

++ ++ ++
++

++++ ++

++

public public

++

Figure 21: Forward Rule I - public2public

Instead of the compact notation, the forward rule extracted from the “triple rule I”
can be represented as shown in figure 22, with the IT model on the left side. We can see
the left-hand-side and the right-hand-side of the rule in this notation, which will be more
convenient for the application of the transformation step.

The model transformation starts with the model as the source graph of a triple graph
with empty context and target graphs. These graphs will be build up by the transformation
rules, while the source model will remain unchanged. In Figure 23 the application of the
forward rule public2public is shown. The rule is on top and the start graph in the bottom

47

Figure 22: Complete notation of “Forward Rule I”

on the left. The transformation step is a gluing of the start graph and the right-hand-side of
the rule over the left-hand-side. Note that the elements, that are identified by the matches
are labeled in the inscriptions of the nodes and edges, e.g., the label S1 on the public Reo
connector of the left-hand-side and the same label on the public Reo connector in startgraph
means, that the morphism matches these two elements. The result of the transformation
step is the graph in the bottom on the right, with the startmodel in the source component
and a public Reo connector with two gluing points in the target component with two nodes
in the correspondence component and morphisms depicted as grey arrows.

S1:public

E/D

S1: public

E/D

NW4:LAN

NW7:LAN

private

private

S1: public T1: public

T1: public

E/D

S1: public

E/D

NW4:LAN

NW7:LAN

private

private

Figure 23: Applying the forward rule public2public

The next transformation step creates a filter in the business domain that corresponds
to the encoding/decoding ABT element in the IT domain. Note that we now have the
triple graph we just received by the previous transformation step on the left, while above
is the rule E/D2Filter that is derived from the triple rule in Figure 17.

In Figure 25 we transform the LAN elements with the forward rule LAN2Department,

48

T2:FilterE/D
S1: public

E/D

NW4:LAN

NW7:LAN

private

private

S1: public T1: public

T1: public

E/D

E/D

S1: public T1: public

E/D

E/D

T2:Filter

E/D
S1: public

E/D

NW4:LAN

NW7:LAN

private

private

T1: public

Figure 24: Applying the forward rule E/D2Filter

which is derived from Figure 15. Note that this rule could be at any step before, since it
is sequential independent with the rules used in the previous steps (see Definition 13), but
it has to be performed in this step at the latest, because the parts, that are generated by
this rule in the target component are needed for the following rules to find a valid match.

This rule has to be applied a second time with another match to generate a department
node that corresponds to the ABT element NW7:LAN. This step is not shown, but works
similar to the transformation shown in Figure 25 and the result of this transformation can
be seen in Figure 26 as the left graph in the bottom.

In the next transformation step a Reo connector is added, that represents the private
communication line outgoing from the department to the public communication line with
the filter attached to it. The rule is the forward rule from Figure 18 and the transformation
step can be seen in Figure 26.

The last step which completes the transformation of our IT model is shown in Figure 27.
It connects the point which is glued to the external output port of the public Reo connector
to the external input port of the department element in the bottom of the business model.
The attachment, which is shown in the original triple rule in Figure 19, is depicted in this
complete notation as the moving of the point to the ABT element, which means the adding
of the glue edge in the abstract syntax.

In Figure 28 the final result of this transformation is shown. It is an integrated model,
which means that both models are connected through the correspondence component in the
middle, with the IT model on the left and the business model on the right. To complete the
transformation and regain the transformed model, the integrated model can be restricted
to the target model. However, leaving it as the integrated model shows the connection

49

FilterE/D
 public

E/D

S1:NW4:LAN

NW7:LAN

private

private

public

S1:NW4:LAN

FilterE/D
 public

E/D

S1:NW4:LAN

NW7:LAN

private

private

public

S1:NW4:LAN T1:Department

T1:Department

Figure 25: Applying the forward rule LAN2Department

T2:FilterS4:E/D

S1:public

E/D

S3: NW4:LAN

NW7:LAN

S2: private

private

T1: public

T2:FilterS4:E/D

S1:public

S3:LAN
S2: private

T1:public

T2:FilterS4:E/D

S1:public

S3:LAN
S2:private

T3:Department

T4:private

T1:public

T2:FilterS4:E/D

S1:public

E/D

S3: NW4:LAN

NW7:LAN

S2: private

private

T1: public

T3:Department
T4:private

T3:Department
T4:private

T3:Department

Department Department

Figure 26: Applying the forward rule PrivateIn2PrivateIn

50

T1:FilterS1:E/D

S2:public

S3:E/D

NW4:LAN

S5:NW7:LAN

private

S4:private

T2: public

Department
private

T1:FilterS1:E/D

S2:public

S3:E/D

S5:LAN

S4:private

T3:Department

T2:public

T3:Department

T1:FilterS1:E/D

S2:public

S3:E/D

NW4:LAN

S5:NW7:LAN

private

S4:private

T2: public

Department
private

T1:FilterS1:E/D

S2:public

S3:E/D

S5:LAN

S4:private

T3:Department

T2:public

T3:Department

Figure 27: Applying the forward rule PrivateOut2FilteredOut

between the models and moreover, it will be useful in the following section.

51

T1:FilterS1:E/D

S2:public

S3:E/D

NW4:LAN

S5:NW7:LAN

private

S4:private

T2: public

Department
private

T3:Department

Figure 28: The integrated model

5.3 Model Transformation of Constraints in ABT-Reo

The model fragment we want to transform is a constraint for an IT model. It is shown
in Figure 29 in concrete syntax. An IT model satisfies this constraint, iff when it satisfies
the premise, it satisfies the conclusion as well. This means if the model is containing a
public Reo connector, the ports of this public Reo connector have to be glued to the ports
of encoding/decoding ABT elements. This is a constraint for an IT model, our source
domain. The premise P is the source component P S and the conclusion C is CS in our
context. We want to derive a forward model transformation sequence.

Figure 29: A graph constraint in the IT domain in abstract and concrete syntax

The source graph in the LHS of the “Forward Rule I” in Figure 21 is larger than the
premise graph of the constraint, so the borrowed context approach has to be applied, in
order to transform this model fragment sucessfully. As shown in figure 30, there is a partial
match from the LHS - the upper triple graph in the middle - to the premise - the lower
triple graph on the left. The element, that is matched by the partial match, is the public
Reo connector. Therefore the morphism D → P in the span (P ← D → L) is the identity.
Hence the resulting PO over the span P+ is the identity of the LHS L and the result of
the transformation is the identity of the RHS. Since all parts of the model P have been
transformed, the transformation is finished after applying this rule.

Now, the conclusion of the constraint has to be transformed using the same sequence of
transformation rules, i.e. using the rule public2public, and some matches compatible with
the morphism a : P → C. In this case, there is a total match leading to the transformation

52

Figure 30: Transformation of the premise of the constraint

step, as pictured in Figure 31.

Figure 31: First transformation step of the conclusion of the constraint

In the first transformation step we have to match the public Reo connector from the
source component in the LHS to the Reo connector in CS, since this match is given by the
graph constraint.

Furthermore, from Definition 32 we know, that the transformation sequence for C is
an extension of the transformation of P shown in Figure 30. The span D′ hence is the
identity of L and therefore the result is the transformation step without borrowed context
shown in Figure 31.

53

Figure 32: Second transformation step of the conclusion of the constraint

For the next step we use the “Forward Rule II” corresponding to “Triple Rule II”
E/D2Filter in Figure 17, which was not used for the premise. So the first possible match
is the identity match on the source component. The other possible pastial matches would
again lead to inconsistent ABT-Reo models and are neglected.

The resulting constraint in the integrated model IMT is picturized in figure 33. The
premise has been extended on the source component from P S to P̂ S, now also including
the gluing points and not only the public Reo connector, while the graph CS remained
unchanged. As explained above, there is only one resulting model for the premise and the
conclusion, which is due to the syntax of the ABT-Reo diagrams.

The transformed contraint now states in the business domain, that when there exists
a public Reo connector with gluing points to its ports, i.e. there is a connection from the
ports, then there has to be a filter before the input port of it. This is from the semantic
point of view the representation of the constraint on the IT domain. It does not allow for
public Reo connectors to transmit certain messages. There is either no transmission at all
or only encrypted communication.

Since we were able to transform the graph constraint now it is interesting if we can
apply Theorem 10 which states that if a source model satisfies the propagated source
constraint, than the integrated model satisfies the integrated constraint and the target
model weakly satisfies the target constraint. The precondition, that in the triple graph
grammar ABT-Reo has no critical pairs will be shown later.

We can now use the model from Section 5.2 and show, that according to Theorem
10 that the integrated model satisfies the integrated constraint. Therefore, the source
constraint, shown in Figure 20, has to satisfy the source constraint. As shown in Figure

54

1:public 2:public

E/D

1:public

E/D

:Filter

2:public

P

C

Figure 33: The constraint in the integrated model

34, we can find matches p : P → GS and q : C → GS such that die diagram commutes, i.e.,
p = q◦a. In Figure 35 is shown, that the integrated model satisfies the integrated constraint,
with the triple morphisms p̂ : P̂ → G and q̂ : Ĉ → G and the diagram commuting, i.e.,
p̂ = q̂◦a. Moreover, the target model weakly satisfies the target constraint, shown in Figure
36. Weakly satisfaction GT |= PC(âT) means, that for all injective pT : P̂ T → GT which
can be extended to injective integrated morphism p : P̂ → G exists injective qT : ĈT → GT

with qT◦âT = pT . There exists only the injective pT shown in Figure, which can be extended
to the p̂ shown in Figure 35. Now, there is a qT , which is the target component of q̂, with
qT ◦ âT = pT .

According to the remark after Theorem 10 the assumptions of Theorem 10 are satisfied,
if there are requires no critical pairs. By means of the analysing technique in [HEOG10] we
can use the tool AGG for the analysis of strong functional behaviour and show, that there
are no critical pairs in the derived Forward Translation Rules. In the paper [HEOG10] was
shown that in this case for the system with traditional Forward Rules strong functional
behaviour is ensured. From this is follows that there is no need for backtracking and hence,
every partial source consistent forward sequence has the option to be completed.

In order to analyse the triple graph grammar we reduced the ABT-Reo type graph to
the ABT and Reo elements and their connection, the gluing points, ignoring the input and
output ports and adding the Strings as attributes instead of additional nodes (see Figure
37). This is a valid simplification, where we left out the ports, because we only use external

55

E/D

public

E/D

NW4:LAN

NW7:LAN

private

private

1:public

E/D

1:public

E/D

p q

a

=

P C

Figure 34: The source model satisfies the source of the integrated constraint

T1:FilterS1:E/D

S2:public

S3:E/D

NW4:LAN

S5:NW7:LAN

private

S4:private

T2: public

Department
private

T3:Department

1:public 2:public

E/D

1:public

E/D

:Filter

2:public
â

p̂ q̂

P C^ ^

G

Figure 35: The integrated model satisfies the integrated constraint

56

T1:Filter

T2: public

Department
private

T3:Department

2:public

:Filter

2:public

TG

TP TC

Ta

Tp
Tq

^

Figure 36: The target model weakly satisfies the target constraint

Figure 37: The simplyfied type graph of ABT-Reo in AGG

57

input and outputports, which are represented by the direction of the edges between the
Reo connectors and the points. If a point is the source of a glue edge to a Reo connector,
this means it is glued to its input port and, if a ABT element is connected to this point as
well, it is connected to its output port and vice versa. AGG supports only plain graphs,
but the analysis results are also valid with the notation used in the pictures below. On the
left side there is the black colored business model and on the right side is the red colored
IT model. In between is the blue colored correspondence graph with blue colored arrows
representing the graph morphisms.

Figure 38: The Rule LAN2Department_BW

This reduction was done, because AGG generates many overlaying graphs when analysing
critical pairs with the complete model. Analysing the simplified graphs for critical pairs
generates significant less overlaying graphs, but we will see later, that AGG will have
problems at some point in the analysis though.

Figure 39: The Rule public2public_BW

In Figure 39 the “Forward Rule I - public2publice” from Figure21 is depicted, which
transformes a public Reo element with gluing points in the IT model into a corresponding
public Reo element with gluing points in the business model. Because in AGG ABT-Reo
was implemented with the business model in the source and the IT model in the target
component, it is a backward rule, which makes in our case no difference for the analysis.

The rules picturized in the Figures 38 and 41 to 42 are representing rules from the
ABT-Reo triple graph grammar given by the triple rules in Figure 15 and 17 to 19.

58

Figure 40: The Rule Filter2ED_BW

59

Figure 41: The Rule PrivateIn2PrivateIn_BW

60

Figure 42: The Rule FilteredOut2PrivateOut_BW

61

In order to exclude graph structures, that cannot be generated by the source rules, but
are allowed by the type graph, we added graph constraints to the grammar in AGG. The
premise in the screenshots is on the left hand side, while the conclusion is on the right.
Moreover, since we want to forbid such structures, the graph constraints are negated, i.e.
if there is found a match from the premise into a graph, there must not exist a match from
the conclusion into the graph, such that the triangle over the morphism from the premise
to the conclusion commutes.

Figure 43: The constraint forbids two glued “public” Reo elements

Figure 44: The constraint forbids an ABT element glued to two Reo elements

The constraint in Figure 43 forbids the existence of two public Reo connectors that are
glued together. In Figure 44 the premise is empty, which means, that the conclusion must
never exist in any model. Here, that there is no more than one public Reo connector glued
to an ABT element. The third constraint, shown in Figure 45, forbids any gluing point to
glue the input port of a private Reo connector to any input port of another Reo connector.
So practically, these constraints ensure the right gluing of Reo connectors.

62

Figure 45: The constraint forbids a “private” Reo element to be glued to another Reo
element

Figure 46: The critical pair analysis in AGG

The result of the critical pair analysis for the given ABT-Reo Forward Rules is shown
in Figure 46. The green cells in the table indicate, that there are no critical pairs for
the two analysed rules. The analysis works in two dircetions, because AGG computes the
delete-use-conflicts between two rules, where the first rule deletes elements, i.e. changes
attributes, while the second rule needs those elements. In row four and row five we can
see question marks, which are indicating, that AGG could not complete the analyses for
these rules. This happens, when AGG runs out of workspace with over 500,000 overlapping
graphs and cancels the analysis, which can happen in a delete-use-conflict in one way, but
eventually not the other. However, we can argument, why there are no critical pairs for
the remaining rules.

First of all, we have a triple graph grammar without NACs (Negative Application
Conditions). Therefore, we never encounter the problem, that one rule generates content
in the models, which another rule forbids in order to be applicable, i.e. there are no
produce-forbid conflicts. So at the most we get so-called delete-use conflicts, i.e. one rule
deletes parts of the model, which prevents from finding a valid match for another rule.
However, the rules are only deleting on the translation attributes which indicate, if an
element of the source model was already translated by changing the attribute from “false”
to “true”.

63

Therefore, we will argument that those conflicts with “true” and “false” cannot occur in
the triple language ABT-Reo, i.e., one rule does not change elements that are needed for
another. The first critical pair analysis that could not be computed was between the two
rules Filter2ED_BW and PrivateInToPrivateIn_BW. The first rule changes the attribute
of two E/D nodes from “false” to “true”, while the second rule changes the attributes of a
private Reo connector and its gluing points.

Moreover, the overlappings between the rules PrivateInToPrivateIn_BW and Filtered-
Out2PrivateOut_BW are no critical pairs. The first changes the attributes of a private
Reo connector and its gluing points, while the second changes the attributes of a public Reo
connector respectively. The constraints shown in Figures 43 and 45 forbid the existence of
more than one gluing point connected to a Reo connector and vice versa. Therefore the
two critical parts cannot overlap.

Furthermore, AGG could not analyse the critical pairs between the rule PrivateIn-
ToPrivateIn_BW itself and FilteredOut2PrivateOut_BW itself. We ignore overlapping
matches, that are identical and for every not identical match, there is no overlapping on
the elements where the attributes are changed. In the example of the rule PrivateIn-
ToPrivateIn_BW the constraint in Figure 45 forbids a point to be glued to a private
Reo connector and another Reo connector at the same time, so another match for one of
the points or the Reo connector with the attribute false cannot be found, other than the
identical.

The same holds for FilteredOut2PrivateOut_BW, where the attribute of a public Reo
connector and its gluing points are set from “false” to “true”. Here the constraint from
Figure 43 forbids the existence of two public Reo connectors connected to one point. Hence,
the identical match would be the only critical pair.

In this case study the use of the borrowed context approach gave us the opportunity to
transform model fragments, which we could not before. Additionaly, we were able to get
only one single transformation result in this particular case study, which leaves us with an
integrated model, where we can use the target graph only as well, i.e. without the source
and context graph. Furthermore we can say, that every source model, if under the side
condition that the model transformation has strong functional behaviour (see Theorem
10) satisfies the propagated source constraint, then the integrated model will satisfy the
integrated model and the target model weakly satisfies the propagated target constraint.

5.4 Model Transformation of Operational Semantics: From State
Machines to Petri Nets

Another area of application for the transformation with borrowed context is the transfor-
mation of operational semantics. As rules they contain fragments of models which define
operations in a model language, e.g., petri nets. For the elementary petri nets there has
been defined an operational semantics already [Rei84].

The aim is to achieve a transformation of the operationals semantics such that the
diagram below commutes.

64

SM1

OP1

��

trF +3 PT1

OP ′1

��
SM2

OP2

��

PT2

OP ′2

��
SM3

trF +3 PT3

In order to define operational semantics for state machines, the abstract syntax for state
machines from [EEPT06] has been modified as shown in Figure 47. The graph was reduced
to states and transitions linked to a certain statemachine. The transition can trigger an
event or can be connected over an action to it. Additionally, a transition can be connected
to a state over a condition, which express, that for the transition to be executed, the state
has to be active.

smname=String
StateMachine

stname=String
isAct=Boolean

State

ename=String
Event

Transition Action

Condition

sm2state sm2trans

trigger
act2event

trans2act

trans2condcond2state

begin

end

Figure 47: The type graph for state machines

In Figure 48 the type graph for an elementary petri net is shown, with the token as
boolean attribute. A transition can be executed, if all places that are connected to it
with a prearc must have this attribute as true and all connected to it with a postarc must
have this attribute as false. The execution of a transition sets the token attribute of its
connected places to false if they are connected by prearcs and to true if they are connected
by postarcs.

We will now give the outlook to a case study, that need to be further extended on
the transformation of operational semantic. Therefore, we will introduce an example of a

65

plname=String
token=Boolean

Place

trname=String
Transition

PreArc

presrc

PostArc

postsrcpretgt

posttgt

Figure 48: The type graph for petri nets

smname="Producer"
StateMachine

stname="Producing"
isAct=true

State

sm2state

sm2trans

Action

Condition

act2event

trans2act

trans2cond

ename="produce"
Event

Transition

trigger

begin

end

stname="Wait4Cons"
isAct=false

State

Transition

begin

end

sm2trans

sm2state

smname="Consumer"
StateMachine

stname="Wait4Prod"
isAct=true

State

sm2state

sm2trans

ename="deliver"
Event

Transition
trigger

begin

end

stname="Consume"
isAct=false

State

Transition

begin

end

sm2trans

sm2state

cond2state

Figure 49: The Producer-Consumer SM in abstract syntax

66

simple producer consumer state machine in abstract (see Figure 49) and concrete syntax
(see Figure 50).

In this state machine we have two machines, a Producer and a Consumer. The producer
starts in the state Producing. If he executes the transition going to Wait4Cons, the event
produce is triggered. To execute the next transition, the consumer has to be in the state
Wait4Prod, and both transitions are executed simulaneously. Then the consumer can
consume and so on.

Producing

Wait4Cons

produce [cons.wait]
/deliver

Producer

Wait4Prod

Consuming

deliver consume

Consumer

Figure 50: The Producer-Consumer SM in concrete syntax

In order to perform a model transformation from state machines to elemental petri
nets the transformation rules developed by [EEPT06] were modified and translated into
forward triple graph rules.

stname = n
isAct = b

 : State
plname = n
token = b

 : Place
++ ++

++ ++

Figure 51: Forward Rule state2place

In Figure 51 the rule is shown, which transforms a state from a state machine into
a place from a petri net and sets the attributes to the attributes of the respective state.
Similiar to that, in Figure 52 an event is translated to a transition. In Figure 53 and 54 the
pre and post arcs between a place and a transition is added corresponding to the transition
between the state and the event in the state machine. If the transition is connected to an
event via an action, the forward rules shown in Figure 55 and 56 are to be used. Due to
the fact, that the condition, that the state, that is connected over the condition, has to
be activated, we decided to translate it in a manner, that is has to be connected to the

67

ename = n
 : Event

trname = n
 : Transition

++ ++
++ ++

Figure 52: Forward Rule event2trans

 : State : Place

 : Event : Transition

 : Transition
:begin

:trigger
:PreArc

:presrc

:pretgt

++
++

++

Figure 53: Forward Rule trans2prearc

 : State : Place

 : Event : Transition

 : Transition
:end

:trigger
:PostArc

:postsrc

:posttgt

++
++

++

Figure 54: Forward Rule trans2postarc

68

 : State : Place

 : Event : Transition

 : Transition
:begin

:trigger
:PreArc

:presrc

:pretgt

++
++

++

 : Transition

 : State

 : Action

 : Condition

:act2event

:trans2cond

:cond2state

:begin

:trans2act

 : Place

 :PreArc

:presrc

:pretgt

++
++

++

Figure 55: Forward Rule transAct2prearc

 : State : Place

 : Event : Transition

 : Transition
:begin

:trigger
:PostArc

:postsrc

:posttgt

++
++

++

 : Transition

 : State

 : Action

 : Condition

:act2event

:trans2cond

:cond2state

:end

:trans2act

 : Place

 :PreArc

:presrc

:pretgt

++
++

++

Figure 56: Forward Rule transAct2postarc

69

transition in the petri net domain. Another possibility is to add another transition, that
has a prearc and postarc to the place, that must have a token. This was done in [EEPT06],
but because of definition of petri nets this transition can never be executed, since the place
in the post domain must not have a token. Therefore, we decided for this simple checking
method, which possibly can be extended in a more sufficient way.

When we want to define the operational semantics, we encounter the problem, that more
than one transition can be executed simultaneously. The most simple case is a transition
between two states that triggers an event, without affecting another transition. This simple
case would be represented in the rule for operational semantics directTransition shown in
Figure 57, where the state, where the transition begins, is set from true to false and the
state where it ends from false to true.

stname = m
isAct = true

 : State

 : Event : Transition

:begin

:trigger

stname = n
isAct = false

 : State

:end

L
stname = m
isAct = false

 : State

 : Event : Transition

:begin

:trigger

stname = n
isAct = true

 : State

:end

R

Figure 57: Rule directTransition for the Operational Semantics in SMs

This operational semantics rule can be translated with the given rules without problems,
i.e., without the use of borrowed context. The result of the transformation is given in Figure
58 and 59, where on the predomain the token is set from true to false and vice versa in the
post domain. Note, that this operational semantics rule does not check, neither in source
model, not in the target model, whether there are more states, resp. places, are affected
by the event, resp. transition.

This can be prevented by priorisation, i.e., that rules with a higher priority are executed
until they cannot be applied any furhter. This means, that the rule shown in Figure 60
would be applied, until all transitions connect via actions are executed and after that the
rule in Figure 57 would be applied, such that all states affected by the event are changed.

The rule shown in Figure 60 sets the isAct attribute from a state in the beginning of
a transition from true to false and in the ending from false to true, if the state in the
condition is activated and the transition is connected via an action to an event.

For the transformation of this rule transformation steps with borrowed context would
be needed, as shown for the application of the rule transAct2preArc in Figure 61.

The transformation of the operational semantics rule indirectTransition with the use
of borrowed context results in the Figure 62 for the left-hand-side and in the Figure 63 for

70

stname = m
isAct = true

 : State

 : Event : Transition

:begin

:trigger

stname = n
isAct = false

 : State

:end

L

plname = m
token = true

 : Place

plname = n
token = false

 : Place

 : Transition

 : PreArc

 : PostArc

:presrc

:pretgt
:postsrc

:posttgt

Figure 58: Integrated Model of the LHS from directTransition

stname = m
isAct = false

 : State

 : Event : Transition

:begin

:trigger

stname = n
isAct = true

 : State

:end

R

plname = m
token = false

 : Place

plname = n
token = true

 : Place

 : Transition

 : PreArc

 : PostArc

:presrc

:pretgt
:postsrc

:posttgt

Figure 59: Integrated Model of the RHS from directTransition

 : Transition

:begin

:end
 : Event : Action

 : Condition

:cond2state

:trans2act

:trans2cond

:act2event

L
stname = m
isAct = true

 : State

stname = n
isAct = false

 : State

 : Transition

:begin

:end
 : Event : Action

 : Condition

:cond2state

:trans2act

:trans2cond

:act2event

R
stname = m
isAct = false

 : State

stname = n
isAct = true

 : State

stname = n'
isAct = true

 : State
stname = n'
isAct = true

 : State

Figure 60: Rule indirectTransition for the Operational Semantics in SMs

71

 2: Transition

:begin

:end

 5: State

6: Event 3: Action

 4:Condition

:cond2state

:trans2act

:trans2cond

:act2event

L
stname = m
isAct = true

 1: State

stname = n
isAct = false

: State

plname = m
token = true

10: Place

plname = n
token = false

 : Place

12:Transition

 5: State 9: Place

6: Event 12:Transition

 7: Transition
:begin

:trigger
 2:Transition

1: State

 3: Action

 4: Condition

:act2event

:trans2cond

:cond2state

:begin

:trans2act

 10: Place

 9: Place

 2: Transition

:begin

 5: State

6: Event 3: Action

 4:Condition

:cond2state

:trans2act

:trans2cond

:act2event

D 1: State 10: Place

12:Transition

 9: Place

 2: Transition

:begin

:end

 5: State

6: Event 3: Action

 4:Condition

:cond2state

:trans2act

:trans2cond

:act2event

L
stname = m
isAct = true

 1: State

stname = n
isAct = false

: State

plname = m
token = true

10: Place

plname = n
token = false

 : Place

12:Transition

 9: Place

 7: Transition

:begin

:trigger

...

...

Figure 61: Transformation Step with BC for indirectTransition

the right-hand-side.
In order to show that for our state machine seen in Figure 50 we can achieve our goal

that we can perform the operational semantic and the transformation independent, we first
need to apply the model transformation on our state machine, resulting in the petri net
shown in abstract syntax in Figure 64 and in concrete syntax in Figure 65.

 2: Transition

:begin

:end
6: Event 3: Action

 4:Condition

:cond2state

:trans2act

:trans2cond

:act2event

L
stname = m
isAct = true

 1: State

stname = n
isAct = false

: State

plname = m
token = true

10: Place

plname = n
token = false

 : Place

12:Transition

 9: Place

 7: Transition
:begin

:trigger

stname = n'
isAct = true

 1: State

 : PreArc

 : PostArc

 : PreArc

:presrc

:pretgt

:postsrc

:posttgt

:presrc

:pretgt

Figure 62: Integrated Model of the LHS from indirectTransition

In the following we will give a short overview on the transformation between the models
and the execution of the operational semantics. We will use the respective source or target
component ot the integrated model of the operational semantic rules and show in this
example, that the ways are equivalent, if we first perform it on the state machine and
then transform it or, if we first translate the state machine and afterwards perform the
operational semantics on the petri net.

1. If we first perform the operational semantic to Figure 50, we have first to apply the

72

 2: Transition

:begin

:end
6: Event 3: Action

 4:Condition

:cond2state

:trans2act

:trans2cond

:act2event

R
stname = m
isAct = false

 1: State

stname = n
isAct = true

: State

plname = m
token = false

10: Place

plname = n
token = true

 : Place

12:Transition

 9: Place

 7: Transition
:begin

:trigger

stname = n'
isAct = true

 1: State

 : PreArc

 : PostArc

 : PreArc

:presrc

:pretgt

:postsrc

:posttgt

:presrc

:pretgt

Figure 63: Integrated Model of the RHS from indirectTransition

plname="Producing"
Place

plname="Wait4Cons"
Place

plname="Wait4Prod"
Place

plname="Consuming"
Place

ename="produce"
Transition

ename="deliver"
Transition

ename="consume"
Transition

PreArc

PostArc

PreArc

PostArc

PostArc

PreArc

PostArc

PreArc

Figure 64: The Producer-Consumer PT net in abstract syntax

Producing

Wait4Cons

Wait4Prod

Consuming

produce deliver consume

Figure 65: The Producer-Consumer PT net in concrete syntax

73

Producing

Wait4Cons

produce [cons.wait]
/deliver

Producer

Wait4Prod

Consuming

deliver consume

Consumer

Producing

Wait4Cons

produce [cons.wait]
/deliver

Producer

Wait4Prod

Consuming

deliver consume

Consumer

Figure 66: The Producer-Consumer SM after step 1 and step 2 of OP

rule directTransition, which is the same in the integrated model, since nothing was
borrowed on the source component. This would result in the left model shown in
Figure 66, where in the Producer state machine the active state was changed from
Producing to Wait4Cons.

After that we need to first apply the rule indirectTransition as long as possible, in
this case once. We apply the rule from the source component of the integrated model
shown in Figure 62 and 63. This would result in the Producer state machine to
switch the active state back to Producing. Since this is not yet a valid operation, we
still need to perform the rule directTransition, which results in the state machine on
the right in Figure 66.

Finally, we transform the state machine with the given rules. This results in the
elemental petri net shown on the right in Figure 67.

2. In this case we want to show, that we achieve the same petri net by first performing
the model transformation and afterwards the operational semantics for petri nets.

Therefore, we apply the model transformation like before and get as a result the
model shown in Figure 65.

Now, we have to perform the operational semantics in exactly the same order as
before. In this case we have to use the target component of the integrated model
of the rule directTransition, which lets the transition labelled produce consume the
token on the place Producing and put one token on Wait4cons.

Finally, we apply the rule indirectTransition once, which removes the token from
Wait4Cons and puts one token on Producing. Like in the state machine before, this
is not a valid operation yet and we still need to apply the rule directTransition. Doing
so, will result in the petri net shown in Figure 67 on the right.

We can conclude, that it is possible in a case study to use the borrowed context for the
propagation of operational semantics between state machines and elemental petri nets. In
future work, this has to be extended to a more general way, with generalized operational
semantics, transformation rules. Furthermore, this has to be examined in a more complex
example for a state machine. It is to define a transformation for the case, that a state ,

74

Producing

Wait4Cons

Wait4Prod

Consuming

produce deliver consume

Producing

Wait4Cons

Wait4Prod

Consuming

produce deliver consume

Figure 67: The Producer-Consumer PT net after step 1 and step 2 of OP

that is in the condition of a transition, is not connected to the same event, i.e., there has
to be another way on the petri net domain to confirm, that the place has a token.

In general, it needs to be defined, how to transform operational semantics and which
conditions need to be satisfied in order to make it applicable in the source and the target
domain.

6 Conclusion
In this section we conclude this diploma thesis. In Section 6.1 Summary of Results we give
an overview of the results achieved in this thesis. We discuss what can be done to continue
to work with the structures and constructions introduced in the thesis in the Section 6.2
Future Work.

6.1 Summary of Results

This diploma thesis focuses on model transformation with Triple Graph Grammars [Sch94].
With this technique complete, correct models can be transformed using algebraic trans-
formation [EEPT06]. Since 1994, extensions of the original TGG definitions have been
published [KS06] and applications have been presented [KW07].

The first main objective of this thesis was to define a model transformation for model
fragments, that is based on algebraic graph transformation (see [EEPT06]). This has been
achieved by devoloping the approach of the borrowed context by [EK06] further to algebraic
graph transformation (see Section 3). With this approach, graph transformation without
a complete match of the rule is possible through extending the graph that we want to
transform with information from the rule. On the basis on triple graph transformation (see
[Sch94]) we also defined the model transformation with borrowed context in this section.
Moreover, we introduced the notion of source consistency [EEHP09] with borrowed context,
which allows us to check, if for a forward transformation with borrowed context there exists
a corresponding source sequence. Furthermore, we defined a forward consistent BC-match
and an on-the-fly construction for borrowed context model transformation sequences was
given, such that we have source consistence for our sequence by construction. In Theorem 7

75

we prooved, that every BC-forward transformation sequence can be extended to a standard
transformation sequence, which is essential for the application of this thesis to the standard
model transformation with triple graph grammars. In Section 3 we also defined the terms
for correct, complete and terminating BC-model transformations.

Our second main objective was to propagate graph constraints with borrowed context
model transformations, which was achieved in Section 4. We introduced a method to
propagate a graph constraint and afterwards defined under which a model satisfies the
propagated constraint.

Finally, in Section 5, we presented a case study in the modelling framework ABT-Reo
[BHE09], [BH09], where we reconstructed the theory developed in the previous section
in a concrete example. We first transformed a complete model with a standard model
transformation. Thereafter, we transformed a graph constraint with borrowed context
and showed, that the integrated model after the transformation satisfies the propagated
constraint. Moreover, we used the software tool AGG [AGG] for the analyzation of ABT-
Reo to show, that it has no critical pairs, which is essential for Theorem 10, which states,
that the triple language needs to have strong functional behaviour.

Then we introduced another case study on the transformation of operational semantic
rules between State Machines [EEPT06] and Petri Nets [Rei84]. We showed, that it is
possible to use borrowed context transformation in order to transform the rules and that
the model properties were preserved.

6.2 Future Work

In future, it would be interesting to define the propogation of a graph constraint in a way,
such that we get only a constraint in the target domain without the source component in
the triple graphs. Then, the soundness of such propagation should be defined, such that
we can say, when a model from the target language satisfies such a translated constraint,
i.e., G |= MTBC(PC (a)).

Another interesting problem in this field of study is the backwards propagation of a
graph constraint, i.e., to define, what we can say about the source model and the source
constraint from the propagated constraint: MT (G) |= MTBC(PC (a))⇒ G |= PC (a).

Furthermore, the borrowed context approach could be used for the transformation of
other fragments, such as model morphisms and rules. In particular, the propagation of
rules for operational semantics seems interesting and to define, under which conditions the
properties of the operational semantics is preserved, i.e., first transforming a model and
then applying the propagated rules for operational semantics to the transformed model or
first applying the rules for operational semantics to the source model and transforming it
afterwards are equivalent.

In the case study in Section ?? an outlook was given on transforming rules for opera-
tional semantics. This needs to be defined in further detail and furthermore, it would be
interesting to find out under which conditions the general preservation of model properties
can be ensured when transforming operational semantics, such that the behaviour of the
operations in the models is equivalent.

76

References
[AGG] AGG Homepage. http://tfs.cs.tu-berlin.de/agg.

[BH09] Christoph Brandt and Frank Hermann. Modeling and Reconfiguration of crit-
ical Business Processes for the purpose of a Business Continuity Management
respecting Security, Risk and Compliance requirements at Credit Suisse using
Algebraic Graph Transformation: Long Version. Technical report, TU Berlin,
Fak. IV, 2009. (to appear).

[BHE09] Christoph Brandt, Frank Hermann, and Thomas Engel. Security and Con-
sistency of IT and Business Models at Credit Suisse realized by Graph Con-
straints, Transformation and Integration using Algebraic Graph Theory. In
Proc. Int. Conf. on Exploring Modeling Methods in Systems Analysis and De-
sign 2009 (EMMSAD’09), volume 29 of LNBIP, pages 339–352, Heidelberg,
2009. Springer Verlag.

[EEE+07] Hartmut Ehrig, Karsten Ehrig, Claudia Ermel, Frank Hermann, and Gabriele
Taentzer. Information preserving bidirectional model transformations. In
Matthew B. Dwyer and Antónia Lopes, editors, Fundamental Approaches to
Software Engineering, volume 4422 of LNCS, pages 72–86. Springer, 2007.

[EEH08] H. Ehrig, K. Ehrig, and F. Hermann. From Model Transformation to Model
Integration based on the Algebraic Approach to Triple Graph Grammars. In
J. de Lara, C. Ermel, and R. Heckel, editors, Workshop on Graph Transfor-
mation and Visual Modelling Techniques (GT-VMT’08), 2008. accepted for
publication.

[EEHP09] Hartmut Ehrig, Claudia Ermel, Frank Hermann, and Ulrike Prange. On-the-
Fly Construction, Correctness and Completeness of Model Transformations
based on Triple Graph Grammars: Long Version. Technical report, Technische
Universität Berlin, 2009. Available online at http://tfs.cs.tuberlin.de/
publikationen/Papers08/EEHP09.pdf.

[EEPT06] Hartmut Ehrig, Karsten Ehrig, Ulrike Prange, and Gabriele Taentzer. Funda-
mentals of Algebraic Graph Transformation (Monographs in Theoretical Com-
puter Science. An EATCS Series). Springer, 1 edition, 3 2006.

[Ehr79] H. Ehrig. Introduction to the Algebraic Theory of Graph Grammars (A Sur-
vey). In Graph Grammars and their Application to Computer Science and
Biology, volume 73, pages 1–69. 1979.

[EK06] Hartmut Ehrig and Barbara König. Deriving bisimulation congruences in the
dpo approach to graph rewriting with borrowed contexts. Mathematical Struc-
tures in Computer Science, 16(6):1133–1163, 2006.

77

http://tfs.cs.tu-berlin.de/agg
http://tfs.cs.tuberlin.de/publikationen/Papers08/EEHP09.pdf
http://tfs.cs.tuberlin.de/publikationen/Papers08/EEHP09.pdf

[HEGO10] F. Hermann, H. Ehrig, U. Golas, and F. Orejas. Efficient analysis and execution
of correct and complete model transformations based on triple graph grammars.
In Proceedings of the Workshop on Model Driven Interoperability (MDI’2010),
2010. to appear.

[HEOG10] F. Hermann, H. Ehrig, F. Orejas, and U. Golas. Formal analysis of functional
behaviour for model transformations based on triple graph grammars. In Pro-
ceedings of Intern. Conf. on Graph Transformation (ICGT’ 10), 2010. to
appear.

[Her08] Frank Hermann. Process Definition of Adhesive HLR Systems. Forschungs-
berichte der Fakultät IV 2008/09, TU Berlin, Fak. IV, Faculty IV of TU Berlin,
Berlin, Germany, 2008. (to appear).

[KS06] Alexander Königs and Andy Schürr. Tool integration with triple graph gram-
mars - a survey. Electr. Notes Theor. Comput. Sci., 148(1):113–150, 2006.

[KW07] E. Kindler and R. Wagner. Triple graph grammars: Concepts, extensions,
implementations, and application scenarios. Technical Report TR-ri-07-284,
Department of Computer Science, University of Paderborn, Germany, 2007.

[LS04] Stephen Lack and Pawel Sobocinski. Adhesive categories. In FoSSaCS, pages
273–288, 2004.

[Rei84] Wolfgang Reisig. On the Semantics of Petri Nets. Univ. Hamburg, Fachbereich
Informatik, Bericht Nr. 100, September 1984.

[Sch94] A. Schürr. Specification of Graph Translators with Triple Graph Grammars. In
G. Tinhofer, editor, WG94 20th Int. Workshop on Graph-Theoretic Concepts
in Computer Science, volume 903 of Lecture Notes in Computer Science, pages
151–163, Heidelberg, 1994. Springer Verlag.

78

	Introduction
	Review of Model Transformation with Triple Graph Grammars
	Graph Transformation
	Triple Graphs

	Model Transformation with Borrowed Context
	DPO-Transformation with Borrowed Context
	Extension of Borrowed Context Transformations and Source Consistency
	Correctness, Completeness and Termination

	Propagation of Graph Constraints Using Borrowed Context
	Graph Constraints
	BC-Model Transformation of Graph Constraints
	Preservation of Model Properties

	Case Study
	Enterprise Modelling with ABT-Reo
	Model Transformation of Models in ABT-Reo
	Model Transformation of Constraints in ABT-Reo
	Model Transformation of Operational Semantics: From State Machines to Petri Nets

	Conclusion
	Summary of Results
	Future Work

