
Electronic Notes in Theoretical Computer Science 50 No. 3 (2001) { Proc. GT-VMT 2001
URL: http://www.elsevier.nl/locate/entcs/volume50.html 6 pages

Visual Language Parsing in GenGEd 1

R. Bardohl, T. Schultzke, G. Taentzer

Dept. of Computer Science

TU Berlin, Germany

Abstract

GenGEd supports the visual speci�cation of visual languages and the generation

of syntax-directed editors. However, syntax-directed editing is not always desired

by the user. Therefore we extended GenGEd by parsing facilities which allow for

free editing as well.

1 Introduction

Syntactical de�nition of visual languages (VLs) and VL-parsing are diÆcult

problems due to the absence of an easy to use and eÆciently parsable stan-

dard syntax de�nition formalism. Most proposals published up to now rely

on context-free grammar rules, i.e., they allow replacement of a single non-

terminal in the left-hand side. Using these approaches it is not always possible

to de�ne the VL in mind. Therefore, context-sensitive graph grammars have

been proposed, e.g., in the form of Layered Graph Grammars (LGG) [11].

LGG rules are allowed to delete and create several elements and relations,

represented as vertices and edges.

Unfortunately, LGGs are still not convenient enough to de�ne a VL in gen-

eral because of at least missing Negative Application Conditions (NACs) and

further conditions for rules. Therefore, a new form of LGGs, called Contextual

Layered Graph Grammars (CLGGs) was developed [2] which support vertex

embedding, NACs, and complex predicates. This approach includes the de�-

nition of layering conditions guaranteeing termination of the parsing process.

Furthermore, static analysis techniques like critical pair analysis [10,9,12] are

available which can be exploited to identify a maximum set of rules which

may be parsed without any need for backtracking.

VLCC [3] and DiaGen [8] use restricted context-sensitive rules to parse

VLs. This kind of rules is successfully applied to rather simple languages but

1 Research partially supported by the German Research Council (DFG), and the projects

APPLIGRAPH (ESPRIT Basic Research WG) and GRAPHIT (CNPq and DLR).

c2001 Published by Elsevier Science B. V.



GT-VMT 2001 { R. Bardohl, T. Schultzke, and G. Taentzer

might be tricky to use in more complex cases. CLGGs are related to Reserved

Graph Grammars (RGGs), another restricted and modi�ed form of LGGs [13].

RGGs o�er some kind of embedding mechanism, too, but do not support the

de�nition of predicates (however, not used in GenGEd) and NACs. Their

rules have to be locally conuent, so that the polynomial naive LGG parsing

algorithm in [11] works. Backtracking for handling recognized critical rule

pairs is not supported.

In Section 2 we briey review the GenGEd environment for the visual

speci�cation of VLs. The parsing facilities and their usage in GenGEd are

proposed in Section 3, and illustrated by a small example (a subset of the well-

known UML class diagrams). Although this example is not very expressive,

it is suitable for illustrating the concepts. In Section 4 we conclude.

2 The GenGEd Environment

The GenGEd environment implements concepts for the visual speci�cation

of VLs [1]. A VL-speci�cation is given by a visual alphabet and a visual

grammar. In the visual alphabet the types of symbols and links occurring in

a VL are speci�ed. The visual grammar consists of a start expression and a

set of context-sensitive grammar rules. Originally the grammar rules de�ne

the syntax-directed editing commands of a language-speci�c graphical editor,

i.e., the visual grammar does not only comprise language-generating rules but

a convenient set of editing rules as well. In the following we show that the

concepts of VL-speci�cations can be easily extended by the speci�cation of

parsing.

GenGEd is based on algebraic graph transformation [4] and graphical

constraint solving [7]. A visual alphabet is represented by an attributed graph

structure signature 2 and a constraint satisfaction problem de�ning positions

and sizes of visual elements. Correspondingly, a visual grammar is represented

by an attributed graph structure grammar where the constraint satisfaction

problem of each visual expression is satis�ed. Moreover, we distinguish two

syntactical levels, namely the abstract syntax describing the logical part of a

VL, and the concrete syntax denoting the layout.

According to the constituents of a VL-speci�cation, the GenGEd envi-

ronment comprises an alphabet editor and a grammar editor. The speci�ed

alphabet is the input of the grammar editor, where so-called alphabet rules

are generated de�ning the editing commands of this editor. In this way it

is guaranteed that only correct visual expressions can be de�ned by a lan-

guage designer. For the transformation of visual expressions according to the

abstract syntax the Agg system [6] is used. The graphical constraints are

solved by the constraint solver ParCon [7].

2 A graph structure signature is an algebraic signature according to [5] with unary operation

symbols.

2



GT-VMT 2001 { R. Bardohl, T. Schultzke, and G. Taentzer

The parsing algorithm proposed in [2] (which is based on Contextual Lay-

ered Graph Grammars (CLGG) and critical pair analysis) is now implemented

using the Agg system, hence we call it Agg graph parser. In GenGEd we in-

tegrated theAgg graph parser such that we yield a parser for visual languages.

In this sense, not only syntax-directed editing but also free editing is available

in speci�c graphical editors generated by GenGEd, similar to [8]. As before,

the alphabet editor supports the de�nition of visual alphabets comprising the

types for symbols and links. Based on a visual alphabet, the grammar editor

may be used in two ways: for the de�nition of comprehensive syntax-directed

editing rules as well as for the de�nition of a parse speci�cation. The latter

one is explained in the following.

3 Parsing of Class Diagrams

As already mentioned before, a visual alphabet describes the types of symbols

(vertices) and links (edges) of a VL. Figure 1 illustrates the visual alphabet

for a subset of UML class diagrams. It comprises the symbols needed and

explains how these symbols are linked. In the top the abstract syntax is

shown where the lexical symbols Package, Class and Assoc (association) are

framed by rectangles, and the attribute symbol CN (class name) of type String

by rounded rectangles. The arrows indicate the links between the symbols.

The symbol's layouts are connected with the abstract syntax by so-called

layout operations illustrated by dashed arrows. The constraints which have to

be de�ned for each (abstract) link are illustrated by dotted arrows between

the symbol layouts.

AssocClassCN

Package

Concrete Syntax
12pt, Helv.

Abstract Syntax

a_CNat_CN
String

in begin

end

Fig. 1. Visual alphabet of the class diagram language.

A visual alphabet is the basis to de�ne a parse speci�cation using the

GenGEd grammar editor. Based on the Agg graph parser, a parse speci�-

cation consists of a parse grammar (which can be de�ned using the means of

the VL), a layer function, and critical pairs.

Graph rules occurring in a parse grammar consist of a left-hand side (L)

and a right-hand side (R) over typed (labeled) graphs. Parts of both rule

sides are related to each others. The related parts are preserved during a

graph transformation. All non-related graph objects of L are deleted, all non-

related objects of R are created. Moreover, a rule may contain a set of NACs

specifying exactly those fractions of matching situations that must not exist

for a rule to be applicable.

3



GT-VMT 2001 { R. Bardohl, T. Schultzke, and G. Taentzer

Assigning rules as well as vertex and edge types to layers such that a

certain layering condition is satis�ed (cf. [2]), the layer-wise application of

rules (according to the rule layer) to a given terminal graph always terminates.

Roughly speaking, the layering condition is ful�lled if each rule deletes at least

one vertex or edge coming from a lower level (deletion layer) and creates graph

objects of a higher level (creation layer).

Critical pair analysis [10,9,12] can be used to make parsing by graph trans-

formation more eÆcient: decisions between conicting rule applications are

delayed as far as possible. This means to apply non-conicting rules �rst and

to reduce the graph as much as possible. Afterwards, rule application conicts

are handled by creating decision points for the backtracking part of the pars-

ing algorithm. For critical pair analysis of CLGG rules, a layer-wise analysis

is suÆcient, since a rule of an upper layer is not applied as long as rules of

lower layers are still applicable.

In the GenGEd grammar editor, the critical pairs are generated automat-

ically from the Agg graph parser, but the remaining constituents the language

designer has to de�ne. For our example of simpli�ed UML class diagrams, the

parse rules express the deletion of visual symbols such that for each lexical

symbol of the visual alphabet there is one parse rule. These rules and the

layer function are proposed in the following.

Figure 2 (a) illustrates the parse rule for packages. Packages can be deleted

if they are empty. If the package where the rule should be applied to, is not

empty, the dangling condition prohibits the application of this rule. The rule

allowing for the deletion of association symbols is illustrated by Figure 2 (b).

Here we consider only classes of the same package to be related by association

symbols.

x:Package
L

z:Assoc

z1:Package Delete

Assoc()

z1:Package

y:Classx:Class

R

y:Classx:Class

(b)

L

(a)

Delete

Package()

R

Fig. 2. Parse rule for package symbols (a) and for association symbols (b).

The rule supporting the deletion of class symbols is shown in Figure 3.

According to the visual alphabet, a class symbol always has to be linked to a

package which is expressed by the left-hand side L of the rule. Moreover, we

expect that the user always inserts a class symbol together with a class name

represented by the node x':CN holding the value represented by the variable

cn. The NAC states that the class name has to be unique in one package.

x’:CN

z1:Package z1:Package z1:Package
L

cn x:Classx’:CN

Delete

Class()

R

x:Class y:Class y’:CN

cncn
NAC

Fig. 3. Parse rule for class symbols and class names.

4



GT-VMT 2001 { R. Bardohl, T. Schultzke, and G. Taentzer

The layer function for our small example is given below. Thereby we use

the abbreviations dl for deletion layer, cl for creation layer, and rl for

rule layer. Note that the rule layer supports the ordering of rule application,

whereas the deletion and the creation layer are necessary for the termination

of the parsing algorithm. Note that the language designer must not de�ne

creation nor deletion layers for links; those are generated automatically in

dependence of the symbols the links have in their domain, i.e., the source

vertices of the corresponding link edges.

Type dependent layers Rule layer

dl(Assoc) = cl(Assoc) = 0 rl(DeleteAssoc()) = 0

dl(Class) = cl(Class) = 1 rl(DeleteClass()) = 1

dl(Package) = cl(Package) = 2 rl(DeletePackage()) = 2

For the critical pair analysis which must be done only once, the Agg graph

parser is called with the parse grammar and the layer function. The resulting

parse speci�cation and the visual alphabet is the input of the graphical editor

where the user can manipulate visual expressions (diagrams) in a free editing

style. In order to check the visual expression against the visual syntax, the

Agg graph parser gets the parse speci�cation together with the visual expres-

sion as input and checks whether the expression is correct or not. The result

will be illustrated in the graphical editor.

4 Conclusion

Graph parsing based on critical pair analysis can be used for eÆcient VL

parsing. The VL parser integrated in GenGEd is based on a new graph

parsing component of Agg. First experiences on free editing of class diagrams

have been made. We are going to consider more sophisticated VLs in the future

as, e.g. Statecharts. Furthermore, the implemented parsing algorithm has to

be compared with related approaches concerning eÆciency.

References

[1] R. Bardohl. GenGEd { Visual De�nition of Visual Languages based

on Algebraic Graph Transformation. PhD thesis, TU Berlin, Germany,

1999. Verlag Dr. Kovac, 2000.

[2] P. Bottoni, A. Sch�urr, and G. Taentzer. EÆcient Parsing of Visual

Languages based on Critical Pair Analysis and Contextual Layered

Graph Transformation. In Proc. IEEE Symposium on Visual Languages,

September 2000.

5



GT-VMT 2001 { R. Bardohl, T. Schultzke, and G. Taentzer

[3] G. Costagliola, A.D. Lucia, S. Ore�ce, and G. Totora. Positional

Grammars: A Formalism for LR-Like Parsing of Visual Languages. In

K. Marriott and B. Meyer, editors, Visual Language Theory, pages 171{

192, Springer, 1998.

[4] H. Ehrig, R. Heckel, M. Kor�, M. L�owe, L. Ribeiro, A. Wagner, and

Corradini. Algebraic Approaches to Graph Transformation II: Single

Pushout Approach and Comparison with Double Pushout Approach. In

G. Rozenberg, editor, Handbook of Graph Grammars and Computing by

Graph Transformation, Volume 1: Foundations, pages 247{312. World

Scienti�c, 1997.

[5] H. Ehrig and B. Mahr. Fundamentals of Algebraic Speci�cations 1:

Equations and Initial Semantics, volume 6 of EACTS Monographs on

Theoretical Computer Science. Springer, Berlin, 1985.

[6] C. Ermel, M. Rudolf, and G. Taentzer. The AGG-Approach: Language

and Tool Environment. In H. Ehrig, G. Engels, J.-J. Kreowski, and

G. Rozenberg, editors, Handbook of Graph Grammars and Computing by

Graph Transformation, Volume 2: Applications, Languages and Tools,

pages 551{604. World Scienti�c, 1999.

[7] P. Griebel. Paralleles L�osen von gra�schen Constraints. PhD thesis,

University of Paderborn, Germany, February 1996.

[8] O. K�oth and M. Minas. Generating Diagram Editors Providing

Free-Hand Editing as well as Syntax-Directed Editing. In Proc.

GRATRA'2000 - Joint APPLIGRAPH and GETGRATS Workshop on

Graph Transformation Systems, pages 32{39. Technische Universit�at

Berlin, Germany, March 2000.

[9] M. L�owe and J. M�uller. Critical Pair Analysis in Single-Pushout

Graph Rewriting. In G. Valiente Feruglio and F. Rosello Llompart,

editors, Proc. Colloquium on Graph Transformation and its Application

in Computer Science. Technical Report B-19, Universitat de les Illes

Balears, 1995.

[10] Detlef Plump. Hypergraph Rewriting: Critical Pairs and Undecidability

of Conuence. In M.R Sleep, M.J. Plasmeijer, and M. C.J.D. van

Eekelen, editors, Term Graph Rewriting, pages 201{214. Wiley, 1993.

[11] J. Rekers and A. Sch�urr. De�ning and Parsing Visual Languages with

layered Graph Grammars. Journal of Visual Languages and Computing,

8(1):27{55, 1997.

[12] T. Schultzke. Concepts and Implementation of a Parser for Visual

Languages. Master's thesis (in German), TU Berlin, Germany, 2001.

[13] D.-Q. Zhang and K. Zhang. Reserved graph grammar: A speci�cation

tool for diagrammatic VPLs. In Proc. IEEE Symposium on Visual

Languages (VL'97), pages 288{295. IEEE Computer Society Press, 1997.

6


