Parsing And Semantics of a Statechart Variant by
Contextual Layered Graph Transformation

Paolo Bottoni,
University of Rome, Italy
bottoni@dsi.uniromal.it

&= Statechart of - Blower

MNotOn

Standby |
on H o

off

Figure 1. A sample statechart
1 Introduction

We refer here to a variant of Statecharts, as
supported by the Rhapsody tool. Figure 1 shows
one example of a Rhapsody chart modelling the
behavior of a blower with High and Low ventila-
tion modes and three temperature modes.

In Rhapsody, transitions of the following
kinds, breaking the principle of state abstraction,
are not permitted: 1) transitions between states
of different subdiagrams not nested inside each
other (e.g. from Low to Warm or from Standby
to Cool), 2) transitions between a state and one
of its superstates (e.g from Low to its superstate
On or from Standby to Not0On), and 3) transitions
which enter subdiagrams of and-states (e.g. from
NotOn to High).

For this variant we give graph rules for (high-
level) parsing and define the operational seman-
tics, basing both on contextual layered graph
transformation [2].

2 The Approach

Following a Graph Transformation approach,
we describe a sentence in the Statecharts lan-
guage by a graph where nodes represent entities

On the leave of the Technical University of
Berlin, Germany, gabi@cs.tu-berlin.de

Gabriele Taentzer*

University of Paderborn, Germany

gabi@Qupb.de

Legend: S=state T=transition SC=state chart

a=abstractsto ini=initial s=source
t=target

Figure 2. Sample high level graph

(at different levels of abstraction) and edges rela-
tions between them. A low-level graph describes
the physical level of the sentence, and a high-level
one the logical level. Figure 2 is the high level de-
scription of the Statechart in Figure 1. Parsing
proceeds bottom-up, through repeated applica-
tion of graph rewrite rules, to a start graph, or
to signalling an error.

Graph rules consist of a left and a right-
hand side (LHS — RHS) over typed (labelled)
graphs. Parts of both rule sides are related to
each others (by numbers). The related parts are
preserved during a graph transformation. All
non-related graph objects of LHS are deleted, all
non-related objects of RHS are created.

A rule may contain a set of negative appli-
cation conditions (NACs) specifying matchings
that must not exist for it to be applicable. The
rule antecedent (LHS+NACs) may contain com-
plex predicates on edge types. Thus, an edge with
such a predicate as label may be matched to a
path in the host graph such that the labels in
the path satisfy the predicate in the rule. Set
nodes may appear in the rule, which are mapped
(in a maximal way) to any number of nodes in
the host graph, including zero. Consider Figure
3 and 4 for the high-level parsing rules of State-



7: delete transition

S/

at
1

8: delete transition loop

E-E

Figure 3. Parsing rules (layer 1)

9: delete state in or-state
| )~

10: delete initial state in or-state

ESLa SIHI}

11: delete state in and-state

=
[Sa TE
—~

8]
@]

=

12: delete initial state in and-state

iy
(o]
AN -/ AN -

—

Figure 4. Parsing rules (layer 2)

charts with graph parts in NAC’s drawn dashed
and complex edge predicates (a+) for the dele-
tion of transitions. Rule 1 actually stands for
four rules, namely node 2 may be a state (S) or
a Statechart (SC) and transition T can go from
state 1 to state 3 or the other way round.

Assigning rules as well as node and edge types
to layers such that a certain layering condi-
tion is satisfied, layer-wise application of rules
to a given terminal graph always terminates.
Roughly speaking, the layering condition is ful-
filled if each rule deletes at least one node or edge
from a lower or the same level and creates only
graph objects of a higher level. Rules 1 and 2 in
Fig. 3 as well as types T, s and t belong to layer

9: initialize complex marking

S t
ESl

10: forward to sub charts

Etk:nm] — ke Om |

11: forward to initial states

tm(_Yscl=—2 :; mk
ini

—[sCE= O

12: delete additional markings

WOt O | - s

Figure 5. Marking of initial states in subcharts

1 while rules 3 - 8 in Fig. 4 and types S, SC, a,
and ini belong to layer 2.

3 Semantics

Graph rewrite rules of the same kind can also
be employed to specify the operational semantics
of a Statechart, by defining a concurrent state
of the system depicted by the Statechart as a
collection of marks. Such marks can be mod-
elled as labelled self-edges, i.e. loops, on a state.
A transition of the Statechart is modelled as a
transformation from one marking to another. If
transitions are simple, this reduces to moving the
loop from the source to the target state. For
complex transitions, such as one to a state com-
posed of several subcharts, all initial states in
the subcharts have to become marked. Such a
rule can be constructed during the parsing pro-
cess creating a specialised system of rules for each
Statechart. Alternatively, a uniform mechanism
can be devised which iterates on all subcharts to
mark the initial states. Figure 5 describes such a
mechanism, where mk stands for an actual mark,
tk for (temporary) mark, tm for moving and tf
for finished. Due to lack of space we show rules
overlooking the possibility of further nesting of
the initial states. The complete set of rules re-
quires an additional type of edge to propagate
through substates.



4 Conclusions and Tool Sup-
port

The proposed approach allows parsing of
context-sensitive graph grammars satisfying a
layering condition, which reduces sources of in-
efficiency in existing parsing algorithms. The
use of set nodes and complex predicates allows
a more compact notation, reducing the size of
the grammar, and reducing potential sources of
conflicts in the parsing process.

Graph parsing facilities have recently been in-
tegrated in the environment AGG [3, 1] for alge-
braic graph transformation. Most of the graph
transformation approach described here (includ-
ing layers and management of semantics) is sup-
ported, apart from set nodes and complex pred-
icates. Set nodes in the presented rules may be
replaced by the usage of NACs to check that no
node of a given type has been left unaffected by a
transformation. Complex predicates can be sub-
stituted by preprocessing with another layer con-
taining one rule that computes the transitive clo-
sure of the abstraction relation.

AGG embeds management of attributes (stor-
ing, updating and checking values). In the appli-
cation to Statecharts, this allows the association
of actions with transitions, as well as the man-
agement of internal transition, so that the same
tool can be used to construct a Statechart, parse
and interpret it, and executing transitions on it.

References

[1] R. Bardohl, T. Schultzke, and G. Taentzer. Vi-
sual Language Parsing in GenGEd. In Proc.
of Graph Transformation and Visual Modeling
Techniques’01, volume 55. Electronic Notes in
Theoretical Computer Science, 2001. to appear.

[2] P. Bottoni, A. Schiirr, and G. Taentzer. Effi-
cient Parsing of Visual Languages based on Crit-
ical Pair Analysis and Contextual Layered Graph
Transformation. Si-2000-06, University of Rome,
2000.

[3] C. Ermel, M. Rudolf, and G. Taentzer. The
AGG-Approach: Language and Tool Environ-
ment. In H. Ehrig, G. Engels, J.-J. Kreowski,
and G. Rozenberg, editors, Handbook of Graph
Grammars and Computing by Graph Transfor-
mation, volume 2: Applications, Languages and
Tools, pages 551-603. World Scientific, 1999.



