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Figure 1. A sample statechart

1 Introduction

We refer here to a variant of Statecharts, as
supported by the Rhapsody tool. Figure 1 shows
one example of a Rhapsody chart modelling the
behavior of a blower with High and Low ventila-
tion modes and three temperature modes.

In Rhapsody, transitions of the following
kinds, breaking the principle of state abstraction,
are not permitted: 1) transitions between states
of di�erent subdiagrams not nested inside each
other (e.g. from Low to Warm or from Standby

to Cool), 2) transitions between a state and one
of its superstates (e.g from Low to its superstate
On or from Standby to NotOn), and 3) transitions
which enter subdiagrams of and-states (e.g. from
NotOn to High).

For this variant we give graph rules for (high-
level) parsing and de�ne the operational seman-
tics, basing both on contextual layered graph
transformation [2].

2 The Approach

Following a Graph Transformation approach,
we describe a sentence in the Statecharts lan-
guage by a graph where nodes represent entities

�On the leave of the Technical University of
Berlin, Germany, gabi@cs.tu-berlin.de

SC

S

S

S

S

T

T

T

T SS

SC

T

T

a a

s

st

t ini
S S

SC

S

T

T

T

T

a

s s

s

t

a a

t s t

t
ini

a

a a

s

st

a

t

s
t

t
s

ini

ini

a a

Legend:  S=state    T=transition  SC=state chart
               a=abstracts to    ini=initial    s=source
               t=target 

Figure 2. Sample high level graph

(at di�erent levels of abstraction) and edges rela-
tions between them. A low-level graph describes
the physical level of the sentence, and a high-level
one the logical level. Figure 2 is the high level de-
scription of the Statechart in Figure 1. Parsing
proceeds bottom-up, through repeated applica-
tion of graph rewrite rules, to a start graph, or
to signalling an error.

Graph rules consist of a left and a right-
hand side (LHS ! RHS) over typed (labelled)
graphs. Parts of both rule sides are related to
each others (by numbers). The related parts are
preserved during a graph transformation. All
non-related graph objects of LHS are deleted, all
non-related objects of RHS are created.

A rule may contain a set of negative appli-
cation conditions (NACs) specifying matchings
that must not exist for it to be applicable. The
rule antecedent (LHS+NACs) may contain com-
plex predicates on edge types. Thus, an edge with
such a predicate as label may be matched to a
path in the host graph such that the labels in
the path satisfy the predicate in the rule. Set
nodes may appear in the rule, which are mapped
(in a maximal way) to any number of nodes in
the host graph, including zero. Consider Figure
3 and 4 for the high-level parsing rules of State-

1



S SS S

S/SC S/SC

TS
s

t
S

311 3

T

a+

t/s

7: delete transition

a+ a a+ a

1 1

8: delete transition loop

2 2

s/t

Figure 3. Parsing rules (layer 1)
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Figure 4. Parsing rules (layer 2)

charts with graph parts in NAC's drawn dashed
and complex edge predicates (a+) for the dele-
tion of transitions. Rule 1 actually stands for
four rules, namely node 2 may be a state (S) or
a Statechart (SC) and transition T can go from
state 1 to state 3 or the other way round.

Assigning rules as well as node and edge types
to layers such that a certain layering condi-
tion is satis�ed, layer-wise application of rules
to a given terminal graph always terminates.
Roughly speaking, the layering condition is ful-
�lled if each rule deletes at least one node or edge
from a lower or the same level and creates only
graph objects of a higher level. Rules 1 and 2 in
Fig. 3 as well as types T, s and t belong to layer
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Figure 5. Marking of initial states in subcharts

1 while rules 3 - 8 in Fig. 4 and types S, SC, a,
and ini belong to layer 2.

3 Semantics

Graph rewrite rules of the same kind can also
be employed to specify the operational semantics
of a Statechart, by de�ning a concurrent state
of the system depicted by the Statechart as a
collection of marks. Such marks can be mod-
elled as labelled self-edges, i.e. loops, on a state.
A transition of the Statechart is modelled as a
transformation from one marking to another. If
transitions are simple, this reduces to moving the
loop from the source to the target state. For
complex transitions, such as one to a state com-
posed of several subcharts, all initial states in
the subcharts have to become marked. Such a
rule can be constructed during the parsing pro-
cess creating a specialised system of rules for each
Statechart. Alternatively, a uniform mechanism
can be devised which iterates on all subcharts to
mark the initial states. Figure 5 describes such a
mechanism, where mk stands for an actual mark,
tk for (temporary) mark, tm for moving and tf

for �nished. Due to lack of space we show rules
overlooking the possibility of further nesting of
the initial states. The complete set of rules re-
quires an additional type of edge to propagate
through substates.



4 Conclusions and Tool Sup-

port

The proposed approach allows parsing of
context-sensitive graph grammars satisfying a
layering condition, which reduces sources of in-
eÆciency in existing parsing algorithms. The
use of set nodes and complex predicates allows
a more compact notation, reducing the size of
the grammar, and reducing potential sources of
conicts in the parsing process.

Graph parsing facilities have recently been in-
tegrated in the environment AGG [3, 1] for alge-
braic graph transformation. Most of the graph
transformation approach described here (includ-
ing layers and management of semantics) is sup-
ported, apart from set nodes and complex pred-
icates. Set nodes in the presented rules may be
replaced by the usage of NACs to check that no
node of a given type has been left una�ected by a
transformation. Complex predicates can be sub-
stituted by preprocessing with another layer con-
taining one rule that computes the transitive clo-
sure of the abstraction relation.

AGG embeds management of attributes (stor-
ing, updating and checking values). In the appli-
cation to Statecharts, this allows the association
of actions with transitions, as well as the man-
agement of internal transition, so that the same
tool can be used to construct a Statechart, parse
and interpret it, and executing transitions on it.
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