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Abstract

The general idea of high-level replacement systems is to generalize the concept of

graph transformation systems and graph grammars from graphs to all kinds of

structures which are of interest in Computer Science and Mathematics. Within

the algebraic approach of graph transformation this is possible by replacing graphs,

graph morphisms, and pushouts (gluing) of graphs by objects, morphisms, and

pushouts in a suitable category. Of special interest are categories for all kinds of

labelled and typed graphs, hypergraphs, algebraic speci�cations and Petri nets. In

this paper, we review the basic results for high-level replacement systems in the

algebraic double-pushout approach in the symmetric case, where both rule mor-

phisms belong to a distinguished class M. Moreover we present for the �rst time

the asymmetric type of high-level replacement systems, where only the left rule

morphism K ! L belongs toM.
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1 Introduction

The general idea of high-level replacement systems is to generalize the concepts

of graph replacement form graphs to all kinds of structures which are of interest

in Computer Science and Mathematics (see [3,4,5] for more details). In this

paper we review the basic concepts and main results in the double-pushout

approach. This generalizes corresponding concepts and results in the algebraic

theory of graph grammars (see [1,2]) and can also be applied to algebraic

speci�cations and Petri nets (see [3,7,11]). The algebraic theory of graph

grammars has been revisited in [8] for asymmetric rules, where only the left-

hand side is injective. This type of graph grammars is generalized in this paper

to high-level replacement systems of type DPO0 and suitable HLR0-conditions

are formulated in order to be able to show the basic results concerning Church-

Rosser properties and parallelism. These basic results are the basis for the

algebraic theory of graph grammars (see [1,2]), where especially problems of

abstract semantics, parallelism and concurrency are studied. Part of these

more advanced results have been achieved already for type DPO (see [3,4,5]),

but it remains open to study them for type DPO0.

2 Basic HLR-concepts

In this section we review the basic concepts of high-level replacement sys-

tems (HLR-systems) including productions, derivations and systems. In what

follows, CAT is a category with a distinguished classM of morphisms.

De�nition 2.1 (Rules and Transformations) A rule p = (L
l
 K

r
! R)

in CAT consists of three objects L, K and R, called left-hand side, interface

(or gluing object), and right-hand side, respectively, and two morphisms K
l
!

L and K
r
! R with the morphism l 2 M.

Given a rule p = (L
l
 K

r
! R) a direct transformation G

p
=) H, from an

object G to an object H is given by the following two pushout diagrams (1)

and (2) in the category CAT:

L K R

G C H

l r

l� r�

g c h(1) (2)

The morphisms L
g
! G and R

h
! H are called occurrences of L in G and R

in H, respectively.

The existence of an occurrence of L in G is not suÆcient for the applica-

bility of p. In order to apply a rule to a given object, a gluing condition has

to be satis�ed (see [2]). In our abstract framework, the gluing condition is

satis�ed if there exists an object C such that the given object G becomes a

pushout object.
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Fact 2.2 (Applicability of Rules) Given a rule p = (L
l
 K

r
! R), an

object G and an occurrence L
g
! G of L in G, then the rule p is applicable to

G via L
g
! G if the following two conditions are satis�ed:

(i) There is an object C (called the pushout complement object) together with

morphismsK
c
! C and C

l�

! G, such that the square (1) in De�nition 2.1
is a pushout square.

(ii) There is an object H together with morphisms R
h
! H and C

r�

! H, such

that the square (2) in De�nition 2.1 is a pushout square.

If both conditions are satis�ed, a direct transformation G
p

=) H can

be constructed. It is unique up to isomorphism if and only if the pushout

complement construction is unique. Given a concrete category, the gluing

condition can be given in a constructive way, for graphs see [2], for algebraic

speci�cations see [3], for algebraic high-level nets see [11].

Now we are able to de�ne high-level replacement systems in an arbitrary

category generalizing the concept of graph grammars in the double-pushout

approach. The initial graph is replaced by a start object and the set of rules

consisting of a pair of injective graph morphisms is generalized by a set of

rules with morphisms in a distinguished classM.

De�nition 2.3 (High-Level Replacement System) Given a category CAT

together with a distinguished class of morphismsM, a high-level replacement
system H = (S;P) in (CAT;M) of type DPO0 is given by a start object
S 2 jCATj, and a set of rules P. The system H is said to be of type DPO if

for all p = (L
l
 C

r
! R) 2 P both morphisms l and r belong toM.

Example 2.4 (Special Categories) (i) If CAT is the category Gra of
directed graphs and graph morphisms as considered in [1] and M the
class of injective graph morphisms, then a high-level replacement system

in (Gra, M) of type DPO (resp. DPO0) is a graph grammar in the

double-pushout approach as studied in [1] (resp. [6,9,8]).

(ii) By choosing in the category Set of sets and (total) functions the classM

of injective functions, we obtain high-level replacement systems in (Set,
M) where the transformed high-level structures are sets. This case is of

interest, because graphs and several other high-level structures are based

on sets in each component.

(iii) Taking CAT to be the category Spec of algebraic speci�cations with suit-

able classesM of injective speci�cation morphisms leads to algebraic spec-
i�cation grammars in the sense of [7].

(iv) Taking CAT to be the category P=T of place/transition nets in the sense

of [10], where, however, the homomorphism f
�

P :P�

1 ! P
�

2 is generated
by a function fP :P1 ! P2 (see [3]), we obtain transformation systems
for Petri nets.
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(v) Taking CAT to be the category Ahl of algebraic high-level nets leads to

algebraic high-level net transformation systems in the sense of [11].

3 HLR-concepts for Independence and Parallelism

In this section we formulate the notions of sequential and parallel indepen-

dence of transformations for high-level replacement systems of type DPO and

DPO0, and we present two Church-Rosser theorems and the Parallelism the-

orem for high-level replacement systems, which are well-known in the case of

graph grammars [6,9,2,8]. For most of the proofs, however, we need additional

conditions, called HLR- and HLR0-conditions for systems of type DPO and

DPO0, respectively, for the category CAT. These conditions will be formu-

lated in section 4.

First of all we need categorical formulations of sequential and parallel

independence which are required in all these results. The intuitive meaning of

sequential independence of two direct transformations G
p1
=) H and H

p2
=) X

via the rules pi = (Li  Ki ! Ri) for i = 1; 2 is that the intersection of

R1 and L2 in H is included in the intersection of K1 and K2 in H. In other

words, the �rst rule deletes nothing that is needed by the second rule and

the second rule does not need anything produced by the �rst rule. In the

case of high-level-replacement systems of type DPO, this is equivalent to the

existence of suitable morphisms R1 ! C2 and L2 ! C1 as stated in the

following de�nition of sequential independence (see [1]). The formulation for

parallel independence is similar.

De�nition 3.1 (Sequential Independence) Given two direct transforma-

tions G
p1
=) H and H

p2
=) X as in the diagram:

L1 K1 R1 L2 K2 R2

G C1 H C2 X
= =

the transformations G
p1
=) H and H

p2
=) X are called sequentially indepen-

dent if there are morphisms R1 ! C2 and L2 ! C1, so that R1 ! C2 ! H =

R1 ! H and L2 ! C1 ! H = L2 ! H.

De�nition 3.2 (Parallel Independence) Given two direct transformations

G
p1
=) H1 and G

p2
=) H2 as in the diagram:

R1 K1 L1 L2 K2 R2

H1 C1 G C2 H2

= =

the transformations G
p1
=) H1 and G

p2
=) H2 are called parallel independent if

there are morphisms L1 ! C2 and L2 ! C1, so that L1 ! C2 ! G = L1 ! G
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and L2 ! C1 ! G = L2 ! G.

For the following local Church-Rosser and parallelism theorems we require

that a high-level replacement system of type DPO satis�es the HLR-conditions

and of type DPO0 satis�es the HLR0-conditions stated in section 4, where also

the main ideas for the proofs are given. Note, that for the DPO0-type we don't

have to require that the vertical morphisms are inM as required in some of

the graph cases in [8].

Theorem 3.3 (Local Church-Rosser I) Given parallel independent direct

transformations G
p1
=) H1 and G

p2
=) H2 , there is an object X and direct

transformations H1

p2
=) X and H2

p1
=) X, so that the transformations G

p1
=)

H1

p2
=) X and G

p2
=) H2

p1
=) X are sequentially independent.

Theorem 3.4 (Local Church-Rosser II) Given a sequentially independent

transformation G
p1
=) H1

p2
=) X there exist an object H2 and sequentially

independent transformations G
p2
=) H2

p1
=) X so that the transformations

G
p1
=) H1 and G

p2
=) H2 are parallel independent.

If the category CAT has binary coproducts, denoted by + we are able to

formulate parallel productions and transformations.

De�nition 3.5 (Parallel Rule) Given rules p1 = (L1
l1 K1

r1! R1) and

p2 = (L2
l2
 K2

r2
! R2), the rule p1+p2 = (L1+L2

l1+l2
 K1+K2

r1+r2
! R1+R2)

de�ned by binary coproducts in CAT is called the parallel rule of p1 and p2.

A transformation t:G
p1+p2
=) X de�ned by parallel rules is called a parallel

transformation.

Theorem 3.6 (Parallelism) If p1 and p2 are rules and p1 + p2 is the corre-

sponding parallel rule, then:

(i) Synthesis:

Given a sequentially independent transformation s:G
p1
=) H1

p2
=) X,

there is a parallel transformation t:G
p1+p2
=) X.

(ii) Analysis:

Given a parallel transformation t:G
p1+p2
=) X, there are two sequentially

independent transformations s1:G
p1
=) H1

p2
=) X and s2:G

p2
=) H2

p1
=) X.

(iii) Bijective correspondence:

There is a bijective correspondence between sequentially independent and

parallel transformations, that is, given a sequentially independent trans-

formation s the \synthesis" construction leads to a parallel transforma-

tion t and the \analysis" construction leads back to the same sequentially
independent transformation s (up to isomorphism), and vice versa.
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4 HLR- and HLR0-Conditions

In the following we �rst review the conditions, called HLR-conditions, which

are required in the proofs of the Church-Rosser Theorem I and II and the

Parallelism Theorem for high-level replacement systems of type DPO.

De�nition 4.1 (HLR-Conditions) Given a category CAT and a distin-

guished class M of morphisms in CAT, the following conditions are called

HLR-conditions for (CAT;M):

(1) Existence of semi-M pushouts.
For all objects A,B,C and morphisms C  A ! B, where at least one

is inM, there exists a pushout C ! D  B:

A B

C D

(1)

(2) Existence ofM-pullbacks.
For all morphisms B ! D and C ! D both inM, there exists a pullback

C  A! B as in diagram (1) above.

(3) Inheritance ofM-morphisms under pushouts andM-pullbacks.
(a) For each pushout square (1) as above

A! B 2 M implies C ! D 2 M.
(b) For each pullback square (1) as above B ! D 2 M and C ! D 2 M

implies A! B 2 M and A! C 2 M.

(4) M-pushout-pullback-decomposition.
For each diagram of the form:

A B

C D

E

F

(1) (2)

If (1+2) is a pushout square, (2) is a pullback square and A ! C,
B ! D, E ! F , B ! E and D ! F are M-morphisms, then also (1)
is a pushout square.

(5) Existence of binary coproducts and compatibility withM.

(a) For each pair of objects A, B there is a coproduct A + B with the

universal morphisms A! A +B and B ! A+B.

(b) For each pair of morphisms A
f
! A

0 and B
g
! B

0 inM the coproduct

morphism A +B
f+g
! A

0 +B
0 is also inM.

(6) M-pushouts are pullbacks.
Pushout squares ofM-morphisms are pullback squares.

Note that variants of these HLR-conditions have been stated in [4,5] in

order to prove local Church-Rosser and ParallelismTheorems in the framework

of high-level replacement systems. In fact, the conditions above imply those
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in [4,5], where they are called \HLR1" conditions.

Proof Ideas of Main Results for Type DPOwith HLR-Conditions. The

proofs of Theorems 3.3, 3.4 and 3.6 for high-level replacement systems of type

DPO can be found in [5], page 380, page 377 and page 382, respectively.

In particular, the proofs of the local Church-Rosser Theorem I and II make

use of (1) the existence of semi-M pushouts, (2) the existence of M pull-

backs, (3) inheritance ofM-morphisms under pushouts andM-pullbacks and

(4) M-pushout-pullback-decomposition. Condition (5) Existence of binary

coproducts and compatibility with M ensures that for each pair (p1; p2) of

productions there is a parallel production p1+ p2 which is again a production

in the sense of 2.1. Finally, statement (i) and (ii) in the Parallelism Theorem

hold provided that the DPO-conditions (1){(5) are satis�ed, and the Bijective

Correspondence (iii) holds provided that additionally, the DPO-condition (6)

M-pushouts are pullbacks is satis�ed.

If only the left morphism K ! L of a rule p is in M and the high level

replacement system is of type DPO0, then di�erent conditions, called HLR0-

conditions, are needed in the proofs of the local Church-Rosser and parallelism

theorems.

De�nition 4.2 (HLR0-Conditions) Given a category CAT (of high-level
structures) and a distinguished class M of morphisms in CAT the follow-
ing conditions are called HLR0-conditions for (CAT;M):

(1') Existence of arbitrary pushouts.
For all objects A,B,C and morphisms C  A! B there exists a pushout

C ! D  B.

(2') Existence of semi-M-pullbacks.
For all morphisms B ! D and C ! D where at least one is in M ,

there exists a pullback C  A! B as in diagram (1) above.

(3') Inheritance ofM-morphisms under pushouts and pullbacks.
(a) For each pushout square (1) as above

A! B 2 M implies C ! D 2 M.
(b') For each pullback square (1) as above

C ! D 2 M implies A! B 2 M.

(4') Semi-M-pushout-pullback-decomposition.

For each diagram (1+2) as above we have:

(a) If (1+2) is a pushout square, (2) is a pullback square and B ! E

and D! F areM-morphisms, then also (1) is a pushout square.
(b) If (1+2) is a pushout square, (2) is a pullback and pushout square

and A! C, B ! D and E ! F areM-morphisms, then also (1) is

a pushout square.

(5) Existence of binary coproducts and compatibility withM.

(6') Semi-M-pushouts are pullbacks.

7
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Pushout squares of morphisms, where at least one is inM, are pullback

squares.

For high-level replacement systems of type DPO0 the Church-Rosser The-

orem I and II and the Parallelism Theorem hold, provided that the HLR0-

conditions are satis�ed. The proofs of the Church-Rosser Theorem I and the

Parallelism Theorem follow by inspecting the proofs in [5], page 380 and page

382, respectively. For HLR-systems of type DPO0 we need a separate proof

of local Church-Rosser Theorem II which follows for type DPO by symmetry

from local Church Rosser Theorem I.

Proof Ideas of Main Results for Type DPO0 with HLR0-Conditions. The

proofs of Theorems 3.3 and 3.6 follow by inspecting the proofs in [5], page 380

and page 382, respectively; the proof of Theorem 3.4 is similar to the one for

Theorem 3.3, but requires stronger conditions: The proof of the local Church-

Rosser Theorem I makes use of (1') the existence of pushouts, (2) the exis-

tence of M pullbacks, (3) inheritance of M-morphisms under pushouts and

M-pullbacks and (4)M-pushout-pullback-decomposition. The proof the lo-

cal Church-Rosser Theorem II is similar to the one of the local Church-Rosser

Theorem I, but it requires the (1') the existence of pushouts, (2') the exis-

tence of semi-M pullbacks, (3') inheritance ofM-morphisms under pushouts

and pullbacks and (4') semi-M-pushout-pullback-decomposition. Condition

(5) Existence of binary coproducts and compatibility with M ensures that

for each pair (p1; p2) of productions there is a parallel production p1 + p2

which is again a production in the sense of 2.1. Finally, statement (i) and (ii)

in the Parallelism Theorem hold provided that the DPO0-conditions (1'){(4')

and (5) are satis�ed, and the Bijective Correspondence (iii) holds provided

that additionally the DPO0-condition (6') semi-M-pushouts are pullbacks is

satis�ed.

Note that for high-level replacement systems of type DPO0 the Synthesis

step may yield several distinct parallel transformations G
p1+p2
=) X via di�erent

occurrences of L1+L2 in G because for sequentially independent transforma-

tions G
p1
=) H

p2
=) X as in De�nition 3.1 there may exist several morphisms

L2 ! C1, so that L2 ! C1 ! H = L2 ! H (see Example 6.9 in [8]).

Fact 4.3 (Categories satisfying HLR- (resp. HLR0-) Conditions) Given

a category CAT and a distinguished class M of morphisms in CAT, the
HLR0-conditions for (CAT;M) imply the HLR-conditions. In particular,

the HLR- and HLR0-conditions are satis�ed for the following categories CAT

and distinguished classes of morphisms M discussed in Example 2.4 and in
Fact 4.8. Minjective denotes the class of all injective morphisms in the cor-

responding category and the index \strict" is explained below (see also [3]

Section 6.3):

(i) (Gra;Minjective),

(ii) (Set;Minjective),

8
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(iii) (Spec;Mstrict;injective),

(iv) (P=T;Minjective),

(v) (Ahl;Minjective;strict;isom),

(vi) (UGra;Minjective).

Proof. The proofs for type DPO with HLR-conditions are given in [3,4,5,11],

some time with slightly di�erent notation. The proofs for the categories (i),

(ii), and (iii) for type DPO0 with HLR0-conditions is given below, where the

proof for (iv) and (v) is based on that for (i), (ii), and (iii) in the corresponding

components. The proof for the category (vi) is given at the end of this section.

In the categories Set and Gra pushouts, pullbacks, and coproducts ex-

ist and their constructions is well-known. This implies HLR0-conditions (1'),

(2') and (5a) where the last two require those constructions for speci�c cases

only. Inheritance of injective morphisms under pushouts and pullbacks as

well as coproducts is well-known for Set and implies conditions (3') and (5b).

Moreover, it is easy to check explicitly the satisfaction of conditions (4') and

(6') for Set and injective functions. This implies, in turn, the corresponding

conditions for Gra because a graph morphism is injective and diagrams are

pushouts or pullbacks in Gra if and only if the edge and node components of

a graph morphism satisfy the corresponding property in Set. The proofs for

case (iii) are similar and are based on the fact that speci�cation morphisms

consist of two set funcions (between the sets of sorts and between the sets

of operators) satisfying additional \structural" constraints. More formally,

an algebraic speci�cation morphism f :SPEC1 ! SPEC2 between algebraic

speci�cations SPEC1 = (�1; E1) and SPEC2 = (�2; E2) is a signature mor-

phism f�: �1 ! �2 such that f
#

� (e) 2 E2 for all e 2 E1, i. e., the translation of

the equations in E1 is in E2. It is strict if, in addition, (f
#

� )
�1(E2) � E1, i. e.,

if any equation in SPEC2 formed only with operation symbols in the image by

f� of �1 is the translation of an equation already in SPEC1. As for the cases

of Set and Gra, the HLR0-conditions (1'), (2') and (5a) are already satis�ed

by the known construction of pushouts, pullbacks, and coproducts of alge-

braic speci�cations. Conditions (4') and (6') follow from the corresponding

properties in Set since they are based on injectivity and not on the strictness

of the morphisms. Finally, for (3'a), consider the pushout square (1) above.

If D contains an equation built only from (the image of) operators of C, by

the construction of pushouts in SPEC, the equation, if not (the image of an

equation) in C, could only be (the image of an equation) from B, hence using

only operators from B. But these operators could be common to B and C

only if (the image of operators) originally in A. But if A ! B is strict, any

equation in B built only with (the image of) operators from A must already

be (the translation of an equation) in A, hence in C. The remaining properties

can be proved in a similar way.

9
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We conclude the section with one more example of structure giving rise

to a high-level replacement system of type DPO0 that satis�es the HLR0-

conditions. The framework is that of undirected graphs, where each edge is

associated with a set of 1 or 2 nodes, its endpoints.

De�nition 4.4 (Undirected Graph) An undirected graph (U-graph) G is

a triple (GE; GN ; end), where GE and GN , are the set of edges and the set of

nodes, respectively, and end:GE ! P2(GN) is the function associating each

edge e to a subset end(e) of GN of cardinality 1 or 2.

As for the directed case, morphisms between undirected graphs must pre-

serve the structure.

De�nition 4.5 (U-graph morphism) Given two undirected graphs G =

(GE; GN ; end), and G
0 = (G0

E; G
0

N ; end
0), a U-graph morphism f :G ! G

0

is a pair (fE:GN ! G
0

N ; fE:GE ! G
0

E) such that end0(fE(e)) = fN(end(e))

(where the same notation is used to denote the obvious extension of fN to

subsets of N).

Composition of U-graph morphisms is de�ned componentwise. Composi-

tion is clearly associative and the pair (idE:GN ! GN ; idE:GE ! GE) is the

obvious identity.

Fact 4.6 The category UGra whose objects are the undirected graphs and
whose morphisms are the U-graph morphisms is closed under pushouts and

pullbacks.

For undirected graphs, it is easy to adapt the original Gluing Conditions

[2] to guarantee the applicability of rules.

Proposition 4.7 Given p = (L K ! R) and g:L! G, let

IDg = fx 2 L: 9y 2 L; x 6= y; g(x) = g(y)g,

DANGg = fn 2 LN : 9e 2 GE � gE(LE) such that gN(n) 2 endG(e)g.

Then the pushout complement C exists if and only if DANGg [ IDg � l(K).

An injective U-graph morphism is just a U-graph morphism where both

components fN and fE are injective functions. With arguments similar to

those used for directed graphs [5], it can be shown that (UGra gives rise to a

high-level replacement system satisfying the HLR0-conditions.

Fact 4.8 The categoryUGra with distinguished classMinjective of morphisms

forms a high-level replacement system of type DPO0 that satisfyies the HLR0-

conditions.

Proof. The construction of pushouts, pullbacks and coproducts for arbitrary

pairs of U-graph morphisms is based on the corresponding construction of

the underlying set functions in Set and thus the satisfaction of the structural

properties in the HLR0-conditions follows from the fact that (Set;Minjective)

satis�es the HLR0-conditions. Since a U-graph morphism is injective exactly

10
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when the edge and node components are, the inheritance (3') and the com-

patibility (5b) ofM morphisms follows from the corresponding properties of

Set as well.

5 Conclusion

In this paper we have reviewed how to achieve Church-Rosser and parallelism

results for HLR-systems in the double pushout approach, short HLR-systems

of type DPO. For HLR-systems of type DPO0, where only the left-hand side

of a rule belongs to a distinguished classM, we have presented corresponding

results for the �rst time. In fact, we have presented HLR0-conditions suÆcient

for type DPO0, which are slightly stronger than the HLR-conditions used for

type DPO. All our example categories, however, satisfy not only the HLR-,

but also the HLR0-conditions. Hence it remains open whether there are inter-

esting examples satisfying the HLR-, but not the HLR0-conditions.
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