
2001 Society for Design and Process Science
Printed in the United States of America

Transactions of the SDPS SEPTEMBER 2001, Vol. 5, No. 3, pp. 13-24

EVOLUTIONARY DEVELOPMENT OF BUSINESS PROCESS
CENTERED ARCHITECTURES USING COMPONENT

TECHNOLOGIES

The process centered paradigm changed the way of today’s business organizations. Both the
organizational structure and the IT-infrastructure are effected by this paradigm shift. For
companies, competitiveness means meeting the continuously changing business requirements,
concerning business environments and workflows . Structural modifications caused by
continuously changing business processes, and ad-hoc-modifications triggered by spontaneous
events provoke adaptability problems: in all these cases, the software system must be adapted
accordingly in order to be consistent with the modified business process. Because of the fact,
that that adaptation is costly, time consuming, alternatives paradigms have to be considered.
In this paper, we therefore propose to use an evolutionary strategy for the development of
business process based applications. In our approach, each modification request caused by a
change of the business process implies an evolution step in the architecture of the workflow
based applications. In this paper we present EVA , a strategy for forming such evolvable
architectures for communication and information infrastructure referred to as EVA . 1 The initial
models for EVA are business process models as a basis for modeling system architectures. We
use Petri nets for representing the dynamic characteristics of the business processes. The
evolution concept on the software architectural level is covered by the application of component
strategies. In this paper we will present a concept for the design of evolution in workflow
components (Padberg et al., 1999) and explain the composition of these components.

1 This paper describes the conceptual foundations and design aspects of EVA. In contrast, (Weber et al., 2000) focuses on the
formal foundations of EVA.

Asuman Sünbül
Kestrel Institute
Palo Alto, CA

Herbert Weber
Technical University Berlin
Computation and Information Structures
Berlin, Germany

Julia Padberg
Technical University Berlin
Theoretical Computer Science/Formal Specification Group
Berlin, Germany

Journal of Integrated Design and Process Science SEPTEMBER 2001, Vol. 5, No. 3, 14

1. Software Architectural Evolution
Today, enterprises must react to continuously changing requirements caused by the constant changes

of the market on which enterprises depend, changing society, and technology changes. In order to remain
competitive enterprises must adapt their business processes accordingly. Workflow management systems
(WMS) are often used to support the business processes of an enterprise, so that changes of these
involve changes in the WMS, and subsequently “spontaneous modifications” of the software system.
There exists two kinds of modifications:

• structural modifications, resulting from modifications of the business process itself and
• ad hoc modifications, which are caused by spontaneous events during a business process.

More precisely, the following problems occur in the context of these modifications:

1. Changing basic structures:
Apart from the reorganization process, information and communication technologies are introduced
into the enterprises in order to support the workflows. The technical infrastructure must be changed
accordingly.
2. Integration of new components:
The constant modification of the business processes require the integration of new system components
into existing software systems. In most cases, this means that already existing systems are combined
with newly developed systems.
3. The adjustments of systems cause problems:
Continuously necessary adjustments introduce software problems. Often, the adjustment possibility
of systems is not considered during the design conception time. This often results in the need for
redevelopment into a new software system. Therefore, paradigms for the development and creation
of adaptable, easily changeable software architectures, e.g. concepts for dynamically changing software
architectures are needed.
4. Necessity for solutions in the area of evolutionary, scalable software architectures:
Instead of exchanging whole system parts in large intervals with high risks, we argue to create
continuously maintainable systems. A step in this direction are reusable and exchangeable software
components.

Software system have somehow an architecture but not all systems support architectural integrity,
architectural consistency in structure, representation and documentation. The fact, that software systems
are more often modified than written and the fact that the assumption defined above presume easy
adaptability, modifiability and reusability, leads to the conclusion, that the common mainspring results
mainly from the design stage of the software system.

As a conclusion, the EVA project aims at developing prototypes for an evolutionary software architecture.
We argue, that software architectures are dynamic entities. Over time, systems need to be modified in
response to changing requirements and changing business processes. Evolution support concerns both
documentations as e.g. specifications, architectures, and other artifacts and the implementation of the
system. The EVA model illustrates how continuously changing business-processes can be reflected by an
evolutionary architecture, allowing ad-hoc modifications. Our evolutionary design principles follow beside
the static and dynamic EVA component definitions also systematic methodologies and observance of
invariance rules. In the sense of Continuous Software Engineering invariance means, that each step
within a software life cycle has to follow certain rules. These rules are subject to apply throughout the life
of a system. The following of invariance rules support the reusability of architectures.

Transactions of the SDPS SEPTEMBER 2001, Vol. 5, No. 3, 15

2. Related Work
 The Eva project aims to bring together the results of three research fields within software development

in order to make software evolutionary: Component-based software engineering , software architecture
and high-level Petri- nets are seen state of the art research mostly in parallel existence to each other:

Component based software development is a well accepted technology [(Goedicke et. al, 1991),
(Medvidovic et al., 1999), Oreizy et al., 1998),(Anlauff and Sünbül, 1999)]. However, most architecture
based approaches are not suitable for being used as design methodologies in the sense of the EVA
approach, because they do not provide abstraction mechanisms that are necessary for designing system
architectures. On the other hand, component technologies such as JavaBeans (Sun Microsystems, 1997),
DCOM/ActiveX (Sessions, 1997) or CORBA(Siegel, 1999) either don’t solve composition problems
(e.g. semantic conformity, consistency, or compliance with constraints and models), because they are
implementation techniques. Furthermore, an evolutionary design of the system can be achieved, if the
connections between these components are also treated as first class design entities on the same level as
components. This issue is neither supported by architecture based approaches nor any of the technologies
mentioned above. By making software architectures flexible, which means that we don’t construct
conglomerations and wild wiring between components, we expect to better support application evolution
and flexibility. In this case, the target system is open for future changes. A practical composition concept
must accommodate the use of existing and heterogeneous component applications. Therefore, in this
paper we propose the EVA approach, which supports this kind of developments.

FUNSOFT nets are high level Petri-nets which have been particularly developed to support software
process modeling. Their semantics is defined by Predicate/Transition nets. That enables to benefit from
standard analysis techniques approved for Predicate/Transition nets. In our approach, we use Feva-
Nets, a subset of FUNSOFT nets for a domain specific use.

3. Design of Business Process Centered Architectures
We understand business processes as sequences of activities with a certain start and endpoint. The

flow of the activities is controlled by so called actors. Business processes are further characterized as
consisting of structured and unstructured parts. The structured parts are predictable and planable activities
while the unstructured parts are unpredictable, spontaneous events. The predictable parts can also be
seen as the static parts of the system, the unpredictable parts as the dynamic ones.

In order to model a business-process oriented architecture based on process models as dynamic
parts, we propose the following concepts:

• For modeling business processes we use special high-level Petri-Nets, so called Feva-Nets offering
structured and formalized descriptions of workflows. Feva-Nets are characterized by the use of
temporal logic, different switching modes and typing of the places [(Sünbül, 2001), (Padberg et al.,
1999)]. The tokens of Feva-Nets carry value and are typed using a rich type system. Feva-Nets
have a flexible and adaptable firing behavior, and are tailored to model business processes in
business applications. A more detailed description of Feva-Nets can be found in (Weber et al., 2000).

• As the basic design model, we propose an evolutionary component based architecture . This
component model is referred to as EVA, supporting the idea of reusability and exchangeability of
system parts.

The paper is organized as follows: First we will introduce the EVA component model, then Feva-Nets
are described. Section 3 illustrates our approach using a “call center’’ as a case study.

Journal of Integrated Design and Process Science EPTEMBER 2001, Vol. 5, No. 3, 16

4. The EVA Component Model
Evolutionary design requires a clear separation between interdependencies and intradependencies of

the involved processes. This leads to the conclusion, that the intradependencies are best modeled with
component technologies. The intra dependencies are modeled with Petri-Nets, more detailed views will
be presented in the sequel.

We understand components as data capsules providing services. Plugs are given by interfaces,
which can be used from outside to access these services. Components are durable in that sense, that
they can exist independently from specific software development or execution environments. This property
requires components to be self-contained. Further, components should be assembled dynamically to form
applications. They must inter-operate according to a set of rules (Goedicke et al., 1991).

The component model of EVA distinguishes between Business Process Components, Business
Object Components and Code Components. Each component consists of an Export Interface describing
the services that are provided by the component, an Import Interface describing the services being
required by the component, and a Body containing the realization of the services listed in the export
interface. The export interface may additionally contain a list of constraints specifying the conditions on
how to use the exported services. The difference between code components and business objects lies on
a conceptual level: Code components represent basic functionality that is used in many different location.
Other than business object components, the services provided by code components can be seen as
library functions; business object components are closely related to a single aspect and/or concept of the
company’s applications. In case of business process components there are two specialties:

The body of a business process component contains Feva-Nets specifying the dynamic behavior of
the services provided by the component. Feva-Nets are high-level Petri-Nets, and therefore, a petri-Net
interpreter is also attached to each business process component in order to execute these nets.

In addition to the signatures of the required services, the import interface of the business process
components may contain an import net describing how the imported services are used within the
component.

The overall system is given by an instance of the class “Business Process” consisting of exactly one
business process component providing one service. The net contained in this component describes the
business process as a whole on an abstract level and will be refered to as “toplevel-net”.

The constraints contained in the export interface of a component are given in term of temporal logic
formuli. These constraints usually define dynamic aspects of the services, as in the following example:

S1 (int)(int)
S2 (int, int)(string)
always(S2 ⇒ once S1)

The exported services in this case are S1 and S2; S1 takes an integer value as input parameter and
returns an integer value, while S2 takes two integer values as input parameters and returns a string. The
constraints expresses, that, before S2 can be invoked, the service S1 must have been called at least once.
In general, the service signatures of export and import interfaces consist of the name of the service, the
parameter list for the input parameters, and the parameter list of the output parameters. Additionally, the
behaviour of the service wrt. the assignment of values to the output parameters:

All each output parameter contains a defined value of corresponding type the service returns; this is
the default case;

DET: only one of the output parameter contains a defined value, the others are undefined;
 Complex: a combination of All and DET

Transactions of the SDPS SEPTEMBER 2001, Vol. 5, No. 3, 17

In order to efficiently support the design of workflow based systems, EVA distinguishes between
three categories of software components occurring in an enterprise.

• enterprise-specific components realizing special “in-house” functions that correspond to the basic
entities of the enterprise’s business as, for example service requests, costs, and orders;

• branch of industry-specific components realizing more general functionality like general accounting
software, program development systems etc. In most cases, these components are purchased from
outside vendors.

• process-oriented components realizing the business processes occurring in an enterprise. These
components are usually part of workflow management systems.

According to these categories, the EVA model distinguishes between three kinds of components:
business object components for the first, business process components for the second and code components
for the third category, where business object components represent a special kind of code components.
In the EVA model the whole software system is given as a single business process component containing
the basic structure of the enterprise’s business process. This business process component will be
referred to as “top-level net”. The different kinds of EVA component are described in the following in
more detail. The EVA model does not exclude the use of externally developed components, but these
components have to follow some rules and guidelines. At least the provided/required services and constraints
on these have to be visible for the developer.

5. Business Process Components
Business process components are used to model the dynamic processes occurring in a system. In

its body, a business process component contains a Feva-Net describing the realization of the component.
Feva-Nets are a specialized form of FUNSOFT nets (see [(Gruhn, 1991), (Deiters and Gruhn, 1998)])
focusing on those features being necessary to make the EVA concept work. Feva-Nets can be transformed
to place/transition net (see (Reisig, 1985)). Hence, they can be easily checked for the validity of temporal
logical formulas. See (Weber et al., 2000) for a more detailed description of Feva-Nets. The signature of
S and Feva-Net N specified in body correspond in the following way:

• for each input parameter of S there exists exactly one place in N that is marked as input place;

• for each output parameter of S there exists exactly one place in N that is marked as output place;

• depending on the behavior of S (DET, ALL) the service terminates if all output places are marked
(ALL), or only one (DET)

Furthermore, the body of a business process component contains a Petri-Net interpreter (PNI) being
responsible for executing the specified petri net.

The import interface of a business process component may contain an import Feva-Net being used
as an abstraction of the processes using the imported services. In general, the import net represents an
abstract view of the net contained in the body of a business process component and focuses on the
relation of the imported services while the net in the body of the component may contain additional
transitions needed for the realization of the business process. More precisely, if SB is the set of symbols
used in the body Feva-Net NB, and SI the set of symbols used in the import Feva-Net NI , then S SB1 ⊆ .
Furthermore, if P is a predicate defined on symbols X S⊆ 1

 and the import net NI , written as P(NI ,X) ,
then is P(NI ,X) = P(NB,X), meaning that whenever a predicate holds in the import net, it also holds in the
body net.

Journal of Integrated Design and Process Science SEPTEMBER 2001, Vol. 5, No. 3, 18

The import nets are used to automatically check the consistency of component compositions: the
constraints given in the export interfaces of the imported services can be checked against the use of
these services in the business process components. See (Weber et al., 2000) for a more formal presentation
of this feature.

6. Business Objects
The OMG specification for interoperability defines a business object component as an accessible

object that is associated with an identifiable, real-world entity such as a customer or order, this definition
reflects also our understanding as follows: A business object component is the IS representation, from
requirements analysis through deployment and run-time, of an autonomous” business concept or process.
It consists of all the software artifacts necessary to express, implement and deploy the given autonomous
business concept as an equally autonomous, reusable elements of a larger information systems.

According to this definition, a business object component stays a coherent unit throughout the
development life cycle emerging at the end as a set of software components that can be independently
evolved while business requirements change and develop. The question why we regard business object
components as a separate unit is the fact, that there are causal dependencies between business processes
and software: we argue, that software and business processes are two different entities, but both are
changing (evolving) over time, and these changes are somehow linked with causal influences in both
directions. While designing the system software, one should consider, that a modification of the business
process should not lead to a modification of the system. The main issue of business object component is,
that it separates business logic from resources. This enables e.g. database schemas and technologies to
change without necessarily affecting business logic. We can state, that business object component form
the invariant parts of business processes.

As mentioned above, business objects represent the “static” parts of the company’s business. From a
technical point of view, these business objects are regarded as objects in the sense of object-oriented
programming and modeling concepts. In EVA, each of these objects is encapsulated in a separate
component where the export interface is given by the specification of the public methods of the object. In
contrast to other components regarded in EVA business objects carry an own state being reserved
throughout the life of the object. In EVA, the business objects are regarded as data structures and are
used to assign values and types to the services exported and imported by the other kind of components.
In particular, that means, that the tokens of Feva-Nets carry business objects as their values and are
typed accordingly. Consider, for example the net in Figure 1 expresses that a service S expects a business
object of type T1as input parameter and returns a business object of type T2 and type T3. The token in
the input place of S represents that the concrete business object x1 is accessible as input parameter. The
methods defined in T1 are available in the realization of S using the input parameter x1; additional
services from other business objects must be explicitly imported, for example for accessing instances of
T2 and T3.

7. Composition Concepts
In order to build a complete software system, the individual parts of the components must be joined

according to their service use. The resulting compositional structure must be hierarchical and cycle-free
(directed, acyclic graph). The renouncement of cycles is necessarily due to the import and export
interface check of the temporal-logic and the other conditions. For example, the import interface of a
component can contain “import nets”. These import nets can be used to automatically check whether a
given business process component fits in the import interface of the component containing the import net.

Transactions of the SDPS SEPTEMBER 2001, Vol. 5, No. 3, 19

That means, that in this special case the composition of components can be fully automated. The
mathematical formalisms were regarded in detail in (Padberg et al., 1999).

The composition concept presented in (Sünbül, 2001) can be used to describe the composition of EVA
components. Here the composition of components consists of two aspects that need to be verified:

• Does the signatures and the specifications of the imported services fit to the import interface of
 the importing component?

• Are the constraints of the exporting component fulfilled by the importing component?

In case of a business process component, the services of the import interface are given by the
transitions of the import net. Each transition represents an import service; the incoming edges represent
the input parameter and the outgoing edges represent the output parameter of the service. Assuming, that
the net in Figure 1 is the import net of some component A, then the corresponding import service of A
would be

S(in x1:T1,out x2:T2,out x3:T3)

As one can see, the “types” of the places are used as parameter types of the import method.
 In EVA, the requirements for export services are expressed by means of Feva-Nets; the constraints

of the use of export services of a given component are specified using temporal logic. A typical example
of such a constraint is the fact that an initialization service has to be called prior to any call to another
service of a component. If a another component imports services from a component with this kind of
constraint, the import net of the importing component can be used to check whether the constraint is
actually met.

The information needed for the composition is given in the export section of the component. If a
component is subject to be merged into new system, it should be ensured, that the component service
parameters are compatible with those of the system parameters. Besides these conditions, the call
sequence of the service calls, which are specified in EVA with temporal logic, have to be checked. Both
is to be checked automatically at compile time, that a run-time check can be avoided.

In (Weber, et al., 2000), the aspect of component composition especially for business process components
is described in more detail.

8. Case Study: A Calling Center
We illustrate our concept using the case study of a “calling center” of a telephone company. We have

chosen this case study, because it reflects the typical scenarios of many enterprises, e.g. customer care

S
T3

T2

T1
x1

x3

x2

Fig. 1 Using typed business objects as tokens in Feva-Nets.

and billing companies, telephone service companies, medical or technical emergency centers, police/fire
departments etc.

In our scenario, a customer of the calling center submits a service request which must be processed
within a short time period. In our case study, we will distinguish between two kinds of customer requests:
requests for ordering services and request for getting information about the current status of his/her data
stored in the data base of the calling center.

9. High-level Representation of the Calling Center
As mentioned in the previous section, the system itself is given by a top-level net, the transitions of

which are then refined by more detailed. The top-level net of the calling center is shown in Figure 2. The
top-level net describes how one request is processed by the system. This view represents at the same
time the architectural structure of the whole system: “DetermineCustomer”. “ServiceSelection”, and
“LogCosts” are sub-components connected with input/output arrow, which can be viewed as high-level
connectors. The request itself can consist of many sub-requests that must be processed one after the
other. The leftmost place represents the input place of the net. In the first step, the Determine Customer

Fig. 2 Toplevel net of the calling center.

Determine Customer

Cu stomerDB
.getCustomer[rq][cu,rq]

Service Selection

 [rq][co,rq]

LogCosts

CostProtocol.log
 [co,cu,rq][co,rq]

Costs

Customer

Request

rq

rq

cu

cu

Request

cu
rq

co

co

rq

rq

rq

Request

Journal of Integrated Design and Process Science SEPTEMBER 2001, Vol. 5, No. 3, 20

transition, information about the customer who submitted the request is queried from the customer data
base of the calling center. This is done using the getCustomer service of the CustomerDB code component.
As mentioned above, the labels of the edges represent business objects; their types are given by the label
of the corresponding place. For example, cu is a business object of type Customer and rq is a business
object of type Request. The Service Selection transition further analyses the request, executes it and
returns the computed costs for the request. This transition will be refined to a separate sub-net being
explained below. The transition LogCosts collects the information about the requests and logs the costs
for it using the log service of the code component CostProtocol. If the request contains further parts,
these will be processed one after the other which is expressed by the outgoing arrows from the Log
Costs transition.

10. The Business Process Component for selecting services
The business process component Service Selection is used in the top-level net for the determination

of the kind of request and for calculation of the cost for the request dependent on the type. The net is
given in Figure 3. The net has one input place and two output places which are marked by the doubled
circle. This corresponds to the representation of the component in the high-level net. The request is first
categorized using a service of the code component Service Manager. The corresponding transition is of
type DET meaning that only one of the output places is filled with an business object token rather than
both as it would be the case for conventional transitions. Depending on the category either the Informa-
tion Service or the OrderService is used to calculate the costs of the service. These transitions are
refined as business process components; their description is not contained in this paper and can be
found in (Padberg et al., 1999). The notation *ci means that a list of cost items is given as output of the
service components and forms the input to the SumCostItems transition being responsible for calculating
the costs of the services using the sum service of the SumCost Items code component.

Fig. 3 The Business Process Component “Service Selection.

Request

CostItem

Costs

InformationRequest

OrderService

 [rq][rq,*ci]

InformationService

 [rq][rq,*ci]

SumCostItems

 CostProtocol
 .sum[*ci][co]

Determine Request Type

ServiceManager
.categorizeReq[rq][rq1,rq2]

Request

OrderRequest

rq

rq
rq1

rq2

*ci

rq

rq

*ci

co

*ci

rq

Transactions of the SDPS SEPTEMBER 2001, Vol. 5, No. 3, 21

Figure 4 contains an overview of the components involved in the calling center example. In this figure,
only the signatures of the components are regarded; the arrows represent the connectors from the export
services to the import services.

11. Evolutionary Change
We want to consider now the case, that a new requirement concerning the toplevel business process

is imposed on the system: Checking whether the customer is blacklisted, and if yes, deny any access to
the services of the calling center. This evolutionary change can be modeled by simply adding to the
toplevel Feva-Net (Figure 2) a transition representing this additional check. The concrete way of how
this is done is not important in this case, it is obvious, that these kind of evolutionary changes can directly
be modeled using the Feva-Nets and are thus immediately realized in the system’s architecture without
changing other parts of the system.

exports: ServiceSelection(in Request, out Costs, out Request)

 ServiceSelection

imports: categorizeRequest(in Request, out InformationRequest, out OrderRequest)
 InformationService(in Request, out Request, out List[CostItem])
 OrderService(in Request, out Request, out List[CostItem])
 sum(in List[CostItem], out Costs)

exports: ProcessRequest(in rq:Request)

 Calling Center

imports: getCustomer(in Request, out Customer, out Request)
 ServiceSelection(in Request, out Costs, out Request)
 log(in Costs, in Customer, in Request, out Customer)

exports: getCustomer(in Request, out Customer,
 out Request)

 CustomerDB

imports:

exports: log(in Costs, in Customer, in Request,
 out Customer)

 CostProtocol

imports:

Fig. 4 Component diagram of the calling center example.

Journal of Integrated Design and Process Science SEPTEMBER 2001, Vol. 5, No. 3, 22

12. Conclusions
An EVA based system is composed from individual components, in order to enable high evolutionability

of the system. This enables, that in case of modifications or exchange of system parts, only individual
components are involved, wide major parts of the system remain unaffected. In order to ensure a high
reusability of the components, we have defined three types of components. All these components have
the equivalent structure to the outside, but they differ in realization. To better help support evolution we
propose to structure also the communication between the components. Structurally regarded, there are
two kinds of communication possibilities in EVA, namely vertical and horizontal communication. The
horizontal communication can only be done by using a business object component.

This paper illustrates how components are composed using the EVA approach: Business objects are
used as invariant parts of the system and represent tokens in the nets, while the business process
components represent those parts of the system who are subject to frequent changes. Evolutionability
can be described as the ability to anticipate the locations of changes in a system. For industrial companies
that means that a set of system parts are more or less invariant, like for example the customer or the
request, while other might change quite frequently, like the workflow within the company.

13. References

Anlauff, M. and Sünbül, A., 1999, “Domain-Specific Languages in Software Architecture”. Integrated
Design and Process Technology (IDPT).

Deiters, W. and Gruhn, V., 1998. “Process management in practice - applying the FUNSOFT net
approach to large scale processes”. In Automated Software Engineering.

Deiters, W, Gruhn, V., and Weber, H.,1994. “Software process evolution in MELMAC”. In Daniel E.
Cooke, editor, The Impact of CASE on the Software Development Life Cycle . World Scientific, Series
on Software Engineering and Knowledge Engineering.

Ernst, M., Cockrell, J., Griswold, W.G., and Notkin, D., 1999. “Dynamically discovering likely pro-
gram invariants to support program evolution”. In Proceedings of the 21st International Conference
on Software Engineering, pages 213-225. ACM Press.

Goedicke, M., Schumann, H., and Cramer, J., 1991. “On the specification of software components”.
In Jean- Pierre Finance, editor, Proceedings of the 6th International Workshop on Software
Specification and Design, pages 166-174, Como, Italy. IEEE Computer Society Press.

Gruhn, V., 1991, “Validation and verification of software process models”. Lecture Notes in Compu-
ter Science, Vol. 509.

Harrison R., Sheppard M., and Daly, J.W.,1997, “Process modeling and empirical studies of software
evolution”. In Proceedings of the 19th International Conference on Software Engineering (ICSE
’97), pages 675-675, Springer Verlag.

Medvidovic, N., Rosenblum, D.S., and Taylor, R.N., 1999, “A language and environment for
architecture-based software development and evolution”. In Proceedings of the 21st International
Conference on Software Engineering, pages 44-53. ACM Press.

Muller, H.A.,1993. “Experimental software engineering should concentrate on software evolution”.
Lecture Notes in Computer Science, 706.

Neighbors, J., 1992. “The evolution from software components to domain analysis”. International
Journal of Software Engineering & Knowledge Engineering, 2(3):325-354.

Transactions of the SDPS SEPTEMBER 2001, Vol. 5, No. 3, 23

Oreizy, P., Medvidovic, N., and Taylor, R., 1998. “Architecture-based runtime software evolution”. In
Proceedings of the 20th International Conference on Software Engineering, pages 177-186.
IEEE Computer Society Press.

Padberg, J., Sünbül A., and Weber, H., 1999, “EVA: Evolutionsfähige Architektur für Kommunitions-
und Informations-Infrastrukturen”. Technical report, Technical University Berlin, 1999.

Reisig, W.,1985. “Petri Nets”. Springer Verlag.

Sessions, R., 1997. “COM and DCOM: Microsoft’s Vision Distributed Objects”. John Wiley & Son.

Siegel, J., 1999, “Component and object technology: A preview of CORBA 3”. Computer 32,5 (May
1999), 114-116

Sun Microsystems, 1997. “JavaBeans™”, Graham Hamilton (ed.) Version 1.0.1

Sünbül, A., 2001, “Architectural design of evolutionary software systems in Continuous Software
Engineering”. PhD thesis, TU-Berlin.

Ward, M. and Bennett. K., 1995, “Formal methods to aid the evolution of software”. International
Journal of Software Engineering and Knowledge Engineering, 5(1):25-47.

Weber, H., 1999, “Continuous engineering of information and communication infrastructures”. Lecture
Notes in Computer Science, 1577:22-29.

Weber, H., Padberg, J., and Sünbül, A., 2000, “Petri net based components for evolvable
architectures”. IDPT.

Journal of Integrated Design and Process Science SEPTEMBER 2001, Vol. 5, No. 3, 24

