
Transforming Spei�ation Arhitetures byGenGED?Roswitha Bardohl, Claudia Ermel, Julia PadbergInstitut f�ur Softwaretehnik und Theoretishe InformatikTehnishe Universit�at Berlin, Germanyfrosi,lieske,padbergg�s.tu-berlin.deAbstrat. This ontribution onerns transformations of spei�ationarhitetures whih are diagrams of sub-spei�ations. The graph of adiagram presents the arhiteture: the nodes orrespond to the sub-spei�ations and the edges to spei�ation morphisms. We do not �xa spei� visual spei�ation tehnique, so this approah is in the tra-dition of high-level replaement systems. We disuss how to transformsuh spei�ation arhitetures and distinguish loal and global hanges.The main emphasis of this ontribution is the spei�ation and trans-formation of spei�ation arhitetures using GenGED. In GenGED, avisual language (VL) is de�ned by a visual alphabet and a visual syntaxgrammar. We de�ne a VL for spei�ation arhitetures by omposingVLs for graphs and for P/T nets enhaned by Petri net morphisms. Fromthis VL de�nition a syntax-direted editor is generated supporting theediting of onsistent spei�ation arhitetures. Loal and global hangesof a spei� spei�ation arhiteture then an easily be de�ned as trans-formation rules in our VL and visualized in the GenGED environment.1 IntrodutionThe need for ontinuous development of software systems results mainly fromthe hanging demands of the market and the tehnologial advanes. We suggesta layered approah that allows the simultaneous desription of a system onan arhiteture and a spei�ation level. Both levels are presented using anadequate visual modeling tehnique. Based on this approah we suggest a rule-based desription of the model's evolution.Two-Level Visual Design of Distributed Systems Software arhiteturesdesribe the di�erent ways a system an be built. The larger a system is the moreimportant this level of desription is. Otherwise the detailed spei�ation of thesystem, namely the di�erent models, are indispensable. Our approah integratesthese two levels and hene shows their relation. We propose a two-level represen-tation for both the arhiteture and the spei�ation of subsystems. This allows? This work is part of the joint researh projet \DFG- Forshergruppe Petri-netz-Tehnologie", supported by the German Researh Counil (DFG), and theGRAPHIT projet, supported by DLR and CNPq.



the abstrat representation as a graph as well as the detailed spei�ation of thesubsystems based on some adequate visual spei�ation tehnique. The arhite-ture is given as a spei� graph whereas at spei�ation level the models are givenin terms of a visual modeling tehnique. Fig. 1 illustrates the two-level onept.
architecture level

specification levelFig. 1. Two Levels
The above graph represents the arhiteture, whereas thegraph in the bottom represents the spei�ation levelgiven by di�erent visual models and their relations. Thesevisual models may be given in terms of graphs (then wehave distributed graphs in the sense of [14℄), Petri nets,algebrai spei�ations et. The meaning of suh a spe-i�ation arhiteture is the overall spei�ation it is in-tended to desribe. Hene we de�ne the semantis of aspei�ation arhiteture as the omposition of the sub-spei�ations aording to the arhiteture graph.Rule-Based Model Evolution In order to takle the problem of hanginglarge and omplex systems we use rules to transform our two-level desription.These rules an obviously desribe two di�erent kinds of transformation. Chang-ing the arhiteture implies hanges on the spei�ation level as well. Changesof the models at the spei�ation level may but need not indue hanges of thearhiteture. Hene we introdue global hanges that ause e�ets on both lev-els (f. Fig. 2). In ontrast, loal hanges only work on the spei�ation level.We suggest only to oneive global hanges as evolution steps. Moreover wean distinguish loal rules that desribe synhronous hanges of several sub-spei�ations.Our approah generalizes the advantages of graph transformation to otherspei�ation tehniques. We sketh the basi ideas of rule-based modi�ation interms of high-level replaement systems. The left-hand side L of a rule spei�esthe parts to be deleted and the right-hand side R those to be added. Note thatin ontrast to the graph transformation approah rules and transformations arenot used for the desription of the system behavior but for the desription ofits hanges. The arhiteture level is represented by diagrams, where entitiesdesribing the subsystems are related to the spei�ation of the orrespondingsubsystems at the spei�ation level. We an distinguish two kinds of rules:loal and global rules. Loal rules imply identities at the arhitetural level buthanges at the spei�ation level. Global rules imply hanges on both levels.

RL

S’S Fig. 2. Global Rule
Fig. 2 illustrates the basi idea.There we desribe a hange on bothlevels. A node on the arhiteturallevel is deleted and orrespondinglythe spei�ation of that subsystemis deleted at the spei�ation level.Moreover, a subsystem is added.Hene a new spei�ation is addedas well and the spei�ation S is re-plaed by S0. The semantis of the



spei�ation arhiteture is preserved. This means that the omposed spei�-ation from the resulting spei�ation arhiteture is the same as transformingthe semantis of the soure arhiteture. This ensures the ompatibility with theusual transformation of spei�ations in terms of high-level replaement systems.Related Work Several di�erent researh areas overlap with our work inludingarhiteture design tehniques, arhiteture transformation, distributed systemsengineering and evolutionary system development. As the main fous of ourwork lies in the evolution of visual models, the areas of software visualizationand visual languages also relate to our approah. An overview on arhiteturedesription languages (ADLs) based on omponents and onnetors an be foundin [11℄.In Objet Coordination Nets (OCoNs) [5℄ a UML arhiteture desription isombined with Petri nets speifying the omponent behavior. The OCoN envi-ronment supports the visual development of OCoNs but not their relation to thearhitetural level. Other examples for visualizing arhiteture and (restritedforms of) their evolution an be found in ADL environments [2℄. None of thesetools allow a generi desription of the visual model as we suggest in our ap-proah using GenGED.We model evolution steps by graph transformation whih is also subjetto onsiderable researh. Software arhiteture reon�guration based on graphtransformation is presented by Wermelinger and Fiadeiro in [15℄. They introduea uniform algebrai framework based on ategory theory where an arhitetureis given as a graph whose nodes are re�ned to programs. Reon�guration stepsare modeled by onditional graph rewriting rules. In [14℄, Taentzer introduesDistributed Graph Transformation. In this formal spei�ation tehnique anarhiteture level (network graph) and a omponent level (loal graphs) are dis-tinguished. This work is extended in [7℄ integrating distributed graph grammarsand onsisteny heking rules. Our two-level approah is based on this workbut allows more exible visualization tehniques than graphs for both levels.Related approahes are given in [6, 4, 9, 10℄ where software arhiteturegraphs are transformed to adapt them to new requirements or to redue theomponent interrelations. In our paper, we restrited to "editor transforma-tion", i.e., hanges are performed in the model editor. Another formal approahto software arhiteture transformation is given in [8℄. Here properties of ompo-nent interrelations (i.e., invariants and dependenies) are formalized by a modallogi to enable onsistent modi�ations in evolution steps. These invariants alsomight be expressed within graph rules for visual modeling.2 Formal FoundationsFor our approah of a Two-Level Visual Design of Distributed Systems we use thebasi ideas of the algebrai approah to graph transformations in order to suggesta rule-based desription of system hanges and evolution. Here we onentrate onthe basi onepts of our approah and do not disuss their formal representation;



this is the topi of another paper submitted to ICGT [12℄. So, this approah isbased on [14℄.In [14℄ the dynami network topology of a possibly open distributed systemis desribed on the arhitetural level whereas the evolving data and systemstrutures in the loal subsystems are given on the spei�ation level. The spe-i�ation level is related to the arhitetural level via ommon interfaes. Again,di�erent visual software arhiteture modeling languages [13℄ should be sup-ported by our approah for the arhitetural level, as well as ommon visualmodeling languages for the spei�ation level. Therefore, we generalize [14℄ inallowing arbitrary spei�ation tehniques instead of graphs for the spei�ationlevel. Analogously to distributed graph transformations [14℄ the arhiteturaland the spei�ation level an be related by funtors. The arhitetural level isrepresented by diagrams, where entities desribing the subsystems an be relatedby orresponding diagram funtors.Main Conept 1 (Spei�ation Arhiteture).A spei�ation arhiteture onsists of an arhiteture graph G = (GN ; GE ; s; t)and of spei�ations and spei�ation morphisms. To be more preise we havefor eah node i 2 GN a spei�ation �(i) in a given spei�ation ategory Cat.For eah edge e 2 GE from the soure s(e) = i to the target t(e) = j thereis a spei�ation morphism �(e) : �(i) ! �(j) in the spei�ation ategoryCat. This relation is expressed by a diagram funtor � : FG! Cat where FGis the ategory of �nite graphs. � : FG ! Cat presents the diagram of thearhiteture graph G in the spei�ation ategory Cat. 4The semantis of an arhiteture an be onsidered as the omposition ofthe sub-spei�ations. The gluing of spei�ations is ahieved by the olimitonstrution (the preise de�nition is given in [12℄). The involved morphismsonstitute the way the gluing is done.Main Conept 2 (Semantis of a Spei�ation Arhiteture).The semantis of a spei�ation arhiteture � : FG ! Cat is given by thegluing of all sub-spei�ations along the morphisms. This an be ahieved in thefollowing way: We �rst onstrut the disjoint union of all sub-spei�ations foreah node. Then we glue reursively those parts of sub-spei�ation that are thetarget of morphisms with the same soure. 4Subsequently we disuss these two onepts in terms of an abstratexample. That is we do not assume a spei� spei�ation tehnique; itmight be graphs, Petri nets, algebrai spei�ations, COMMUNITY pro-grams, or something else. The main feature is that we have distint ab-stration levels of representation. Namely, we present an arhiteture graphand orresponding diagrams of spei�ations, that is the left olumn inFig. 3. Its formal denotation is depited in the middle olumn and itsfuntorial presentation in the right olumn. The rows denote the following:the top row depits the arhiteture graph, the middle row the spei�a-tion diagram and the bottom row the omposed system, i.e. the semantis.
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Fig. 3. Abstration Levels ofSpei�ation Arhitetures

In Fig. 3 there is a simple graph inthe ategory FG. This graph on-sists of nodes f1; 2; 3g and the edgesin between. It is the arhiteturegraph whih is mapped by the dia-gram funtor � to the spei�ationdiagram �(G) in ategory Cat.The spei�ation diagram �(G)onsists of spei�ations sp1, sp2and sp3 and two spei�ation mor-phisms in between. The semantisis given in the lowest row. It isthe result of the gluing, namely itis the spei�ation sp4. A onreteexample, where Petri nets are usedas spei�ations, is illustrated inFig. 4.The transfer to high-level replaement (HLR) systems auses a representa-tion independene in the sense that we may hoose the spei�ation tehnique.As in [14℄ we need to ensure spei� onditions in order to have pushouts ofspei�ation arhitetures or more preisely pushouts of diagram funtors. Nev-ertheless, we have a HLR-ategory (namely HLR0), and we have transformationsprovided that the pushout onditions are satis�ed. In [14℄ gluing ondition andappliability are given expliitly. We obtain the well-known transformations inthe double-pushout approah. We distinguish two levels, namely the level of thearhiteture graph and the level of the spei�ations. Hene we an qualify dif-ferent types of rules; those that leave the arhiteture intat are alled loalrules. Those rules that hange the arhiteture graph are alled global. Globalrules neessarily hange the diagram of spei�ations and hene may hange thespei�ations themselves. Analogously to [14℄ we an identify further those rulesthat desribe synhronized hanges of sub-spei�ations as speial lass of loalrules. Examples are given subsequently in Setion 3.The ompatibility with the semantis of the arhiteture, that is the ompo-sition of all sub-spei�ations, is ensured in [12℄. This result is ruial as it relatesour approah to the usual transformation of spei�ations. Hene it guaranteesthat the result of an arhiteture transformation is the same as the orrespond-ing transformation of the omposed spei�ation.Main Result in [12℄(Compatibility of Semantis Constrution with Transformation).Given a transformation of a spei�ation arhiteture �G p=) �Hwith p = (�L  �K ! �R) then we have as well a transformationCOLIM(�G) COLIM(p)=) COLIM(�H)with COLIM(p) := (COLIM(�L) COLIM(�K)! COLIM(�R)): 4



3 ExampleAs running example we use the well-known spei�ation of a produer/onsumersystem. This example is (like the reader/writer protool) one of the basi modelsfor ommuniation-based systems: two independent agents (the produer P andthe onsumer C) ommuniate via a hannel (the bu�er B). The produer sendsmessages (writes) to the hannel, and the onsumer reeives (reads) them fromthe hannel1.
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Fig. 4. A Produer/Consumer System

In our example illustrated inFig. 4 the sub-spei�ations areplae/transition (P/T) nets, so theorresponding ategory is the at-egory of P/T nets. The nets arethe objets and the P/T nets mor-phisms are the edges in between.Aording to Conept 1 the spe-i�ation arhiteture onsists of anarhiteture graph, spei�ationsand spei�ation morphisms: eahnode of the arhiteture graph in-diates a sub-spei�ation (�(i)),namely a produer P , a onsumerC and a bu�er B, and eah edgeorresponds to a spei�ation mor-phism in the orresponding ate-gory. The semantis of the spei�-ation arhiteture is given by theomposition of the spei�ations along the given morphisms.Now we extend the produer/onsumer example introduing a global and aloal rule. As mentioned before loal rules indue hanges on the spei�ationlevel only, whereas global rules imply hanges on both levels, namely the spei-�ation level and the arhiteture level. Global rules usually are rules that allowfor the insertion and onnetion of new produers, onsumers, and bu�ers.
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L IFig. 5. Global Rule adding a newConsumer
Fig. 5 illustrates a DPO-rule forinserting a new onsumer. Pleasenote that the rule onsists of ar-hiteture graphs (and graph mor-phisms) as well as spei�ations(and spei�ation morphisms) a-ording to Conept 1. The rule'sleft-hand side L demands for its ap-pliation the existene of a bu�er.This bu�er is preserved by the rule1 Please note that in our example the arrows desribe "being used" relations.



indiated by the omponent I . By the right-hand side R a new onsumer C isinserted and onneted to the bu�er.Similar to the rule in Fig. 5 are rules for inserting a new bu�er or a newproduer. Deletion of omponents is ahieved reversing the orresponding rules,i.e. exhanging the left- and the right-hand sides of the rules.In Setion 2 we mentioned the possibility to desribe loal hanges of sub-spei�ations. Fig. 6 illustrates suh a rule hanging the spei�ation of a pro-duer. The rule needs for its appliation the existene of a spei� produerspei�ation presented in the rule's left-hand side L (the produer loads in eahprodution yle arbitrarily one of the two bu�ers). The two bu�ers and a partof the produer are preserved indiated by I (one transition and some edges areremoved). By applying this rule a new transition and edges are inserted as shownin the rule's right-hand side R (in eah yle both bu�ers are loaded).
IL RFig. 6. Loal Rule hanging the Spei�ation of a ProduerAs stated in the main result in Setion 2 we obtain the same result, inde-pendent whether we �rst onstrut the semantis and then apply the rules, or ifwe �rst apply the rules and then onstrut the semantis. For illustration let usonsider Fig. 7. Fig. 7 (a) shows the appliation of the global rule in Fig. 5 to thespei�ation arhiteture in Fig. 4. This yields the insertion of a new onsumeralled C2. Fig. 7 (b) shows the orresponding semantis.
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(b)(a)Fig. 7. Appliation of the Global Rule in Fig. 5The brief example of this setion illustrates the formal basis of our approah.For examples using other spei�ation tehniques, the reader is referred to thedisussion in [12℄. In the following setion we suggests a graphial editor fortwo-level arhitetures using GenGED .



4 Speifying Two-Level Arhitetures using GenGEDThe GenGED approah developed at the TU Berlin [1℄ allows for the generidesription of visual languages (VLs) and visual environments based on VL spe-i�ations. The simplest form of a VL spei�ation we onsider here onsists ofa visual alphabet and a visual syntax grammar. The de�nition of a VL spei�-ation is based algebrai graph transformation and graphial onstraint solving.VL sentenes (diagrams) an be derived by applying the grammar rules in thesyntax grammar to its start diagram.In general a diagram onsists of a set of symbol graphis that are spatiallyrelated. We o�er graphial onstraints for these spatial relationships. Symbolgraphis and graphial onstraints onern the layout of diagrams, alled on-rete syntax. The logial part of a diagram (its symbols independent of theonrete layout) is alled abstrat syntax. The ombination of both syntatiallevels, alled visual syntax level, is represented by attributed graphs.4.1 The Visual AlphabetA visual alphabet establishes a type system for symbols and links, i.e. it de�nesthe voabulary of a VL. It an be represented as a type graph. Here as wellwe distinguish the abstrat and the onrete syntax level. Symbol graphis andgraphial onstraints speify layout onditions. In addition to logial (data) at-tributes like, e.g., a name for a plae in a Petri net, symbol graphis de�ne afurther kind of attributes for all abstrat symbol nodes.Graphial onstraints speify layout onditions. They are given by equationsover onstraint variables denoting the positions and sizes of graphial objets.The set of all onstraint variables and onstraints de�ne a onstraint satisfa-tion problem (Csp) that has to be solved by an adequate variable binding in adiagram onforming to the alphabet.We now develop the visual alphabet for the two-level spei�ation arhite-ture language. We begin by de�ning two separate alphabets, one for a speialkind of graphs (the arhitetural level) and one for plae/transition (P/T) netsaording to the spei�ation level. As a seond step we enhane the P/T netalphabet in order to be able to express P/T net morphisms between di�erentnets and ombine the two alphabets.De�nition 1 (Alphabet for Arhiteture Graphs).In arhiteture graphs, we have only the symbol types Node and Edge. Nodesare drawn as irles and may be attributed by strings (their names) whih areplaed inside the node irles. Edges are direted ars onneting two nodes.The visual alphabet of the language of arhiteture graphs is shown in Fig. 8(a). The dashed arrows mark the onnetions of the abstrat syntax and theonrete syntax level. Link onstraints are illustrated by dotted arrows betweenthe symbol layouts. 4
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StringFig. 8. Alphabets for Arhiteture Graphs (a) and for P/T Nets (b)De�nition 2 (Alphabet for P/T Nets).The visual alphabet of the P/T net language, alled P/T net alphabet, is il-lustrated in Fig. 8 (b). We have attribute symbols for plae names PN and fortransition names TN whih are linked to the symbol types Plae resp. Transition.Eah name is given by a String data type. To ompute the number of plaes ina transition environment (pre domain and post domain), a transition symbolarries the integer attributes preNo and postNo. These numbers are needed laterto ontrol the insertion of mappings between transitions.We distinguish ars that run from plaes to transitions (PreAr) and ars thatrun from transitions to plaes (PostAr). Both kind of ars have a ertain soureand target symbol where they are linked to (depited by the edges spt, tpt, ttp,stp, short for soure/target of plae-transition ar resp. transition-plae ar). Tokeep the alphabet simple, we restrit to unmarked P/T nets where the uniformar weight is "1", and therefore ar insriptions are omitted. The onstraintsfore a spei� layout of nets typed over the P/T net alphabet. For example,one onstraint ensures that the plae name is always \near" the ellipse (thesymbol graphi for Plae symbols). 4Sentenes over the P/T net alphabet de�ned so far are unmarked P/T nets(to keep the example simple; for a spei�ation of marked P/T nets in GenGEDinluding their �ring behavior see [3℄). The visual language we aim to speify,also should provide means to express morphisms between di�erent P/T nets.This means, we have to enhane the alphabet from Def. 2 to inlude sentenesonsisting of more than one net, and to allow morphism between di�erent nets.We all suh a relation of di�erent P/T nets P/T net systems. Hene, for thede�nition of an alphabet for our two-level spei�ation arhiteture language,we ombine the alphabets for arhiteture graphs and for P/T net systems.De�nition 3 (Alphabet for Two-Level Language).We introdue the symbol Net into our P/T net alphabet where an instanein a sentene is linked to all objets (e.g. plaes, transitions) belonging to thesame net. The symbol Net is visualized by a dashed frame around all its netobjets. Furthermore, we introdue the symbol Morphism linking one Net symbolto another. Suh a morphism is visualized by a double arrow from one dashedNet frame to another.



On the Petri net level a morphism is given by mappings from all net objetsof the soure net to net objets in the target net. The mappings have to be typeompatible (plaes are mapped to plaes, transitions to transitions and ars toars of the same type). I.e., mappings have to be ompatible with struture(the soure/target node of an ar is mapped to the soure/target node of thear's image) and they have to preserve the �ring behavior (the transitions aremapped to transitions with the same number of ingoing and outgoing ars only).We ensure the type ompatibility by introduing the symbol types PlMap, TrMap,PreMap, PostMap for the di�erent net objets. The other onditions are ensuredby the grammar rules introdued later for modifying diagrams of the language.The resulting alphabet for P/T net systems now is ombined with the alpha-bet for arhiteture graphs, i.e. eah node from the arhiteture level is linked toa net at the spei�ation level. The omplete alphabet of the ombined languagesis shown in Fig.9.
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De�nition 4 (P/T Net Syntax Grammar).Fig. 11 illustrates a syntax grammar for our P/T net language based on the visualalphabet in Fig. 8 (b). In this P/T net grammar the start sentene onsists ofthe empty net (i.e. a single Net node).
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Fig. 11. Visual Syntax Grammar for the P/T Net LanguageThe �rst rule InsPlae(pn) supports the insertion of a plae together with aplae name; the NAC requires that a plae with the user-de�ned name given inthe parameter variable pn is not existing so far in the net the rule is applied to.The seond rule analogously supports the insertion of a transition symbol. Herethe integer attributes preNo and postNo are initialized by 0 as the newly insertedtransition is not yet onneted to any plaes. The next two rules allow for theinsertion of ars, either running from a plae to a transition (insPreAr) or runningfrom a transition to a plae (insPostAr). The respetive ounter is inrementedfor the transition. The NACs forbid the appliation if there is already suh anar.



Graphial onstraints (dotted ars in Fig. 11) ensure that ars onnet plaesand transitions in a proper way and a name of a net objet is plaed near theobjet. 4A VL is generated by applying the syntax grammar rules. Up to now wede�ned the VL of P/T nets onsisting of all diagrams over the P/T Net Alphabetas given in Fig. 8 (b) whih an be derived from the start diagram by the loalsyntax grammar rules given in Fig. 11. Let us now extend our visual languageby global rules onerning both the arhiteture level and the P/T net level.De�nition 5 (Syntax Grammar for Two-Level Models).The start graph of the ombined syntax grammar for two-level models is emptyreeting that the editing proess starts with an empty editor panel. Fig. 12shows the global grammar rules.Rule InsComponent inserts a new omponent to the arhiteture level ombinedto the insertion of a new (empty) net spei�ation. The NACs ensure that thereexist no node and no net in the spei�ation so far with the same names asthe urrently inserted ones (uniqueness of names). The other rules deal withthe insertion of mappings and morphisms. Note that we do not provide a ruleto insert a morphism. This is done impliitly by the mapping-inserting rules.For the insertion of mappings between plaes or transitions of di�erent netswe distinguish two ases: either there is already a morphism between the twoorresponding nets (due to previous mappings) or there is no morphism (�rstinsertion of a mapping). In ase a mapping is inserted for the �rst time, themorphism between the two orresponding nets has to be inserted together withan edge onneting two nodes at the arhiteture level (see e.g. rule InsPlMap1).If a morphism already exists, the mapping simply is added, but the arhiteturelevel is not hanged (see e.g. rule InsPlMap+). This distintion is realized by therespetive NACs and works analogously for all types of mappings.The rules InsTrMap+ and InsTrMap1 for the insertion of transition mappingsare analogial to the insertion of plae mappings but ontain additionally a ruleappliation ondition that ensures that a mapping between transitions is insertedonly if the number of plaes in the pre domain preNo and the number of plaesin the post domain postNo are the same for both transitions suh that the �ringbehavior of the soure net is preserved by the net morphism. We only depitInsTrMap1 in Fig. 12, the step to InsTrMap+ is obvious. Note that ars an bemapped only if there exist mappings between their start and end nodes (see ruleInsPreArMap). The analogial rule InsPostArMap is omitted in Fig. 12.The omplete syntax grammar for two-level models now onsists of the unionof the set of global rules as explained above and the set of loal grammar rulesshown in Fig. 11. 4The visual two-level language thus onsists of all diagrams over the two-levelalphabet shown in Fig. 9 whih an be derived from the empty start diagram bythe omplete syntax grammar onsisting of the loal rules (see Fig. 11) and theglobal rules (see Fig. 12).
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Fig. 12. Global Grammar Rules for Two-Level Modeling LanguageIn order to de�ne spei�ation transformation steps in GenGED, the syntaxrules of our two-level language an be used to de�ne the left-hand and right-handsides of the desired transformation rules. Thus a spei� model transformationgrammar an be visually de�ned as well, and rules like the transformation ruleadding a new onsumer (see Fig. 5) may be onstruted and applied in theGenGED environment.



5 ConlusionWe have presented an approah for arhitetures of spei�ations that is basedon diagram funtors. The emphasis of this paper has been on the illustration ofthe main onepts and the implementation of the example within the GenGEDenvironment. We have given a simple example, namely a produer/onsumersystem. First the main onepts of our approah have been exempli�ed there,then we have used this example to illustrate the visualization of spei�ationarhitetures using the GenGED environment.This approah is general enough to provide a framework for various spe-i�ation tehniques. It an be employed for textual as well as graphial ones.Examples of spei�ation arhitetures omprise arhitetures of COMMUNITYprograms [15℄, distributed graph transformation systems [14℄, spei�ation arhi-tetures of algebrai high-level nets [12℄. Hene the question of implementationof hanges an be attributed to the question of the spei�ation tehniques.Obviously a programming language as COMMUNITY is loser to the real im-plementation as a P/T net. So it is learly an important and hallenging task toensure ompatibility of model transformation with its implementation. But it isdependent on the underlying spei�ation tehnique. For methodologial ques-tions it needs several ase studies using various spei�ation tehniques to extrata spei�ation independent proess model. Hene we have not yet onentratedon this question, but merely have distinguished between loal, synhronizingand global transformations. Further researh an either onsider spei� spei�-ation tehniques or onentrate on the general approah. The �rst ase inludesall semanti aspets, as onsistent hanges of behavior, as preservation of prop-erties, and as mentioned above ompatibility with realization. The seond asefouses on strutural questions as ompatibility with (ategorial) struturingtehniques, as parallel and sequential independene, and so on.Referenes1. R. Bardohl. GenGEd { Visual De�nition of Visual Languages based on AlgebraiGraph Transformation. Verlag Dr. Kova, 2000. PhD thesis, Tehnial Universityof Berlin, Dept. of Computer Siene, 1999.2. P. Donohe, editor. Software Arhiteture. Kluwer Aademi Publishers, 1999.3. C. Ermel, R. Bardohl, and H. Ehrig. Generation of Animation Views for Petri Netsin GENGED. In Ehrig et al (eds.), Advanes in Petri Nets: Petri Net Tehnologiesfor Modeling Communiation Based Systems, Springer, LNCS, 2002. To Appear.4. H. Fahmy and R. Holt. Using Graph Rewriting to Speify Software ArhiteturalTransformations. In Pro. of Automated Software Engineering (ASE 2000), 2000.5. H. Giese, J. Graf, and G. Wirtz. Modeling Distributed Software Systems with Ob-jet Coordination Nets. In Pro. Int. Symposium on software Engineering for Par-allel and Distributed Systems (PDSE'98),Kyoto, Japan, pages 107{116, jul. 1998.6. Holger Giese and J�org P. Wadsak. Reengineering for Evolution of DistributedInformation Systems. In Sott Tilley, editor, 3rd International Workshop on Net-Centri Computing (NCC 2001), May 14, 2001; Toronto, Canada, May 2001.
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