
Integrated Design and Process Technology, IDPT-2002
Printed in the United States of America, June, 2002

c
�

2002 Society for Desing and Process Science

Formal Relationship between Petri Nets and Graph Grammars
as Basis for Animation Views in GenGED

Roswitha Bardohl, Claudia Ermel, Julia Padberg

Institute for Software Engineering and Theoretical Computer Science
Technical University of Berlin, Germany�

rosi,lieske,padberg � @cs.tu-berlin.de

ABSTRACT: Specification techniques like Petri nets al-
low for the formal description and analysis of systems.
Although tool support exists for many different Petri net
classes and tasks, a domain-specific animation of net behav-
ior, however, is not yet supported by many Petri net tools.

In this contribution, we present a formal approach for
the generic specification of several Petri net classes includ-
ing animation views. The approach follows the notions of
GenGED, a tool for the visual specification of visual lan-
guages based on algebraic graph transformation. More-
over, we give a proof of the semantical compatibility of
Algebraic High-Level Petri nets and their representation as
graph grammars in GenGED. The proof is based on the for-
mal semantics of Petri net behavior and the construction of
graph derivations as pushouts in the category of graphs and
graph morphisms.

Based on the behavior equivalence, we can define ani-
mation views for specific Petri nets in GenGED: the ani-
mation view of a system modeled as a Petri net consists of
a domain-specific layout and animation rules according to
the graph grammar representation of the Petri net.
Keywords: Petri nets, visual languages, graph grammars,
stepwise animation

I. INTRODUCTION

Visual modeling techniques are of growing interest for
an application-oriented presentation of models given by a
formal specification. Especially, for non-experts in formal
modeling, a layout of the model and its behavior simulation
in the application domain would be desirable. Based on
the GenGED approach for the generic specification of vi-
sual languages (VLs), we define a relationship between the
formal model of Petri nets and a so-called animation view
by giving a layout for a model as icons in the application
domain.

The GenGED environment supports the visual specifi-
cation of visual environments that are generated from the
specification. Concerning editing, the specification of ei-
ther syntax-directed [1] or free editing [4] is supported.
VLs describing processes, like Automata, Statecharts or
Petri nets, usually are suitable for simulating the behav-

ior. The behavior is defined by a simulation specification
which is executable in a generated VL environment [2].
All environment specifications in GenGED are based on
the well-defined concepts of algebraic graph transforma-
tion and graphical constraint solving. These concepts have
been used as a unifying representation for various Petri net
classes in GenGED [3], [9].

Many different encodings of Petri nets into graph gram-
mars have been proposed in the literature [16]. We focus
on a very natural encoding of nets into grammars, namely
we regard a net as a graph grammar acting on graphs rep-
resenting the markings of a net. A Petri net transition is
represented as a graph rule consuming the tokens in the pre-
domain and generating the tokens in the post-domain of the
transition. Places are represented as graph vertices which
are preserved by the rule. This is indicated by dashed ar-
rows in Fig. 1 showing an example for the translation of
a transition from a Place/Transition net (short P/T net) to
a graph rule in the Single-Pushout (SPO) approach to at-
tributed graph transformation [11]. The left-hand side � of
the graph rule holds the pre-domain tokens to be consumed
and the right-hand side � holds the post-domain tokens to
be generated. For a specification of P/T nets as graph gram-
mars in the Double-Pushout (DPO) approach see [5].

TkTkTk

Place
p3

Place

p1

Place

p2

TkTk Tk Tk

Place
p1

Place
p2

Place

p3

(b)(a)

L R
p1 p2

p3

2
1

3

1

Fig. 1. (a) A transiton of a P/T net,(b) the corresponding graph rule

Obviously, such a representation satisfies the properties
of the token game in Petri nets: a rule can be applied to a
given marking iff the corresponding transition is enabled,
and the firing of a transition produces the same marking as
the SPO construction.

In this paper, we adapt the approach of Korff and Ribeiro
in [10] and show that the semantics of an Algebraic High-

2

Level (AHL) net (based on sets of traces) is compatible (i.e.
isomorphic) to the operational semantics of the graph gram-
mar encoding it within the GenGED framework. The main
difference in the encoding of AHL nets as graph grammars
between [10] and our approach lies in the representation of
markings. In [10], [5], markings are discrete graphs (token
nodes labeled by place names). In GenGED, tokens and
places are modeled as attributed nodes of different types,
connected by edges. The fact of semantic compatibility be-
tween Petri nets and their representation as graph grammars
is the formal basis for the definition of an animation view
of a Petri net in an application-specific layout. The basic
idea is to generate animation rules from the graph grammar
representation of the net behavior by adapting the visual
elements in the rules to an animation-specific layout (ani-
mation view).

In our running example of a simple elevator modeled as
an AHL net, the animation view shows directly the move-
ments of the elevator cabin between the different floors.
In order to keep the example simple, the AHL net does
not model the control mechanism to call the elevator but
only the movements up and down (see Fig. 2). In gen-
eral, the system states show in which floor the elevator is,
and whether it is moving or not. The firing conditions of
the transitions up and down control that the elevator does
not move out of the range of the possible floors: in Fig. 2
a house with five floors is modeled because the SPEC-
algebra � binds the constant �������	��
�
�
 to the value 5
and �������	��
�
�
 to the value 0. The model requires the al-
gebraic datatype specification Nat of natural numbers and
uses the datatype operations ” � ” and ” � ” for computing
the current floor number. The two constants �������	��
�
�

and �������	��
�
�
 fix the height of the house the elevator is
working in. It is obvious that the constants in our data
type specification together with the firing conditions of the
transitions restrict the domain of data values for tokens to
the range

�
�������	��
�
�
����������������	��
�
�
 � . The initial mark-

ing specifies that in the beginning the elevator must be in
the ground floor, in the state not moving (token ”0” on place
not moving).

start stop

f<MaxFloor

up

f > MinFloor

downf

f+1

f

f-1moving

0

not moving

f f

f

f

=(IA SPEC

SPEC = NAT +

opns MaxFloor,
 MinFloor: -> NAT

N,5,0)

Fig. 2. A basic elevator as AHL net

A conceivable animation view of the AHL net is illus-
trated in Fig. 3. We show two snapshots of the animation
view according to two possible markings of the net in Fig. 2.
The elevator is illustrated as part of a building showing the
actual number of floors. The elevator cabin which is vi-

sualized as box with doors is intended to move between the
floors of the building. When the elevator is in the state mov-
ing as shown in the left part of Fig. 3, the cabin is positioned
in the analogous floor and the doors are closed. This snap-
shot corresponds to a token ”3” on place moving. When
the elevator has stopped (state not moving), the cabin doors
are open. This is shown in the right snapshot of Fig. 3, and
corresponds to a token ”2” on place not moving.

4

5

2

1

3

0

4

5

2

1

3

0

Fig. 3. Animation view snapshots

The actions that can be performed in the animation view
of our model correspond to the transitions in the AHL net.
Thus, for example, when the elevator has stopped (state not
moving, it is not possible to perform the actions up or down
because only the transition start is enabled in the corre-
sponding net.

The paper is structured as follows: In the next section we
briefly review the GenGED concepts which are illustrated
by the specification of the AHL net language. In Section III
we show the semantic equivalence of AHL nets and their
graph grammar representation as formal foundation for the
animation view specification. On this formal basis, in Sec-
tion IV, a sample animation view specification for our ele-
vator model is given.

II. DEFINING THE PETRI NET LANGUAGE WITHIN

GENGED

The GenGED approach and environment was developed
in order to support the visual specification of visual lan-
guages (VLs) in an easy way, and to generate visual en-
vironments. In addition to this overall requirement it was
desired to find a suitable formalism allowing for easy ex-
tensions of the application: the GenGED approach is based
on algebraic graph transformation and graphical constraint
solving techniques. A concrete AHL net like that in Fig. 2,
for example, is represented by an attributed graph (an al-
gebra) to a given type graph (a signature). In both the type
graph and the instance graphs (also called visual sentences),
we distinguish the abstract syntax (the symbols and links)
and the concrete syntax (the layout). The abstract syntax is
represented by an attributed graph. The vertices represent
visual symbols such as a place or a transition of a Petri net,
and the edges describe the logically meaningful spatial rela-
tions between symbols, e.g. that a token belongs to a place.
Vertex attributes define data values, like names for places

3

or transitions. The layout of symbols and links is given by
further vertex attributes denoting the shape, position, color,
etc., and graphical constraints which have to be satisfied by
each visual sentence. Although we concentrate on the ab-
stract syntax in the following sections, we briefly sketch the
concrete syntax also.

Similar to formal textual languages, a visual language is
specified by an alphabet for symbol and link types (the type
graph), and a grammar consisting of a start sentence and a
set of syntax rules. A visual language VL is then the set of
all visual sentences that can be derived by applying syntax
rules [1]. These original concepts of GenGED for syntax-
directed editing have been extended for free editing (pars-
ing) [4] and simulation [2]. This means, visual grammars
are interpreted differently, however, this topic is beyond the
scope of this paper. Instead we concentrate on a brief intro-
duction of the concepts, namely that of an alphabet and a
grammar, illustrating the power of VL specifications using
GenGED.

An alphabet is given by a set of symbol and link types of
a specific VL as well as a graphical constraint satisfaction
problem. The alphabet for the AHL net language is shown
in Fig. 4.

Abstract
Syntax

aop
StringInsPost

TkN TokenString

iPost

String aop

tPresPre

sPost

aop

String,12pt,Helvetica

Graphic Graphic Graphic

Syntax

tPost
String

Concrete
Graphic

String,12pt,Helvetica

String,12pt,Helvetica String,12pt,Helvetica

String,12pt,Helvetica

TN

Graphic

pn

Graphic

tn
PN

Graphic Graphic

aop
Trans

PostArc

Place

tok PreArc
aopInsPreiPre String

Graphic

Fig. 4. Visual alphabet for AHL nets

Due to the abstract syntax level, there are symbols as
Place, Trans (Transition), etc. in Fig. 4 which are partly at-
tributed by datatypes like PN (Place Name) or TV (Token
Value) of type String. These abstract syntax items are linked
via directed edges. Note that we distinguish arcs running
from places to transitions (type PreArc) and from transitions
to places (type PostArc). The concrete syntax level is de-
scribed by further vertex attributes of type Graphic and by
graphical constraints specifying the intended layout. We
use dotted arrows at the concrete syntax level in order to
indicate the graphical constraints.

A VL grammar is based on the specific alphabet and the
powerful means of graph transformation: grammar rules are
not restricted to be context-free but context-sensitive. The
left-hand side (LHS) of a rule does not comprise a single
non-terminal symbol but a complete sentence, as well as
the right-hand side (RHS). A rule expresses either the in-
sertion or deletion (or both) of symbols. The rule insPre(ipt)

depicted in Fig. 5 defines the operations for inserting an arc
between a place and a transition. The newly created arc is

inserted together with the arc inscription defined by the rule
parameter ipt.

 Trans Place RL Place Trans

ipt

ipt

PreArc

InsPre
insPreArc(ipt))

Fig. 5. Syntax rule from the AHL net grammar

A rule can be applied to a given sentence by mapping
the abstract syntax items of the rule’s LHS to items of the
sentence. Then, the sentence is transformed according to
the rule by inserting or deleting items to/from the sentence.

Please note that we omit the complete specification of
the AHL net language for the sake of space; the reader is
referred to [3] for more details. Instead we discuss the se-
mantical compatibility of Petri nets and their representation
in GenGED based on the alphabet shown in Fig. 4.

III. SEMANTICAL COMPATIBILITY OF PETRI NETS

AND THEIR REPRESENTATION IN GENGED

Before we prove the semantical compatibility of the Petri
net semantics and the graph grammar semantics of an AHL
net representation within GenGED, we briefly review the
formal definitions of AHL nets and attributed graph gram-
mars.

A. AHL Nets

We review the basic definition of AHL nets and their be-
havior as given in [13]. Further information about similar
high-level Petri net approaches can be found for instance in
[17], [14], [8]. Note that the pre and post-domain of a tran-
sition is given by a multiset of pairs of terms and places,
i. e. as elements of a free commutative monoid.

Definition III-A.1 (AHL Net) An Algebraic High-Level
net (AHL net) ���������
	�� �
� ��� ���
�������
���� �
�
������ � �����
consists of an algebraic specification ���
	�������� �! "� �
	$#�%&� with equations 	 and additional variables % over
the signature ��� �! "�'� [7], sets � and � of places and
transitions respectively, pre- and post-domain functions
��
�� ����
����)(*�,+ �-�/.102�-%&�435�'�
6 assigning to each
transition �879� the pre- and post-domains �
��:�-��� and
��
����;�-��� (see below) respectively, a firing condition func-
tion �
����<(��=+?>2@BADC/��	FE'�G�2��� �H "� ��%I��� assigning to
each transition �J7�� a finite set �
����K�-��� of equations over
the signature (S,OP) with variables % and an ��� �! "� �
	F� -
algebra � [7].

A marking � is a multiset of pairs of data elements of �
distributed on places: �=7L���)3M�'�H6 . N
�/.O02��%&� is the set of terms with variables % over the

signature �P� �H "�'� [7], � .O0 ��%&��3Q� being the cartesian
product and �R6 the free commutative monoid over a set
� . This means that �
��:�-��� (and similar ��
����;�-���) is of

4

the form �
��:�-���)��� CA���� ��� �
 �*A ��� AP� � ���	� � with
� A 7 � ��� �
 �MA 7 � .102� � � . Thus, the multiset

� �
� � ����� �KC �
is the pre-domain of � with arc-inscription � �
 � A for the
arc from �KA to � if the elements of

� �
�������������KC � are distinct
(unary case) and arc-inscription � �
 ��A ��� ����� � � �
 �*A�
 for
� A � � ����� � �KA
 (multi case).

Definition III-A.2 (Behavior of AHL Nets) Enabling and
firing of transitions is defined as follows: let � ��
 �-��� be
the set of local variables occurring in �
��:�-��� ����
����;�-��� and
�����O� �-��� . An assignment � ����� (�� ��
 �-���I+ � is called
consistent for �F7 � if the equations �
���� ����� are satisfied
in � under �:��� � . A transition � 7 � is enabled under a
consistent assignment � �����<(�� ��
 �-��� + � and a marking
�=7L���)3M�'�
6 , if ��
 ��� ��� � � ����� ��� � �

The marking �
���� �-� � � ������� – analogously ��
������J��� � � �������
– is defined for �
��:�-��� � � CA���� ��� �
 � A ��� A � by
�
�� � �-� � �:��� � �2� � CA���� � � ��� � ��� �
 �*AP� ���KA�� � where �:��� � �
� � � � � � ��� ��� � � (� .102�!� �
 ������� + � is the extended evalu-
ation of terms under assignment �:���"� [7].

The successor marking �$# is defined in the case of � be-
ing enabled by �$# �8�&% ��
 ��� �-� � � ����� � � ��
����'� �-� � � �������
and gives raise to a firing step �)(� � � �����+* �,# . N

Definition III-A.3 (Semantics of AHL Nets) The set of
all steps �)(� � � �����+* �,# of an AHL net � is denoted by
�.- � � � �H�K� / . A sequence 0=7 �.- � ��� �
� ��1/ is called
firing sequence iff 0 �32 or 054�62 and �7�M�9� �80 AF�
�*A9(D�-� A � � ��� �
: ��* �*A�;�� for all �R7*�
 � �<0�� .

The semantics ���B� �
=?> ���G� of an AHL net � is defined
by the set of all firing sequences of � . N
B. Attributed Graph Transformation

In the theory of algebraic graph transformation, a graph
is given by disjoint sets indicating vertices and edges from
a source vertex to a target vertex. Vertices may be addi-
tionally enhanced by attributes that are used to store data
together with the vertices1. Such attributes are elements of
an attribute algebra.

Definition III-B.1 (Attributed Graph) An attributed graph@ � � @BA � @DC � @ � �H� E ���'E � � � �
FE � consists of a set
of vertices

@ A
, a set of edges

@ C
, an algebra

@ � 7
� �G� �P� ��� � , where � �H�/��� ��� � is the category of all � ��� -
algebras and � ��� -homomorphisms, source and target func-
tions � E �
� E (@DC + @BA

, and an attribution function
� � �
 E (@BA + @ � , connecting vertices with attributes
(data elements of the algebra). N

Definition III-B.2 (Attributed Graph Morphism) A (par-
tial) attributed graph morphism I (@ +	- between the
attributed graphs

@
and - is a tuple I � �!I A �8I C �JIF���

K
In general, attributes for edges are possible, too. In the GenGED ap-

proach, however, we only need vertex attributes.

consisting of partial functions I A (@BA + - A
and

I C (@DC +L- C
such that � = ��I C ��� �
���MI A ��� E ��� �
� and

� = �!I C �������<�NI A �-� E ��� �
� for all � 7 ��
 �I��I C � and all
�*7G��
 � �!I A � , and a homomorphism I � 7 � �H�/��� ��� � such
that I � ��� � �
 E �<�:�
� ��� � �
 = ��I A �<�:�
� for all ��7I��
 � �!I A � .

N

Attributed graphs and graph morphisms form the cocom-
plete category AGG in the Single-Pushout approach to al-
gebraic graph transformation ([11], [12], [6]).

In general, graph transformation defines a rule-based ma-
nipulation of graphs. (For an overview of the main ap-
proaches see [15].) Graph rules can be used to capture
the dynamical aspects of systems. The resulting notion of
graph grammars (consisting of a start graph and a set of
graph rules) generalizes Chomsky grammars from strings
to graphs. The start graph represents the initial state of the
system, whereas the set of rules describes the possible state
changes that can occur in the system. A rule comprises two
graphs: a left-hand side � and a right-hand side � , and a
partial graph morphism
 from � to � .

Definition III-B.3 (Attributed Graph Grammar) An
attributed graph rule
 (� + � is an attributed graph
morphism such that
 A and
 C are injective and
 � is the
identity on a quotient term algebra � .O0 ��%&� with variables
in % .

An attributed graph grammar � @D@ � ��� �H�'� consists
of an attributed graph � (the start graph) and a set � of
attributed rules (or productions)
 7M� . N

The application of a rule
F7�� to a graph
@

(also called
derivation) requires a total morphism from � to

@
, called

match. We here restrict the match to injective morphisms
only. Thus we avoid the problem that two distinct nodes of
the LHS are identified by the match, and the rule is applied
to a graph modelling less tokens on the pre-domain places
than the number expected for enabling the corresponding
transition. Note that this problem does not occur in the DPO
approach [5] because of the gluing condition which requires
that the nodes of the LHS which shall be deleted are not
merged by the match.

Formally, a derivation step from
@

to - with rule
 and
match � is defined by a pushout construction (see [11]) and
is denoted by

@3O9P Q�SRT- .

Definition III-B.4 (Derivation Step) Let � @D@ � ��� �H�'�
be an attributed graph grammar. A derivation step � of an
attributed graph

@
where

@ � � � � with rule
�U57 �
at match � U is a pushout of � U and
 U in AGG where

WVU � � � �"XWY .

5

dL Rd

md md

rd

dr

(PO)

HG

N
A derivation step according to the pushout construction

consists of three steps transforming the graph
@

to graph - .
First, the vertices in � which do not have an image via
 in

� are deleted in
@

. Thereafter, the vertices in � without
origin in � are created and appended to the graph. (Vertices
in � which are mapped to � by
 are preseved by the rule.)
As a last step, all edges which are not defined any more are
deleted from the graph.

Sometimes the application of a rule shall be constrained
w.r.t. the attribution, as for example ����� (conditional
rule). In this case we specify the attribution algebra of the
rule equationally, i.e. the required equations are syntacti-
cally added to the rule implying that the terms annotating
the rule shall be interpreted in the corresponding quotient
term algebra.

Definition III-B.5 (AGG Semantics) The set of all deriva-
tion steps in � @D@

is denoted by
@D@ � � �H�K� � E�E . A se-

quence 0 7 @D@ � � �H�K��1� E�E is called a sequential deriva-
tion of � @D@

, also denoted by � (0S*9� E E if either 0&� 2 or
0 4� 2 and

@���� �	� �5� �8- ��� A
� � @���� A�;���� for all � 7��
 � �<0�� .
The semantics ���B� � E E ��� @D@ � is the set of all sequen-

tial derivations of � @D@
. N

C. Translating AHL Nets to Graph Grammars

The translation of AHL nets into graph grammars gen-
eralizes that of P/T nets into graph grammars as sketched
in the introduction. The marking of a net is transformed to
a graph consisting of bundles of vertices of type Token (the
tokens). Each Token vertex is connected to a vertex of type
Place representing its place and attributed by a data value
from the net’s algebra. Thus, each token of the net can be
expressed in the graph as an edge from an attributed vertex
of type Token to a vertex of type Place attributed by its name.

The initial marking of an AHL net � is translated to the
start graph � of a graph grammar � @D@ �)��� �H�'� (Def. III-
C.1), whereas the transitions together with their pre and
post-domains are translated to rules
�7�� (Def. III-C.5).

Definition III-C.1 (Translation of Markings) Let �=7
��� 3 �'�
6 be a marking of the AHL net � �
��� �
� ����
�� ����
���� �H� �
	F� �
�
������ � ����� .
The translation of � is given by the attributed graph

�
 Q ���*� � @ � � @BA � @DC � @ � �!� E ��� E � � � �
 E �
with

V
@BA � �
� �

� . The multiset � 7 ��� 3$�'�
6 here is given

by the set
�
� � � ������� � � � 7 �I3 �L3�� ���F��� � � �I�������K� � ,

where multiple occurrences of the same element in � are
numbered by � in

�
� .

V
@DC � � ���
 � ��� � ������� � � �J7 �

� � �
V
@ � � � ,

V � E (
@ C + @ A

with � E ������� P �FP A�� �R� ������� � � �
and � E (@DC + @BA

with � E ����� � P �FP A!� �R�L� ,

V � � �
 E (@BA + @ � with

� � �
 E �<�:�R�
" � � � �M7��

� � ��������� � � � 7 �
�

This means that places are attributed by their names and
tokens by their data values.

The backward translation of
@

to a marking of � is de-
fined as follows:

� � @ � � #$�% &(' E*)
��� � �
 E �P� E �����
 ��� � � � �
 E ��� E �����
 �
��� �

N

Fact III-C.2 (Compatibility of �
 Q ���*�) Let �=7I���$3
�'�
6 be a marking of an AHL net � , and �
 Q �-���R� @

be
the translation of � to

@
and � � @ � the backward trans-

lation as defined in Def. III-C.1. Then, � �-�
 Q ���*�
�R�5� .
N

Proof III-C.3 (Compatibility of �
 Q �-���)
� �-�
 Q ���*�
�R� � � @ �

with
@

defined as in Def. III-C.1

� � $ %�& ' E) ��� � �
 E ��������� � � �
� � � � �
 E � �K�
�� � $ %�& ' E) �������K� � �
N

Example III-C.4 (Marking of Elevator Net) Fig. 6 shows
the AHL net modeling our basic elevator marked by the ini-
tial marking and the translation to an attributed graph (the
start graph of the corresponding � @D@

).

start stop

f<MaxFloor

up

f > MinFloor

down

not moving

f f

f

f f

f+1

f

f−1moving

not moving
PlaceToken

0

moving
Place

Attributed Graph

(m)mG = Tr0

SPEC , A

AHL Net N
marked with m

Fig. 6. Translation of the elevator net’s initial marking to an attributed
graph

The only edge in the translated graph formally is given
by ���
+ P C�,�� Q ,.- ADC0/ P �1� . N

6

We now define the translation of the transitions in � to
rules
�7�� encorporating the firing behavior: the left-hand
side of each rule contains the pre-domain, the right-hand
side the post-domain.

Definition III-C.5 (AHL Net Translation) Let � �
��� �
	F� �
� �
� ����
 ������
���� �
�
������ � ����� be an AHL net. Then
the translated attributed graph grammar is defined as
�
 � E E ���G�*� ����� O �H��� O � where the start graph ��� O �
�
 Q ���*� is the translated initial marking of the net accord-
ing to Def. III-C.1, and the set of behavior rules � � O ��

 �G(� �M+ � � � �I7 � � corresponds to the firing be-

havior of the transitions �I7�� with 		�
� � � � ��� � 7
�
��:�-��� �I��
����;�-��� � being the environment of transition � .
In each behavior rule
��I(� � + � � , the left-hand side

� � corresponds to the pre-domain �
��:�-��� , and the right-
hand side � � to the post-domain ��
����;����� . Thus, in the
following definition of the graph

� � , the set � �
B�����B� is
defined by � �
 �*���B� �?�
������B� for

� �<� � � and by
� �
 �*� ���&� �	
��������B� for

� �&� � � , where �
������B�&�� ��� �
B� ��� � � � � ��
�� �����;��� �
 � ��� � � � � � � corresponds to
�
��:�-��� and �	
��������B� � � ��� �
B� ��� � � � � ��
����;�����;�-� �
 � ���K�.�
� � � � corresponds to ��
����;�-��� .

Each behavior rule side
� � � � � � � � is an attributed

graph defined as follows:
� � ��� � A � � C � � # �H� � �
� � � � � �
 � �

with

V � A � 	 �
� � �4� �
 �*� ��� .
V � C � � � ��� � ��� ���-� �
 � ��� � � �J74� �
 �����B� � �
V � # �8� .10 �!� ��
 �-���
� � � ,�C�U � � � ,
V �

�
�
� � (� C + � A

with � � ����� � $ O8Q P �FP A!� � � ��� �
 � ��� � � �
and � � ����� � $ O8Q P ��P A�� � � �
V � � �
 � (� A + � .O0 ��� ��
 �-���
� � � ,�C�U � � � with

� � �
 � �<�:�R�
" � � �L��7��
� �
 � �$7M� �
 �*� ���

The rule morphism
 � (� � + � � � �
 �
	 �
 �) �
 � Y����� � � 0 ��� � � �"��
-� is the identity on the place vertices (the ver-
tices �$7*�
������B� are not in the domain of
��) and the iden-
tity on the terms in the quotient term-algebra. N

By the construction of �
 � E E ���G� it is obvious that � � O
is a well-defined attributed graph and that all rules in ��� O
are attributed rules. Thus, �
 � E E ���G� is an attributed graph
grammar.

Example III-C.6 (AGG for Elevator Net) ex:TransNet Let
� be our Elevator Net shown in Fig. 2. Let AGG be the
translated graph grammar �
 � E E ���G�F� � @ �
�'� accord-
ing to Def. III-C.5. The start graph

@
is shown in Fig. 6,

whereas Fig. 7 shows the rules in � corresponding to the
transitions �J7M� .

f<MaxFloor

startL

L down Rdown

upL up

stop

R

down

f>MinFloor

start

up

R

L Rstop

start

stop

Token
f

Token

moving
Place

f - 1

not moving
Place

f
Token

not moving

not moving

Place

Place

Place
f

moving
PlaceToken

f moving
Place

moving
Place

moving
Place

Place
moving

Place

moving

Place
moving

not moving

Token
f

f + 1
Token

f
Token

Token

Fig. 7. Translation of the elevator net’s transitions to rules

N
The following theorem states the compatibility between

the semantics of an AHL net and the semantics of its trans-
lation into an AGG.

Theorem III-C.7 (Semantical Compatibility) The seman-
tics of an AHL net � and the semantics of the
translation �
 � E E2���G� are compatible, denoted by
� ��� � E E ���
 � E E ���G����� � ���B� �
=?> ���&� .

The semantics of a net is given in terms of sets of firing
sequences (firing steps), and the graph grammar semantics
as sets of derivation sequences. N

Proof III-C.8 (Semantical Compatibility) We
We have to show that
1. the initial marking � of � is translated to the start
graph

@
of the graph grammar

@D@ � � @ �
�'� �
�
 � E�E ���G� ,
2. for each firing step � � � (� � � ��� * �$# 7 �.- � � � �H�K� /
there is a derivation step � 7 @D@ � � �H�K� E�E with � � @ � �
� s.t. the resulting marking �$# corresponds to graph - of
the pushout � , i.e. � �<-G� �8�,# ,
3. each firing sequence 0Q7 ���B� �
=�> ���G� corresponds to
a derivation sequence 0S# 7 � ��� � E E � @D@ � . This means,
for all pairs 0 A"� ���MA8(� A � � ��� A!* � #A � 7 � - � � � �H� � / � �'�� ����� s.t. � # � � ��� , we have - � � @ � in the corresponding
pushout diagrams.

ad 1. Holds by the definition of �
 � E E ���G� .
ad 2. Let � �<� (� � � ��� * �,#�7 � - � ��� �
� � / be a firing step
in � . Then � is constructed as follows:

V Rule:
 � (� � + � � as defined in Def. III-C.5

V Match: � � �	/ (� � + @ � �-� A �
� C �
� � �
with the vertices being matched by � A ���-� �
 � ��� � � ���<�
� � ��� � �-� �
 �*� ��� � � � , � A � �K� �5� . Edges in � � are mapped
by � C ��� ��O � � � �
 with �
 � �-� �
 � ��� � � � and ��� �
� � ��� � �-� �
 �*� ��� � � � . � � � � ��� � maps each term in
�/.102�-%&� to its extended assignment in � .

7

The match � � �	/ satisfies the graph morphism prop-
erties: � E �-� C ��� ��O ��� � � E ��� �
 � � ������� � � � �
� � ��� � ��� �
B��� ��� � � � � � A ����� �
B� ��� � � ��� �8� A �P� > ��� ��O ���
(analogously � E �-� C ��� ��O ��� � � A �-� > ��� ��O �
� .
V Derivation step: Using rule
�� and match � � ��/ , we ob-
tain for

@ �8�
 Q �-��� a derivation step in
@D@ � � �H�K� E E as

a pushout of
 � and � � �	/ in AGG (see Def. III-B.4). This
means, we obtain a graph - and morphisms
�V� (@ + - ,
�$V� (� ��+T- where
�V� � � � � � .
By the construction of pushouts in AGG, the graph -
is defined by - � �<- A �8- C �9- � �H� = �
� = � � � �
 = � with
- A � @ A � � � �	/ ���
������B�����L� V� ��/ ���	
��������B��� , - C �@DC �I� � ��/:� � C ���4�$V� �	/ � � C � .
If � 7 � A � @BA � then � � �
 = �G� ��� � � �
 E �G� � , if � 7
�$V� �	/ ���	
��������B��� then � � �
 = �G� �R�<�$V� �	/ ��� � �
 � 	 �G� ��� .
We show now that � �!-G� �<�$# :

� �!-G�R� � $ ' =) ��� � �
 = �P� = ��� �
� � � � �
 = �-� = �����
���� � $ ' E) ��� � �
 E �P� E ������� � � � �
 E ��� E �������
�% � $ ' Q����	� � >) � ��� � �
 E ��� E ������� � � � �
 E �-� E ���������
� � $ ' Q�
���	� � �) � ��� � �
 � ��� � ������� � � � �
 � �-� � ��� �
���

� � % � $�� ��
 ��
 :�� ' Q ����� � >) � �������K�
� � $�� ��
 ��
 :�� ' Q
����� � �) � ������� �

� � % � � � $ O8Q P ��P A�� ' 0 O $ X $ � � �:��� � �-� �
 �*� ��� � � �
� � � � $ O8Q.P �FP A�� ' 0 ,��	�<X $ � � � ��� � ��� �
B��� ��� � � �

� � % � CA���� � �:��� � �-� �
 �*� ���K�
with �-� �
 � ��� � � �J7*�
������B� � ��� � �
������B� �
� �
A���� � � ��� � ��� �
B��� ���K�
with �-� �
 � ��� � � �J7*�	
��������B� � � � � �	
��������B� �

� � %���
�� � ��� � � ��� � � � ��
���� � �-� � � ��� � �
� � #

ad 3. Let 0 AM� �-�*A9(� A � � ��� A!* �,#A �I7 � - � ��� �
� � / , �*�� ����� ��� # � ��� � . Let � A be the derivation steps constructed
for transitions � A under marking �*A in � according to
Def. III-C.5. We have to show that - � �� @ � .
Due to Theorem III-C.7 (item 2) we know that � �!- ���F�
�,#� �9� � . By the pushout construction of � � , the mark-
ing � � is translated to �
 Q �-� � ��� @ � , and by Fact III-
C.2 we have � � @ � �5� � �-�
 Q ��� �B��� � ��� . Thus,
� �<- � �$� � � @ � � , and by the construction of attributed
graphs from markings according to Def. III-C.1, we con-
clude that - � �� @ � . N

IV. ANIMATION OF PETRI NETS

In order to bridge the gap between the underlying for-
mal, descriptive specification as a Petri net and a natural dy-
namic visual representation of processes being simulated,
we suggest the definition of animation views for Petri nets.
Of course, the behavior shown in the animation view has
to correspond to the behavior defined in the original Petri
net. In Section IV-A we give guidelines for the specifi-
cation of an animation view for a specific Petri net and

present an application-specific animation grammar for our
elevator net. To ensure a consistent mapping of the Petri
net behavior, we propose in Section IV-B a graph grammar
based view transformation from the Petri net to its anima-
tion view.

A. Animation View

In our approach, both the Petri net and its animation view
consist of visual sentences based on the same abstract visual
alphabet. They differ in the concrete syntax, i.e. we define
different layouts for the same underlying process model.

We suggest the following guidelines for the definition of
an animation view layout for all symbols and links from
a Petri net alphabet (cf. Fig. 4): places in a Petri net
give meanings to tokens by defining their properties. In
a net-independent animation view, places are not needed
any more because properties of tokens now are incorpo-
rated in the concrete layout/position of the tokens them-
selves. Therefore, we visualize places as symbols of the
fixed part of the animation view, i.e. the part of the view
which is not changed by animation.

The animated part consists of the symbols which are
changed during animation and corresponds to the tokens
of the Petri net. Transitions are replaced by rule names in
the animation view. (Rule names are visible in the user
interface of a generated environment in order to trigger a
state transformation step corresponding to a firing step of
the transition in the Petri net view.)

Arcs in the Petri net define the firing behavior in a static
way. They are not shown in the animation view as the be-
havior now is defined by the animation rules and visualized
by their application (the animation).

Example IV-A.1 (Animation View) The elevator net as
illustrated in Fig. 2, is a visual sentence of our AHL net
language. The animation view of this sentence has been al-
ready motivated by Fig. 3 where an elevator cabin moving
between the floors of a house is visualized. The abstract
syntax of the alphabet of the animation view is equal to that
of Fig. 4 but the concrete layout differs.

The fixed part of the animation view consists of the sym-
bol for the elevator shaft. The tokens – corresponding to the
animated part of the animation view – model the different
locations of the elevator cabin. A token on place not mov-
ing corresponds to a cabin icon with open doors, whereas
a token on place moving is visualized by an icon showing a
cabin with closed doors.

Fig. 8 shows the abstract syntax underlying both views
(the Petri net and the animation view) for our elevator
model and depicts some of the connections to the different
layouts. N

Based on the abstract syntax, we define the generation
of an animation view by grammar rules that transform all
possible states of the Petri net into an appropriate state of

8

f

not

f

f
f+1 f-1

f

f
moving

up

start

f

4

5

2

1

3

0
f<MaxFloor

stop

f > MinFloor

down

Place
PreArc

PostArc TransTrans

Token

Trans

PostArc

PreArc

Trans

PreArc

down

not moving

start stop

moving

up

0

PreArc

0

PostArc

PostArc

moving Place

Fig. 8. Visual syntax of the elevator net and its animation view

the animation view (view transformation rules). The gener-
ation of the animation view in Example IV-A.1 is described
in Section IV-B.

The behavior of the system in the animation view then
is given by a set of animation rules on the VL sentences of
the animation view. The abstract syntax of the animation
rules equals the abstract syntax of the behavior rules for
the Petri net (see Fig. 7 for the abstract behavior grammar
of the elevator net). We call the grammar containing the
animation rules, the animation grammar.

Example IV-A.2 (Animation Grammar) Fig. 9 shows
the animation grammar for our elevator model. Each an-
imation rule corresponds to the behavior rule of the same
name from the behavior grammar in Fig. 7 and thus to a
transition in the elevator net.

f

f

f

f

f−1

f

f−1

f

f+1

f f

f+1

f<MaxFloor

up

start

stop

f>MinFloor

down

Fig. 9. Animation grammar for the elevator model

N

B. Generating Animation Views

The aim, of course, is to construct the animation gram-
mar in a way that the animation is consistent to the behavior
specification. Therefore, we now define the generation of
an animation view by grammar rules that transform all pos-
sible states of the system model into an appropriate state
of the animation view (view transformation rules). On the
basis of these view transformation rules it is possible to en-
force coherence between the behavior grammar of the orig-
inal visual process model (the Petri net) and the animation
grammar of the animation view. The view transformation
rules allow to transform the VL sentences from the old lay-
out to the new layout and the behavior rules into the anima-
tion rules.

In general, each of the view transformation rules trans-
forms a subset of all possible Petri net markings to the an-
imation view by combining elements of the abstract syntax
with new concrete syntax elements (i.e. by giving them a
different layout). After applying the view transformation
rules, the VL sentence denoting the initially marked Petri
net is transformed into a corresponding animation view.

Formally, view transformation rules operate on the union
of both the visual syntax of the Petri net and the visual syn-
tax of its animation view. Although the abstract syntax is
the same, the concrete syntax (the layout) differs. In the
following example, therefore, graphics from both concrete
syntax definitions (net layout and animation view layout)
are shown in the same rules.

Example IV-B.1 (View Transformation Rules) Fig. 10
shows the view transformation rules needed for the gen-
eration of the animation view from the initially marked el-
evator net (both depicted in Fig. 8). We define one view
transformation rule for the marking of each place. In the
view transformation rules in Fig. 10, the abstract syntax
remains, but the symbols are re-linked to the new anima-
tion view graphics as they are introduced in the right-hand
sides of the rules.

f

Token

Place

Tokennot moving f
Place

Place

not moving
f

TokenPlace
Token

fnot moving

f

f
f

 moving

 moving

 moving

 moving

f

not_moving

Fig. 10. View transformation rules for the elevator model
N

The behavior of a Petri net now can be transferred to the
animation view by applying the view transformation rules
to the LHSs and RHSs of the behavior rules.

Example IV-B.2 (Generating Animation Rules) Fig. 11
illustrates the derivation of an animation rule by applying
rules from the view transformation grammar in Fig. 10 to
the behavior rule start from Fig. 7. N

A stepwise animation of the system can be performed
by applying the animation rules in the animation view of
the system model. An extension of the approach towards
a more sophisticated animation would be the presentation
of system behavior not as discrete steps but as a movie
(”smooth” animation), i.e. showing a series of intermedi-
ate states for the firing of one transition. With this aim in
mind, an animation framework as proposed in [19] could be
combined with the GenGED environment.

9

f

not moving

 moving moving Token

Token

Place

fnot moving

Place

Place

f

f

Place

Place

Token f

Place Tokennot moving f

Place moving

not moving

 moving

Place

f

movingnot_moving Application of View Transformation Rules

Animation Rule

not moving moving

f

not moving moving

Behavior Rule

start

start

Fig. 11. Derivation of an animation rule with view transformation rules

V. CONCLUSION

In this paper, we have given a formal approach for the
representation of Petri nets in GenGED in terms of at-
tributed graph grammars. In this encoding, graphs repre-
sent the markings of a net, and for each transition, a graph
rule models the firing behavior. We show that the seman-
tics of an AHL net and the semantics of its representation in
GenGED (the behavior specification) are compatible. On
this formal basis it becomes possible to define animation
views for Petri nets in an application-specific layout where
the animation is formally derived from (and thus consistent
to) the behavior specification.

In our running example we have specified and animated
a simple elevator model. This is formally specified using
AHL nets and animated in a freely chosen layout.

It remains to develop behavior and animation views for
other visual modeling languages than Petri nets. Hence, a
formal theory allowing to handle behavior and animation of
various VL models in a generic way based on the GenGED
approach is the overall aim of our work.

On the practical side, the GenGED tool environment has
to be extended in order to be able to manage the combina-
tion of different VLs with the same abstract but different
concrete syntax. Based on these extensions, the GenGED
tool environment will be able to handle different views of
a VL model, including support for the visualization of be-
havior in terms of the formal model itself (e.g. token game
simulation) and animation in a domain-specific layout as
discussed in this paper.
Acknowledgements This work has been partially sup-
ported by the DFG-Researcher Group PETRI NET TECH-
NOLOGY and by the German-Brazilian project GRAPHIT.
Many thanks also to our colleague Milan Urbasek for care-
fully reading a previous version and to our anonymous ref-
erees for valuable hints.

REFERENCES

[1] R. Bardohl. GENGED – Visual Definition of Visual Languages based
on Algebraic Graph Transformation. Verlag Dr. Kovac, 2000. PhD
thesis, Technical University of Berlin, Dept. of Computer Science,
1999.

[2] R. Bardohl, K. Ehrig, C. Ermel, A. Qemali, and I. Weinhold.
GENGED – Specifying Visual Environments based on Visual Lan-
guages. In H.-J. Kreowski, editor, Proc. of APPLIGRAPH Workshop
on Applied Graph Transformation (AGT 2002), 2002. to appear.

[3] R. Bardohl, C. Ermel, and H. Ehrig. Generic Description of Syn-
tax, Behavior and Animation of Visual Models. Technical Report
2001/19, Technische Universität Berlin, 2001. ISSN 1436-9915.

[4] R. Bardohl, T. Schultzke, and G. Taentzer. Visual Language Parsing
in GENGED. Electronic Notes of Theoretical Computer Science, 50,
June 12–13 2001.

[5] A. Corradini and U. Montanari. Specification of Concurrent Sys-
tems: From Petri Nets to Graph Grammars. In G. Hommel, edi-
tor, Proc. Workshop on Quality of Communication-Based Systems,
Berlin, Germany. Kluwer Academic Publishers, 1995.

[6] H. Ehrig, R. Heckel, M. Korff, M. Löwe, L. Ribeiro, A. Wagner, and
A. Corradini. Algebraic Approaches to Graph Transformation II:
Single Pushout Approach and Comparison with Double Pushout Ap-
proach. In G. Rozenberg, editor, Handbook of Graph Grammars and
Computing by Graph Transformation, Volume 1: Foundations, chap-
ter 4, pages 247–312. World Scientific, 1997.

[7] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 1:
Equations and Initial Semantics, volume 6 of EATCS Monographs
on Theoretical Computer Science. Springer Verlag, Berlin, 1985.

[8] H. Ehrig, J. Padberg, and G. Rozenberg. Behaviour and Realization
Construction for Petri Nets Based on Free Monoid and Power Set
Graphs. Technical report, Technical University Berlin TR 94-15,
1994.

[9] C. Ermel, R. Bardohl, and H. Ehrig. Specification and Implementa-
tion of Animation Views for Petri Nets. In Weber et al. [18], pages
75–92.

[10] M. Korff and L. Ribeiro. Formal Relationship between Graph Gram-
mars and Petri nets. In 5th Int. Workshop on Graph Grammars
and their Application to Computer Science, Williamsburg ’94, LNCS
1073, pages 288 – 303. Springer, 1995.

[11] M. Löwe. Algebraic Approach to Single-Pushout Graph Transfor-
mation. TCS, 109:181–224, 1993.

[12] M. Löwe, M. Korff, and A. Wagner. An Algebraic Framework for the
Transformation of Attributed Graphs. In M.R. Sleep, M.J. Plasmei-
jer, and M.C. van Eekelen, editors, Term Graph Rewriting: Theory
and Practice, chapter 14, pages 185–199. John Wiley & Sons Ltd,
1993.

[13] J. Padberg, H. Ehrig, and L. Ribeiro. Algebraic high-level net trans-
formation systems. Mathematical Structures in Computer Science,
5:217–256, 1995.

[14] W. Reisig. Petri Nets and Algebraic Specifications. Theoretical
Computer Science, 80:1–34, 1991.

[15] G. Rozenberg, editor. Handbook of Graph Grammars and Com-
puting by Graph Transformations, Volume 1: Foundations. World
Scientific, 1997.

[16] H. J. Schneider. Graph Grammars as a Tool to Define the Behaviour
of Process Systems: From Petri Nets to Linda. In Proc. Fifth In-
ternational Workshop on Graph Grammars and their Application to
Computer Science, pages 7–12, Williamsburg, Va., USA, 1994.

[17] J. Vautherin. Parallel Specification with Coloured Petri Nets and
Algebraic Data Types. In Proc. of the 7th European Workshop on
Application and Theory of Petri nets, pages 5–23, Oxford, England,
jul. 1986.

[18] H. Weber, H. Ehrig, and W. Reisig, editors. 2nd Int. Colloquium
on Petri Net Technologies for Modelling Communication Based Sys-
tems, Berlin, Germany, Sept. 2001. Researcher Group Petri Net
Technology, Fraunhofer Gesellschaft ISST.

[19] C. Weidauer. Animations-Framework in Java. Systematische An-
imationsentwicklung mit Mehrschichtenarchitektur. Informatik -
Forschung und Entwicklung, Band 15, Heft 2, pages 83 –91, June
2000.

