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hnik und Theoretis
he InformatikTe
hnis
he Universit�at Berlin, Germanyfrosi,lieske,padbergg�
s.tu-berlin.deAbstra
t. This 
ontribution 
on
erns transformations of spe
i�
ationar
hite
tures whi
h are diagrams of sub-spe
i�
ations. The graph of adiagram presents the ar
hite
ture: the nodes 
orrespond to the sub-spe
i�
ations and the edges to spe
i�
ation morphisms. We do not �xa spe
i�
 visual spe
i�
ation te
hnique, so this approa
h is in the tra-dition of high-level repla
ement systems. We dis
uss how to transformsu
h spe
i�
ation ar
hite
tures and distinguish lo
al and global 
hanges.The main emphasis of this 
ontribution is the spe
i�
ation and trans-formation of spe
i�
ation ar
hite
tures using GenGED. In GenGED, avisual language (VL) is de�ned by a visual alphabet and a visual syntaxgrammar. We de�ne a VL for spe
i�
ation ar
hite
tures by 
omposingVLs for graphs and for P/T nets enhan
ed by Petri net morphisms. Fromthis VL de�nition a syntax-dire
ted editor is generated supporting theediting of 
onsistent spe
i�
ation ar
hite
tures. Lo
al and global 
hangesof a spe
i�
 spe
i�
ation ar
hite
ture then 
an easily be de�ned as trans-formation rules in our VL and visualized in the GenGED environment.1 Introdu
tionThe need for 
ontinuous development of software systems results mainly fromthe 
hanging demands of the market and the te
hnologi
al advan
es. We suggesta layered approa
h that allows the simultaneous des
ription of a system onan ar
hite
ture and a spe
i�
ation level. Both levels are presented using anadequate visual modeling te
hnique. Based on this approa
h we suggest a rule-based des
ription of the model's evolution.Two-Level Visual Design of Distributed Systems Software ar
hite
turesdes
ribe the di�erent ways a system 
an be built. The larger a system is the moreimportant this level of des
ription is. Otherwise the detailed spe
i�
ation of thesystem, namely the di�erent models, are indispensable. Our approa
h integratesthese two levels and hen
e shows their relation. We propose a two-level represen-tation for both the ar
hite
ture and the spe
i�
ation of subsystems. This allows? This work is part of the joint resear
h proje
t \DFG- Fors
hergruppe Petri-netz-Te
hnologie", supported by the German Resear
h Coun
il (DFG), and theGRAPHIT proje
t, supported by DLR and CNPq.



the abstra
t representation as a graph as well as the detailed spe
i�
ation of thesubsystems based on some adequate visual spe
i�
ation te
hnique. The ar
hite
-ture is given as a spe
i�
 graph whereas at spe
i�
ation level the models are givenin terms of a visual modeling te
hnique. Fig. 1 illustrates the two-level 
on
ept.
architecture level

specification levelFig. 1. Two Levels
The above graph represents the ar
hite
ture, whereas thegraph in the bottom represents the spe
i�
ation levelgiven by di�erent visual models and their relations. Thesevisual models may be given in terms of graphs (then wehave distributed graphs in the sense of [14℄), Petri nets,algebrai
 spe
i�
ations et
. The meaning of su
h a spe
-i�
ation ar
hite
ture is the overall spe
i�
ation it is in-tended to des
ribe. Hen
e we de�ne the semanti
s of aspe
i�
ation ar
hite
ture as the 
omposition of the sub-spe
i�
ations a

ording to the ar
hite
ture graph.Rule-Based Model Evolution In order to ta
kle the problem of 
hanginglarge and 
omplex systems we use rules to transform our two-level des
ription.These rules 
an obviously des
ribe two di�erent kinds of transformation. Chang-ing the ar
hite
ture implies 
hanges on the spe
i�
ation level as well. Changesof the models at the spe
i�
ation level may but need not indu
e 
hanges of thear
hite
ture. Hen
e we introdu
e global 
hanges that 
ause e�e
ts on both lev-els (
f. Fig. 2). In 
ontrast, lo
al 
hanges only work on the spe
i�
ation level.We suggest only to 
on
eive global 
hanges as evolution steps. Moreover we
an distinguish lo
al rules that des
ribe syn
hronous 
hanges of several sub-spe
i�
ations.Our approa
h generalizes the advantages of graph transformation to otherspe
i�
ation te
hniques. We sket
h the basi
 ideas of rule-based modi�
ation interms of high-level repla
ement systems. The left-hand side L of a rule spe
i�esthe parts to be deleted and the right-hand side R those to be added. Note thatin 
ontrast to the graph transformation approa
h rules and transformations arenot used for the des
ription of the system behavior but for the des
ription ofits 
hanges. The ar
hite
ture level is represented by diagrams, where entitiesdes
ribing the subsystems are related to the spe
i�
ation of the 
orrespondingsubsystems at the spe
i�
ation level. We 
an distinguish two kinds of rules:lo
al and global rules. Lo
al rules imply identities at the ar
hite
tural level but
hanges at the spe
i�
ation level. Global rules imply 
hanges on both levels.

RL

S’S Fig. 2. Global Rule
Fig. 2 illustrates the basi
 idea.There we des
ribe a 
hange on bothlevels. A node on the ar
hite
turallevel is deleted and 
orrespondinglythe spe
i�
ation of that subsystemis deleted at the spe
i�
ation level.Moreover, a subsystem is added.Hen
e a new spe
i�
ation is addedas well and the spe
i�
ation S is re-pla
ed by S0. The semanti
s of the



spe
i�
ation ar
hite
ture is preserved. This means that the 
omposed spe
i�-
ation from the resulting spe
i�
ation ar
hite
ture is the same as transformingthe semanti
s of the sour
e ar
hite
ture. This ensures the 
ompatibility with theusual transformation of spe
i�
ations in terms of high-level repla
ement systems.Related Work Several di�erent resear
h areas overlap with our work in
ludingar
hite
ture design te
hniques, ar
hite
ture transformation, distributed systemsengineering and evolutionary system development. As the main fo
us of ourwork lies in the evolution of visual models, the areas of software visualizationand visual languages also relate to our approa
h. An overview on ar
hite
turedes
ription languages (ADLs) based on 
omponents and 
onne
tors 
an be foundin [11℄.In Obje
t Coordination Nets (OCoNs) [5℄ a UML ar
hite
ture des
ription is
ombined with Petri nets spe
ifying the 
omponent behavior. The OCoN envi-ronment supports the visual development of OCoNs but not their relation to thear
hite
tural level. Other examples for visualizing ar
hite
ture and (restri
tedforms of) their evolution 
an be found in ADL environments [2℄. None of thesetools allow a generi
 des
ription of the visual model as we suggest in our ap-proa
h using GenGED.We model evolution steps by graph transformation whi
h is also subje
tto 
onsiderable resear
h. Software ar
hite
ture re
on�guration based on graphtransformation is presented by Wermelinger and Fiadeiro in [15℄. They introdu
ea uniform algebrai
 framework based on 
ategory theory where an ar
hite
tureis given as a graph whose nodes are re�ned to programs. Re
on�guration stepsare modeled by 
onditional graph rewriting rules. In [14℄, Taentzer introdu
esDistributed Graph Transformation. In this formal spe
i�
ation te
hnique anar
hite
ture level (network graph) and a 
omponent level (lo
al graphs) are dis-tinguished. This work is extended in [7℄ integrating distributed graph grammarsand 
onsisten
y 
he
king rules. Our two-level approa
h is based on this workbut allows more 
exible visualization te
hniques than graphs for both levels.Related approa
hes are given in [6, 4, 9, 10℄ where software ar
hite
turegraphs are transformed to adapt them to new requirements or to redu
e the
omponent interrelations. In our paper, we restri
ted to "editor transforma-tion", i.e., 
hanges are performed in the model editor. Another formal approa
hto software ar
hite
ture transformation is given in [8℄. Here properties of 
ompo-nent interrelations (i.e., invariants and dependen
ies) are formalized by a modallogi
 to enable 
onsistent modi�
ations in evolution steps. These invariants alsomight be expressed within graph rules for visual modeling.2 Formal FoundationsFor our approa
h of a Two-Level Visual Design of Distributed Systems we use thebasi
 ideas of the algebrai
 approa
h to graph transformations in order to suggesta rule-based des
ription of system 
hanges and evolution. Here we 
on
entrate onthe basi
 
on
epts of our approa
h and do not dis
uss their formal representation;



this is the topi
 of another paper submitted to ICGT [12℄. So, this approa
h isbased on [14℄.In [14℄ the dynami
 network topology of a possibly open distributed systemis des
ribed on the ar
hite
tural level whereas the evolving data and systemstru
tures in the lo
al subsystems are given on the spe
i�
ation level. The spe
-i�
ation level is related to the ar
hite
tural level via 
ommon interfa
es. Again,di�erent visual software ar
hite
ture modeling languages [13℄ should be sup-ported by our approa
h for the ar
hite
tural level, as well as 
ommon visualmodeling languages for the spe
i�
ation level. Therefore, we generalize [14℄ inallowing arbitrary spe
i�
ation te
hniques instead of graphs for the spe
i�
ationlevel. Analogously to distributed graph transformations [14℄ the ar
hite
turaland the spe
i�
ation level 
an be related by fun
tors. The ar
hite
tural level isrepresented by diagrams, where entities des
ribing the subsystems 
an be relatedby 
orresponding diagram fun
tors.Main Con
ept 1 (Spe
i�
ation Ar
hite
ture).A spe
i�
ation ar
hite
ture 
onsists of an ar
hite
ture graph G = (GN ; GE ; s; t)and of spe
i�
ations and spe
i�
ation morphisms. To be more pre
ise we havefor ea
h node i 2 GN a spe
i�
ation �(i) in a given spe
i�
ation 
ategory Cat.For ea
h edge e 2 GE from the sour
e s(e) = i to the target t(e) = j thereis a spe
i�
ation morphism �(e) : �(i) ! �(j) in the spe
i�
ation 
ategoryCat. This relation is expressed by a diagram fun
tor � : FG! Cat where FGis the 
ategory of �nite graphs. � : FG ! Cat presents the diagram of thear
hite
ture graph G in the spe
i�
ation 
ategory Cat. 4The semanti
s of an ar
hite
ture 
an be 
onsidered as the 
omposition ofthe sub-spe
i�
ations. The gluing of spe
i�
ations is a
hieved by the 
olimit
onstru
tion (the pre
ise de�nition is given in [12℄). The involved morphisms
onstitute the way the gluing is done.Main Con
ept 2 (Semanti
s of a Spe
i�
ation Ar
hite
ture).The semanti
s of a spe
i�
ation ar
hite
ture � : FG ! Cat is given by thegluing of all sub-spe
i�
ations along the morphisms. This 
an be a
hieved in thefollowing way: We �rst 
onstru
t the disjoint union of all sub-spe
i�
ations forea
h node. Then we glue re
ursively those parts of sub-spe
i�
ation that are thetarget of morphisms with the same sour
e. 4Subsequently we dis
uss these two 
on
epts in terms of an abstra
texample. That is we do not assume a spe
i�
 spe
i�
ation te
hnique; itmight be graphs, Petri nets, algebrai
 spe
i�
ations, COMMUNITY pro-grams, or something else. The main feature is that we have distin
t ab-stra
tion levels of representation. Namely, we present an ar
hite
ture graphand 
orresponding diagrams of spe
i�
ations, that is the left 
olumn inFig. 3. Its formal denotation is depi
ted in the middle 
olumn and itsfun
torial presentation in the right 
olumn. The rows denote the following:the top row depi
ts the ar
hite
ture graph, the middle row the spe
i�
a-tion diagram and the bottom row the 
omposed system, i.e. the semanti
s.
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Fig. 3. Abstra
tion Levels ofSpe
i�
ation Ar
hite
tures

In Fig. 3 there is a simple graph inthe 
ategory FG. This graph 
on-sists of nodes f1; 2; 3g and the edgesin between. It is the ar
hite
turegraph whi
h is mapped by the dia-gram fun
tor � to the spe
i�
ationdiagram �(G) in 
ategory Cat.The spe
i�
ation diagram �(G)
onsists of spe
i�
ations sp1, sp2and sp3 and two spe
i�
ation mor-phisms in between. The semanti
sis given in the lowest row. It isthe result of the gluing, namely itis the spe
i�
ation sp4. A 
on
reteexample, where Petri nets are usedas spe
i�
ations, is illustrated inFig. 4.The transfer to high-level repla
ement (HLR) systems 
auses a representa-tion independen
e in the sense that we may 
hoose the spe
i�
ation te
hnique.As in [14℄ we need to ensure spe
i�
 
onditions in order to have pushouts ofspe
i�
ation ar
hite
tures or more pre
isely pushouts of diagram fun
tors. Nev-ertheless, we have a HLR-
ategory (namely HLR0), and we have transformationsprovided that the pushout 
onditions are satis�ed. In [14℄ gluing 
ondition andappli
ability are given expli
itly. We obtain the well-known transformations inthe double-pushout approa
h. We distinguish two levels, namely the level of thear
hite
ture graph and the level of the spe
i�
ations. Hen
e we 
an qualify dif-ferent types of rules; those that leave the ar
hite
ture inta
t are 
alled lo
alrules. Those rules that 
hange the ar
hite
ture graph are 
alled global. Globalrules ne
essarily 
hange the diagram of spe
i�
ations and hen
e may 
hange thespe
i�
ations themselves. Analogously to [14℄ we 
an identify further those rulesthat des
ribe syn
hronized 
hanges of sub-spe
i�
ations as spe
ial 
lass of lo
alrules. Examples are given subsequently in Se
tion 3.The 
ompatibility with the semanti
s of the ar
hite
ture, that is the 
ompo-sition of all sub-spe
i�
ations, is ensured in [12℄. This result is 
ru
ial as it relatesour approa
h to the usual transformation of spe
i�
ations. Hen
e it guaranteesthat the result of an ar
hite
ture transformation is the same as the 
orrespond-ing transformation of the 
omposed spe
i�
ation.Main Result in [12℄(Compatibility of Semanti
s Constru
tion with Transformation).Given a transformation of a spe
i�
ation ar
hite
ture �G p=) �Hwith p = (�L  �K ! �R) then we have as well a transformationCOLIM(�G) COLIM(p)=) COLIM(�H)with COLIM(p) := (COLIM(�L) COLIM(�K)! COLIM(�R)): 4



3 ExampleAs running example we use the well-known spe
i�
ation of a produ
er/
onsumersystem. This example is (like the reader/writer proto
ol) one of the basi
 modelsfor 
ommuni
ation-based systems: two independent agents (the produ
er P andthe 
onsumer C) 
ommuni
ate via a 
hannel (the bu�er B). The produ
er sendsmessages (writes) to the 
hannel, and the 
onsumer re
eives (reads) them fromthe 
hannel1.
B C

Semantics of

Architecture

Specification

Specification Architecture

Architecture Graph

Specifications

P2

P1

P1

P2

P1

P2

Fig. 4. A Produ
er/Consumer System

In our example illustrated inFig. 4 the sub-spe
i�
ations arepla
e/transition (P/T) nets, so the
orresponding 
ategory is the 
at-egory of P/T nets. The nets arethe obje
ts and the P/T nets mor-phisms are the edges in between.A

ording to Con
ept 1 the spe
-i�
ation ar
hite
ture 
onsists of anar
hite
ture graph, spe
i�
ationsand spe
i�
ation morphisms: ea
hnode of the ar
hite
ture graph in-di
ates a sub-spe
i�
ation (�(i)),namely a produ
er P , a 
onsumerC and a bu�er B, and ea
h edge
orresponds to a spe
i�
ation mor-phism in the 
orresponding 
ate-gory. The semanti
s of the spe
i�-
ation ar
hite
ture is given by the
omposition of the spe
i�
ations along the given morphisms.Now we extend the produ
er/
onsumer example introdu
ing a global and alo
al rule. As mentioned before lo
al rules indu
e 
hanges on the spe
i�
ationlevel only, whereas global rules imply 
hanges on both levels, namely the spe
i-�
ation level and the ar
hite
ture level. Global rules usually are rules that allowfor the insertion and 
onne
tion of new produ
ers, 
onsumers, and bu�ers.
BB B C

L

R

I R

L IFig. 5. Global Rule adding a newConsumer
Fig. 5 illustrates a DPO-rule forinserting a new 
onsumer. Pleasenote that the rule 
onsists of ar-
hite
ture graphs (and graph mor-phisms) as well as spe
i�
ations(and spe
i�
ation morphisms) a
-
ording to Con
ept 1. The rule'sleft-hand side L demands for its ap-pli
ation the existen
e of a bu�er.This bu�er is preserved by the rule1 Please note that in our example the arrows des
ribe "being used" relations.



indi
ated by the 
omponent I . By the right-hand side R a new 
onsumer C isinserted and 
onne
ted to the bu�er.Similar to the rule in Fig. 5 are rules for inserting a new bu�er or a newprodu
er. Deletion of 
omponents is a
hieved reversing the 
orresponding rules,i.e. ex
hanging the left- and the right-hand sides of the rules.In Se
tion 2 we mentioned the possibility to des
ribe lo
al 
hanges of sub-spe
i�
ations. Fig. 6 illustrates su
h a rule 
hanging the spe
i�
ation of a pro-du
er. The rule needs for its appli
ation the existen
e of a spe
i�
 produ
erspe
i�
ation presented in the rule's left-hand side L (the produ
er loads in ea
hprodu
tion 
y
le arbitrarily one of the two bu�ers). The two bu�ers and a partof the produ
er are preserved indi
ated by I (one transition and some edges areremoved). By applying this rule a new transition and edges are inserted as shownin the rule's right-hand side R (in ea
h 
y
le both bu�ers are loaded).
IL RFig. 6. Lo
al Rule 
hanging the Spe
i�
ation of a Produ
erAs stated in the main result in Se
tion 2 we obtain the same result, inde-pendent whether we �rst 
onstru
t the semanti
s and then apply the rules, or ifwe �rst apply the rules and then 
onstru
t the semanti
s. For illustration let us
onsider Fig. 7. Fig. 7 (a) shows the appli
ation of the global rule in Fig. 5 to thespe
i�
ation ar
hite
ture in Fig. 4. This yields the insertion of a new 
onsumer
alled C2. Fig. 7 (b) shows the 
orresponding semanti
s.
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(b)(a)Fig. 7. Appli
ation of the Global Rule in Fig. 5The brief example of this se
tion illustrates the formal basis of our approa
h.For examples using other spe
i�
ation te
hniques, the reader is referred to thedis
ussion in [12℄. In the following se
tion we suggests a graphi
al editor fortwo-level ar
hite
tures using GenGED .



4 Spe
ifying Two-Level Ar
hite
tures using GenGEDThe GenGED approa
h developed at the TU Berlin [1℄ allows for the generi
des
ription of visual languages (VLs) and visual environments based on VL spe
-i�
ations. The simplest form of a VL spe
i�
ation we 
onsider here 
onsists ofa visual alphabet and a visual syntax grammar. The de�nition of a VL spe
i�-
ation is based algebrai
 graph transformation and graphi
al 
onstraint solving.VL senten
es (diagrams) 
an be derived by applying the grammar rules in thesyntax grammar to its start diagram.In general a diagram 
onsists of a set of symbol graphi
s that are spatiallyrelated. We o�er graphi
al 
onstraints for these spatial relationships. Symbolgraphi
s and graphi
al 
onstraints 
on
ern the layout of diagrams, 
alled 
on-
rete syntax. The logi
al part of a diagram (its symbols independent of the
on
rete layout) is 
alled abstra
t syntax. The 
ombination of both synta
ti
allevels, 
alled visual syntax level, is represented by attributed graphs.4.1 The Visual AlphabetA visual alphabet establishes a type system for symbols and links, i.e. it de�nesthe vo
abulary of a VL. It 
an be represented as a type graph. Here as wellwe distinguish the abstra
t and the 
on
rete syntax level. Symbol graphi
s andgraphi
al 
onstraints spe
ify layout 
onditions. In addition to logi
al (data) at-tributes like, e.g., a name for a pla
e in a Petri net, symbol graphi
s de�ne afurther kind of attributes for all abstra
t symbol nodes.Graphi
al 
onstraints spe
ify layout 
onditions. They are given by equationsover 
onstraint variables denoting the positions and sizes of graphi
al obje
ts.The set of all 
onstraint variables and 
onstraints de�ne a 
onstraint satisfa
-tion problem (Csp) that has to be solved by an adequate variable binding in adiagram 
onforming to the alphabet.We now develop the visual alphabet for the two-level spe
i�
ation ar
hite
-ture language. We begin by de�ning two separate alphabets, one for a spe
ialkind of graphs (the ar
hite
tural level) and one for pla
e/transition (P/T) netsa

ording to the spe
i�
ation level. As a se
ond step we enhan
e the P/T netalphabet in order to be able to express P/T net morphisms between di�erentnets and 
ombine the two alphabets.De�nition 1 (Alphabet for Ar
hite
ture Graphs).In ar
hite
ture graphs, we have only the symbol types Node and Edge. Nodesare drawn as 
ir
les and may be attributed by strings (their names) whi
h arepla
ed inside the node 
ir
les. Edges are dire
ted ar
s 
onne
ting two nodes.The visual alphabet of the language of ar
hite
ture graphs is shown in Fig. 8(a). The dashed arrows mark the 
onne
tions of the abstra
t syntax and the
on
rete syntax level. Link 
onstraints are illustrated by dotted arrows betweenthe symbol layouts. 4
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StringFig. 8. Alphabets for Ar
hite
ture Graphs (a) and for P/T Nets (b)De�nition 2 (Alphabet for P/T Nets).The visual alphabet of the P/T net language, 
alled P/T net alphabet, is il-lustrated in Fig. 8 (b). We have attribute symbols for pla
e names PN and fortransition names TN whi
h are linked to the symbol types Pla
e resp. Transition.Ea
h name is given by a String data type. To 
ompute the number of pla
es ina transition environment (pre domain and post domain), a transition symbol
arries the integer attributes preNo and postNo. These numbers are needed laterto 
ontrol the insertion of mappings between transitions.We distinguish ar
s that run from pla
es to transitions (PreAr
) and ar
s thatrun from transitions to pla
es (PostAr
). Both kind of ar
s have a 
ertain sour
eand target symbol where they are linked to (depi
ted by the edges spt, tpt, ttp,stp, short for sour
e/target of pla
e-transition ar
 resp. transition-pla
e ar
). Tokeep the alphabet simple, we restri
t to unmarked P/T nets where the uniformar
 weight is "1", and therefore ar
 ins
riptions are omitted. The 
onstraintsfor
e a spe
i�
 layout of nets typed over the P/T net alphabet. For example,one 
onstraint ensures that the pla
e name is always \near" the ellipse (thesymbol graphi
 for Pla
e symbols). 4Senten
es over the P/T net alphabet de�ned so far are unmarked P/T nets(to keep the example simple; for a spe
i�
ation of marked P/T nets in GenGEDin
luding their �ring behavior see [3℄). The visual language we aim to spe
ify,also should provide means to express morphisms between di�erent P/T nets.This means, we have to enhan
e the alphabet from Def. 2 to in
lude senten
es
onsisting of more than one net, and to allow morphism between di�erent nets.We 
all su
h a relation of di�erent P/T nets P/T net systems. Hen
e, for thede�nition of an alphabet for our two-level spe
i�
ation ar
hite
ture language,we 
ombine the alphabets for ar
hite
ture graphs and for P/T net systems.De�nition 3 (Alphabet for Two-Level Language).We introdu
e the symbol Net into our P/T net alphabet where an instan
ein a senten
e is linked to all obje
ts (e.g. pla
es, transitions) belonging to thesame net. The symbol Net is visualized by a dashed frame around all its netobje
ts. Furthermore, we introdu
e the symbol Morphism linking one Net symbolto another. Su
h a morphism is visualized by a double arrow from one dashedNet frame to another.



On the Petri net level a morphism is given by mappings from all net obje
tsof the sour
e net to net obje
ts in the target net. The mappings have to be type
ompatible (pla
es are mapped to pla
es, transitions to transitions and ar
s toar
s of the same type). I.e., mappings have to be 
ompatible with stru
ture(the sour
e/target node of an ar
 is mapped to the sour
e/target node of thear
's image) and they have to preserve the �ring behavior (the transitions aremapped to transitions with the same number of ingoing and outgoing ar
s only).We ensure the type 
ompatibility by introdu
ing the symbol types PlMap, TrMap,PreMap, PostMap for the di�erent net obje
ts. The other 
onditions are ensuredby the grammar rules introdu
ed later for modifying diagrams of the language.The resulting alphabet for P/T net systems now is 
ombined with the alpha-bet for ar
hite
ture graphs, i.e. ea
h node from the ar
hite
ture level is linked toa net at the spe
i�
ation level. The 
omplete alphabet of the 
ombined languagesis shown in Fig.9.
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Fig. 9. Alphabet for the Two-Level Language 4An example for a senten
e over the two-level alphabet is shown in Fig. 10.At the ar
hite
ture level we have two nodes, namely a produ
er and a bu�erwhi
h are 
onne
ted by an edge. A

ordingly there are two P/T nets at thespe
i�
ation level related by a morphism: the P/T net modeling the produ
er isrelated to the se
ond P/T net 
onsisting of one pla
e modeling the bu�er. Themorphism 
onsists of one mapping of type PlMap between the bu�ers of the P/Tnets, only.
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Fig. 10. Visual Senten
e over the Two-Level Alphabet4.2 The Visual Syntax GrammarThe visual alphabet depi
ted in Fig. 9 is the basis to de�ne the syntax grammarfor our two-level language for ar
hite
ture spe
i�
ations. The syntax grammar isrepresented by an attributed graph grammar: it 
onsists of a start diagram and a�nite set of rules. The start diagram and both sides of a rule are diagrams typedover the alphabet, as well as the diagrams whi
h 
an be derived by applyinggrammar rules. In the rules we use in addition to the left-hand rule sides so-
alled negative appli
ation 
onditions (NACs) whi
h restri
t the appli
ation ofa rule. An NAC is a graph 
ontaining a forbidden graph pattern. The rule mustnot be applied to a senten
e if there is a mat
h from the NAC to the senten
e,i.e. the forbidden pattern is found in the senten
e. Moreover, rule appli
ations
an be restri
ted by boolean 
onditions over attributes.In Def. 4 we de�ne the syntax grammar for the two-level language 
ombinedby graphs and P/T net systems. This de�nition has to be �xed on
e and allowsthe generation of a syntax-dire
ted editor for two-level models (spe
i�
ationar
hite
tures) in GenGED. An example for a global syntax rule is the ruleadding a new 
omponent node whi
h means at the same time to add a new(initially empty) spe
i�
ation net at the spe
i�
ation level. Examples for lo
alsyntax rules are rules adding pla
es or transitions to an existing P/T net.Let us 
onsider the lo
al rules �rst. They operate only on the spe
i�
ationlevel and 
an thus be 
onsidered as syntax rules for the VL of P/T nets over thealphabet shown in Fig. 8 (b).



De�nition 4 (P/T Net Syntax Grammar).Fig. 11 illustrates a syntax grammar for our P/T net language based on the visualalphabet in Fig. 8 (b). In this P/T net grammar the start senten
e 
onsists ofthe empty net (i.e. a single Net node).
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Fig. 11. Visual Syntax Grammar for the P/T Net LanguageThe �rst rule InsPla
e(pn) supports the insertion of a pla
e together with apla
e name; the NAC requires that a pla
e with the user-de�ned name given inthe parameter variable pn is not existing so far in the net the rule is applied to.The se
ond rule analogously supports the insertion of a transition symbol. Herethe integer attributes preNo and postNo are initialized by 0 as the newly insertedtransition is not yet 
onne
ted to any pla
es. The next two rules allow for theinsertion of ar
s, either running from a pla
e to a transition (insPreAr
) or runningfrom a transition to a pla
e (insPostAr
). The respe
tive 
ounter is in
rementedfor the transition. The NACs forbid the appli
ation if there is already su
h anar
.



Graphi
al 
onstraints (dotted ar
s in Fig. 11) ensure that ar
s 
onne
t pla
esand transitions in a proper way and a name of a net obje
t is pla
ed near theobje
t. 4A VL is generated by applying the syntax grammar rules. Up to now wede�ned the VL of P/T nets 
onsisting of all diagrams over the P/T Net Alphabetas given in Fig. 8 (b) whi
h 
an be derived from the start diagram by the lo
alsyntax grammar rules given in Fig. 11. Let us now extend our visual languageby global rules 
on
erning both the ar
hite
ture level and the P/T net level.De�nition 5 (Syntax Grammar for Two-Level Models).The start graph of the 
ombined syntax grammar for two-level models is emptyre
e
ting that the editing pro
ess starts with an empty editor panel. Fig. 12shows the global grammar rules.Rule InsComponent inserts a new 
omponent to the ar
hite
ture level 
ombinedto the insertion of a new (empty) net spe
i�
ation. The NACs ensure that thereexist no node and no net in the spe
i�
ation so far with the same names asthe 
urrently inserted ones (uniqueness of names). The other rules deal withthe insertion of mappings and morphisms. Note that we do not provide a ruleto insert a morphism. This is done impli
itly by the mapping-inserting rules.For the insertion of mappings between pla
es or transitions of di�erent netswe distinguish two 
ases: either there is already a morphism between the two
orresponding nets (due to previous mappings) or there is no morphism (�rstinsertion of a mapping). In 
ase a mapping is inserted for the �rst time, themorphism between the two 
orresponding nets has to be inserted together withan edge 
onne
ting two nodes at the ar
hite
ture level (see e.g. rule InsPlMap1).If a morphism already exists, the mapping simply is added, but the ar
hite
turelevel is not 
hanged (see e.g. rule InsPlMap+). This distin
tion is realized by therespe
tive NACs and works analogously for all types of mappings.The rules InsTrMap+ and InsTrMap1 for the insertion of transition mappingsare analogi
al to the insertion of pla
e mappings but 
ontain additionally a ruleappli
ation 
ondition that ensures that a mapping between transitions is insertedonly if the number of pla
es in the pre domain preNo and the number of pla
esin the post domain postNo are the same for both transitions su
h that the �ringbehavior of the sour
e net is preserved by the net morphism. We only depi
tInsTrMap1 in Fig. 12, the step to InsTrMap+ is obvious. Note that ar
s 
an bemapped only if there exist mappings between their start and end nodes (see ruleInsPreAr
Map). The analogi
al rule InsPostAr
Map is omitted in Fig. 12.The 
omplete syntax grammar for two-level models now 
onsists of the unionof the set of global rules as explained above and the set of lo
al grammar rulesshown in Fig. 11. 4The visual two-level language thus 
onsists of all diagrams over the two-levelalphabet shown in Fig. 9 whi
h 
an be derived from the empty start diagram bythe 
omplete syntax grammar 
onsisting of the lo
al rules (see Fig. 11) and theglobal rules (see Fig. 12).
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Fig. 12. Global Grammar Rules for Two-Level Modeling LanguageIn order to de�ne spe
i�
ation transformation steps in GenGED, the syntaxrules of our two-level language 
an be used to de�ne the left-hand and right-handsides of the desired transformation rules. Thus a spe
i�
 model transformationgrammar 
an be visually de�ned as well, and rules like the transformation ruleadding a new 
onsumer (see Fig. 5) may be 
onstru
ted and applied in theGenGED environment.



5 Con
lusionWe have presented an approa
h for ar
hite
tures of spe
i�
ations that is basedon diagram fun
tors. The emphasis of this paper has been on the illustration ofthe main 
on
epts and the implementation of the example within the GenGEDenvironment. We have given a simple example, namely a produ
er/
onsumersystem. First the main 
on
epts of our approa
h have been exempli�ed there,then we have used this example to illustrate the visualization of spe
i�
ationar
hite
tures using the GenGED environment.This approa
h is general enough to provide a framework for various spe
-i�
ation te
hniques. It 
an be employed for textual as well as graphi
al ones.Examples of spe
i�
ation ar
hite
tures 
omprise ar
hite
tures of COMMUNITYprograms [15℄, distributed graph transformation systems [14℄, spe
i�
ation ar
hi-te
tures of algebrai
 high-level nets [12℄. Hen
e the question of implementationof 
hanges 
an be attributed to the question of the spe
i�
ation te
hniques.Obviously a programming language as COMMUNITY is 
loser to the real im-plementation as a P/T net. So it is 
learly an important and 
hallenging task toensure 
ompatibility of model transformation with its implementation. But it isdependent on the underlying spe
i�
ation te
hnique. For methodologi
al ques-tions it needs several 
ase studies using various spe
i�
ation te
hniques to extra
ta spe
i�
ation independent pro
ess model. Hen
e we have not yet 
on
entratedon this question, but merely have distinguished between lo
al, syn
hronizingand global transformations. Further resear
h 
an either 
onsider spe
i�
 spe
i�-
ation te
hniques or 
on
entrate on the general approa
h. The �rst 
ase in
ludesall semanti
 aspe
ts, as 
onsistent 
hanges of behavior, as preservation of prop-erties, and as mentioned above 
ompatibility with realization. The se
ond 
asefo
uses on stru
tural questions as 
ompatibility with (
ategori
al) stru
turingte
hniques, as parallel and sequential independen
e, and so on.Referen
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