
Transforming Spe
i�
ation Ar
hite
tures byGenGED?Roswitha Bardohl, Claudia Ermel, Julia PadbergInstitut f�ur Softwarete
hnik und Theoretis
he InformatikTe
hnis
he Universit�at Berlin, Germanyfrosi,lieske,padbergg�
s.tu-berlin.deAbstra
t. This
ontribution
on
erns transformations of spe
i�
ationar
hite
tures whi
h are diagrams of sub-spe
i�
ations. The graph of adiagram presents the ar
hite
ture: the nodes
orrespond to the sub-spe
i�
ations and the edges to spe
i�
ation morphisms. We do not �xa spe
i�
 visual spe
i�
ation te
hnique, so this approa
h is in the tra-dition of high-level repla
ement systems. We dis
uss how to transformsu
h spe
i�
ation ar
hite
tures and distinguish lo
al and global
hanges.The main emphasis of this
ontribution is the spe
i�
ation and trans-formation of spe
i�
ation ar
hite
tures using GenGED. In GenGED, avisual language (VL) is de�ned by a visual alphabet and a visual syntaxgrammar. We de�ne a VL for spe
i�
ation ar
hite
tures by
omposingVLs for graphs and for P/T nets enhan
ed by Petri net morphisms. Fromthis VL de�nition a syntax-dire
ted editor is generated supporting theediting of
onsistent spe
i�
ation ar
hite
tures. Lo
al and global
hangesof a spe
i�
 spe
i�
ation ar
hite
ture then
an easily be de�ned as trans-formation rules in our VL and visualized in the GenGED environment.1 Introdu
tionThe need for
ontinuous development of software systems results mainly fromthe
hanging demands of the market and the te
hnologi
al advan
es. We suggesta layered approa
h that allows the simultaneous des
ription of a system onan ar
hite
ture and a spe
i�
ation level. Both levels are presented using anadequate visual modeling te
hnique. Based on this approa
h we suggest a rule-based des
ription of the model's evolution.Two-Level Visual Design of Distributed Systems Software ar
hite
turesdes
ribe the di�erent ways a system
an be built. The larger a system is the moreimportant this level of des
ription is. Otherwise the detailed spe
i�
ation of thesystem, namely the di�erent models, are indispensable. Our approa
h integratesthese two levels and hen
e shows their relation. We propose a two-level represen-tation for both the ar
hite
ture and the spe
i�
ation of subsystems. This allows? This work is part of the joint resear
h proje
t \DFG- Fors
hergruppe Petri-netz-Te
hnologie", supported by the German Resear
h Coun
il (DFG), and theGRAPHIT proje
t, supported by DLR and CNPq.

the abstra
t representation as a graph as well as the detailed spe
i�
ation of thesubsystems based on some adequate visual spe
i�
ation te
hnique. The ar
hite
-ture is given as a spe
i�
 graph whereas at spe
i�
ation level the models are givenin terms of a visual modeling te
hnique. Fig. 1 illustrates the two-level
on
ept.
architecture level

specification levelFig. 1. Two Levels
The above graph represents the ar
hite
ture, whereas thegraph in the bottom represents the spe
i�
ation levelgiven by di�erent visual models and their relations. Thesevisual models may be given in terms of graphs (then wehave distributed graphs in the sense of [14℄), Petri nets,algebrai
 spe
i�
ations et
. The meaning of su
h a spe
-i�
ation ar
hite
ture is the overall spe
i�
ation it is in-tended to des
ribe. Hen
e we de�ne the semanti
s of aspe
i�
ation ar
hite
ture as the
omposition of the sub-spe
i�
ations a

ording to the ar
hite
ture graph.Rule-Based Model Evolution In order to ta
kle the problem of
hanginglarge and
omplex systems we use rules to transform our two-level des
ription.These rules
an obviously des
ribe two di�erent kinds of transformation. Chang-ing the ar
hite
ture implies
hanges on the spe
i�
ation level as well. Changesof the models at the spe
i�
ation level may but need not indu
e
hanges of thear
hite
ture. Hen
e we introdu
e global
hanges that
ause e�e
ts on both lev-els (
f. Fig. 2). In
ontrast, lo
al
hanges only work on the spe
i�
ation level.We suggest only to
on
eive global
hanges as evolution steps. Moreover we
an distinguish lo
al rules that des
ribe syn
hronous
hanges of several sub-spe
i�
ations.Our approa
h generalizes the advantages of graph transformation to otherspe
i�
ation te
hniques. We sket
h the basi
 ideas of rule-based modi�
ation interms of high-level repla
ement systems. The left-hand side L of a rule spe
i�esthe parts to be deleted and the right-hand side R those to be added. Note thatin
ontrast to the graph transformation approa
h rules and transformations arenot used for the des
ription of the system behavior but for the des
ription ofits
hanges. The ar
hite
ture level is represented by diagrams, where entitiesdes
ribing the subsystems are related to the spe
i�
ation of the
orrespondingsubsystems at the spe
i�
ation level. We
an distinguish two kinds of rules:lo
al and global rules. Lo
al rules imply identities at the ar
hite
tural level but
hanges at the spe
i�
ation level. Global rules imply
hanges on both levels.

RL

S’S Fig. 2. Global Rule
Fig. 2 illustrates the basi
 idea.There we des
ribe a
hange on bothlevels. A node on the ar
hite
turallevel is deleted and
orrespondinglythe spe
i�
ation of that subsystemis deleted at the spe
i�
ation level.Moreover, a subsystem is added.Hen
e a new spe
i�
ation is addedas well and the spe
i�
ation S is re-pla
ed by S0. The semanti
s of the

spe
i�
ation ar
hite
ture is preserved. This means that the
omposed spe
i�-
ation from the resulting spe
i�
ation ar
hite
ture is the same as transformingthe semanti
s of the sour
e ar
hite
ture. This ensures the
ompatibility with theusual transformation of spe
i�
ations in terms of high-level repla
ement systems.Related Work Several di�erent resear
h areas overlap with our work in
ludingar
hite
ture design te
hniques, ar
hite
ture transformation, distributed systemsengineering and evolutionary system development. As the main fo
us of ourwork lies in the evolution of visual models, the areas of software visualizationand visual languages also relate to our approa
h. An overview on ar
hite
turedes
ription languages (ADLs) based on
omponents and
onne
tors
an be foundin [11℄.In Obje
t Coordination Nets (OCoNs) [5℄ a UML ar
hite
ture des
ription is
ombined with Petri nets spe
ifying the
omponent behavior. The OCoN envi-ronment supports the visual development of OCoNs but not their relation to thear
hite
tural level. Other examples for visualizing ar
hite
ture and (restri
tedforms of) their evolution
an be found in ADL environments [2℄. None of thesetools allow a generi
 des
ription of the visual model as we suggest in our ap-proa
h using GenGED.We model evolution steps by graph transformation whi
h is also subje
tto
onsiderable resear
h. Software ar
hite
ture re
on�guration based on graphtransformation is presented by Wermelinger and Fiadeiro in [15℄. They introdu
ea uniform algebrai
 framework based on
ategory theory where an ar
hite
tureis given as a graph whose nodes are re�ned to programs. Re
on�guration stepsare modeled by
onditional graph rewriting rules. In [14℄, Taentzer introdu
esDistributed Graph Transformation. In this formal spe
i�
ation te
hnique anar
hite
ture level (network graph) and a
omponent level (lo
al graphs) are dis-tinguished. This work is extended in [7℄ integrating distributed graph grammarsand
onsisten
y
he
king rules. Our two-level approa
h is based on this workbut allows more
exible visualization te
hniques than graphs for both levels.Related approa
hes are given in [6, 4, 9, 10℄ where software ar
hite
turegraphs are transformed to adapt them to new requirements or to redu
e the
omponent interrelations. In our paper, we restri
ted to "editor transforma-tion", i.e.,
hanges are performed in the model editor. Another formal approa
hto software ar
hite
ture transformation is given in [8℄. Here properties of
ompo-nent interrelations (i.e., invariants and dependen
ies) are formalized by a modallogi
 to enable
onsistent modi�
ations in evolution steps. These invariants alsomight be expressed within graph rules for visual modeling.2 Formal FoundationsFor our approa
h of a Two-Level Visual Design of Distributed Systems we use thebasi
 ideas of the algebrai
 approa
h to graph transformations in order to suggesta rule-based des
ription of system
hanges and evolution. Here we
on
entrate onthe basi

on
epts of our approa
h and do not dis
uss their formal representation;

this is the topi
 of another paper submitted to ICGT [12℄. So, this approa
h isbased on [14℄.In [14℄ the dynami
 network topology of a possibly open distributed systemis des
ribed on the ar
hite
tural level whereas the evolving data and systemstru
tures in the lo
al subsystems are given on the spe
i�
ation level. The spe
-i�
ation level is related to the ar
hite
tural level via
ommon interfa
es. Again,di�erent visual software ar
hite
ture modeling languages [13℄ should be sup-ported by our approa
h for the ar
hite
tural level, as well as
ommon visualmodeling languages for the spe
i�
ation level. Therefore, we generalize [14℄ inallowing arbitrary spe
i�
ation te
hniques instead of graphs for the spe
i�
ationlevel. Analogously to distributed graph transformations [14℄ the ar
hite
turaland the spe
i�
ation level
an be related by fun
tors. The ar
hite
tural level isrepresented by diagrams, where entities des
ribing the subsystems
an be relatedby
orresponding diagram fun
tors.Main Con
ept 1 (Spe
i�
ation Ar
hite
ture).A spe
i�
ation ar
hite
ture
onsists of an ar
hite
ture graph G = (GN ; GE ; s; t)and of spe
i�
ations and spe
i�
ation morphisms. To be more pre
ise we havefor ea
h node i 2 GN a spe
i�
ation �(i) in a given spe
i�
ation
ategory Cat.For ea
h edge e 2 GE from the sour
e s(e) = i to the target t(e) = j thereis a spe
i�
ation morphism �(e) : �(i) ! �(j) in the spe
i�
ation
ategoryCat. This relation is expressed by a diagram fun
tor � : FG! Cat where FGis the
ategory of �nite graphs. � : FG ! Cat presents the diagram of thear
hite
ture graph G in the spe
i�
ation
ategory Cat. 4The semanti
s of an ar
hite
ture
an be
onsidered as the
omposition ofthe sub-spe
i�
ations. The gluing of spe
i�
ations is a
hieved by the
olimit
onstru
tion (the pre
ise de�nition is given in [12℄). The involved morphisms
onstitute the way the gluing is done.Main Con
ept 2 (Semanti
s of a Spe
i�
ation Ar
hite
ture).The semanti
s of a spe
i�
ation ar
hite
ture � : FG ! Cat is given by thegluing of all sub-spe
i�
ations along the morphisms. This
an be a
hieved in thefollowing way: We �rst
onstru
t the disjoint union of all sub-spe
i�
ations forea
h node. Then we glue re
ursively those parts of sub-spe
i�
ation that are thetarget of morphisms with the same sour
e. 4Subsequently we dis
uss these two
on
epts in terms of an abstra
texample. That is we do not assume a spe
i�
 spe
i�
ation te
hnique; itmight be graphs, Petri nets, algebrai
 spe
i�
ations, COMMUNITY pro-grams, or something else. The main feature is that we have distin
t ab-stra
tion levels of representation. Namely, we present an ar
hite
ture graphand
orresponding diagrams of spe
i�
ations, that is the left
olumn inFig. 3. Its formal denotation is depi
ted in the middle
olumn and itsfun
torial presentation in the right
olumn. The rows denote the following:the top row depi
ts the ar
hite
ture graph, the middle row the spe
i�
a-tion diagram and the bottom row the
omposed system, i.e. the semanti
s.

sp1

sp2 sp3

sp2

sp4

3

1

sp3

sp1

2

Cat

(G)) SemCOLIM(Cat

Spec.

Diagr.
FG

∆

Graph

Arch.
G FG

COLIM COLIM

Cat

∆

∆(G)

Fig. 3. Abstra
tion Levels ofSpe
i�
ation Ar
hite
tures

In Fig. 3 there is a simple graph inthe
ategory FG. This graph
on-sists of nodes f1; 2; 3g and the edgesin between. It is the ar
hite
turegraph whi
h is mapped by the dia-gram fun
tor � to the spe
i�
ationdiagram �(G) in
ategory Cat.The spe
i�
ation diagram �(G)
onsists of spe
i�
ations sp1, sp2and sp3 and two spe
i�
ation mor-phisms in between. The semanti
sis given in the lowest row. It isthe result of the gluing, namely itis the spe
i�
ation sp4. A
on
reteexample, where Petri nets are usedas spe
i�
ations, is illustrated inFig. 4.The transfer to high-level repla
ement (HLR) systems
auses a representa-tion independen
e in the sense that we may
hoose the spe
i�
ation te
hnique.As in [14℄ we need to ensure spe
i�

onditions in order to have pushouts ofspe
i�
ation ar
hite
tures or more pre
isely pushouts of diagram fun
tors. Nev-ertheless, we have a HLR-
ategory (namely HLR0), and we have transformationsprovided that the pushout
onditions are satis�ed. In [14℄ gluing
ondition andappli
ability are given expli
itly. We obtain the well-known transformations inthe double-pushout approa
h. We distinguish two levels, namely the level of thear
hite
ture graph and the level of the spe
i�
ations. Hen
e we
an qualify dif-ferent types of rules; those that leave the ar
hite
ture inta
t are
alled lo
alrules. Those rules that
hange the ar
hite
ture graph are
alled global. Globalrules ne
essarily
hange the diagram of spe
i�
ations and hen
e may
hange thespe
i�
ations themselves. Analogously to [14℄ we
an identify further those rulesthat des
ribe syn
hronized
hanges of sub-spe
i�
ations as spe
ial
lass of lo
alrules. Examples are given subsequently in Se
tion 3.The
ompatibility with the semanti
s of the ar
hite
ture, that is the
ompo-sition of all sub-spe
i�
ations, is ensured in [12℄. This result is
ru
ial as it relatesour approa
h to the usual transformation of spe
i�
ations. Hen
e it guaranteesthat the result of an ar
hite
ture transformation is the same as the
orrespond-ing transformation of the
omposed spe
i�
ation.Main Result in [12℄(Compatibility of Semanti
s Constru
tion with Transformation).Given a transformation of a spe
i�
ation ar
hite
ture �G p=) �Hwith p = (�L �K ! �R) then we have as well a transformationCOLIM(�G) COLIM(p)=) COLIM(�H)with COLIM(p) := (COLIM(�L) COLIM(�K)! COLIM(�R)): 4

3 ExampleAs running example we use the well-known spe
i�
ation of a produ
er/
onsumersystem. This example is (like the reader/writer proto
ol) one of the basi
 modelsfor
ommuni
ation-based systems: two independent agents (the produ
er P andthe
onsumer C)
ommuni
ate via a
hannel (the bu�er B). The produ
er sendsmessages (writes) to the
hannel, and the
onsumer re
eives (reads) them fromthe
hannel1.
B C

Semantics of

Architecture

Specification

Specification Architecture

Architecture Graph

Specifications

P2

P1

P1

P2

P1

P2

Fig. 4. A Produ
er/Consumer System

In our example illustrated inFig. 4 the sub-spe
i�
ations arepla
e/transition (P/T) nets, so the
orresponding
ategory is the
at-egory of P/T nets. The nets arethe obje
ts and the P/T nets mor-phisms are the edges in between.A

ording to Con
ept 1 the spe
-i�
ation ar
hite
ture
onsists of anar
hite
ture graph, spe
i�
ationsand spe
i�
ation morphisms: ea
hnode of the ar
hite
ture graph in-di
ates a sub-spe
i�
ation (�(i)),namely a produ
er P , a
onsumerC and a bu�er B, and ea
h edge
orresponds to a spe
i�
ation mor-phism in the
orresponding
ate-gory. The semanti
s of the spe
i�-
ation ar
hite
ture is given by the
omposition of the spe
i�
ations along the given morphisms.Now we extend the produ
er/
onsumer example introdu
ing a global and alo
al rule. As mentioned before lo
al rules indu
e
hanges on the spe
i�
ationlevel only, whereas global rules imply
hanges on both levels, namely the spe
i-�
ation level and the ar
hite
ture level. Global rules usually are rules that allowfor the insertion and
onne
tion of new produ
ers,
onsumers, and bu�ers.
BB B C

L

R

I R

L IFig. 5. Global Rule adding a newConsumer
Fig. 5 illustrates a DPO-rule forinserting a new
onsumer. Pleasenote that the rule
onsists of ar-
hite
ture graphs (and graph mor-phisms) as well as spe
i�
ations(and spe
i�
ation morphisms) a
-
ording to Con
ept 1. The rule'sleft-hand side L demands for its ap-pli
ation the existen
e of a bu�er.This bu�er is preserved by the rule1 Please note that in our example the arrows des
ribe "being used" relations.

indi
ated by the
omponent I . By the right-hand side R a new
onsumer C isinserted and
onne
ted to the bu�er.Similar to the rule in Fig. 5 are rules for inserting a new bu�er or a newprodu
er. Deletion of
omponents is a
hieved reversing the
orresponding rules,i.e. ex
hanging the left- and the right-hand sides of the rules.In Se
tion 2 we mentioned the possibility to des
ribe lo
al
hanges of sub-spe
i�
ations. Fig. 6 illustrates su
h a rule
hanging the spe
i�
ation of a pro-du
er. The rule needs for its appli
ation the existen
e of a spe
i�
 produ
erspe
i�
ation presented in the rule's left-hand side L (the produ
er loads in ea
hprodu
tion
y
le arbitrarily one of the two bu�ers). The two bu�ers and a partof the produ
er are preserved indi
ated by I (one transition and some edges areremoved). By applying this rule a new transition and edges are inserted as shownin the rule's right-hand side R (in ea
h
y
le both bu�ers are loaded).
IL RFig. 6. Lo
al Rule
hanging the Spe
i�
ation of a Produ
erAs stated in the main result in Se
tion 2 we obtain the same result, inde-pendent whether we �rst
onstru
t the semanti
s and then apply the rules, or ifwe �rst apply the rules and then
onstru
t the semanti
s. For illustration let us
onsider Fig. 7. Fig. 7 (a) shows the appli
ation of the global rule in Fig. 5 to thespe
i�
ation ar
hite
ture in Fig. 4. This yields the insertion of a new
onsumer
alled C2. Fig. 7 (b) shows the
orresponding semanti
s.

B B

C1

C1

C2

P1

C1

C1
P1

P2

P2 C2

P1

P2
P2

P1

P2

P1

C1

C2

(b)(a)Fig. 7. Appli
ation of the Global Rule in Fig. 5The brief example of this se
tion illustrates the formal basis of our approa
h.For examples using other spe
i�
ation te
hniques, the reader is referred to thedis
ussion in [12℄. In the following se
tion we suggests a graphi
al editor fortwo-level ar
hite
tures using GenGED .

4 Spe
ifying Two-Level Ar
hite
tures using GenGEDThe GenGED approa
h developed at the TU Berlin [1℄ allows for the generi
des
ription of visual languages (VLs) and visual environments based on VL spe
-i�
ations. The simplest form of a VL spe
i�
ation we
onsider here
onsists ofa visual alphabet and a visual syntax grammar. The de�nition of a VL spe
i�-
ation is based algebrai
 graph transformation and graphi
al
onstraint solving.VL senten
es (diagrams)
an be derived by applying the grammar rules in thesyntax grammar to its start diagram.In general a diagram
onsists of a set of symbol graphi
s that are spatiallyrelated. We o�er graphi
al
onstraints for these spatial relationships. Symbolgraphi
s and graphi
al
onstraints
on
ern the layout of diagrams,
alled
on-
rete syntax. The logi
al part of a diagram (its symbols independent of the
on
rete layout) is
alled abstra
t syntax. The
ombination of both synta
ti
allevels,
alled visual syntax level, is represented by attributed graphs.4.1 The Visual AlphabetA visual alphabet establishes a type system for symbols and links, i.e. it de�nesthe vo
abulary of a VL. It
an be represented as a type graph. Here as wellwe distinguish the abstra
t and the
on
rete syntax level. Symbol graphi
s andgraphi
al
onstraints spe
ify layout
onditions. In addition to logi
al (data) at-tributes like, e.g., a name for a pla
e in a Petri net, symbol graphi
s de�ne afurther kind of attributes for all abstra
t symbol nodes.Graphi
al
onstraints spe
ify layout
onditions. They are given by equationsover
onstraint variables denoting the positions and sizes of graphi
al obje
ts.The set of all
onstraint variables and
onstraints de�ne a
onstraint satisfa
-tion problem (Csp) that has to be solved by an adequate variable binding in adiagram
onforming to the alphabet.We now develop the visual alphabet for the two-level spe
i�
ation ar
hite
-ture language. We begin by de�ning two separate alphabets, one for a spe
ialkind of graphs (the ar
hite
tural level) and one for pla
e/transition (P/T) netsa

ording to the spe
i�
ation level. As a se
ond step we enhan
e the P/T netalphabet in order to be able to express P/T net morphisms between di�erentnets and
ombine the two alphabets.De�nition 1 (Alphabet for Ar
hite
ture Graphs).In ar
hite
ture graphs, we have only the symbol types Node and Edge. Nodesare drawn as
ir
les and may be attributed by strings (their names) whi
h arepla
ed inside the node
ir
les. Edges are dire
ted ar
s
onne
ting two nodes.The visual alphabet of the language of ar
hite
ture graphs is shown in Fig. 8(a). The dashed arrows mark the
onne
tions of the abstra
t syntax and the
on
rete syntax level. Link
onstraints are illustrated by dotted arrows betweenthe symbol layouts. 4

TN

preNo

postNo
PreArc

stp

tpt

ttp
Place

Intspt

Int

Transition

(b)(a)

pn
PN

PostArc

EdgeName Node

Syntax

Concrete

Syntax

Abstract

Syntax

Syntax

Concrete

Abstract

String

String

tn

StringFig. 8. Alphabets for Ar
hite
ture Graphs (a) and for P/T Nets (b)De�nition 2 (Alphabet for P/T Nets).The visual alphabet of the P/T net language,
alled P/T net alphabet, is il-lustrated in Fig. 8 (b). We have attribute symbols for pla
e names PN and fortransition names TN whi
h are linked to the symbol types Pla
e resp. Transition.Ea
h name is given by a String data type. To
ompute the number of pla
es ina transition environment (pre domain and post domain), a transition symbol
arries the integer attributes preNo and postNo. These numbers are needed laterto
ontrol the insertion of mappings between transitions.We distinguish ar
s that run from pla
es to transitions (PreAr
) and ar
s thatrun from transitions to pla
es (PostAr
). Both kind of ar
s have a
ertain sour
eand target symbol where they are linked to (depi
ted by the edges spt, tpt, ttp,stp, short for sour
e/target of pla
e-transition ar
 resp. transition-pla
e ar
). Tokeep the alphabet simple, we restri
t to unmarked P/T nets where the uniformar
 weight is "1", and therefore ar
 ins
riptions are omitted. The
onstraintsfor
e a spe
i�
 layout of nets typed over the P/T net alphabet. For example,one
onstraint ensures that the pla
e name is always \near" the ellipse (thesymbol graphi
 for Pla
e symbols). 4Senten
es over the P/T net alphabet de�ned so far are unmarked P/T nets(to keep the example simple; for a spe
i�
ation of marked P/T nets in GenGEDin
luding their �ring behavior see [3℄). The visual language we aim to spe
ify,also should provide means to express morphisms between di�erent P/T nets.This means, we have to enhan
e the alphabet from Def. 2 to in
lude senten
es
onsisting of more than one net, and to allow morphism between di�erent nets.We
all su
h a relation of di�erent P/T nets P/T net systems. Hen
e, for thede�nition of an alphabet for our two-level spe
i�
ation ar
hite
ture language,we
ombine the alphabets for ar
hite
ture graphs and for P/T net systems.De�nition 3 (Alphabet for Two-Level Language).We introdu
e the symbol Net into our P/T net alphabet where an instan
ein a senten
e is linked to all obje
ts (e.g. pla
es, transitions) belonging to thesame net. The symbol Net is visualized by a dashed frame around all its netobje
ts. Furthermore, we introdu
e the symbol Morphism linking one Net symbolto another. Su
h a morphism is visualized by a double arrow from one dashedNet frame to another.

On the Petri net level a morphism is given by mappings from all net obje
tsof the sour
e net to net obje
ts in the target net. The mappings have to be type
ompatible (pla
es are mapped to pla
es, transitions to transitions and ar
s toar
s of the same type). I.e., mappings have to be
ompatible with stru
ture(the sour
e/target node of an ar
 is mapped to the sour
e/target node of thear
's image) and they have to preserve the �ring behavior (the transitions aremapped to transitions with the same number of ingoing and outgoing ar
s only).We ensure the type
ompatibility by introdu
ing the symbol types PlMap, TrMap,PreMap, PostMap for the di�erent net obje
ts. The other
onditions are ensuredby the grammar rules introdu
ed later for modifying diagrams of the language.The resulting alphabet for P/T net systems now is
ombined with the alpha-bet for ar
hite
ture graphs, i.e. ea
h node from the ar
hite
ture level is linked toa net at the spe
i�
ation level. The
omplete alphabet of the
ombined languagesis shown in Fig.9.
TN

PN

CombEdge

CombNode
NN

postNo

preNo

PostArc

PreArc

TransitionPlace

Syntax

Name Node Edge

Concrete

Syntax

Abstract

Net

TrMapPostMapPreMapPlMap

Morphismt

s

String

String

String String

Fig. 9. Alphabet for the Two-Level Language 4An example for a senten
e over the two-level alphabet is shown in Fig. 10.At the ar
hite
ture level we have two nodes, namely a produ
er and a bu�erwhi
h are
onne
ted by an edge. A

ordingly there are two P/T nets at thespe
i�
ation level related by a morphism: the P/T net modeling the produ
er isrelated to the se
ond P/T net
onsisting of one pla
e modeling the bu�er. Themorphism
onsists of one mapping of type PlMap between the bu�ers of the P/Tnets, only.

Transition

Place

PlacePN

TN

PN

PostArc PreArc

PostArcPreArc

PlMap

Morphism

PN

Net

NN

Transition

TN

Node

NetNN

PN Place

BP

Producer

Place

NameCombNode Edge

CombNode

CombEdge

PostArc

Name

Node

Buffer

Syntax

Abstract

deliver

ready to
produce

buffer

deliver
ready to

bufferproduce
Syntax

Concrete

Fig. 10. Visual Senten
e over the Two-Level Alphabet4.2 The Visual Syntax GrammarThe visual alphabet depi
ted in Fig. 9 is the basis to de�ne the syntax grammarfor our two-level language for ar
hite
ture spe
i�
ations. The syntax grammar isrepresented by an attributed graph grammar: it
onsists of a start diagram and a�nite set of rules. The start diagram and both sides of a rule are diagrams typedover the alphabet, as well as the diagrams whi
h
an be derived by applyinggrammar rules. In the rules we use in addition to the left-hand rule sides so-
alled negative appli
ation
onditions (NACs) whi
h restri
t the appli
ation ofa rule. An NAC is a graph
ontaining a forbidden graph pattern. The rule mustnot be applied to a senten
e if there is a mat
h from the NAC to the senten
e,i.e. the forbidden pattern is found in the senten
e. Moreover, rule appli
ations
an be restri
ted by boolean
onditions over attributes.In Def. 4 we de�ne the syntax grammar for the two-level language
ombinedby graphs and P/T net systems. This de�nition has to be �xed on
e and allowsthe generation of a syntax-dire
ted editor for two-level models (spe
i�
ationar
hite
tures) in GenGED. An example for a global syntax rule is the ruleadding a new
omponent node whi
h means at the same time to add a new(initially empty) spe
i�
ation net at the spe
i�
ation level. Examples for lo
alsyntax rules are rules adding pla
es or transitions to an existing P/T net.Let us
onsider the lo
al rules �rst. They operate only on the spe
i�
ationlevel and
an thus be
onsidered as syntax rules for the VL of P/T nets over thealphabet shown in Fig. 8 (b).

De�nition 4 (P/T Net Syntax Grammar).Fig. 11 illustrates a syntax grammar for our P/T net language based on the visualalphabet in Fig. 8 (b). In this P/T net grammar the start senten
e
onsists ofthe empty net (i.e. a single Net node).
Net Net Net

pn

Net Net Net preNo

postNo

Net

x

Net

preNo preNo

x+1

x+1

TN

 Place

PN

 Transition

PN

TN

x

R
Net

 Trans

Net

 Place

LNAC

 Transition

PreArc

PostArc

 Place

LNAC

Transition

Net

Transition Place

0

0

 Transition

tntn

InsTrans(tn) Transition

 Place

NAC L R

PreArc

postNopostNo

pn

 PlaceInsPlace(pn)

NAC L R

 Place

PreArc

Net

 Place Transition

R

InsPreArc

InsPostArc

Fig. 11. Visual Syntax Grammar for the P/T Net LanguageThe �rst rule InsPla
e(pn) supports the insertion of a pla
e together with apla
e name; the NAC requires that a pla
e with the user-de�ned name given inthe parameter variable pn is not existing so far in the net the rule is applied to.The se
ond rule analogously supports the insertion of a transition symbol. Herethe integer attributes preNo and postNo are initialized by 0 as the newly insertedtransition is not yet
onne
ted to any pla
es. The next two rules allow for theinsertion of ar
s, either running from a pla
e to a transition (insPreAr
) or runningfrom a transition to a pla
e (insPostAr
). The respe
tive
ounter is in
rementedfor the transition. The NACs forbid the appli
ation if there is already su
h anar
.

Graphi
al
onstraints (dotted ar
s in Fig. 11) ensure that ar
s
onne
t pla
esand transitions in a proper way and a name of a net obje
t is pla
ed near theobje
t. 4A VL is generated by applying the syntax grammar rules. Up to now wede�ned the VL of P/T nets
onsisting of all diagrams over the P/T Net Alphabetas given in Fig. 8 (b) whi
h
an be derived from the start diagram by the lo
alsyntax grammar rules given in Fig. 11. Let us now extend our visual languageby global rules
on
erning both the ar
hite
ture level and the P/T net level.De�nition 5 (Syntax Grammar for Two-Level Models).The start graph of the
ombined syntax grammar for two-level models is emptyre
e
ting that the editing pro
ess starts with an empty editor panel. Fig. 12shows the global grammar rules.Rule InsComponent inserts a new
omponent to the ar
hite
ture level
ombinedto the insertion of a new (empty) net spe
i�
ation. The NACs ensure that thereexist no node and no net in the spe
i�
ation so far with the same names asthe
urrently inserted ones (uniqueness of names). The other rules deal withthe insertion of mappings and morphisms. Note that we do not provide a ruleto insert a morphism. This is done impli
itly by the mapping-inserting rules.For the insertion of mappings between pla
es or transitions of di�erent netswe distinguish two
ases: either there is already a morphism between the two
orresponding nets (due to previous mappings) or there is no morphism (�rstinsertion of a mapping). In
ase a mapping is inserted for the �rst time, themorphism between the two
orresponding nets has to be inserted together withan edge
onne
ting two nodes at the ar
hite
ture level (see e.g. rule InsPlMap1).If a morphism already exists, the mapping simply is added, but the ar
hite
turelevel is not
hanged (see e.g. rule InsPlMap+). This distin
tion is realized by therespe
tive NACs and works analogously for all types of mappings.The rules InsTrMap+ and InsTrMap1 for the insertion of transition mappingsare analogi
al to the insertion of pla
e mappings but
ontain additionally a ruleappli
ation
ondition that ensures that a mapping between transitions is insertedonly if the number of pla
es in the pre domain preNo and the number of pla
esin the post domain postNo are the same for both transitions su
h that the �ringbehavior of the sour
e net is preserved by the net morphism. We only depi
tInsTrMap1 in Fig. 12, the step to InsTrMap+ is obvious. Note that ar
s
an bemapped only if there exist mappings between their start and end nodes (see ruleInsPreAr
Map). The analogi
al rule InsPostAr
Map is omitted in Fig. 12.The
omplete syntax grammar for two-level models now
onsists of the unionof the set of global rules as explained above and the set of lo
al grammar rulesshown in Fig. 11. 4The visual two-level language thus
onsists of all diagrams over the two-levelalphabet shown in Fig. 9 whi
h
an be derived from the empty start diagram bythe
omplete syntax grammar
onsisting of the lo
al rules (see Fig. 11) and theglobal rules (see Fig. 12).

NN Net
Name Node

no

Net
CombNode

Name

Node

Net

Morphism

Net

PlacePlace

Transition Transition
TrMap

PlMap
PreArc PreArc

Net Net

PlacePlace

Transition Transition

Morphism

TrMap

PlMap

PreArc PreArc
PreMap

InsPreArcMap

RL

Net NetNode Node

Morphism

NetNet
s t

Net

CombNode CombNode

Net

Place Place

Node Node
Net

CombNode

Morphism

Edge

CombNode

Net

Place Place
PlMap

Node
Node

Morphism

NetNet
s t

Net

Morphism

Edge

NetNode
Node

CombNode

preNo

postNopostNo

CombNode

preNo CombNode CombNode

preNo

postNo postNo

preNo

PlMap

Morphism

Place Place

NAC
Net

CombNode

Place

Morphism

Edge

CombNode

Net

Place

Node
Node Net

CombNode

Place

Morphism

Edge

CombNode

Net

Place

Node Node

PlMap

nn

InsComponent(no, nn)

no
nn

NN

NAC2NAC1 L R

L R

NAC

L

InsPlMap1

R

NAC

Transition Transitiony1

x1 x2

y2 TrMap

Transition Transition

x1 x2

y2y1
x1=x2

y1=y2

InsTrMap1

L

InsPlMap+

R

Fig. 12. Global Grammar Rules for Two-Level Modeling LanguageIn order to de�ne spe
i�
ation transformation steps in GenGED, the syntaxrules of our two-level language
an be used to de�ne the left-hand and right-handsides of the desired transformation rules. Thus a spe
i�
 model transformationgrammar
an be visually de�ned as well, and rules like the transformation ruleadding a new
onsumer (see Fig. 5) may be
onstru
ted and applied in theGenGED environment.

5 Con
lusionWe have presented an approa
h for ar
hite
tures of spe
i�
ations that is basedon diagram fun
tors. The emphasis of this paper has been on the illustration ofthe main
on
epts and the implementation of the example within the GenGEDenvironment. We have given a simple example, namely a produ
er/
onsumersystem. First the main
on
epts of our approa
h have been exempli�ed there,then we have used this example to illustrate the visualization of spe
i�
ationar
hite
tures using the GenGED environment.This approa
h is general enough to provide a framework for various spe
-i�
ation te
hniques. It
an be employed for textual as well as graphi
al ones.Examples of spe
i�
ation ar
hite
tures
omprise ar
hite
tures of COMMUNITYprograms [15℄, distributed graph transformation systems [14℄, spe
i�
ation ar
hi-te
tures of algebrai
 high-level nets [12℄. Hen
e the question of implementationof
hanges
an be attributed to the question of the spe
i�
ation te
hniques.Obviously a programming language as COMMUNITY is
loser to the real im-plementation as a P/T net. So it is
learly an important and
hallenging task toensure
ompatibility of model transformation with its implementation. But it isdependent on the underlying spe
i�
ation te
hnique. For methodologi
al ques-tions it needs several
ase studies using various spe
i�
ation te
hniques to extra
ta spe
i�
ation independent pro
ess model. Hen
e we have not yet
on
entratedon this question, but merely have distinguished between lo
al, syn
hronizingand global transformations. Further resear
h
an either
onsider spe
i�
 spe
i�-
ation te
hniques or
on
entrate on the general approa
h. The �rst
ase in
ludesall semanti
 aspe
ts, as
onsistent
hanges of behavior, as preservation of prop-erties, and as mentioned above
ompatibility with realization. The se
ond
asefo
uses on stru
tural questions as
ompatibility with (
ategori
al) stru
turingte
hniques, as parallel and sequential independen
e, and so on.Referen
es1. R. Bardohl. GenGEd { Visual De�nition of Visual Languages based on Algebrai
Graph Transformation. Verlag Dr. Kova
, 2000. PhD thesis, Te
hni
al Universityof Berlin, Dept. of Computer S
ien
e, 1999.2. P. Donohe, editor. Software Ar
hite
ture. Kluwer A
ademi
 Publishers, 1999.3. C. Ermel, R. Bardohl, and H. Ehrig. Generation of Animation Views for Petri Netsin GENGED. In Ehrig et al (eds.), Advan
es in Petri Nets: Petri Net Te
hnologiesfor Modeling Communi
ation Based Systems, Springer, LNCS, 2002. To Appear.4. H. Fahmy and R. Holt. Using Graph Rewriting to Spe
ify Software Ar
hite
turalTransformations. In Pro
. of Automated Software Engineering (ASE 2000), 2000.5. H. Giese, J. Graf, and G. Wirtz. Modeling Distributed Software Systems with Ob-je
t Coordination Nets. In Pro
. Int. Symposium on software Engineering for Par-allel and Distributed Systems (PDSE'98),Kyoto, Japan, pages 107{116, jul. 1998.6. Holger Giese and J�org P. Wadsa
k. Reengineering for Evolution of DistributedInformation Systems. In S
ott Tilley, editor, 3rd International Workshop on Net-Centri
 Computing (NCC 2001), May 14, 2001; Toronto, Canada, May 2001.

7. M. Goedi
ke, T. Meyer, and G. Taentzer. ViewPoint-oriented Software Devel-opment by Distributed Graph Transformation: Towards a Basis for Living withIn
onsisten
ies. In Pro
. 4th IEEE Int. Symposium on Requirements Engineer-ing (RE'99), June 7-11, 1999, University of Limeri
k, Ireland. IEEE ComputerSo
iety, 1999. ISBN 0-7695-0188-5.8. M. Gro�e-Rhode, R. Kuts
he, and F. B�ubl. Con
epts for the Evolution ofComponent-Based Software Systems. Te
hni
al Report TR-2000/11, FB Infor-matik, TU Berlin, 2000.9. D. Hirs
h, P. Inverardi, and U. Montanari. Graph Grammars and ConstraintSolving for Software Ar
hite
ture Styles. In Pro
. ISAW'98, 1998.10. D. Hirs
h, P. Inverardi, and U. Montanari. Modeling Software Ar
hite
tures andStyles with Graph Grammars and Constraint Solving. In Pro
. Working IFIPConferen
e on Software Ar
hite
ture, 1999.11. V. Issarny, L. Bellissard, M. Riveill, and A. Zarras. Component-Based Program-ming of Distributed Appli
ations. In Distributed Systems, pages 327{353. Springer-Verlag, LNCS 1752, 2000.12. J. Padberg. Formal Foundation for Transformations of Spe
i�
ation Ar
hite
tures.Submitted, 2002.13. M. Shaw and D. Garlan. Software Ar
hite
ture - Perspe
tives on an EmergingDis
ipline. Prenti
e Hall, 1996.14. G. Taentzer. Distributed Graphs and Graph Transformation. Applied Categori
alStru
tures, 4(4):431{462, De
ember 1999.15. M. Wermelinger and J. Fiadeiro. A Graph Transformation Approa
h to SoftwareAr
hite
ture Re
on�guration. In H. Ehrig and G. Taentzer, editors, Pro
. JointAPPLIGRAPH and GETGRATS Workshop on Graph Transformation Systems(GRATRA'00). TU Berlin, FB Informatik, TR 2000-2, 2000. A

epted to Journalof S
ien
e of Computer Programming.

