Transforming Specification Architectures by
GenGED*

Roswitha Bardohl, Claudia Ermel, Julia Padberg

Institut fiir Softwaretechnik und Theoretische Informatik
Technische Universitat Berlin, Germany
{rosi,lieske,padberg}@cs.tu-berlin.de

Abstract. This contribution concerns transformations of specification
architectures which are diagrams of sub-specifications. The graph of a
diagram presents the architecture: the nodes correspond to the sub-
specifications and the edges to specification morphisms. We do not fix
a specific visual specification technique, so this approach is in the tra-
dition of high-level replacement systems. We discuss how to transform
such specification architectures and distinguish local and global changes.
The main emphasis of this contribution is the specification and trans-
formation of specification architectures using GENGED. In GENGED, a
visual language (VL) is defined by a visual alphabet and a visual syntax
grammar. We define a VL for specification architectures by composing
VLs for graphs and for P/T nets enhanced by Petri net morphisms. From
this VL definition a syntax-directed editor is generated supporting the
editing of consistent specification architectures. Local and global changes
of a specific specification architecture then can easily be defined as trans-
formation rules in our VL and visualized in the GENGED environment.

1 Introduction

The need for continuous development of software systems results mainly from
the changing demands of the market and the technological advances. We suggest
a layered approach that allows the simultaneous description of a system on
an architecture and a specification level. Both levels are presented using an
adequate visual modeling technique. Based on this approach we suggest a rule-
based description of the model’s evolution.

Two-Level Visual Design of Distributed Systems Software architectures
describe the different ways a system can be built. The larger a system is the more
important this level of description is. Otherwise the detailed specification of the
system, namely the different models, are indispensable. Our approach integrates
these two levels and hence shows their relation. We propose a two-level represen-
tation for both the architecture and the specification of subsystems. This allows

* This work is part of the joint research project “DFG- Forschergruppe PETRI-
NETZ-TECHNOLOGIE”, supported by the German Research Council (DFG), and the
GRAPHIT project, supported by DLR and CNPq.

the abstract representation as a graph as well as the detailed specification of the
subsystems based on some adequate visual specification technique. The architec-
ture is given as a specific graph whereas at specification level the models are given
in terms of a visual modeling technique. Fig. 1 illustrates the two-level concept.
The above graph represents the architecture, whereas the r------------- .
graph in the bottom represents the specification level | architecture level |
given by different visual models and their relations. These | '
visual models may be given in terms of graphs (then we
have distributed graphs in the sense of [14]), Petri nets, .
algebraic specifications etc. The meaning of such a spec- : ;
ification architecture is the overall specification it is in- / * *
tended to describe. Hence we define the semantics of a | .. .0

specification architecture as the composition of the sub- specification level !
specifications according to the architecture graph. Fig. 1. Two Levels

Rule-Based Model Evolution In order to tackle the problem of changing
large and complex systems we use rules to transform our two-level description.
These rules can obviously describe two different kinds of transformation. Chang-
ing the architecture implies changes on the specification level as well. Changes
of the models at the specification level may but need not induce changes of the
architecture. Hence we introduce global changes that cause effects on both lev-
els (cf. Fig. 2). In contrast, local changes only work on the specification level.
We suggest only to conceive global changes as evolution steps. Moreover we
can distinguish local rules that describe synchronous changes of several sub-
specifications.

Our approach generalizes the advantages of graph transformation to other
specification techniques. We sketch the basic ideas of rule-based modification in
terms of high-level replacement systems. The left-hand side L of a rule specifies
the parts to be deleted and the right-hand side R those to be added. Note that
in contrast to the graph transformation approach rules and transformations are
not used for the description of the system behavior but for the description of
its changes. The architecture level is represented by diagrams, where entities
describing the subsystems are related to the specification of the corresponding
subsystems at the specification level. We can distinguish two kinds of rules:
local and global rules. Local rules imply identities at the architectural level but
changes at the specification level. Global rules imply changes on both levels.
Fig. 2 illustrates the basic idea.

There we describe a change on both L /V%V h i /.—>V ‘R
| ! ® 1

levels. A node on the architectural ‘e o e [J— |
level is deleted and correspondingly B R T '
the specification of that subsystem — _____ \;f . 3 e _\;/_ e,
is deleted at the specification level. 1 e | et
Moreover, a subsystem is added. /¢ ¢ : | / Y !

Hence a new specification is added N o
as well and the specification S is re-

placed by S’. The semantics of the Fig. 2. Global Rule

specification architecture is preserved. This means that the composed specifi-
cation from the resulting specification architecture is the same as transforming
the semantics of the source architecture. This ensures the compatibility with the
usual transformation of specifications in terms of high-level replacement systems.

Related Work Several different research areas overlap with our work including
architecture design techniques, architecture transformation, distributed systems
engineering and evolutionary system development. As the main focus of our
work lies in the evolution of visual models, the areas of software visualization
and visual languages also relate to our approach. An overview on architecture
description languages (ADLs) based on components and connectors can be found
in [11].

In Object Coordination Nets (OCoNs) [5] a UML architecture description is
combined with Petri nets specifying the component behavior. The OCoN envi-
ronment supports the visual development of OCoNs but not their relation to the
architectural level. Other examples for visualizing architecture and (restricted
forms of) their evolution can be found in ADL environments [2]. None of these
tools allow a generic description of the visual model as we suggest in our ap-
proach using GENGED.

We model evolution steps by graph transformation which is also subject
to considerable research. Software architecture reconfiguration based on graph
transformation is presented by Wermelinger and Fiadeiro in [15]. They introduce
a uniform algebraic framework based on category theory where an architecture
is given as a graph whose nodes are refined to programs. Reconfiguration steps
are modeled by conditional graph rewriting rules. In [14], Taentzer introduces
Distributed Graph Transformation. In this formal specification technique an
architecture level (network graph) and a component level (local graphs) are dis-
tinguished. This work is extended in [7] integrating distributed graph grammars
and consistency checking rules. Our two-level approach is based on this work
but allows more flexible visualization techniques than graphs for both levels.

Related approaches are given in [6,4,9,10] where software architecture
graphs are transformed to adapt them to new requirements or to reduce the
component interrelations. In our paper, we restricted to ”editor transforma-
tion”, i.e., changes are performed in the model editor. Another formal approach
to software architecture transformation is given in [8]. Here properties of compo-
nent interrelations (i.e., invariants and dependencies) are formalized by a modal
logic to enable consistent modifications in evolution steps. These invariants also
might be expressed within graph rules for visual modeling.

2 Formal Foundations

For our approach of a Two-Level Visual Design of Distributed Systems we use the
basic ideas of the algebraic approach to graph transformations in order to suggest
a rule-based description of system changes and evolution. Here we concentrate on
the basic concepts of our approach and do not discuss their formal representation;

this is the topic of another paper submitted to ICGT [12]. So, this approach is
based on [14].

In [14] the dynamic network topology of a possibly open distributed system
is described on the architectural level whereas the evolving data and system
structures in the local subsystems are given on the specification level. The spec-
ification level is related to the architectural level via common interfaces. Again,
different visual software architecture modeling languages [13] should be sup-
ported by our approach for the architectural level, as well as common visual
modeling languages for the specification level. Therefore, we generalize [14] in
allowing arbitrary specification techniques instead of graphs for the specification
level. Analogously to distributed graph transformations [14] the architectural
and the specification level can be related by functors. The architectural level is
represented by diagrams, where entities describing the subsystems can be related
by corresponding diagram functors.

Main Concept 1 (Specification Architecture).

A specification architecture consists of an architecture graph G = (GN,GF, s, 1)
and of specifications and specification morphisms. To be more precise we have
for each node i € GV a specification A(i) in a given specification category Cat.
For each edge e € G from the source s(e) = i to the target t(e) = j there
is a specification morphism A(e) : A(i) — A(j) in the specification category
Cat. This relation is expressed by a diagram functor A : FG — Cat where FG
is the category of finite graphs. A : FG — Cat presents the diagram of the
architecture graph G in the specification category Cat. A

The semantics of an architecture can be considered as the composition of
the sub-specifications. The gluing of specifications is achieved by the colimit
construction (the precise definition is given in [12]). The involved morphisms
constitute the way the gluing is done.

Main Concept 2 (Semantics of a Specification Architecture).

The semantics of a specification architecture A : FG — Cat is given by the
gluing of all sub-specifications along the morphisms. This can be achieved in the
following way: We first construct the disjoint union of all sub-specifications for
each node. Then we glue recursively those parts of sub-specification that are the
target of morphisms with the same source. A

Subsequently we discuss these two concepts in terms of an abstract
example. That is we do not assume a specific specification technique; it
might be graphs, Petri nets, algebraic specifications, COMMUNITY pro-
grams, or something else. The main feature is that we have distinct ab-
straction levels of representation. Namely, we present an architecture graph
and corresponding diagrams of specifications, that is the left column in
Fig. 3. Its formal denotation is depicted in the middle column and its
functorial presentation in the right column. The rows denote the following:
the top row depicts the architecture graph, the middle row the specifica-
tion diagram and the bottom row the composed system, i.e. the semantics.

In Fig. 3 there is a simple graph in [~ "

the category FG. This graph con- |: / \ | G FG éi:l;h
sists of nodes {1,2,3} and the edges |i®2 3 1

in between. It is the architecture ‘ Ai

graph which is mapped by the dia- ———v—— i

gram functor A 0 the specification | /‘V’I\\ | Ay - Cat Spec.
diagram A(G) in category Cat. |! ! \ CaffG Diagr.
The specification diagram A(G) -7 ?,,:,,f{’i‘ N

consists of specifications spl, sp2 | COLIM | COLIM

and sp3 and two specification mor- (,~ ”;;;[’ ™ !

phisms in between. The semantics || / \ ! v

is given in the lowest row. Tt is |2 sp31 | COLIM(A(G)) Cat Sem

the result of the gluing, namely it | \ / |

is the specification sp4. A concrete ot

example, where Petri nets are used
as specifications, is illustrated in
Fig. 4.

The transfer to high-level replacement (HLR) systems causes a representa-
tion independence in the sense that we may choose the specification technique.
As in [14] we need to ensure specific conditions in order to have pushouts of
specification architectures or more precisely pushouts of diagram functors. Nev-
ertheless, we have a HLR-category (namely HLRO), and we have transformations
provided that the pushout conditions are satisfied. In [14] gluing condition and
applicability are given explicitly. We obtain the well-known transformations in
the double-pushout approach. We distinguish two levels, namely the level of the
architecture graph and the level of the specifications. Hence we can qualify dif-
ferent types of rules; those that leave the architecture intact are called local
rules. Those rules that change the architecture graph are called global. Global
rules necessarily change the diagram of specifications and hence may change the
specifications themselves. Analogously to [14] we can identify further those rules
that describe synchronized changes of sub-specifications as special class of local
rules. Examples are given subsequently in Section 3.

The compatibility with the semantics of the architecture, that is the compo-
sition of all sub-specifications, is ensured in [12]. This result is crucial as it relates
our approach to the usual transformation of specifications. Hence it guarantees
that the result of an architecture transformation is the same as the correspond-
ing transformation of the composed specification.

Main Result in [12]
(Compatibility of Semantics Construction with Transformation).

Fig. 3. Abstraction Levels of
Specification Architectures

Given a transformation of a specification architecture Ag == Ap
with p = (A, «+ Ag — Ag) then we have as well a transformation

COLIM
LIy (p)

COLIM(Ag) COLIM(Ag)

with COLIM (p) := (COLIM(AL) « COLIM(Ax) — COLIM(AR)). A

3 Example

As running example we use the well-known specification of a producer/consumer
system. This example is (like the reader/writer protocol) one of the basic models
for communication-based systems: two independent agents (the producer P and
the consumer C) communicate via a channel (the buffer B). The producer sends
messages (writes) to the channel, and the consumer receives (reads) them from
the channel®.

In our example illustrated in
Fig. 4 the sub-specifications are
place/transition (P/T) nets, so the

Specification Architecture

corresponding category is the cat- /

egory of P/T nets. The nets are /! o @

the objects and the P/T nets mor- ;/ @ | |

phisms are the edges in between. ; \l/ \ | | Specifications3
According to Concept 1 the spec- r;,o\’wl ! ! ‘
ification architecture consists of an |, ?\?‘/DH\O A Tt
architecture graph, specifications fU\’V:>L 707 f’o‘\o/

and specification morphisms: each %\szﬂo

node of the architecture graph in- Leomeooeeeer
dicates a sub-specification (A(7)), /'O\\v £ Semantics of
namely a producer P, a consumer D‘\I{:lj\o /'O\E Specification
C and a buffer B, and each edge - /' A o< | Architecture
corresponds to a specification mor- DA\I;O'A:\/E

phism in the corresponding cate-
gory. The semantics of the specifi-
cation architecture is given by the
composition of the specifications along the given morphisms.

Fig. 4. A Producer/Consumer System

Now we extend the producer/consumer example introducing a global and a
local rule. As mentioned before local rules induce changes on the specification
level only, whereas global rules imply changes on both levels, namely the speci-
fication level and the architecture level. Global rules usually are rules that allow
for the insertion and connection of new producers, consumers, and buffers.

Fig. 5 illustrates a DPO-rule for
inserting a new consumer. Please
note that the rule consists of ar-
chitecture graphs (and graph mor- — ‘
phisms) as well as specifications Q v v ———¥—
(and specification morphisms) ac-

v ‘ ' 'R
(B)—=(s ©

cording to Concept 1. The rule’s
left-hand side L demands for its ap-
plication the existence of a buffer.
This buffer is preserved by the rule

Fig. 5. Global Rule adding a new
Consumer

! Please note that in our example the arrows describe ”being used” relations.

indicated by the component I. By the right-hand side R a new consumer C' is
inserted and connected to the buffer.

Similar to the rule in Fig. 5 are rules for inserting a new buffer or a new
producer. Deletion of components is achieved reversing the corresponding rules,
i.e. exchanging the left- and the right-hand sides of the rules.

In Section 2 we mentioned the possibility to describe local changes of sub-
specifications. Fig. 6 illustrates such a rule changing the specification of a pro-
ducer. The rule needs for its application the existence of a specific producer
specification presented in the rule’s left-hand side L (the producer loads in each
production cycle arbitrarily one of the two buffers). The two buffers and a part
of the producer are preserved indicated by I (one transition and some edges are
removed). By applying this rule a new transition and edges are inserted as shown
in the rule’s right-hand side R (in each cycle both buffers are loaded).

Fig. 6. Local Rule changing the Specification of a Producer

As stated in the main result in Section 2 we obtain the same result, inde-
pendent whether we first construct the semantics and then apply the rules, or if
we first apply the rules and then construct the semantics. For illustration let us
consider Fig. 7. Fig. 7 (a) shows the application of the global rule in Fig. 5 to the
specification architecture in Fig. 4. This yields the insertion of a new consumer
called C2. Fig. 7 (b) shows the corresponding semantics.

, | | = | T
f/l'P]”’T;‘; na v ‘ﬁ@’r; . gﬁﬁicii\‘
! TON T T) > T ; 1 g g
ﬁ@\\v : 0 >0 /'CI 1 ;”’:::,\',,, 0 m;:pé::::”::“ Pl TSy ¢l
o T R NS e e
(a) (b)

Fig. 7. Application of the Global Rule in Fig. 5

The brief example of this section illustrates the formal basis of our approach.
For examples using other specification techniques, the reader is referred to the
discussion in [12]. In the following section we suggests a graphical editor for
two-level architectures using GENGED .

4 Specifying Two-Level Architectures using GenGED

The GENGED approach developed at the TU Berlin [1] allows for the generic
description of visual languages (VLs) and visual environments based on VL spec-
ifications. The simplest form of a VL specification we consider here consists of
a visual alphabet and a visual syntax grammar. The definition of a VL specifi-
cation is based algebraic graph transformation and graphical constraint solving.
VL sentences (diagrams) can be derived by applying the grammar rules in the
syntax grammar to its start diagram.

In general a diagram consists of a set of symbol graphics that are spatially
related. We offer graphical constraints for these spatial relationships. Symbol
graphics and graphical constraints concern the layout of diagrams, called con-
crete syntax. The logical part of a diagram (its symbols independent of the
concrete layout) is called abstract syntaz. The combination of both syntactical
levels, called visual syntaz level, is represented by attributed graphs.

4.1 The Visual Alphabet

A wisual alphabet establishes a type system for symbols and links, i.e. it defines
the vocabulary of a VL. It can be represented as a type graph. Here as well
we distinguish the abstract and the concrete syntax level. Symbol graphics and
graphical constraints specify layout conditions. In addition to logical (data) at-
tributes like, e.g., a name for a place in a Petri net, symbol graphics define a
further kind of attributes for all abstract symbol nodes.

Graphical constraints specify layout conditions. They are given by equations
over constraint variables denoting the positions and sizes of graphical objects.
The set of all constraint variables and constraints define a constraint satisfac-
tion problem (CsP) that has to be solved by an adequate variable binding in a
diagram conforming to the alphabet.

We now develop the visual alphabet for the two-level specification architec-
ture language. We begin by defining two separate alphabets, one for a special
kind of graphs (the architectural level) and one for place/transition (P/T) nets
according to the specification level. As a second step we enhance the P/T net
alphabet in order to be able to express P/T net morphisms between different
nets and combine the two alphabets.

Definition 1 (Alphabet for Architecture Graphs).

In architecture graphs, we have only the symbol types Node and Edge. Nodes
are drawn as circles and may be attributed by strings (their names) which are
placed inside the node circles. Edges are directed arcs connecting two nodes.
The visual alphabet of the language of architecture graphs is shown in Fig. 8
(a). The dashed arrows mark the connections of the abstract syntax and the
concrete syntax level. Link constraints are illustrated by dotted arrows between
the symbol layouts. A

Abstract
Abstract , Syntax
(e e | :
| ‘ l |
Concrete| ' é)// . Q : \
Syntax | Stine oS e | [v
o Concrete | V L NS > = V
Syntax | Swing ,704 e L Suing
(a) (b)

Fig. 8. Alphabets for Architecture Graphs (a) and for P/T Nets (b)

Definition 2 (Alphabet for P/T Nets).

The visual alphabet of the P/T net language, called P/T net alphabet, is il-
lustrated in Fig. 8 (b). We have attribute symbols for place names PN and for
transition names TN which are linked to the symbol types Place resp. Transition.
Each name is given by a String data type. To compute the number of places in
a transition environment (pre domain and post domain), a transition symbol
carries the integer attributes preNo and postNo. These numbers are needed later
to control the insertion of mappings between transitions.

We distinguish arcs that run from places to transitions (PreArc) and arcs that
run from transitions to places (PostArc). Both kind of arcs have a certain source
and target symbol where they are linked to (depicted by the edges spt, tpt, ttp,
stp, short for source/target of place-transition arc resp. transition-place arc). To
keep the alphabet simple, we restrict to unmarked P/T nets where the uniform
arc weight is 717, and therefore arc inscriptions are omitted. The constraints
force a specific layout of nets typed over the P/T net alphabet. For example,
one constraint ensures that the place name is always “near” the ellipse (the
symbol graphic for Place symbols). A

Sentences over the P/T net alphabet defined so far are unmarked P/T nets
(to keep the example simple; for a specification of marked P/T nets in GENGED
including their firing behavior see [3]). The visual language we aim to specify,
also should provide means to express morphisms between different P/T nets.
This means, we have to enhance the alphabet from Def. 2 to include sentences
consisting of more than one net, and to allow morphism between different nets.
We call such a relation of different P/T nets P/T net systems. Hence, for the
definition of an alphabet for our two-level specification architecture language,
we combine the alphabets for architecture graphs and for P/T net systems.

Definition 3 (Alphabet for Two-Level Language).

We introduce the symbol Net into our P/T net alphabet where an instance
in a sentence is linked to all objects (e.g. places, transitions) belonging to the
same net. The symbol Net is visualized by a dashed frame around all its net
objects. Furthermore, we introduce the symbol Morphism linking one Net symbol
to another. Such a morphism is visualized by a double arrow from one dashed
Net frame to another.

On the Petri net level a morphism is given by mappings from all net objects
of the source net to net objects in the target net. The mappings have to be type
compatible (places are mapped to places, transitions to transitions and arcs to
arcs of the same type). L.e., mappings have to be compatible with structure
(the source/target node of an arc is mapped to the source/target node of the
arc’s image) and they have to preserve the firing behavior (the transitions are
mapped to transitions with the same number of ingoing and outgoing arcs only).
We ensure the type compatibility by introducing the symbol types PIMap, TrMap,
PreMap, PostMap for the different net objects. The other conditions are ensured
by the grammar rules introduced later for modifying diagrams of the language.

The resulting alphabet for P/T net systems now is combined with the alpha-
bet for architecture graphs, i.e. each node from the architecture level is linked to
a net at the specification level. The complete alphabet of the combined languages
is shown in Fig.9.

Node [~

Abstract
Syntax

Concrete
Syntax

Fig. 9. Alphabet for the Two-Level Language
A

An example for a sentence over the two-level alphabet is shown in Fig. 10.
At the architecture level we have two nodes, namely a producer and a buffer
which are connected by an edge. Accordingly there are two P/T nets at the
specification level related by a morphism: the P/T net modeling the producer is
related to the second P/T net consisting of one place modeling the buffer. The
morphism consists of one mapping of type PIMap between the buffers of the P/T
nets, only.

e

Abstract ; .- G
Syntax | @0

LT Sready to
deliver .-
»

Concrete
Syntax

Fig. 10. Visual Sentence over the Two-Level Alphabet

4.2 The Visual Syntax Grammar

The visual alphabet depicted in Fig. 9 is the basis to define the syntax grammar
for our two-level language for architecture specifications. The syntax grammar is
represented by an attributed graph grammar: it consists of a start diagram and a
finite set of rules. The start diagram and both sides of a rule are diagrams typed
over the alphabet, as well as the diagrams which can be derived by applying
grammar rules. In the rules we use in addition to the left-hand rule sides so-
called negative application conditions (NACs) which restrict the application of
arule. An NAC is a graph containing a forbidden graph pattern. The rule must
not be applied to a sentence if there is a match from the NAC to the sentence,
i.e. the forbidden pattern is found in the sentence. Moreover, rule applications
can be restricted by boolean conditions over attributes.

In Def. 4 we define the syntax grammar for the two-level language combined
by graphs and P/T net systems. This definition has to be fixed once and allows
the generation of a syntax-directed editor for two-level models (specification
architectures) in GENGED. An example for a global syntax rule is the rule
adding a new component node which means at the same time to add a new
(initially empty) specification net at the specification level. Examples for local
syntax rules are rules adding places or transitions to an existing P/T net.

Let us consider the local rules first. They operate only on the specification
level and can thus be considered as syntax rules for the VL of P/T nets over the
alphabet shown in Fig. 8 (b).

Definition 4 (P/T Net Syntax Grammar).

Fig. 11 illustrates a syntax grammar for our P/T net language based on the visual
alphabet in Fig. 8 (b). In this P/T net grammar the start sentence consists of
the empty net (i.e. a single Net node).

NAC L R
Net Net Net
| |)
Place | InsPlace(pn) [Place
y Y _
Y

NAC - : (preNo =0
! I
{ Transition | InsTrans(tn) 0
\ v i [\ ¥ i
T vt___c- | | - ___. T T
=) ! :
NAC L

InsPreArc

B —

Transition
|

P —dlm—p— -l ——

NAC

InsPostArc

B —

Fig. 11. Visual Syntax Grammar for the P/T Net Language

The first rule InsPlace(pn) supports the insertion of a place together with a
place name; the NAC requires that a place with the user-defined name given in
the parameter variable pn is not existing so far in the net the rule is applied to.
The second rule analogously supports the insertion of a transition symbol. Here
the integer attributes preNo and postNo are initialized by 0 as the newly inserted
transition is not yet connected to any places. The next two rules allow for the
insertion of arcs, either running from a place to a transition (insPreArc) or running
from a transition to a place (insPostArc). The respective counter is incremented
for the transition. The NACs forbid the application if there is already such an
arc.

Graphical constraints (dotted arcs in Fig. 11) ensure that arcs connect places
and transitions in a proper way and a name of a net object is placed near the
object. A

A VL is generated by applying the syntax grammar rules. Up to now we
defined the VL of P/T nets consisting of all diagrams over the P/T Net Alphabet
as given in Fig. 8 (b) which can be derived from the start diagram by the local
syntax grammar rules given in Fig. 11. Let us now extend our visual language
by global rules concerning both the architecture level and the P/T net level.

Definition 5 (Syntax Grammar for Two-Level Models).

The start graph of the combined syntax grammar for two-level models is empty
reflecting that the editing process starts with an empty editor panel. Fig. 12
shows the global grammar rules.

Rule InsComponent inserts a new component to the architecture level combined
to the insertion of a new (empty) net specification. The NACs ensure that there
exist no node and no net in the specification so far with the same names as
the currently inserted ones (uniqueness of names). The other rules deal with
the insertion of mappings and morphisms. Note that we do not provide a rule
to insert a morphism. This is done implicitly by the mapping-inserting rules.
For the insertion of mappings between places or transitions of different nets
we distinguish two cases: either there is already a morphism between the two
corresponding nets (due to previous mappings) or there is no morphism (first
insertion of a mapping). In case a mapping is inserted for the first time, the
morphism between the two corresponding nets has to be inserted together with
an edge connecting two nodes at the architecture level (see e.g. rule InsPIMapl).
If a morphism already exists, the mapping simply is added, but the architecture
level is not changed (see e.g. rule InsPIMap+). This distinction is realized by the
respective NACs and works analogously for all types of mappings.

The rules InsTrMap+ and InsTrMapl for the insertion of transition mappings
are analogical to the insertion of place mappings but contain additionally a rule
application condition that ensures that a mapping between transitions is inserted
only if the number of places in the pre domain preNo and the number of places
in the post domain postNo are the same for both transitions such that the firing
behavior of the source net is preserved by the net morphism. We only depict
InsTrMapl in Fig. 12, the step to InsTrMap+ is obvious. Note that arcs can be
mapped only if there exist mappings between their start and end nodes (see rule
InsPreArcMap). The analogical rule InsPostArcMap is omitted in Fig. 12.

The complete syntax grammar for two-level models now consists of the union
of the set of global rules as explained above and the set of local grammar rules
shown in Fig. 11. A

The visual two-level language thus consists of all diagrams over the two-level
alphabet shown in Fig. 9 which can be derived from the empty start diagram by
the complete syntax grammar consisting of the local rules (see Fig. 11) and the
global rules (see Fig. 12).

NAC1 NAC2 L R
NN InsComponent(no, nn)
: Comporen:
. T
P ‘ -
|
L R

NAC

InsPIMap1

—_—

InsPIMap+

—_—

L
I RS I
[CombNoge] | . " | [CombNode |
" I [(ereNo=x2 1 |
n | [fe®0stNOy ! || InsTrMapt
Loyt \[Transition] y2'/
PRI
o
L R

InsPreArcMap
_—

Fig. 12. Global Grammar Rules for Two-Level Modeling Language

In order to define specification transformation steps in GENGED, the syntax
rules of our two-level language can be used to define the left-hand and right-hand
sides of the desired transformation rules. Thus a specific model transformation
grammar can be visually defined as well, and rules like the transformation rule
adding a new consumer (see Fig. 5) may be constructed and applied in the
GENGED environment.

5 Conclusion

We have presented an approach for architectures of specifications that is based
on diagram functors. The emphasis of this paper has been on the illustration of
the main concepts and the implementation of the example within the GENGED
environment. We have given a simple example, namely a producer/consumer
system. First the main concepts of our approach have been exemplified there,
then we have used this example to illustrate the visualization of specification
architectures using the GENGED environment.

This approach is general enough to provide a framework for various spec-
ification techniques. It can be employed for textual as well as graphical ones.
Examples of specification architectures comprise architectures of COMMUNITY
programs [15], distributed graph transformation systems [14], specification archi-
tectures of algebraic high-level nets [12]. Hence the question of implementation
of changes can be attributed to the question of the specification techniques.
Obviously a programming language as COMMUNITY is closer to the real im-
plementation as a P/T net. So it is clearly an important and challenging task to
ensure compatibility of model transformation with its implementation. But it is
dependent on the underlying specification technique. For methodological ques-
tions it needs several case studies using various specification techniques to extract
a specification independent process model. Hence we have not yet concentrated
on this question, but merely have distinguished between local, synchronizing
and global transformations. Further research can either consider specific specifi-
cation techniques or concentrate on the general approach. The first case includes
all semantic aspects, as consistent changes of behavior, as preservation of prop-
erties, and as mentioned above compatibility with realization. The second case
focuses on structural questions as compatibility with (categorical) structuring
techniques, as parallel and sequential independence, and so on.

References

1. R. Bardohl. GENGED - Visual Definition of Visual Languages based on Algebraic
Graph Transformation. Verlag Dr. Kovac, 2000. PhD thesis, Technical University
of Berlin, Dept. of Computer Science, 1999.

2. P. Donohe, editor. Software Architecture. Kluwer Academic Publishers, 1999.

3. C. Ermel, R. Bardohl, and H. Ehrig. Generation of Animation Views for Petri Nets
in GENGED. In Ehrig et al (eds.), Advances in Petri Nets: Petri Net Technologies
for Modeling Communication Based Systems, Springer, LNCS, 2002. To Appear.

4. H. Fahmy and R. Holt. Using Graph Rewriting to Specify Software Architectural
Transformations. In Proc. of Automated Software Engineering (ASE 2000), 2000.

5. H. Giese, J. Graf, and G. Wirtz. Modeling Distributed Software Systems with Ob-
ject Coordination Nets. In Proc. Int. Symposium on software Engineering for Par-
allel and Distributed Systems (PDSE’98),Kyoto, Japan, pages 107-116, jul. 1998.

6. Holger Giese and Jorg P. Wadsack. Reengineering for Evolution of Distributed
Information Systems. In Scott Tilley, editor, 8rd International Workshop on Net-
Centric Computing (NCC 2001), May 14, 2001; Toronto, Canada, May 2001.

7.

10.

11.

12.

13.

14.

15.

M. Goedicke, T. Meyer, and G. Taentzer. ViewPoint-oriented Software Devel-
opment by Distributed Graph Transformation: Towards a Basis for Living with
Inconsistencies. In Proc. 4th IEEE Int. Symposium on Requirements Engineer-
ing (RE’99), June 7-11, 1999, University of Limerick, Ireland. IEEE Computer
Society, 1999. ISBN 0-7695-0188-5.

M. Grofle-Rhode, R. Kutsche, and F. Biibl. Concepts for the Evolution of
Component-Based Software Systems. Technical Report TR-2000/11, FB Infor-
matik, TU Berlin, 2000.

D. Hirsch, P. Inverardi, and U. Montanari. Graph Grammars and Constraint
Solving for Software Architecture Styles. In Proc. ISAW’98, 1998.

D. Hirsch, P. Inverardi, and U. Montanari. Modeling Software Architectures and
Styles with Graph Grammars and Constraint Solving. In Proc. Working IFIP
Conference on Software Architecture, 1999.

V. Issarny, L. Bellissard, M. Riveill, and A. Zarras. Component-Based Program-
ming of Distributed Applications. In Distributed Systems, pages 327-353. Springer-
Verlag, LNCS 1752, 2000.

J. Padberg. Formal Foundation for Transformations of Specification Architectures.
Submitted, 2002.

M. Shaw and D. Garlan. Software Architecture - Perspectives on an Emerging
Discipline. Prentice Hall, 1996.

G. Taentzer. Distributed Graphs and Graph Transformation. Applied Categorical
Structures, 4(4):431-462, December 1999.

M. Wermelinger and J. Fiadeiro. A Graph Transformation Approach to Software
Architecture Reconfiguration. In H. Ehrig and G. Taentzer, editors, Proc. Joint
APPLIGRAPH and GETGRATS Workshop on Graph Transformation Systems
(GRATRA’00). TU Berlin, FB Informatik, TR 2000-2, 2000. Accepted to Journal
of Science of Computer Programming.

