
Petri Net Transformations

in the

�Petri Net Baukasten�
?

B. Braatz, H. Ehrig, M. Urbášek

Technical University Berlin, Germany
Institute for Software Technology and Theoretical Computer Science

{bbraatz, ehrig, urbasek}@cs.tu-berlin.de

Abstract. The purpose of this contribution is to give an overview of
constructions and results for Petri net transformations in the �Petri Net
Baukasten� developed by the “DFG-Forschergruppe Petrinetz-Tech-

nologie”. The two main concepts of Petri net transformations consid-
ered in this context are net class and net model transformations. In both
cases we present first the relevance of transformations in the applica-
tion developer view and them the technical constructions and results
in the expert view of the �Petri Net Baukasten�. Net class transfor-
mations are transformations between different Petri net classes, like el-
ementary nets, place/transition nets and algebraic high-level nets. Net
model transformations on the other hand are transformations of the net
structure for nets within one Petri net class, like place or transition re-
finement. The main technical results are concerning the preservation of
safety resp. liveness properties of net model transformations and com-
patibility results between net class and net model transformations. The
relevance of the constructions and results for the application developer
view is demonstrated by a small case study modeling the interaction of
a buffer, a printer and a communication unit consisting of secure and
non-secure channels. Finally we give an overview of other concepts of
transformations: On one hand, transformations between Petri nets and
other system modeling techniques, and on the other hand transforma-
tions between different net representation formats using XML-schemes
and DTD-standards.

1 Introduction

The �Petri Net Baukasten� presented in [WER99,DFG99,GE01] and in chapter
1 of this volume, provides a unified presentation with different views on theory,
applications and tools of Petri nets: the Expert View, the Application Developer

? This work is a part of the joint research project “DFG-Forschergruppe Petrinetz-

Technologie” between H. Weber (Coordinator), H. Ehrig (both from the Technical
University Berlin) and W. Reisig (Humboldt University Berlin), supported by the
German Research Council (DFG).

View and the Tool Developer View. In this paper we show that different kinds
of Petri net transformations play an important role in these three views.

In the Application Developer View net transformations are essential for re-
alizing stepwise system development within the given process models. These
process models present a methodology in the way Petri nets are to be used
in the different steps during software development. They typically start with
an abstract model of the system which is refined in further development steps.
Refinement here means integration of sytem aspects like time, roles, data, etc.
as well as modification of these aspects for incorporating exception handling,
business rules, etc.

Transformations in the Tool Developer View mainly concern the date struc-
tures used in Petri net tools. They yield an exchange format in order to couple
different tools. Thus, Petri net models created with one tool can be transferred
to another tool. Consequently, algorithms of the target tool can be employed
which have not been available in the source tool. Thus, transformations in this
sense are used to link tools together, which enables the development of tool
environments.

In the Expert View transformations are used to perform modifications of a
net. They are formalized on a rigorous mathematical foundation, see [GPP01b].
For a systematic study of such Petri net transformations we distinguish two levels
of transformations, called net model transformations and net class transforma-
tions. We consider model transformations given by rule-based modifications in
the context of High-Level Replacement (HLR) Systems [EHKP91,EGP99] and
class transformations by functors in the sense of category theory [AHS90]. The
purpose of the formal transformations is twofold:

– On one hand net class transformations extend the theory of a given net
class in the following sense: Petri net operations in the target net class are
made available also for the source net class by transforming the net class,
performing the operation, and subsequently interpreting back the result of
the operation in the source net class.

– On the other hand both kinds of transformations together allow arbitrary
modifications of a (start) net. Therefore, they are suitable to support step-
wise enhancement of nets in the context of system development. In this
sense, they yield a formal support of the Petri net based process models in
the Application Developer View.

1.1 Overview of the Results

The following results concerning transformations have been achieved in the
“DFG-Forschergruppe Petrinetz-Technologie”, where an overview of the
main constructions and results are presented in more detail in sections 2 and 3
of this paper.

1. Classification of transformations w. r. t. preservation of system
properties
Preservation of behavioral properties like liveness, deadlock freedom, or
safety properties are important during the development of the system. In
order to ensure preservation of these properties by transformations, both
net class transformations and net model transformations have to be classi-
fied according to the preservation of these properties.
In the case of net model transformations preservation of system proper-
ties leads to rule-based refinement introduced in [Pad96,Pad99]. Rule-based
refinement has already been employed for the preservation of safety prop-
erties in [PGE98,PG98,PGH99,PHG00] and for liveness-preserving transfor-
mations in [GPU01]. Net class transformations have to be treated seperately.
There are already results in the literature concerning preservation of proper-
ties by functors, e. g. [Lil95], which however do not cover all system properties
and are only formulated for particular functors.

2. Compatibility of structuring and transformation
For large systems adequate structuring techniques for composing subsystems
and decomposing are indispensable. For transformation of subsystems and
composition of transformed models, structuring is needed to be compatible
with transformation.
On the level of model transformations this requirement is already given, see
e. g. [PER95,EGP99]. On the level of net class transformations compatibility
is granted if the net class functor preserves colimits, see [GPP00].

3. Consistency between models of different levels of abstraction
In Petri net based process models several models of the system are achieved
on different levels of abstraction. Of course, all of these models should be con-
sistent with each other, meaning that each model is a proper enhancement
of the start model. This requirement can be achieved if model transforma-
tions are preserved by net class transformations between different levels of
abstraction.
The corresponding results have been proved in [GPP00,GPP01b].

1.2 Introduction to the Case Study

To illustrate the relevance of Petri net transformations in the application devel-
oper view of the �Petri Net Baukasten� we will model a simple printing system
and show how the development of this model can be structured with net model
and net class transformations.

The system to be modelled consists of a buffer, a printer and a communication
unit. The printer can only print one task at the same time. The communication
unit has two channels, one secure channel and one channel for which the integrity
of the printing task has to be verified after the transmission by comparing two
copies of the task, which are sent independently.

In Sect. 2 two ways of obtaining a place/transition net model of this sys-
tem using stepwise net model transformations are explored. First, the system is
set up by introducing the components buffer, printer and communication unit

separately and using gluing transformations to connect the components. Sec-
ondly, the system is introduced as a raw model and refinement rules are used to
elaborate the printing and the transmission.

In Sect. 3 we show how the modelling of the system can be done using different
Petri net classes on different layers of abstraction. First, a simple elementary net
model is created and then transformed to place/transition nets, where the model
of Sect. 2 is obtained. Then, the place/transition net is transformed to algebraic
high level nets. This allows us to specify that the two tasks sent over the insecure
channel can really be compared for equality.

1.3 Organization of this Paper

In section 2 we present net model transformations. Concerning the Applica-
tion Developer View we show how to use transformations for stepwise develop-
ment of communication based systems and discuss safety and liveness preserving
transformations in our case study. The formal framework for net model trans-
formations and main results concerning preservation of safety and liveness are
contributions to the Expert View.

Net class transformations are presented in section 3. The case study is ex-
tended as a contribution to the Application Developer View. Net class transfor-
mations are formalized by functors between suitable net class categories in the
Expert View.

A more detailed presentation of net class transformations can be found in
the paper [PP02] in this volume.

The subsections of sections 2 and 3 concerning the Application Developer
View can be read independently of those concerning the Expert View.

Finally in section 4 we give an overview of other transformations in the
�Petri Net Baukasten�, especially concerning the Tool Developer View, and a
conclusion sketching further interesting lines of research concerning Petri net
transformations.

2 Net Model Transformations

Net model transformations play an important role in the �Petri Net Bauka-
sten�. In the following subsections we discuss net model transformations from
the Application Developer View and the Expert View.

2.1 Application Developer View

The main focus of an application developer is how net model transformations
can be used to build up an application. The major applicability domain of net
model transformations is stepwise development of communication based systems,
which will be discussed next.

Stepwise Development of Communication Based-Systems

The main idea of stepwise development of systems is to offer to an application
developer a number of transformation rules for different classes of Petri nets.
These rules describe how to change a net model in order to obtain another more
elaborated, refined and expressive net model.

Each transformation step can be depicted as a transformation according to
an appropriate rule. The sequence of transformations then provides a transfor-
mation from the initial net G to the final net H :

G = G0
p1

=⇒ G1
p2

=⇒ . . .
pn

=⇒ Gn = H.

Each step Gi

pi+1

=⇒ Gi+1 denotes a single transformation. The transformation
process is rule-based and has a formal mathematical foundation, which is defined
in the Expert View (see Section 2.2).

The preservation of suitable system properties during the transformation pro-
cess is of interest in most applications, since the final model may be very large
and hence difficult to check for certain system properties. It is of great impor-
tance for the application developer to check only the initial – usually quite small
system – directly and to apply property preserving rules and transformations.
For this reason structure and property preserving rules and transformations are
supported in the Application Developer View of the �Petri Net Baukasten�,
especially horizontal structural techniques (union and fusion), safety-properties
preserving rules for P/T, colored and AHL Petri nets, liveness preserving rules
for P/T Petri nets.

A slightly different approach developer also in the “DFG- Forschergruppe
Petrinetz-Technologie” is the transition refinement technique for distribu-
ted algorithms in [Peu01]. On one hand transition refinement in [Peu01], where
a specific class of high-level nets is considered and system properties can be
expressed by general temporal logic formulas, is more general than rule based
transformation, where only a specific class of formulas is considered. On the other
hand rule based transformations are more general concerning the applicability
to a large variety of low- and high-level nets classes, which can be considered as
instantiations of high-level replacement systems (see [Pad96]). Safety property
preserving transformations have been developed for low- and high-level nets
[GHP99,PG00b,PGE98], liveness preserving transformations, however up to now
for P/T nets only [GPU01].

Case Study: Simple Communication Based System

We illustrate the rule-based stepwise development of a simple communication
based system constructed as interconnection of three components: a buffer with
two tasks, a printer and a communication unit (network) between buffer and
printer consisting of a secure and non-secure channel. The components are de-
picted on Figure 1.

Tasks

Getting
task

task
Sending

(a) Buffer

Printer

Seize Release
Printing

prepared
Printing

completed
Printing

(b) Printer

transmit
Ready to

print
Ready to

2

1

0

NSC

NSC

NSC

1

D

C2

W

NOK

CP 2

GT

RT

RS

SSC

OK
C1

(c) Communication unit

Fig. 1. Components of the system

The behavior of the printer and the buffer are obvious from the figure. The
communication unit serves a secure or non-secure communication from the buffer
to the printer.

This unit receives a task which has to be sent over a transition (GT). It
can send the message through a secure channel (SSC) or via a non-secure one
(NSC0, NSC1, NSC2). On the non-secure channel the message may become
corrupted. Therefore, when a non-secure channel is used, two copies (C1, C2)
of the message are to be sent and a transmission subunit waits (W) for an ac-
knowledgment. A receiving subunit on the other end receives both copies and
compares them (CP). (We assume that a message cannot be lost during the
transfer.) If both copies are the same, the OK acknowledgement is sent back
and the communication is ended. If both copies differ, then NOK acknowledge-
ment is sent back and the transmission subunit resends (RS) the message again
(in two copies). The two possible results of the comparison are modeled by a
nondeterministic choice (conflict) in place D. The communication ends when a
successful transfer is performed (RT).

The three components of the system shown in Figure 1 are interconnected
by the application of the rules shown in Figure 2. In a first step we apply the
buffer-printer rule in Figure 2a to the buffer and printer components in Figure
1. The corresponding transformation is shown in Figure 2a.

The rule buffer-printer is shown in the top row of Figure 2a. It consists of
a left-hand side net L, a right-hand side net R and an interface net I . The
transformation from net N1 to net N2 via this rule is constructed in two steps.
In the first step we apply L to N1 and remove all items of L in N1 which do

(1)

21 0
N N N

R
IL

Tasks

Tasks

TasksTasks

Tasks
Tasks

(2)

task

SendingSending Sending
task

Getting

Printing
completed

Printing

Printer

completed

task

Release

task

Printer

Printing

Release

prepared

Printing

Release

completed
Printing

Printing

Getting
task

completed

Printer

Seize

Printer Printer

Seize Printing

prepared
Printing

completed
Printing

Printer

Seize Release
Printing

prepared
Printing Printing

completed

(a) Buffer–Printer

trasmit

Ready to

TasksTasksTasks

Ready to
trasmit

Ready to
trasmit

task
Sending

task

GT

Sending

GT

(b) Buffer–Comm. unit

printprintprint

Ready toReady toReady to

prepared
Printing

Printer

RT

Seize

prepared
Printing

Printer

Printer

RT

Seize

(c) Printer–Comm.unit

Fig. 2. Interconnection of components

not belong to the interface I . It leads to the intermediate net N0. In the second
step we glue together nets N0 and R via the interface I leading to the net N2.
It is important to note that also N1 can be considered as a result of a gluing
construction, namely the gluing of N0 and L along I such that the transformation
in Figure 2a consists of two gluing constructions shown in diagrams (1) and (2)
respectively according to the general construction of net model transformations
in Section 2.2.

In a similar way we can apply the two other rules in Figures 2b,c to net N2

combined with the communication unit net in Figure 1 leading to the net in
Figure 3.

transmit
Ready toprint

Ready to

2

1

0

NSC

NSC

NSC

D

Printer

Seize Release
Printing

prepared
Printing Printing

completed

C2

C1

W

OK

NOK

CP 2

RS

SSC

RT
Getting
task

GT

task
Sending

Fig. 3. Simple tasks’ model

Finally we can apply the rule in Figure 4 modeling mutual exclusion between
the secure and the non-secure channel leading to the final model in Figure 5.

transmit
Ready toprint

Ready to
print

Ready to

2

1

0 0

1

2

NSC

NSC
NSC

NSC

NSC

NSC

transmit

D D

Ready to

all places, no transitions, no arcs

C2

C1

W

OK

NOK

CP 2

GT

RT

RS

SSC

C2

C1

W

OK

NOK

CP 2

GT

RT

RS

SSC

C

Fig. 4. Modeling exclusivity

C

D

transmit
Ready to

print
Ready to

2

1

0
NSC

NSC

NSC

Seize Release
Printing

prepared
Printing

completed
Printing

Printer

C2

C1

W

OK

NOK

CP 2

RS

SSC

RT
Getting
task

GT

task
Sending

Fig. 5. Final model

Transformations Preserving Safety Properties

Now we want to show suitable safety properties for the final model in Fig-
ure 5 from corresponding properties of the basic components in Figure 1 and the
fact that the transformations from the basic components to the final model in
Figure 5 considered above are safety properties preserving.

Safety properties say in general that “nothing bad can happen” in a the
system. Safety property is expressed by suitable temporal logic formulas. These
formulas state a fact about the marking of the net and are given in terms of a
number of formal expressions concerning tokens on places. The static formula
2d ∧ 3a is true for a marking M where at least 2 tokens are present on place
d and at least 3 tokens on place a. The always operator � in a safety-property
�(2d ∧ 3a) states that static formula 2d ∧ 3a is true for all reachable markings
from M .

In our case study we have the safety property

�((NOK ∨OK) =⇒W)

for the communication unit in the Figure 1c. This property expresses a fact that,
independently of the result NOK or OK of the comparison of the two copies
C1 and C2 modeled by nondeterministic choice in place C, the transmission
subunit waits for acknowledgement in place W.

For the printer net in Figure 1 we have the safety property that at most one
job is processed in each moment, i.e.

�((P xor PP xor PC) ∧ ¬(P ∧PP ∧PC)),

where P, PP and PC stand for Printer, Printing prepared and Printing com-
pleted, respectively and xor for exclusive or operator.

Surely, we would like to keep these safety properties valid during the trans-
formation. There are two classes of rules available for the application developer

which preserve safety properties for P/T Petri nets, namely transition gluing
and place preserving rules, see [GHP99].

The main result concerning safety property preserving transformations re-
viewed in Section 2.2 states that for each net transformation sequence N1 =⇒∗

N2 via safety property preserving rules, where N1 satisfies a safety property ϕ,
we can conclude that net N2 satisfies a corresponding translated safety property
T (ϕ). In our small case study the rules shown in Figure 2 are transition gluing
rules and the rule in Figure 4 is place preserving. This implies that the two safety
properties for the communication unit and the printer considered above are also
true in the final model in the Figure 5.

Liveness Preserving Transformations

Let us recall that a net is called live if for each reachable marking m and each
transition t there is some other marking m′ reachable from m such that t is
enabled under m′. We want to show via liveness preserving transformations that
the final model in Figure 5 is live (see main result concerning liveness preserving
transformations in Section 2.2).

For this purpose we consider the simple model of printing tasks in Figure 6,
where it is easy to check directly that this net is live. The printing-refinement
and transmission-refinement rules in Figure 7 are liveness preserving rules and
can be applied to the net in Figure 6 leading to the final model in Figure 5. (The
meaning of marked subnets on the right-hand sides of the rules is explained in
Section 2.2.) Since the net in Figure 6 is live and the rules liveness preserving
also the final model is live.

transmit
Ready to

Sending
task

Tasks

Transmission

Printing

Ready
to print

Fig. 6. Simple model of printing tasks

2.2 Expert View

Formal foundation and precise mathematical representation of net model trans-
formations and corresponding results are provided in the Expert View of the
�Petri Net Baukasten�. This theory gives a formal categorical framework for
stepwise development of systems based on nets, as demonstrated in section 2.1.
In following we will present the formal framework of Petri net transformations
and main results.

C

Ready
to print

Tasks
TasksTasks

to print
Ready Ready

to print

Printing

Printer

Seize Printing

prepared
Printing

completed
Printing

Release

(a) Printing-refinement

D

transmit
Ready toReady to

Ready to
transmit

transmit

C

to print
Ready

Ready
to print

Transmission

C2

C1

W

OK

NOK

CP 2

RS

SSC

Ready
to print

(b) Transmission-refinement

Fig. 7. Liveness preserving transition refinement

Formal Framework of Net Model Transformation

The idea of net transformation systems is one of the possible instantiations of
the more general idea of high-level transformation systems (see [EHKP91]). In
the next sections we summarize the main results. To present all the theoretical
results in detail is beyond the scope of the paper. They can be found in the
literature cited here.

The next definition introduces rules, transformations and net transformation
systems formally for a given category NET of low or high level nets. More about
the underlying theory can be found in [PER95] and in [Pad99]. We will assume
to have a suitable category NET of nets and net morphisms, i. e. a category sat-
isfying so called HLR-conditions stated in [EHKP91] and summarized in [PP02]
in this volume.

Definition 1 (Rules, Transformations, Net Transformation Systems).

1. A rule p = (L
l
←− K

r
−→ R) in a category NET consists of the nets L,

K and R, called left-hand side, interface, and right-hand side, respectively,

and two morphisms K
l
−→ L and K

r
−→ R with both morphisms l, r ∈ M,

a suitable class of injective morphisms in NET.

2. Given a rule p = (L
l
←− K

r
−→ R), a direct transformation G

p
=⇒ H from

a net G to a net H is given by two pushout diagrams (1) and (2) in the
category NET as shown below.

L

m

��
(1)

K
loo r //

k

��
(2)

R

n

��
G Cg

oo
h

// H

The morphisms L
m
−→ G and R

n
−→ H are called occurrences of L in G and

R in H, respectively. By an occurrence of rule r = (L
l
←− K

r
−→ R) in a

net G we mean an occurrence of the left-hand side L in G.
In fact, the occurrence morphism m has to satisfy a specific condition, called
gluing condition, in order to be able to apply the rule p to the net G.

3. Given a category of nets NET together with a suitable class of injective
morphisms M, a net transformation system H = (S,P) in (NET,M) is
given by a start net S ∈ |NET|, and a set of rules P.

Although the net transformation framework is a suitable concept for stepwise
development of systems, very often there is a need to consider in addition more
general morphisms for refinement or abstraction. The main idea is to enlarge the
category of nets by Q-morphisms in the sense of [Pad96] in order to formulate
refinement/abstraction morphisms.

More precisely, another category of nets QNET with a distinguished class of
morphisms Q, called Q-morphisms, is employed. The category QNET enriches
the net transformation system defined in (NET,M) and yields the notion of
Q-morphisms and Q-transformations. The class of Q-morphisms has to satisfy

additional requirements called Q-conditions (see [Pad96]) to be adequate for
refinement or abstraction. The formal definitions are given below.

Definition 2 (Class of Q-morphisms). Let QNET be a category, so that
NET is a subcategory NET ⊆ QNET and Q a class of morphisms in QNET.

1. The morphisms in Q are called Q-morphisms, or refinement/abstraction
morphisms.

2. The Q-morphisms must satisfy so called Q-conditions, namely closedness of
Q, preservation of pushouts and inheritance of Q-morphisms under pushouts
and coproducts.

Moreover, let O = (Oq)q∈Q be an indexed class of adequate occurrence mor-
phisms in QNET with respect to a refinement morphism q ∈ Q. These occur-
rence morphisms restrict applicability of rules as defined in Theorem 1 below.

Definition 3 (Q-Rules and Q-Transformations).

1. A (preserving) Q-rule (p, q) is given by a rule p = (L
l
←− K

r
−→ R) in NET

and a Q-morphism q : L→ R, so that q ◦ l = r in QNET.

2. A respecting Q-rule (p, q) is given by a rule p = (L
l
←− K

r
−→ R) in NET

and a Q-morphism q : R→ L, so that q ◦ r = l in QNET.

The next fact states that Q-morphisms are preserved by transformations.

Theorem 1 (Induced Transformations and Pushouts in QNET). Let
QNET be a supercategory of NET according to Definition 2.

1. Given a preserving Q-rule (p, q) and a transformation G
p

=⇒ H in NET
with an occurrence m ∈ Oq defined by the pushouts (1) and (2), there is
a unique q′ ∈ Q, such that q′ ◦ g = h and q′ ◦ m = n ◦ q in QNET. The

transformation (G
p

=⇒ H, q′ : G → H), or G
(p,q′)
=⇒ H for short, is called

Q-transformation.

2. Given a respecting Q-rule (p, q) and a transformation G
p

=⇒ H with an
occurrence n ∈ Oq in NET defined by the pushouts (1) and (2), there is
a unique q′ ∈ Q, such that q′ ◦ h = g and q′ ◦ n = m ◦ q in QNET. The

transformation (G
p

=⇒ H, q′ : H → G), or G
(p,q′)
=⇒ H for short, is called

Q-R-transformation.

L
ww

q

''n
i d _ Z U

P

m

��
(1)

K
l

oo
r

//

k

��
(2)

R

n

��
G gg

q′

77P
U Z _ d i

nC
goo h // H

The preserving and respecting transformations differ in the direction of Q-
morphisms q, q′. The pushout squares (1) and (2) represent a transformation in
the category NET (as in Definition 1). The Q-morphism q is a refinement/ab-
straction morphism in QNET. The morphism q′ is the induced morphism (ac-
cording to Theorem 1) which belongs to the class of Q-morphisms in QNET as
well.

Compatibility with Fusion and Union

We now introduce two basic constructions for high-level structures, both gen-
eralizations of the notions union and fusion introduced by [Jen92] for coloured
Petri nets. These notions have been reformulated and generalized in the frame
of high-level replacement systems [PER95]. We show the compatibility of these
notions with Q-transformations. Similarly to the previous section, we assume to
have suitable categories NET and QNET with a class Q.

Several results concerning horizontal structuring for net transformation sys-
tems have been adopted from HLR systems. The two basic structuring con-
structions for nets are union and fusion. Union allows a construction of larger
nets from smaller ones with shared subpart, while fusion is a construction which
allows to identify distinguished subnets.

Especially the concept of fusion is more general then the concept of fusion
of places often cited in the Petri net literature. The fusion introduced in net
transformation systems is not restricted to the fusion of places, but covers also
fusion of subnets.

Definition 4 (Fusion and Union).

1. The fusion of two morphisms f1, f2 : F → G between nets F and G is a net
G′ together with a morphism g : G→ G′ defined by the coequalizer (g : G→
G′, G′) of f1 and f2. The fusion is denoted by G◦−→G′ via (F, f1, f2, g), or

G◦
F
−→G′ for short.

2. The union of a pair of nets (G1, G2) via some interface I with the morphisms

i1 : I → G1 and i2 : I → G2 is given by the pushout G1 → G← G2 of G1
i1←−

I
i2−→ G2 and is denoted by (G1, G2)>=⇒G via (I, i1, i2), or (G1, G2)>

I
=⇒G

for short.

In view of software development methodology it is important that horizontal
structuring based on fusion and union is compatible with transformations andQ-
transformations. This means that – under certain compatibility conditions – the
result is the same whether we apply first union/fusion and then transformation
or vice versa. For more details about horizontal structuring and transformations
see e.g. [Pad96,Pad99].

Theorem 2. Given a net transformation system (S,P) in (NET,M) such that
HLR conditions and the compatibility conditions for fusion and union are satis-
fied.

1. Given a fusion G◦
F
−→G′ and a compatible transformation G

p
=⇒ H, then

there is a common net H ′, obtained by fusion H◦
F
−→H ′ and also by trans-

formation G′ p
=⇒ H ′. That means, we have

G
p

=⇒ H◦
F
−→H ′ = G◦

F
−→G′ p

=⇒ H.

2. Given a union (G1, G2)>
I

=⇒G and a compatible transformations Gi
pi

=⇒ Hi

then, there is a common net H obtained by the union (H1, H2)>
I

=⇒H and by

the transformation G
p1+p2
=⇒ H via the parallel rule p1 +p2, such that we have

(G1, G2)>
I

=⇒G
p1+p2
=⇒ H = (G1, G2)

(p1,p2)
=⇒ (H1, H2)>

I
=⇒H

where (G1, G2)
(p1,p2)
=⇒ (H1, H2) denotes the tupling of the separate transfor-

mations of G1
p1

=⇒ H1 and G2
p2

=⇒ H2.
3. If Q-conditions are satisfied then above results are valid also for Q-transfor-

mations and Q-R-transformations.

Main Results Concerning Preservation of Properties

As discussed in Section 2.1 the concept of Q-morphisms is important in order
to study whether the transformation of nets is property preserving. The idea
of property preserving transformations has been investigated in [GHP99,PG00a]
and [PGE98] for safety properties and in [GPU01] for liveness. Safety-properties
for Petri nets are stated as propositional logic formulas based on the actual
marking of Petri nets. Morphisms preserving safety properties have been inves-
tigated for several types of Petri nets, see [GHP99] for P/T Petri nets, [PG00a]
for colored Petri nets and [PGE98] for a class of algebraic-high level nets. This
class of morphisms has been applied also in a case study of a medical information
system in [Pad99] in order to prove relevant properties of the system.

Definition 5 (Formulas, Translations). Let N = (P, T, pre, post, m̂) be a
place/transition net, where P and T are sets of places and transitions respec-
tively, pre and post are pre- and post-domain functions and m̂ is initial marking.

1. A static formula λp is given for λ ∈ N and p ∈ P . The set of all static
formulas over P is denoted by F; static formulas are build up using the
logical operators ¬ and ∧ :

ϕ1 ∈ F =⇒ ¬ϕ1 ∈ F,
ϕ1 ∈ F, ϕ2 ∈ F =⇒ ϕ1 ∧ ϕ2 ∈ F

The validity of formulas is given w. r. t. the marking of a net. Let m ∈ P ⊕

be a marking of N then:

m |=N λp iff λp ≤ m
m |=N ¬ϕ1 iff ¬(m |=N ϕ1)

m |=N ϕ1 ∧ ϕ2 iff (m |=N ϕ1) ∧ (m |=N ϕ2)

2. Let ϕ be a static formula over N . Then �ϕ is a safety property. The safety
property �ϕ holds in N under m iff ϕ holds in all markings m′ reachable
from m:

m |=N �ϕ⇐⇒ ∀m′ ∈ [m〉 : m′ |=N ϕ.

If m is the initial marking m̂ we also write N |= �ϕ instead of m̂ |=N �ϕ.
3. The translation Tf of formulas over N1 along a loose morphism f = (fP , fT):

N1 → N2 (see below) to formulas over N2 is given for atoms by

Tf (λp) = λfP (p).

The translation of formulas is given recursively by

Tf (¬ϕ) = ¬Tf (ϕ),
Tf (ϕ1 ∧ ϕ2) = Tf (ϕ1) ∧ Tf (ϕ2) and
Tf (�ϕ) = �Tf (ϕ).

There have been two notions of safety properties preserving morphisms inves-
tigated, namely place preserving and transition gluing morphisms. The formal
definition of these morphism is following.

Definition 6 (Place Preserving and Transition Gluing Morphisms).
Given Ni = (Pi, Ti, prei, posti, m̂i), i ∈ {1, 2} two place/transition nets. A mor-
phism f = (fP , fT) : N1 → N2 with functions fP : P1 → P2 and fT : T1 → T2 is
called

loose if the following embedding conditions hold for all t ∈ T1 and p ∈ P1:

(a) f⊕
P (pre1(t)) ≤ pre2(fT (t)) and f⊕

P (post1(t)) ≤ post2(fT (t))
(b) f⊕

P (m̂1|p) ≤ m̂2|fP (p)

place preserving if it is a loose morphism and the following place preserving
conditions hold:

(c) •(fP (p)) = f⊕
T (•p) and (fP (p))• = f⊕

T (p•) for all p ∈ P1

where •p =
∑

t∈T post(t)(p) · t and p• =
∑

t∈T pre(t)(p) · t define
the pre and post sets of p
and pre(t), post(t) ∈ P⊕

1 are considered as functions from P to N.
(d) fT and fP are injective
(e) m̂2|fP

= f⊕
P (m̂1)

transition gluing if it is a loose morphism and the following holds:

(f) fP is isomorphism
(g) f⊕

P (m̂1) = m̂2

(h) fT is surjective s.t. pre2(t2) =
∑

t1∈f
−1

T
(t2) pre1(t1)

with t1 ∈ T1 and t2 ∈ T2. post analogously.

Place preserving and transition gluing morphisms yield the safety property
preserving transformations as in the next theorem, for which a proof can be
found in [GHP99].

Theorem 3 (Safety Property Preserving Transformations). Given a pre-
serving Q-rule (p = (L← K → R), q : L→ R) with q being

– either a place preserving morphism
– or a transition gluing morphism

then we have for each Q-transformation step N1
(p,q)
=⇒ N2 (under appropriate

occurrence morphism from Oq) holds:

N1 |= �ϕ =⇒ N2 |= Tq(�ϕ).

In our small case study in Section 2.1 in the Figures 2 and 4, the rules
and transformations are (according to Theorem 3) safety property preserving,
actually the rules in Figure 2 are based on transition gluing morphisms, the rule
in Figure 4 is based on a place preserving morphism.

Liveness preserving refinement is based on the standard notion of liveness as
used in Petri net theory. We do not consider liveness in the sense of temporal
logic formulas as it is often used in litereature. Liveness in our approach means
that no deadlock and even livelock can occur. The formal introduction of liveness
follows.

Definition 7 (Liveness). A place/transition net N = (P, T, pre, post, m̂) is
called live if for arbitrary m1 ∈ [m̂〉 and arbitrary t ∈ T there exists some
m′

1 ∈ [m1〉 such that t is enabled under m′
1.

In [GPU01] it is shown that a special type of transition refinement preserves
liveness in Petri nets. The idea is based on abstracting morphisms, which are
closely related to vincinity respecting morphisms (introduced in [DM90]). Ab-
stracting morphisms allow abstracting transitions and places to a single transi-
tion. A certain subclass of abstracting morphisms, called collapsing morphisms,
allows the description of transition refinement as collapsing of a special subnet
(called live in-out cycle) to one transition. The formal introduction of abstracting
and collapsing morphisms follows.

Definition 8 (Abstracting Morphism).
Given two place/transition nets Ni = (Pi, Ti, prei, posti, m̂i), i ∈ {1, 2}. An

abstracting morphism f : N1 → N2 is given by f = (fT , fP) with functions
fT : T1 → T2 and fP : P1 → (T2] P2) such that the following conditions are
satisfied:

1. for all t ∈ T1:
fP (pre1(t)) = {fT (t)} or pr ◦ f⊕

P ◦ pre1(t) = pre2(fT (t)),
where pr : (T2] P2)

⊕ → P⊕
2 is the corresponding projection

analogously for the post function

2. for all t2 ∈ fT (T1):
exists tin ∈ T1 with fT (tin) = t2 and pr ◦ f⊕

P ◦ pre1(tin) = pre2(t2)

analogously for the post function

3. strict marking:
for all p ∈ P1 with fP (p) ∈ P2: f⊕

P (m̂1|p) = m̂2|fP (p)

4. for all p ∈ P1 with fP (p) ∈ T2: fT (•p) = {fP (p)}

analogously for the post function

T1

fT

��

pre1 //
post1

// P⊕
1

f
⊕

P ��

f̂P :=pr◦f
⊕

P{{

(T2] P2)
⊕

pr ��
T2

pre2 //
post2

// P⊕
2

Example 1. Examples of abstracting morphisms are shown in Figures 7 a,b.
The dashed arrow going from the right-hand side of each rule to the left-hand
side represents an abstracting morphism between nets. The subnet in a dotted
rectangle on the right-hand side of each rule is abstracted by the abstracting
morphism to a single transition Printing, resp. Transmission on the left-hand
side.

In order to capture what has been abstracted from a net N1 by an abstracting
morphism, we define the collapsing subnet.

Definition 9 (Collapsing Subnet). Given an abstracting morphism f : N1 →
N2. We have for all transitions t ∈ T2 the collapsing subnet

substf (t) = (P̃ t, T̃ t, ˜pret, ˜post
t
, m̂t) ⊆ N1 with

– P̃ t = {p1 ∈ P1 | fP (p1) = t}
these are all places mapped to t

– T̃ t = {t1 ∈ T1 | fT (t1) = t}
these are all transitions mapped to t

– ˜pret(t1) = pre1(t1)|P̃ t for all t1 ∈ T̃ t

the pre- and post-domain restricted to collapsing places
˜post

t
is defined analogously.

– m̂t = m̂1|P̃ t

Example 2. In Example 1, the subnets in dashed rectangles on the right-hand
sides of the rules are exactly the collapsing subnets substf (Printing), and substf
(Transmission) respectively, with respect to the corresponding abstracting mor-
phism f .

Live In-Out Cycles describe those subnets that are live, and are equipped
with a guarding place. This guarding place ensures that each run within the
subnet has to be completed before it may run again.

Definition 10 (Live In-Out Cycle).
Given a place/transition net N = (P, T, pre, post, m̂), then N is called live

in-out cycle if the following conditions hold:

1. N is live
2. There are two distinguished subsets Tin and Tout of T , called in-transitions

Tin and out-transitions Tout of N , such that the following holds.
There is a safe (1-bounded) place c ∈ P with m̂ |c = c, called guarding place,
which is in the predomain of all in-transitions ti ∈ Tin, and in the post-
domain of all out-transitions to ∈ Tout

with pre(t)|c =

{
c ; t ∈ Tin

ε ; t /∈ Tin
and post(t)|c =

{
c ; t ∈ Tout

ε ; t /∈ Tout

Remark 1. The role of the distinguished place c is twofold: on one hand it es-
tablishes the cycle, because of condition 2. In this sense it is crucial for liveness
in condition 1. On the other hand it implements a mutual exclusion of the in-
transitions including the prevention of parallel firing of one transition with itself.

Example 3. The subnets substf (Printing) and substf (Transmission) in Ex-
ample 2 are live in-out cycles. The guarding place is named C in both subnets.

Definition 11 (Collapsing Morphisms). A collapsing morphism f : N1 →
N2 is an abstracting morphism which additionally satisfies the following condi-
tions. Let

– S ⊆ T2 with S = {t|P̃ t 6= ∅}
– T ⊆ T1 with T =

⋃
t∈S

T̃ t

– P ⊆ P1 with P =
⋃

t∈S
P̃ t

then we have

1. fT is surjective, and fP is surjective on P1 \ P

2. fT and fP are injective on T1 \ T, resp. P1 \ P

3. for all t ∈ S we have:
The collapsing subnet substf (t) is a live in-out cycle which is only

connected to the rest of N1 via the in-
and out-transitions.

Example 4. The abstracting morphisms in Example 1 are also collapsing mor-
phisms due to the fact that the collapsing subnets are live in-out cycles.

Liveness is respected via collapsing morphisms as shown in [GPU01]. This
fact yields liveness preserving transformations as stated below.

Theorem 4 (Liveness Preserving Transformations). Given a respecting
Q-rule (p = (L ← K → R), q : R → L) with a collapsing morphism q, we

have for each Q-R-transformation step N1
(p,q)
=⇒ N2 (with appropriate occurrence

morphism from Oq):
N1 live =⇒ N2 live.

The rules in our case study in Figure 7 of the Section 2.1 are based on
collapsing morphisms. Therefore according to the foregoing theorem we obtain
liveness preserving Q-R-transformations. Hence liveness of the simple model in
Figure 6 implies liveness of the final model in Figure 5.

3 Net Class Transformations

Numerous kinds of Petri net classes have been introduced in the literature, which
allow to apply different Petri net formalisms on different levels of abstraction. In
the application developer view we show how net class transformations between
different Petri net formalisms can be applied in the development process. In the
expert view a formal foundation of net class transformations is given based on
the notion of functors in the sense of category theory.

3.1 Application Developer View

Net class transformations can be used by an application developer to begin the
modelling in an abstract class with simple nets and to switch to a more expressive
class in later development steps.

Moreover, it is important for the development process, that net class transfor-
mations are compatible with net model transformations and with the horizontal
structuring techniques union and fusion.

In the following we present a development process to derive an algebraic high-
level net AHL4 (Figure 10), via the place/transition net PT3 (Figure 5 without
marking) from the simple elementary net EN1 (Figure 8) using net model trans-
formations from Section 2.1 and net class transformations Weight:EN → PT
and Data:PT → AHL as shown in Figure 11. In this section we only consider
nets without initial marking, but sketch an extension including markings at the
end of Sect. 3.2.

We can start the modelling of our running example with the elementary net
EN1 like in Figure 8. Then we can use an elementary net version printrefEN of
the printing-refinement used in Sect. 2 to elaborate the modelling of the printer.
This results in the elementary net EN2 in Figure 9.

task
Transmission Sending

to transmit
Ready

Ready
to print

Printing Tasks

Fig. 8. Simple elementary net EN1

To use the transmission-refinement transrefPT from Sect. 2 as well, we need
to transform the model to the class of place/transition nets, because the refine-
ment adds an arc with weight 2. The net class transformation Weight assigns
the weight 1 to each arc leading to place/transition nets PT1 = Weight(EN1)
and PT2 = Weight(EN2) and a net model transformation printrefPT between

Sending
task

to transmit
Ready

Transmission

Printer

Seize Printing

prepared completed

Release Tasks
to print

Printing Printing

Ready

Fig. 9. Refinement of the printer EN2

them. After the application of the transmission-refinement transrefPT we get
the same model PT3 as in Figure 5 of Sect. 2 without marking.

In order to be able to distinguish between different tasks we first transform
our model to the class of algebraic high level nets. We obtain algebraic high
level nets AHL1 = Data(PT1), AHL2 = Data(PT2) and AHL3 = Data(PT3),
where the net class transformation Data:PT → AHL adds a trivial data
type specification and algebra (see Def. 14 below). The model transformations
printrefPT and transrefPT can be transformed as well yielding transformations
printrefAHL and transrefAHL in Figure 11.

Then we can further refine the net AHL3 by an AHL net model transfor-
mation specrefAHL, which changes the arc inscriptions of AHL3 to the ones of
AHL4 given in Figure 10 and adds the following specification with a suitable
algebra:

BOOL+
sorts : Printer, Task, Comm, Result
opns : printer:→ Printer

com:→ Comm
task1:→ Task
task2:→ Task
equ: Task Task→ Bool
ok: Task → Result
nok:→ Result
get: Result→ Task

vars : t: Task, r: Result
eqns : get(ok(t)) = t

equ(t, t) = true

In the net AHL4 we are able to model the comparison of the two tasks sent
through the insecure channel by inscribing the transition CP with the equation

r = if equ(t′, t′′) then ok(t′) else nok .

For simplicity we assume that our non-secure channel either transmits the dupli-
cated task in a correct way (ok-case, t′ = t′′ = t) or t′ and t′′ are modifications

Tasks
to print
Ready

to transmit
Ready

NSC

NSC

NSC

2

0

1

t

t

t
t

t

t

comcom

com

nok

t

t

t

t

t

t’+t’’r

t
t t

nok

nok

t

t

t

t t t t t

printerprinter

r
get(r)

t

tt

t t

com

C2

C1

W

OK

NOK

C

SSC

Printer

Seize

prepared
Printing

completed
Printing

Printing Release

Sending

RS

D CP

task

Fig. 10. Final algebraic high level net AHL4

of t with t′ 6= t′′ (nok-case). In the second case the transmission is repeated with
the old value t of the task.

The whole development process is depicted in Figure 11, where horizontal
steps are net model transformations and vertical steps are net class transforma-
tions.

EN

Weight

��

EN1

printrefEN +3
_

��

EN2_

��
PT

Data

��

PT1

printrefP T +3
_

��

PT2

transrefPT +3
_

��

PT3_

��
AHL AHL1

printrefAHL +3 AHL2

transrefAHL +3 AHL3

specrefAHL +3 AHL4

Fig. 11. Development of the printing system

3.2 Expert View

To describe net class transformations as functors we first have to define suit-
able net morphisms for each net class. In [GPP00,GPP01a] the categories of
place/transition nets, elementary nets and algebraic high level nets are intro-
duced in detail, where a net morphism f = (fP , fT) is called transition pre-
serving, if fP and fT are compatible with the pre- and post-domains of the
transitions.

Definition 12 (Categories of Petri Nets).

– The class of all place/transition nets

PT = (P, T, pre, post) with pre, post: T → P⊕ ,

where P⊕ is the free commutative monoid over P , together with the transition
preserving morphisms

f = (fP , fT): PT → PT ′

constitutes the category of place/transition nets PT.
– The class of all elementary nets

EN = (P, T, pre, post) with pre, post: T → P(P) ,

where P(P) is the powerset of P , together with the transition preserving
morphisms

f = (fP , fT): EN → EN ′

constitutes the category of elementary nets EN.
– The class of all marked place/transition nets

mPT = (P, T, pre, post, m0) with pre, post: T → P⊕

and initial marking m0 ∈ P⊕

together with the transition preserving morphisms

f = (fP , fT): mPT → mPT ′ with f⊕
P (m0) ≤ m′

0

constitutes the category of marked place/transition nets mPT.
– The class of all algebraic high level nets

AHL = (SPEC, X, A, P, T, pre, post, cond) ,

where SPEC = (Σ, E) is an algebraic specification, A a SPEC-algebra and

pre, post: T → (TΣ(X)× P)⊕ and cond: T → P(Eqns(Σ))

are functions, together with transition and equation preserving morphisms

f = (fSPEC , fX , fA, fP , fT): AHL→ AHL′

constitutes the category of algebraic high level nets AHL.

Definition 13 (Net Class Transformations). Given categories NET and
NET′ of nets a net class transformation is a functor T :NET→ NET′.

We consider the following functors between the categories defined in Def. 12,
where for simplicity we omit the transformation of net morphisms. More details
are given in [GPP00] and in [PP02] in this volume.

Definition 14 (Functors between Petri Net Categories).

– Between PT and EN there is a functor

Causality:PT→ EN

forgetting all weights in the pre- and post-domains of transitions. Vice versa
there is a functor

Weight:EN→ PT

assigning the weight 1 to all arcs.
– Between PT and mPT there is a functor

Mark:PT→mPT

adding an empty initial marking to the net. Vice versa there is a functor

Unmark:mPT→ PT

forgetting the initial marking.
– Between PT and AHL there is a functor

Data:PT→ AHL

adding an empty specification, an empty algebra and a set of variables where
each arc with weight n is inscribed with the sum of n distinct variables. Vice
versa there is a functor

Skeleton:AHL→ PT

forgetting specification, variables and algebra and weighting each arc with the
number of terms it is inscribed with.

Compatibility Results for Net Class Transformations

As pointed out in Sect. 3.1 it is important, that net class transformations are
compatible with the horizontal structuring techniques union and fusion. Because
union and fusion are finite colimits from the categorical point of view, this com-
patibility is achieved by a net class functor preserving colimits.

Definition 15 (Compatibility with Union and Fusion). A net class trans-
formation T :NET→ NET′ is compatible with union and fusion, if it transforms

unions (N1, N2)>
I

=⇒N in NET into unions (T (N1), T (N2))>
T (I)
=⇒T (N) in NET′

and fusions N◦
F
−→N ′ in NET into fusions T (N)◦

T (F)
−→T (N ′) in NET′, if T pre-

serves colimits.

Another desirable property is the compatibility of net class transformations
with model transformations defined in the previous section. Transformations in
one Petri net class shall be translated to transformations in another class by
a net class transformation between these classes. This is achieved by net class
functors being compatible with the classesM of morphisms used to define model
transformations.

Definition 16 (Compatibility with Net Model Transformations). A net
class transformation T :NET → NET′ is compatible with net model transfor-
mations in (NET,M) and (NET′,M′), if it transforms net model transforma-

tions N
p

=⇒ N ′ in (NET,M) to net model transformations T (N)
T (p)
=⇒ T (N ′)

in (NET′,M′) with T (p): T (L)
T (l)
←− T (K)

T (r)
−→ T (R) for p: L

l
←− K

r
−→ R.

A proof of the following theorem is given in [GPP00] using the fact that all
the mentioned functors preserve finite colimits.

Theorem 5. The net class transformations given in Definition 14 are com-
patible with union, fusion and net model transformations in (NET,M) and
(NET′,M′) for suitable classes M and M′ of injective net morphisms.

Lifting of Net Class Transformations

In [Pad96] a theory of abstract Petri nets is introduced where different classes
of Petri nets are described uniformly by net structure functors Net:Set→ Set
leading to classes PNC of nets with pre, post: T → Net(P). For example, the
class of place/transition nets PT is obtained by the construction of the free
commutative monoid ⊕:Set → Set and the class of elementary nets by the
powerset functor P :Set→ Set.

It can be shown that a natural transformation v: Net ⇒ Net′ between two
net structure functors yields a net class functor Fv :PNC → PNC′. With this
fact the functors Causality and Weight can be reconstructed by giving natural
transformations c: ⊕ ⇒ P and w:P ⇒ ⊕ between the free commmutative
monoid functor ⊕ and the powerset functor P .

To integrate algebraic high level nets into this approach pre- and post-
domains are replaced by pre, post: T → Net(TΣ(X) × P). The usual algebraic
high level nets AHL are obtained by using the net structure functor ⊕:Set→
Set. By using P :Set→ Set instead we get the new class EAHL of elementary
high level nets.

The concept of marked nets can be abstracted by taking into account initial
markings m0 ∈ Net(P) resp. m0 ∈ Net(TΣ(X) × P). This leads to the usual
marked place/transition nets mPT with m0 ∈ P⊕ as well as new classes of
marked elementary nets mEN with m0 ∈ P(P), marked algebraic high level
nets mAHL with m0 ∈ (TΣ(X) × P)⊕ and marked elementary high level nets
mEAHL with m0 ∈ P(TΣ(X)× P).

By combining these different abstract notions we obtain the cube of Petri
net classes and net class transformations given in Fig. 12. More details about
the Petri net cube can be found in [GPP00] and in [PP02] in this volume.

EAHL
//________

���
�

�

�

�

�

�

zzu
u

u
u

u
mEAHLoo_ _ _ _ _ _ _ _

���
�

�

�

�

�

�

xxr
r

r
r

r

EN
//_________

Weight

��

::u
u

u
u

u

mENoo_ _ _ _ _ _ _ _ _

���
�

�

�

�

�

�

88r
r

r
r

r

AHL
//_________

OO�
�

�

�

�

�

�

Skeleton

zzuuuuu
uuuu

mAHLoo_ _ _ _ _ _ _ _ _

OO�
�

�

�

�

�

�

xxr
r

r
r

r

PT
Mark //

Causality

OO

Data

::uuuuuuuuu

mPT
Unmark

oo

OO�
�

�

�

�

�

�

88r
r

r
r

r

Fig. 12. Cube of Petri net categories

4 Overview of Other Transformations and Conclusion

In this final section we give an overview of other transformations in the �Petri
Net Baukasten� and discuss open problems.

4.1 Other Transformations in the the �Petri Net Baukasten�

In addition to net class transformations, there are several transformations be-
tween net classes and other modeling techniques which are important for the
Application Developer View. One important aspect is to bridge the gap between
semiformal techniques in engineering and formal techniques in computer science,
which is one of the main aims of the “DFG-Schwerpunktprogramm: Integration
von Techniken der Softwarespezifikation für Ingenieurwissenschaftliche Anwen-
dungen”. A typical example is the transformation of the MFERT modeling tech-
nique for production automation into timed hierarchical Predicate/Transition
nets. Another important aspect is to bridge the gap between semiformal and for-
mal techniques in computer science, where visual modeling techniques including
message sequence charts (MSC) and different kinds of UML diagrams are consid-
ered to be semiformal because no widely accepted formal semantics is available.
On the other hand, these visual techniques are very important especially in the
phase of requirement analysis. A typical example is the transformation from
MSC-scenarios to Petri nets, which has been used in the DFG-SPP reference
case study “Railway Traffic Crossing” in order to transform different railway
crossing scenarios presented by MSC-diagrams into Petri nets (see [KPE00]).

Finally let us discuss some other kinds of transformations which are impor-
tant in the Tool Developer View of the �Petri Net Baukasten�. One of the main
problems for the integration of different tools has been the different net repre-
sentation formats for each of these tools. The ”Petri Net Markup Language”
developed by the “DFG-Forschergruppe Petrinetz-Technologie” provides
XML-schemes resp. DTD-standards for different net representation formats. For

n different individual formats we only have to provide 2n explicit transforma-
tions from each individual format to the DTD-standard and vice versa in order to
provide n(n-1) transformations between each pair of different individual formats:

IndividualFormati ↔ DTD-Standard↔ IndividualFormatj

For similar reasons a graphical exchange language GXL is going to be de-
veloped in the graph transformation community (see [Tae01]). In order to allow
integration of Petri and graph transformation tools it is important to have trans-
formations between the corresponding representation formats PN-DTD for Petri
nets and GRA-DTD for graphs. A transformation from PN-DTD to GRA-DTD
has been implemented already in [Ehr01], which allows to use graph transfor-
mation tools for Petri nets. A typical application is the use of the GenGEd-
approach & environment [Bar99] for Visual modeling languages, behavior & ani-
mation in order to allow the animation of Petri nets using domain specific visual
modeling (see [BEE00]) and the contribution in this volume for more details.

4.2 Conclusion and Open Problems

In this paper we have given an overview of different kinds of Petri net trans-
formations and their relevance for the �Petri Net Baukasten�. Especially we
have discussed the use of net model transformations for strepwise development
of communication based systems and that of net class transformations for Petri
net based software development models. These aspects are important for the Ap-
plication Developer View of the �Petri Net Baukasten�. The formal framework
for net model transformations are double pushout transformations in a suitable
category NET of Petri nets and that for net class transformations are functors
between different categories of Petri nets. These concepts and the correspond-
ing theory are important contributions for the Expert View of the �Petri Net
Baukasten�. Finally we have discussed transformations between individual for-
mats of Petri net representations for tools and suitable DTD-standards which
are important in the Tool Developer View.

It remains open to integrate the concepts and instances of all these different
kinds of transformations into the 2nd Installment of the �Petri Net Bauka-
sten� concerning user interfaces, services and data bases. Moreover, in each of
the areas discussed above there are still several interesting open problems. One
typical problem is to study liveness preserving transformations also for algebraic
high level nets in section 3.1 similar to those for place/transition nets in section
2.1.

References

[AHS90] J. Adamek, H. Herrlich, and G. Strecker. Abstract and Concrete Categories.
Series in Pure and Applied Mathematics. John Wiley and Sons, 1990.

[Bar99] R. Bardohl. GenGEd – Visual Definition of Visual Languages Based on
Algebraic Graph Transformation. PhD Thesis, TU Berlin, Verlag Dr. Ko-
vac, Germany, 1999.

[BEE00] R. Bardohl, H. Ehrig, and C. Ermel. Generic Description, Behaviour and
Animation of Visual Modeling Languages. In Proc. Integrated Design and
Process Technology. Dallas, USA, 2000.

[DFG99] DFG-Forschergruppe Petri Net Technology. Initial Realization of the
�Petri Net Baukasten�. Informatik-Berichte 129, Humboldt-Universität
zu Berlin, October 1999.

[DM90] J. Desel and A. Merceron. Vicinity Respecting Net Morphisms. In Advances
in Petri Nets, pages 165–185. Lecture Notes in Computer Science 483.
Springer Verlag, 1990.

[EGP99] H. Ehrig, M. Gajewski, and F. Parisi-Presicce. High-Level Replacement
Systems with Applications to Algebraic Specifications and Petri Nets.
In Handbook of Graph Grammars and Computing by Graph Transforma-
tion, Volume 3: Concurrency, Parallelism, and Distribution, pages 341–400.
World Scientific, 1999.

[EHKP91] H. Ehrig, A. Habel, H.-J. Kreowski, and F. Parisi-Presicce. From Graph
Grammars to high level replacement systems. In 4th Int. Workshop on
Graph Grammars and their Application to Computer Science, pages 269–
291. Lecture Notes in Computer Science 532. Springer Verlag, 1991.

[Ehr01] K. Ehrig. Converting XML Files with XSLT and XPATH. http://tfs.cs.tu-
berlin.de/lehre/SS01/gragra.html, 2001. Student’s Project Status Report.

[Gaj00] M. Gajewsky. Concepts and Requirements for Transformations within Petri
Net Based Process Models. In 5th World Conference on Integrated Design
and Process Technology, Special Session on Model Integration. CD-ROM,
8 pages, 2000.

[GE01] M. Gajewsky, and H. Ehrig. The �Petri Net Baukasten�. In Unifying
Petri Nets, Advances in Petri Nets, Lecture Notes in Computer Science
2128. Springer Verlag, 2001.

[GHP99] M. Gajewsky, K. Hoffmann, and J. Padberg. Place Preserving and Tran-
sition Gluing Morphisms in Rule-Based Refinement of Place/Transition
Systems. Technical Report 1999-14, Technical University Berlin, 1999.

[GPP00] M. Gajewsky, and F. Parisi-Presicce. Formal Transformations of Petri
Nets. Technical Report 2000-12, Technical University Berlin, 2000.

[GPP01a] M. Gajewsky, and F. Parisi-Presicce. Transformations between Petri Net
Classes with Application to Software Development. In 2nd Int. Colloquium
on Petri Net Technologies for Modelling Communication Based Systems.
Berlin, 2001.

[GPP01b] M. Gajewsky, and F. Parisi-Presicce. On Compatibility of Model and Class
Transformations. In Recent Trends in Algebraic Development Techniques,
15th International Workshop WADT 2001, pages 24–25, Lecture Notes in
Computer Science 2267. Springer Verlag, 2001.

[GPU01] M. Gajewsky, J. Padberg, and M. Urbášek. Rule-Based Refinement for
Place/Transition Systems: Preserving Liveness-Properties. Technical Re-
port 2001-8, Technical University of Berlin, 2001.

[Jen92] K. Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and
Practical Use, Volume 1: Basic Concepts. EATCS Monographs in Theoret-
ical Computer Science 28. Springer Verlag, 1992.

[KPE00] O. Kluge, J. Padberg, and H. Ehrig. Modeling Train Control Systems: From
Message Sequence Charts to Petri Nets. In Proc. Formale Techniken für
die Eisenbahnsicherung (FORMS), pages 25–42. Fortschritt-Berichte VDI,
2000.

[Lil95] J. Lilius. On the Structure of High-Level Nets. PhD thesis, Helsinki Uni-
versity of Technology, 1995. Digital Systems Laboratory, Research Report
33.

[Pad96] J. Padberg. Abstract Petri Nets: A Uniform Approach and Rule-Based Re-
finement. PhD thesis, Technical University Berlin, 1996. Shaker Verlag.

[Pad99] J. Padberg. Categorical Approach to Horizontal Structuring and Refine-
ment of High-Level Replacement Systems. In Applied Categorical Struc-
tures 7(4), pages 371–403, 1999.

[PER95] J. Padberg, H. Ehrig, and L. Ribeiro. Algebraic High-Level Net Trans-
formation Systems. In Math. Struct. in Comp. Science, Volume 5, pages
217–256, 1995.

[Peu01] S. Peuker. Halbordnungsbasierte Verfeinerung zur Verifikation verteiler Al-
gorithmen. PhD thesis, Humboldt University Berlin, 2001.

[PG98] J. Padberg, and M. Gajewsky. Using High-Level Replacement Systems
to Preserve Safety Properties in Place/Transition Net Transformations.
In Sixth Int. Workshop on Theory and Application of Graph Transforma-
tion, pages 356–365. Universität-Gesamthochschule Paderborn, Fachbere-
ich Mathematik-Informatik, 1998.

[PG00a] J. Padberg, and M. Gajewsky. Safety Preserving Transformations of
Coloured Petri Nets. Technical Report 2000-13, Technical University
Berlin, 2000.

[PG00b] J. Padberg, and M. Gajewsky. Rule-Based Refinement of Petri Nets For
Modeling Train Control Systems. In Petri Nets in Design, Modelling and
Simulation of Control Systems, Special Session at the IFAC Conference on
Control Systems Design, pages 299–304, 2000.

[PGE98] J. Padberg, M. Gajewsky, and C. Ermel. Rule-Based Refinement of High-
Level Nets Preserving Safety Properties. In Fundamental Approaches to
Software Engineering, pages 221–238. Lecture Notes in Computer Science
1382. Springer Verlag, 1998.

[PGH99] J. Padberg, M. Gajewsky, and K. Hoffmann. Incremental Development of
Safety Properties in Petri Net Transformations. In Theory and Applica-
tion of Graph Transformation, pages 410–425. Lecture Notes in Computer
Science 1764. Springer Verlag, 1999.

[PHG00] J. Padberg, K. Hoffmann, and M. Gajewsky. Stepwise Introduction and
Preservation of Safety Properties in Algebraic High-Level Net Systems. In
Fundamental Approaches to Software Engineering, pages 249–265. Lecture
Notes in Computer Science 1783. Springer Verlag, 2000.

[PP02] F. Parisi-Presicce. A Formal Framework for Petri Net Class Transforma-
tions. In Petri Net Technology for Communication Based Systems, Lecture
Notes in Computer Science. Springer Verlag, 2002.

[Tae01] G. Taentzer. Towards Common Exchange Formats for Graphs and Graph
Transformation Systems. In Int. Workshop on Uniform Approaches to
Graphical Process Specification Techniques (UNIGRA’01), Sattelite Event
of ETAPS’01, 2001.

[WER99] H. Weber, H. Ehrig, and W. Reisig, editors. Int. Colloquium on Petri
Net Technology for Modelling Communication Based Systems, Part II: The
�Petri Net Baukasten�. Fraunhofer Gesellschaft ISST, October 1999.

