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Abstract

TheGENGEDconcepts and environment allow for the visual definition of visual languages
(VLs) and to generate VL-specific visual environments for editing and simulation. The
editing features capture either syntax-directed editing and/or free-hand editing. In the latter
case, a user-defined diagram has to be analyzed in order to check the correctness of the
diagram. In addition, behavioral diagrams can be simulated, i.e. the behavior of situations
specified by diagrams can be validated. The specification and analysis of VLs byGENGED
is based on algebraic graph transformation concepts realized by theAGG system. In this
article we give a brief survey onAGG andGENGED.

1 Introduction

Nowadays graphs and graph grammars are used in different areas in Computer Sci-
ence, as e.g. for software specification or as underlying formalism to specify visual
languages (VLs). In connection with suitable control mechanisms graph grammars
can describe specific situations on a very high level of abstraction. This is exploited
for the specification and analysis of VLs in theAGG/GENGED approach and en-
vironment. Moreover,GENGED (short forGeneration of Graphical Environments
for Design) allows for the visual definition of VLs and environments, respectively.
This includes the definition of editing operations available in a VL-specific envi-
ronment (calledsyntax-directed editingor structured editing) as well as the visual
definition of analysis features given by a parse grammar and a simulation gram-
mar, respectively. From the visual definition, a VL specification is generated which
configures a VL-specific environment.

1 Research is partially supported by the German Research Council (DFG), and the project
GRAPHIT (CNPq and DLR).
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Usually, a VL covers the language’s abstract syntax (the meaning) and the con-
crete syntax (the layout). InGENGED, the transformation of diagrams and its
analysis is supported by the graph transformation engineAGG [16,32] with respect
to the abstract syntax. The transformation of diagrams is necessary for syntax-
directed editing as well as for parsing and simulation, i.e. for the analysis. The
powerful parsing features originally provided byAGG [8,9] (short for Attributed
Graph Grammarsystem) have been adopted byGENGED [7,6]. Although AGG

comes up with a graphical editor for editing graph grammars, a VL can be defined
by the common means of graphs only. UsingGENGED, however, a VL with ar-
bitrary concrete layout can be specified: Once defined the symbols and the links
of a VL (the VL alphabet), a syntax grammar, a parse grammar and a simulation
grammar may be established.
In [5] we have shown how a simple simulation grammar can be defined and used
for simulating automata. However, control mechanisms as supported by transfor-
mation units introduced for GRACE [2,23] are needed for simulating more sophis-
ticated VLs like statecharts, one is shown in Fig.1.
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Fig. 1. A sample statechart.

In the following two sections we give a brief summary ofAGG/GENGED.
Some concepts are explained along the specification of hierarchical statecharts.
Due to space limitations we do not present the whole specification which can be
found in [10]. In Sect.4 we discuss some related approaches and in Sect.5 some
final remarks are made.

2 AGG Graph Transformation Concepts

In AGG typed (labeled) and attributed graphsconsisting of vertices and directed
edges are the basis for graph transformation. Fig.2 illustrates theAGG (abstract
syntax) graph of the statechart modeling the behavior of a radio clock shown in
Fig. 1. This graph is built up byGENGED editing rules and imported byAGG. In
Fig. 2, all rectangles represent attributed vertices (symbols of a VL) and the arrows
represent edges (links between VL symbols). We use the abbreviationsS for State,
H for Hierarchy, andT for Transition. Each state and transition is equipped with a
String attribute, namely each state has a certain state name (SN) and each transition
holds an event (EV). The attribution of vertices and edges2 by Java objects and
expressions follows the ideas of attributed graph grammars introduced in [26].

A relation between two graphsG andH is expressed by agraph morphism
which maps the vertices and edges ofG to vertices and edges ofH. These mappings

2 Attributes for edges are not used byGENGED.
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Fig. 2. Sample abstract syntax graph inAGG.

have to be type compatible and attribute values have to coincide also. Fig.3 shows
two graphs and a graph morphism which is illustrated by numbers the vertices are
annotated with, e.g.1:S in G is mapped to1:S in H.

HG T

1:S 2:S1:S 2:SSN SNsn1
ts

sn1 SN

ev

sn2SN

TN

sn2

Fig. 3. Sample morphism inAGG .

Graph transformationdefines a rule-based manipulation of graphs. In general,
graph grammars (consisting of a start graph and a set of rules) generalize Chomsky
grammars from strings to graphs. The start graph represents the initial state of a
system (here a diagram), whereas the set of rules describes the possible changes.
A graph rulecomprises two graphs: A left-hand sideL and a right-hand sideR,
a named rule morphism, and optionally a set of parameters. Moreover, a rule may
contain a set of NACs specifying exactly those fractions of matching situations that
must notexist for a rule to be applicable. Fig.4 illustrates a graph rule supporting
the insertion of a state together with a state name (the parameter). The NAC re-
quires that the state with the given state name is not already in the graph the rule is
applied to.

1:S
RNAC L

1:SN 1:S 1:SNsn sn

Insert State (String sn)

Fig. 4. Sample graph rule with NAC.

The application of a rule to a graphG requires a morphism (also calledmatch)
from the rule’s left-hand sideL to this graphG. A match marks the vertices in
the working graph that participate in the rule application, namely the vertices in
the image of the match. InAGG two kinds of transformation concepts are real-
ized, namely theSingle-Pushout(SPO) and theDouble-Pushout(DPO) approach.
Applying a rule in the SPO approach, all dangling edges are deleted implicitly,
whereas in the DPO approach the application of a rule is forbidden if the resulting
graph would have dangling edges (cf. [15] for more details).

Theparsing algorithmproposed in [8] (which is based onContextual Layered
Graph Grammars(CLGG) and critical pair analysis) is already implemented in
AGG. This component is calledAGG graph parser: Assigning rules as well as
vertex and edge types to layers such that the layering condition in [8] is satisfied,
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the layer-wise application of rules to a given terminal graph always terminates.
Roughly speaking, the layering condition is fulfilled if each rule deletes at least one
vertex or edge coming from a lower level (deletion layer) and creates graph objects
of a higher level (creation layer). In AGG the definition of layers is supported
by a respective dialog; the user is informed about the satisfaction of the layering
condition.

Critical pair analysis[31,27] is used to make parsing by graph transformation
more efficient: Decisions between conflicting rule applications are delayed as far
as possible. This means to apply non-conflicting rules first and to reduce the graph
as much as possible. Afterwards, rule application conflicts are handled by creating
decision points for the backtracking part of the parsing algorithm. For critical pair
analysis of CLGG rules [8], a layer-wise analysis is sufficient, since a rule of an
upper layer is not applied as long as rules of lower layers are still applicable.

All the AGG features mentioned so far are used byGENGEDwhich is explained
in the following section.

3 VL Specification and Validation in GENGED

TheGENGED environment implements concepts for the visual definition of VLs.
Based on a visual alphabet where types of symbols and links occurring in a VL are
defined by a language designer, several kinds of visual grammars may be given,
namely a syntax grammar for syntax-directed editing, a parse grammar and a sim-
ulation grammar. Accordingly, theGENGED environment comprises analphabet
editorand agrammar editor, respectively. The alphabet is the input of the grammar
editor, where so-calledalphabet rulesare generated defining the editing commands
of this editor. Once an alphabet and possibly some grammars have been defined, a
specification editorsupports the combination of the constituents. If a parse gram-
mar is given, it can be extended by the layering function made available by the
AGG graph parser. Also critical pairs may be computed. Moreover, in order to
have a controlled execution of diagram behavior, simulation steps can be defined
on top of a simulation grammar. TheAGG system is used for the transformation of
the abstract syntax of diagrams in the grammar editor as well as in a VL-specific
environment. The graphical constraints defined with respect to the concrete syntax
(the layout) are solved by the constraint solverPARCON [19]. Fig. 5 illustrates the
GENGED components, the data flow and the use relations.
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Fig. 5. Components of theGENGED environment.
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In contrast toAGG where typed (labeled) graphs are in the fore, inGENGED
type graphs3 are realized that are extended by constraint satisfaction problems ac-
cording to the layout. These extended type graphs describe the visual alphabet:
Symbols like states (S) or data attributes like a state name (SN) of type String
represent the (abstract syntax) vertices. These vertices are enhanced by graphi-
cal attributes denoting the layout. The definition of visual symbols is supported
by the symbol editor; the link editor allows the definition of the links. Each link
is represented by a directed edge between two symbols according to the abstract
syntax. Graphical constraints specify how the symbol layouts are to be connected
according to the concrete syntax.

Fig. 6 illustrates the visual alphabet for our statechart language; for the abstract
syntax we use the same notation as in Figs.3 and4. According to the concrete syn-
tax, the vertices are enhanced by graphical objects (dashed arrows) and graphical –
link – constraints are indicated by dotted lines/arrows. The graphics denoted byPH
describe placeholder symbols which are non-visible rectangles in the VL-specific
environment. Here, the hierarchy symbol (H) is used in order to allow for nested
statecharts. We omit the modeling of parallel states and we do not consider final
state markings due to space limitations. Instead we have already introduced the
symbols needed for the simulation grammar enclosed by a shadowed ellipse. An
active state is denoted by theA symbol and visualized by a rounded rectangle with
red color; it is bound to a common state graphic by an overlapping constraint. The
other two symbolsPA andPD are logical helper symbols. They are needed by the
simulation grammar to follow the initial markings and to trigger transitions.

SN

pd
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PA
PD

(PH)(PH)(PH)

pa
act

overlap

String

String

H

incl overlap

EV T S Init

subH

onBorder

init

superH

=

b
e

Syntax
Abstract

=

Fig. 6. A statechart alphabet.

The alphabet is the basis to define the distinguished kinds of grammars using the
grammar editor. Fig.7 shows some language-generating editing rules that occur in
a syntax grammar. Such rules are defined visually in theGENGEDgrammar editor
by applying alphabet rules generated automatically from the visual alphabet. Using
these language-generating rules, abstract syntax graphs as that one shown in Fig.2
are built up. They are extended by layout information (graphical objects) defining
the graphical attributes of each abstract vertex. This means, based on the start graph
given by a single state symbol, it is possible to insert sub-states by applying rule
InsertSubState and to mark a state as an initial state by ruleMarkInit. Each two
state symbols may be connected by applying the ruleInsertTransition.

3 For some discussions concerning differences between typed graphs and graphs typed over a type
graph the reader is referred to [20].
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Fig. 7. Some language-generating editing operations.

It is obvious that the initial marking of states can be performed arbitrarily by
applying ruleMarkInit, i.e. the editing does not conform to the common statechart
semantics. In order to allow for syntax checking of diagrams, a parse grammar has
to be defined; it is given in [10]. Also the insertion of transition symbols is not
restricted by the corresponding rule. The reader is referred to [6] in order to have
a closer look at the parse grammar recognizing statecharts with transition symbols
that are not allowed. Important is the fact that also the parse grammar is defined
visually as well as the syntax and the simulation grammar. However, the definition
of the layering function a parse grammar can be extended with, is driven by a
respective dialog similar to that one of theAGG graph parser. I.e., in the area of VL
analysis, there is no difference between graph parsing inAGG and syntax checking
in GENGED.

Being our only means of algorithmic manipulation of diagrams, rule applica-
tion forms the basis for the simulation concepts. Thus a simulation specification,
a container for all simulation related data, consists of a simulation grammar and
optionally of a set of simulation steps, which specify how the rules of the grammar
have to be applied. A simulation step describes an atomar step to be executed during
the simulation process. It is parameterized and undividable, so that after binding
values to the parameters and applying the step to a given diagram the resulting dia-
gram is generated without any intermediate results. The core of a simulation step is
a simulation expression, a kind of program executed when the step is being applied.
Given a diagram and an assignment for the variables used in a simulation expres-
sion, its evaluation results in a new diagram and a boolean value. Keeping that in
mind the inductive definition of the syntax and semantics of simulation expressions
is straight forward.

The basic simulation expression is therule() expression. It has two parame-
ters, a rule of the simulation grammar and an assignment for the rule’s parameters.
The latter binds the parameters to either concrete values or to variables, precisely,
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parameters of the simulation step the simulation expression belongs to. When eval-
uating arule() expression its rule is applied to the given diagram. If the application
succeeds, the evaluation yields the derived diagram and the valuetrue, otherwise
the unchanged diagram andfalse.

Two simulation expressionsa and b can logically be compound to(a and b)
or (a or b). In both casesa is evaluated first and, using the resulting diagram,b
afterwards. Thus the evaluation of the complete expression yields the same diagram
for and andor, but the boolean value is the result of a logicaland respectivelyor
of the values yielded by the evaluation ofa andb. The (a andc b) and(a orc b)
variants feature a conditional evaluation, that isb is evaluated, only ifa yields true
or falserespectively.

Finally control flow expressions are realized. Additionally given a simulation
expressionc, if a then b elsec fi andwhile a do b done represent those. Evaluat-
ing anif then else fiexpression,a is evaluated first and if it yieldstrue, b is evalu-
ated afterwards,c otherwise. For awhile do doneexpression,a is evaluated and,
if yielding true, b as well and thereafter the whole expression another time. On
falsethe evaluation terminates with the diagram the evaluation ofa yielded and the
boolean result value istrue, if the body of the loop has been executed at least once,
falseotherwise.

As already mentioned, inGENGED the definition of simulation steps and ex-
pressions is based on a given simulation grammar, hence it is supported by the
specification editor (cf. Fig.5). As before, the presentation and discussion of the
whole simulation specification for our statechart language is out of the scope of this
paper. The reader is referred to [10] for a comprehensive survey.

4 Related Work

In the literature one can find many concepts and tools for the specification and gen-
eration of VL-specific environments (cf. [28,11,22]). This fact makes a comparison
very difficult. For example, most of the tools do not allow for a visual specification
like GENGED; they expect a textual specification for VLs. Another criterion is
given by the kind of editing mode (free-hand or syntax-directed) supported in the
VL-specific environment, and – if available – the kind of internal representation
model.

Closely related toAGG/GENGEDare non-commercial graph-based approaches
and tools that allow for specifying and analysis of general-purpose VLs. This
means that purpose-specific tools like Fujaba [17] (From UML to Java And Back
Again) are out of the scope for a comparison.

Most tools for creating free-hand editors analyze diagrams directly and avoid
to create an internal representation model like a graph. No internal model is taken
into account, for example, in VisPro [36], Penguins [30], and Vlcc [12,33]. Vlcc
employs positional grammars and an LALR(1)-like parser. Moreover, in [13] ex-
tended positional grammars are introduced such that this approach is no longer
restricted to context-free grammars. In Penguins constraint multiset grammars and
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a Prolog-like parser are used, whereas in VisPro reserved graph grammars and a
graph parser are taken into account [35]. However, in VisPro the set of VLs is re-
stricted to diagrammatic VLs, i.e., symbols can be connected by lines and arrows
only.

VLCC [12,33] (extended positional grammars) andDIAGEN [24,14] (hyper-
graph grammars) use restricted context-sensitive rules to parse VLs. It is men-
tioned in several publications that all VLs can be captured by the corresponding
approaches. However, critical pair analysis as it is supported byAGG/GENGED
is not yet regarded. Nevertheless, after parsing, in editors generated byDIAGEN

non-correct diagram parts are marked by a specific color, whereas in theGENGED
generated editor the user is only informed about errors in the diagram.

Possibly, free-hand editing is desired because a user can create and modify
diagrams unrestrictedly; but these diagrams may contain errors. In contrast, pure
syntax-directed editing provides a set of editing commands which transform correct
diagrams into other correct diagrams; but the user is restricted to these commands.
In [1] an integration of both kinds of editing modes is proposed, but it is not im-
plemented yet. The idea of combining both editing modes is captured byDIAGEN

[14] as well byGENGED. Additionally, an internal representation model (a graph)
is taken into account byDIAGEN as it is done, e.g., byGENGED and by Kogge
[25]. However, Kogge allows for syntax-directed editing only.

A further important criterion is given by the layout handling and hence the per-
formance of constraint solving techniques implemented by the corresponding tools.
Up to now no efficient constraint solving handling is regarded byGENGED which
reduces the performance in the VL-specific environment. Especially, if graph-like
languages like statecharts are considered, for the placement of each arrow so-called
or-constraints are needed in order to find a correct begin and end point. For each or-
constraint the whole constraint satisfaction problem is duplicated and solved. This
is better realized byDIAGEN where several layout algorithms are implemented for
distinguished kinds of VLs under consideration. However, alsoDIAGEN has some
performance problems concerning constraint solving if large diagrams are drawn.
Moreover,DIAGEN supports textual specifications only whereas inGENGED the
visual specification of VLs is in the fore.

Concerning the concrete syntax, i.e. the layout, a promising approach is maybe
given by VL-Eli [34], which offers a library of predefinedvisual patterns(List,
Table, Form, Line, etc.) that can be combined for defining the layout of VLs.
The calculation of the layout is then dependent on some abstract syntax attributes
(attribute grammars are the underlying formalism). However, in its current state
VLs must be specified textually, as well as only syntax-directed editing is supported
in a generated editor.

5 Conclusion

In this paper we have given an overview on the specification and validation tech-
niques for VLs offered by the toolsAGG [3] and GENGED [18] (both are im-
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plemented in Java).GENGED is developed especially for the visual definition of
VLs including a visual alphabet and distinguished kinds of grammars, namely a
syntax grammar, a parse grammar and a simulation grammar. Based on a given
parse grammar, graph parsing and critical pair analysis which is made available
by AGG can be used for syntax checking of VLs inGENGED. First experiences
of parsing class diagrams [7] and statecharts [7,6,10] have been made. We are
going to consider the parsing of further VLs in the future. Additionally, the imple-
mented parsing algorithm has to be compared with related approaches concerning
efficiency.

The simulation concepts briefly proposed in this paper are already realized
in GENGED. We use graph rewriting rules of the same type as the syntax rules
described in this paper to specify the operational semantics of a visual behavior
model. Active states are modeled by marking them by a specific active symbol.
In this sense, the application of simulation rules simulates the statechart behavior.
Moreover, simulation expressions support the controlled execution.

Visual behavior models like statecharts or Petri nets usually are better accepted
by practitioners if their behavior is shown in an application-specific layout. On the
one hand the behavior of a statechart can be modeled as the change of markings. On
the other hand, defining a new layout for states and transitions, the behavior shall be
visualized in the application-specific layout which hides the underlying structure.
This approach towards animation of visual behavior models has been described for
Petri nets in [4], and we plan also to apply it to statecharts. This means we are
going to implement the corresponding animation concepts as well as we have to
improve our constraint handling concept.

AGG is going to be extended by the graph constraints proposed in [21] to en-
sure consistency of conditional graph grammars: Graph constraints can express
conditions (or even graph parts) as the existence or uniqueness of certain vertices
and edges. Such conditions can be transformed into post-conditions that have to be
satisfied by the result of each transformation step. Since inGENGED the transfor-
mation of the abstract syntax is done byAGG, also this feature can be exploited by
GENGED in the future.
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