
Case Study Logistics: Flexible Modeling of

Business Processes using Algebraic

Higher-Order Nets

Kathrin Ho�mann

Institute for Software Engineering and Theoretical Computer Science
Technical University Berlin, Germany
email : ho�mann@cs.tu-berlin.de

Abstract. In this paper we present a case study logistics using Algebraic
Higher-Order Nets. Algebraic Higher-Order Nets are an extension of the
well de�ned formalism of Algebraic High-Level Nets by higher-order func-
tions leading to a more exible modeling technique. After an introduction
of Algebraic Higher-Order Nets at an informal level we present the case
study logistics and demonstrate the advantage of our approach which
allows a exible modeling of business processes including exceptions and
roles without changing the net structure of our nets.

1 Introduction

In the context of parallel and concurrent systems Petri nets represent a well-
known and widely used formalism and have been employed in practical appli-
cations in di�erent areas. Their graphical representation and formal semantics
excellently support the modeling and simulation of such systems. Among a large
variety of di�erent high level net classes (see e.g. [Gen91,Jen92]) Algebraic High-
Level Nets [EPR94] give rise to a formal and well de�ned description of the
dynamic behaviour of concurrent and distributed systems due to their combi-
nation of algebraic speci�cation and Petri nets. This formalism is adequate in
application domains, where the context is known from the very beginning such
that the system can be modeled by a Petri net with a �xed structure. In other
application domains like business process modeling it is also desirable to support
the fact that an organization of a system is not �xed once and for all, that is,
changes of the environment can only be modeled by changing the structure of
Petri nets.

In the area of Petri nets higher-order structures as tokens is a topic of research
(see e.g. [Han97,Val98,Hof00]) leading to a more exible modeling of business
processes. In this paper we show that our concept of Algebraic Higher-Order Nets
[Hof00] including algebraic higher-order signatures as data type part [MHKB99]
is suitable for exible modeling of business processes.

The paper is organized in the following way: In Section 2 we illustrate the
main idea of Algebraic Higher-Order Nets with a small example using a sim-
pli�ed notation of algebraic higher-order signatures, speci�cations and algebras.

H. Ehrig et al. (Eds.): Petri Net Technology ... , LNCS 2472, pp. 145-160, 2003.
c Springer-Verlag Berlin Heidelberg 2003

Subsequently we present our case study logistics using Algebraic Higher-Order
Nets (Section 3), which allows a exible modeling of business processes without
changing the net structure (Section 4), and a short conclusion (Section 5).

2 Motivation and Informal Introduction

In this section we motivate the notions of Algebraic High-Level Nets and Alge-
braic Higher-Order Nets in terms of a small example in order to demonstrate
in the following section how Algebraic Higher-Order Nets are used for exible
modeling of business processes without changing the net structure.

In the application domain of business processes Petri nets are a widely used
formalism and have been successfully employed in practical applications. For the
integration of data elements into business processes it is adequate to use at least
High-Level Petri Nets. In this way we obtain a more compact model, because a
particular part of the net structure is reduced to data elements.

Let us �rst consider Algebraic High-Level Nets [PER95], an integration of
classical Petri nets and algebraic speci�cations [EM85]. Technically, the algebraic
speci�cation is used to de�ne net inscriptions by terms over the speci�cation.
Furthermore �ring conditions de�ned by algebraic equations guarantee, that
certain constraints are respected. The marking of Algebraic High-Level Nets
consists not only of black tokens, but also of data tokens which are elements
from a given algebra. In contrast to black tokens of low level Petri nets data
tokens can be modi�ed during the �ring of transitions.

Figure 1 shows a very simple Algebraic High-Level Net. The idea of the
net is to compute alternatively the successor, the square or the cube of natural
numbers. The net is inscribed with terms over the signature NAT of natural
numbers given below.

NAT =
sorts : nat

opns : zero :! nat

succ : nat! nat

square : nat! nat

cube : nat! nat

We consider the NAT-algebra A consisting of natural numbers with constant
zeroA = 0 and the well-known functions succA; squareA and cubeA, respectively.
In Figure 1 the type of place p1 is given by the sort nat and the initial marking
of place p1 consists of natural numbers n1; : : : ; nk 2 N.

To demonstrate the �ring behaviour of the transition Compute succ (and
similar for Compute square and Compute cube) we �rst assign a natural number
n to the variable x. The follower marking is computed as follows: the data element
n is consumed from place p1 and the result succA(n) is added to the place p2.

The Algebraic High-Level Net Computation in Figure 1 can be represented
in a more compact way by an Algebraic Higher-Order Net Computation' in

146 Kathrin Hoffmann

x

p2:nat

square(x)

Compute
square

x

cube(x)

Compute
cube

Compute
succ

x

succ(x)

NAT

p1:natn1, ..., nk

Fig.1: Algebraic High-Level Net Computation

Figure 2, where the three di�erent transition in Figure 1 are presented by one
transition together with a higher-order place p and three di�erent function type
tokens succ; square and cube. The function type in this case is nat! nat which
means that succ; square and cube can be interpreted as functions from natural
numbers to natural numbers. In order to �re transition Computate in Figure 2
we have to give not only an assignment to variable x of type nat (as in Fig.
1), but also an assignment to variable f of type nat ! nat. Assigning n to x

and succ to f we can �re transition Computate, where token n is removed from
place p1, token succ(n) is added to place p2, but token succ remain on place p
as indicated by the horizontal line between transition Computate and place p.
In fact, place p can be considered as a context place in the sence of contextual
nets (see [MR95]), where, however, p is now a place of higher-order type.

In order to allow places and tokens of function type we have to replace
the algebraic signature NAT by an algebraic higher-order signature HO-NAT
and the NAT-algebra A by a HO-NAT-algebra HO-A. This is possible in the
framework of Algebraic Higher-Order Nets, which is formally introduced in our
paper [Hof00] bases on algebraic higher-order speci�cation (see [MHKB99]). For
the presentation in this paper, however, we use a most simpli�ed notation for
higher-order signatures and algebras as follows:

HO �NAT =

basic sorts : nat

opns : zero :! nat

succ : nat! nat

square : nat! nat

cube : nat! nat

147Case Study Logistics: Flexible Modeling of Business Processes

x

f

p2:nat

f(x)

Compute

p:nat->nat

succ

square

cube

p1:nat

HO-NAT

n1, ..., nk

Fig.2: Algebraic Higher-Order Net Computation'

where succ; square and cube - written as operation symbols from nat to nat
- are in fact higher-order function symbols of type nat ! nat. This notation of
operation symbols allows to build up terms like succ(x); square(x) and cube(x)
with the usual interpretation, or more general f(x), where f is a variable of type
nat ! nat. In addition to the basic sort nat HO-NAT has also product and
function types like nat� nat; nat ! nat and (nat ! nat) � nat, where in Fig.
2 we only need the basic sort nat and the function type nat! nat. This allows
to consider succ; square and cube as higher-order constants of type nat ! nat,
which are used as tokens in place p in Fig. 2.

For a precise notation of higher-order signatures, algebras and Algebraic
Higher-Order Nets we refer to [MHKB99,Hof00]. In [Hof00] we have also intro-
duced two types of transformations between speci�c Algebraic High-Level Nets
and Algebraic Higher-Order Nets, called folding and unfolding. In our case the
Algebraic Higher-Order Net in Fig. 2 is the folding of the Algebraic High-Level
Net in Fig. 1, and vice versa the Algebraic High-Level Net in Fig. 1 is the un-
folding of the Algebraic Higher-Order Nets in Fig. 2.

The advantage of Algebraic Higher-Order Nets is the reusability of the �xed
net structure. To include further computations of function type nat ! nat

into the Algebraic Higher-Order Net Computation', we extend the marking of
place p, but can keep the same net structure. In the Algebraic High-Level Net
Computation the net structure would have to be extended by one transitions for
each further computation.

In Figure 2 we have only used the basic sort nat and the function type
nat ! nat. As explained above we can also use product types and combined
function and product types.

In Figure 3 the type of place p is given by the product type (nat ! nat)�
person. The functions as given by the marking of place p are extended by roles

148 Kathrin Hoffmann

r1 and r2, respectively. This means, that e.g. the functions succ can only be
applied by a person in role r1, while the �ring behaviour is equivalent to the
Algebraic Higher-Order Net Computation'.

x

f

p2:nat

f(x)

HO-NAT’

Compute

p:(nat->nat) x person

(succ, r1)

(square, r2)

(cube, r2)

p1:natn1, ..., nk

Fig: 3: Place with Product Type

Summarizing Algebraic Higher-Order Nets give rise to a more compact model
by using functions as tokens. The advantage is the exible modeling of business
processes, that means that changes of the environment are modeled by changing
the corresponding marking. Furthermore we are able to introduce a role model
into Algebraic Higher-Order Nets.

3 Case Study Logistics

The business process logistics consists of the planning and scheduling functions
concerned with the distribution of products to customers. In view of depart-
ments the business process can be divided into di�erent parts, each of them
with speci�c documents and activities. After receiving an order from a customer
in the order department the availability of articles is checked. In the delivery
department the corresponding delivery note is generated and articles are send
to the customer. Finally in the accounts department invoices are captured and
cleared with incoming payments.

Our case study logistics is based on data structures de�ned in [Sch94]
by entity/relationship-diagrams and processes modeled by event driven pro-
cess chains. In more detail our case study logistics consists of three Algebraic
Higher-Order Nets Order Department, Delivery department and Account

department corresponding to the departments described above. To obtain the
overall system of the business process logistics we �rst observe, that there are
places with the same name which are present in di�erent Algebraic Higher-
Order Nets. Our Algebraic Higher-Order Nets are sequentially composed by

149Case Study Logistics: Flexible Modeling of Business Processes

merging places checked order and stock of the net Order Department and
Delivery department and places receipted delivery note and delivered

order of the net Delivery Department and Account department. The result-
ing net Logistics is depicted in Fig. 4 (without net inscriptions).

delivered orderreceipted delivery note

Order Department

Account Department

Delivery Department

stockchecked order

Fig.4: Logistics

Let us point out that in this section we only make limited use of the advan-
tage of Algebraic Higher-Order nets compared with Algebraic High-Level Nets,
because we use only one or two token on the higher-order places. But the nota-
tion as Algebraic Higher-Order nets will allow in Section 4 the exible modeling

150 Kathrin Hoffmann

of business processes by adding additional token on higher-order places in Fig. 8
or changing the type of higher-order places in Fig. 9, without changing the net
structure of the nets.

In the following we describe the three di�erent Algebraic Higher-Order Nets
Order Department, Delivery department and Account department depicted
in Fig. 4 in more detail.

In Figure 5 the department of dealing with an order of a customer is de-
picted. Here the availability of ordered articles is checked by comparing the list
of articles, which are available at the moment, with the list of ordered articles.
We split the order into two parts, the current order including all articles, which
are available at the moment, and a new order including all remaining articles to
be carried out later as soon as they are available.

l2

diff(OR,f(OR,ST))

checked order: article-list

l1

Check availablity and split order

order: article-list stock: article-list

ST

OR

Order

f

splitting Order:
article-list x article-list -> article-list

change_articles

f(OR,ST)

remove_articles

Fig.5: Order Department

The net Order department consists of three places called stock, order and
checked order, where the type is given by the basic sort article-list. The initial
marking l1 of place order means that there is a list of articles ordered by a
customer. Similar the marking l2 of place stock represents a list of articles,
which are available at the moment. Furthermore there is a higher-order place
splitting order with function type article-list � article-list ! article-list and
a marking consisting of functions change articles and remove articles to split

151Case Study Logistics: Flexible Modeling of Business Processes

an order. These higher-order functions change articles and remove articles and
also the function di� are declared in the higher-order signature Order not shown
explicitly. The function remove articles can be interpreted by removing articles,
which are not available at the moment, from the current order. These articles
are postponed to the new order. In contrast the function change articles means
that the number of pieces of an ordered article is splitted into two parts. The
�rst is the number of pieces available in the stock, i.e. l2. The second is the
di�erence of those in l1 and l2. So the article remain a part of the current order
with quantities available in l2 and becomes also a part of the new order with
remaining quantities.

During the �ring of transition Check availability and split order one
of the functions change order and remove order, respectively, is selected by
the assignment of the variable f . Furthermore the variable OR is assigned to
the order l1 and the variable ST is assigned to the stock l2. Then we compute
the current order f(l1; l2), which is added to place checked order, while the
new order di� (l1; f(l1; l2)) is added to place order and consists of all remaining
articles given by the di�erence of the original order l1 and the current order
f(l1; l2).

In Figure 6 the Algebraic Higher-Order Net of the delivery department is
depicted. In a �rst step articles of an order are removed from the stock and
provided for loading up to trucks. Furthermore a delivery note is generated to
inform the customer about articles to be received.

In the Algebraic Higher-Order Net Delivery department we have a closer
look at the corresponding higher-order signature Delivery in this case, which

is depicted below. It is used �rst of all to specify on one hand the construc-
tion of a list of articles and delivery notes. Due to the operation make article

articles consist of a pair of numbers of pieces volume and a speci�c article num-
ber article-nr. The list of articles is generated by the operation no list for the
empty list and the operation add article to add recursively articles to an exist-
ing list. On the other hand the higher-order signature Delivery declares activi-

ties remove article;make delivery note and receipted delivery note, which are
carried out during the process in the order department. The meaning of these
function is given in a corresponding higher-order algebra A of signature Delivery,

which is not given explicitly in this paper.

Delivery = Bool+

basic sorts : article; volume; article� nr; article� list; delivery� notes

opns : make article : volume� article� nr ! article

no list :! article� list

add article : article� list� article! article� list

remove article : article� list� article� list! article� list

make delivery note : article� list� bool! delivery � note

receipted delivery note : delivery � note! delivery � note

: : :

152 Kathrin Hoffmann

remove_articles

l1 l2

Make a delivery note

OR

OR

delivery note:

order to deliver:

article-list x bool -> delivery

make delivery note:

delivered order:

OR

f3

check delivery note:
delivery-note -> delivery-note

article-list

DN

f3(DN)

Deliver articles

Deliverydelivery-notereceipted delivery note:

checked order: article-list stock: article-list

STOR

Reservation of articles
f1

article-list x article-list -> article-list
change stock:

delivery-note

article-list

receipt_delivery_note

f2

f2(OR, false)

f1(ST,OR)

make_delivery_note

Fig.6: Delivery Department

153Case Study Logistics: Flexible Modeling of Business Processes

The Algebraic Higher-Order Net Delivery department (see Fig. 6) con-
sists of four places stock, checked order, order to deliver and delivered

order, where the type is given by the basic sort article-list. Similar to the net
Order department(see Fig. 5) the marking of the place checked order consists
of a list of articles l1 to de�ne an order of a customer. Note, that the availability
of ordered articles is already checked in the net Order department (see Fig. 5).
Analogously the marking of the place stock consists of a list of articles l2, which
are available at the moment.

The type of places delivery note and receipted delivery note is given
by the basic sort delivery note, that is a lists of articles together with a boolean
value. The boolean value true indicates that the delivery note is checked by
customers. The type of the higher-order places change stock, make delivery

note and check delivery note are given by corresponding higher-order func-
tion types with markings consisting of di�erent activities carried out in the
delivery department.

In the following we explain the �ring behaviour of the Algebraic Higher-
Order Net Delivery department in more detail. In order to �re transition
Reservation of articles in Fig. 6 we have to give not only an assignment
to variables ST and OR of type article-list, but also of variable f1 of type
article-list � article-list ! article-list. Assigning l1 to OR, l2 to ST and f1 to
remove-articles we can �re transition Reservation of articles. The function
remove articles means, that ordered articles are removed from the current stock
by changing the number of pieces. Then tokens l1 and l2 are consumed from place
checked order and stock, respectively. On one hand token l1 is added to the
place order to deliver. On the other hand token remove articles(l2; l1) is
added to place stock and can be considered as the new stock, that is the origi-
nal list of articles l2 without ordered articles l1. The marking of the higher-order
place change stock remains to be unchanged as indicated by the horizontal line
between the transition Reservation of articles and the higher-order place
change stock.

In a next step a delivery note is generated by the application of the function
make delivery note given as marking of place make delivery note to an order.
In detail, we assign the order l3 = l1 to the variable OR and the function
make delivery note to the variable f2. During the �ring of transition Make a

delivery note we remove token l3 from place order to deliver and add a
token l4 = make delivery note(l3; false) to place delivery note and a token
l3 to place delivered order. The token make delivery note(l3; false) can be
interpreted as a list of ordered articles, which have to be checked by the customer.

Finally, during the �ring of transition Deliver articles we assign the de-
livery note l4 to the variable DN and the function receipt delivery note to the
variable f3. Then the delivery note l4 is removed from place delivery note

and is checked by the customer by changing the boolean value. This means that
a token receipt delivery note(l4) is added to place receipted delivery note,
while the marking of the higher-order place check delivery note left to be
unchanged.

154 Kathrin Hoffmann

In Figure 7 we model the process of the account department. After articles
are delivered an invoice is generated. In a next step the invoice is compared with
the receipted delivery note. Once a week outstanding payments are checked and
the account department reminds related customers.

l1

get_Ident(IN)=

receipted delivery note:

make invoice:

delivery-note

l2

Initiate notification

delivered order: article-list

notification: invoice

 get_Ident(DN)

(f3,f4)

IN

f3(IN)=TRUE

f4(IN)

invoice x deliver-note
register invoice:

Comparing invoice

f2(IN,DN)

receivable: invoice

IN

DN

(invoice -> bool) x (invoice -> invoice)

Account

f1Make invoice

f1(OR)

OR

mk_Invoice

IN

article-list -> invoice

invoice: invoice

f2

delivery-note

make notification:

-> invoice

archived

mk_receivable

(is_reminder, mk_reminder)

delivery note:

DN

Fig.7: Account Department

155Case Study Logistics: Flexible Modeling of Business Processes

4 Flexible Modeling of Business Processes

In this section we demonstrate the exible modeling of business processes by
introducing on one hand alternative activities and on the other hand a role
model into the Algebraic Higher-Order Nets given in Section 3.

In Figure 7 we have modeled the usual process of the account department
dealing with invoices. But in practice there are a lot of exceptions in the business
process logistics, e.g. the delivery can be incomplete or not perfect with respect to
their conditions. Here the customer can act in the following two ways: the order
is canceled or he demands a credit note. The exceptions are introduced into the
business process of the account department by an extension of the corresponding
higher-order signature Account with activities concerning the cancelation and
the credit note. We use the same net structure as given in Figure 7, but add
tokens mk cancelation and mk change to place register invoice. Further-
more tokens (is cancelation; cancelation) and (is credit; credit note) are added
to place make notification and indicate, that in the account department can-
celations and credit notes are generated in addition to the usual reminder (see
Fig. 8).

The role model encompasses informations about persons, roles and corre-
sponding activities. In [DG94] the role model is speci�ed by a set of tables,
showing roles allocated to activities and to persons, respectively. Table 1 and
Table 2 give the role model for the business process Order department (see
Figure 5). Here two di�erent activities of splitting an order can be carried out
by di�erent persons: Maria, Marta and Martin can change the number of pieces
of articles, while Maria and Markus can remove articles of an order.

Role Activity

role 1 change articles and remove articles
role 2 change articles
role 3 remove articles

Table 1: Roles allocated to activities

Role Person

role 1 maria
role 2 marta
role 2 martin
role 3 markus

Table2: Roles allocated to persons

To introduce the role model into our case study logistics, we extend the
higher-order signature Order by a new basic sort person corresponding to person
working in the company. The marking of the place splitting order is changed

156 Kathrin Hoffmann

l2

l1

notification: invoice

get_Ident(IN)=

delivered order: article-list

delivery-note

receipted delivery note:

make invoice:

Initiate notification

DN

DN

mk_cancelation
mk_change

archived

delivery note:

 get_Ident(DN)

(f3,f4) (is_reminder, mk_reminder)
(is_cancelation, cancelation)
(is_credit, credit_note)

IN

f3(IN)=TRUE

f4(IN)

invoice x deliver-note
register invoice:

Comparing invoice

f2(IN,DN)

receivable: invoice

IN
(invoice -> bool) x (invoice -> invoice)

Account

f1Make invoice

f1(OR)

OR

mk_Invoice

IN

article-list -> invoice

f2

invoice: invoice

mk_receivable

delivery-note

make notification:

-> invoice

Fig. 8: Account Department with Alternative Activities

157Case Study Logistics: Flexible Modeling of Business Processes

into a marking consisting of the product type (article-list � article-list ! article-
list) � person (see Figure 9) in contrast to the function type article-list �
article-list ! article-list in Figure 7.

l2l1

diff(OR,f(OR,ST))

checked order: article-list

Check availablity and split order

f(OR,ST)

stock: article-list

ST

OR

Order

(f,r)

splitting Order:

(article-list x article-list -> article-list) x person

order: article-list

(change_articles, maria)
(remove_articles, maria)
(change_articles, marta)
(change_articles, martin)
(remove_articles, markus)

Fig.9: Order Department with Role Model

Another promising topic is the introduction of ownerships for documents to
specify activity allocation constraints in the role model. These constraints can,
for example, express that a person who has executed one activity to a certain
document must also execute another speci�c activity. Similar to the procedure
described above we change the basic sort of places with marking consisting of
documents into a product type of persons and documents. For example we re-
place the basic sort of the place order by the product type article-list �person.
So the marking of the place order consists not only of orders given by a list of ar-
ticles, but also of persons which have the ownership for modi�cation of an order.
Then in the equations of transition Check availability and split order we
make sure that a list of articles can only be modi�ed by a that person, which is
addressed to the order.

158 Kathrin Hoffmann

5 Conclusion

We have presented Algebraic Higher-Order Nets leading to a more exible and
powerful modeling technique for processes. For software engineering purposes,
especially in the area of business process engineering, this is an interesting ap-
proach, because Algebraic Higher-Order Nets support a exible development of
business process models without changing the net structure. We have demon-
strated the use of Algebraic Higher-Oder Nets in our case study logistics on one
hand by the abstraction of di�erent activities (see Section 3) and on the other
hand by the extension to exceptions and roles (see Section 4). The abstract view
of the overall system modeling the cooperation of users, documents and data
bases and the modeling of further departments are presented in our technical
report [HS02].

Another promising topic is the extension not only by function types and
product types, but also by predicates, partiality and sub sorting (according to
higher-order speci�cations in [MHKB99]). But this remains for further research.

References

[DG94] W. Deiters and V. Gruhn. The FunSoft Net Approach to Software Process
Management. International Journal on Software Engineering and Knowl-

edge Engineering, 4(2):229{256, June 1994.
[EM85] H. Ehrig and B. Mahr. Fundamentals of Algebraic Speci�cation 1: Equa-

tions and Initial Semantics, volume 6 of EATCS Monographs on Theoretical

Computer Science. Springer Verlag, Berlin, 1985.
[EPR94] H. Ehrig, J. Padberg, and L. Ribeiro. Algebraic High-Level Nets: Petri

Nets Revisited. In Recent Trends in Data Type Speci�cation, pages 188{
206. Springer Verlag, 1994. Lecture Notes in Computer Science 785.

[Gen91] H.J. Genrich. Predicate/Transition Nets. In High-Level Petri Nets: Theory

and Application, pages 3{43. Springer Verlag, 1991.
[Han97] Yanbo Han. Software Infrastructure for Con�gurable Workow System - A

Model-Driven Approach Based on Higher-Order Nets and CORBA. PhD
thesis, Technical University of Berlin, 1997.

[Hof00] K. Ho�mann. Runtime Modi�kation between Algebraic High Level Nets
and Algebraic Higher Order Nets using Folding and Unfolding Construc-
tion. In G. Hommel, editor, Communication-Based Systems, Proceedings of

the 3rd International Workshop, pages 55{72. TU Berlin, Kluwer Academic
Publishers, 2000.

[HS02] K. Ho�mann and T. Schreiter. Case study logistics using algebraic higher-
order nets. Technical report, Technical University Berlin, 2002.

[Jen92] K. Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and

Practical Use, volume 1: Basic Concepts. Springer Verlag, EATCS Mono-
graphs in Theoretical Computer Science edition, 1992.

[MHKB99] T. Mossakowski, A. Haxthausen, and B. Krieg-Br�uckner. Subsorted Par-
tial Higher-Order Logic as an Extension of CASL. In Recent Trends in Al-

gebraic Development Techniques-14th International Workshop WADT'99,
pages 126{145, 1999.

[MR95] U. Montanari and F. Rossi. Contextual nets. Acta Informatica, 32, 1995.

159Case Study Logistics: Flexible Modeling of Business Processes

[PER95] J. Padberg, H. Ehrig, and L. Ribeiro. Algebraic High-Level Net Transfor-
mation Systems. Mathematical Structures in Computer Science, 5:217{256,
1995.

[Sch94] A.-W. Scheer. Business Process Engineering, Reference Models for Indus-

trial Enterprises. Springer-Verlag, Berlin, 1994.
[Val98] R�udiger Valk. Petri Nets as Token Objects: An Introduktion to Elementary

Object Nets. Proc. of the International Conference on Application and

Theory of Petri Nets, 1998.

160 Kathrin Hoffmann

	Case Study Logistics: Flexible Modeling of Business Processes using Algebraic Higher-Order Nets
	Introduction
	Motivation and Informal Introduction
	Case Study Logistics
	Flexible Modeling of Business Processes
	Conclusion
	References

