2002 Society for Design and Process Science
Printed in the United States of America

PETRI NET MODULES

Julia Padber g*

*Technical University Berlin

Institute for Software Engineering and Theoretical Computer Science
Germany

email: padberg@cs.tu-berlin.de

Abstract: Here we present a new module concept for Petri nets that is based on the component concepts
of Continuous Software Engineering (CSE). According to that concept two distinguished interfaces are
required. These are import and export interfaces. The import describes the assumptions on the environment,
e.g. in terms of used components. The export gives an abstraction of the functionality and presents e.g. the
offered services.

The modules for Petri we introduce here consist of three nets for the import, the body of the module and the
export. The import net I M P states the prerequisites the modules assumes. The body net BO D represents
the internal functionality. The export net EX P gives an abstraction of the body that can be used by the
environment. We provide module operations to compose larger modules from basic ones. Operations to
compose Petri net modules are crucial as the main purpose is composition. In most approaches module
concepts come along with just one operation. A great advantage is achieved having different possibilities
to compose modules, as it increases the convenience of modeling large systems. We propose three different
operations, composition, disjoint union, and union. Our main result in this contribution is that these module
operations are compatible with each other.

1. Introduction

The main motivation for Petri net modules is the modeling of component-based systems. Software com-
ponents are an useful and widely accepted abstraction mechanism. Components are deployed during the
entire software life cycle, from analysis to maintenance. The component concept as suggested in (Miller
and Weber, 1998; Weber, 1999) for Continuous Software Engineering (CSE) is the basic concept for our
approach.

Especially in early software development phases modeling with Petri nets is a common approach. Unfortu-
nately Petri nets do not yet support this component idea. In this paper we present Petri net modules as an
abstraction mechanism that corresponds to the component concept of CSE. This concept is realized for Petri

Transactions of the SDPS SEPTEMBER 2002, Vol. 6, No. 3, pp. 121-96

nets using the following basic ideas:

e Components consist of three nets: the import net 7 M P, the export net £ X P, and the body net BOD.
The import net presents those parts of the net that need to be provided from the ”outside”. The export
net is that what the net module presents to the “outside. The body is the realization of the export using
the import.

e The relation between import I M P and body BOD is given by a plain morphism. Export EX P and
body BO Dare related by a substitution morphism, that allows mapping one transition to a subnet.

e Different module operations are required for the flexible composition of modules. At the moment we
have union of modules and composition of modules.

e Compatibility between the operations needs to be guaranteed. Provided some conditions are satisfied
the result of first union and then composition or vice versa is the same up to isomorphism.

e The original algebraic module concept is based on a loose semantics. Up to now there is no loose se-
mantics defined for Petri nets or other Petri net classes. This is future research and will be investigated
in forthcoming papers.

In the area of Petri nets various structuring concepts have been proposed during the last 40 years, some
of these are even called modules or modular approach. On the one hand there are hierarchical concepts
(e.g. (Jensen, 1992; Buchholz, 1994; He, 1996; Fehling, 1993)). The system is described in an abstract net,
while special functionalities are encapsulated into subnets and called like procedures by merging transitions
or places and exchange of tokens. On the other hand there is a large variety of connector mechanisms
between modules.The communication, coordination or cooperation among components via signals is given
by a relation between input and output (e.g. (Christinsen and Hansen, 1994; Sibertin-Blanc, 1994; Desel et
al., 2000; Deiters and Gruhn, 1994)). In this way the exchange of tokens or only read-operation of modules
is described by special features like read arcs, inhibitor arcs etc. In other approaches places and transitions
of modules are merged by well-defined operations (e.g. (Kindler, 1995; Battiston et al., 1991b; Battiston et
al., 1991a; Broy and Streicher, 1992)).

In contrast to these our approach is based on concepts of Continuous Software Engineering (CSE). The ad-
vantage is that we must not extend the underlying formalism of Petri nets, but compose modules by means
of a connector component. Moreover, there are no approaches that provide different composition opera-
tions with explicit compatibility results and composition operations are usually only given implicitly. The
approach to Petri net modules as presented in this paper is closely related to algebraic specification modules
(Ehrig and Mabhr, 1990). Their impact for practical concepts in software engineering has been relevant from
the beginning (Weber and Ehrig, 1988). The transfer of these concepts to process description techniques
is a recent development. It has been started in (Simeoni, 1999) where modules for graph transformation
systems and local action systems have been investigated. A general framework for component concepts
based on High-Level Replacement Systems (Ehrig et al., 1991) is presented in (Ehrig and Orejas, 2001). To
sum up different process modeling techniques like graph transformation systems, Petri nets and many others
besides, the relation between export and body is here formalized in a more general way by transformation
rules instead of morphisms and our concept for Petri nets modules fits in very well. Moreover, the Petri
net modules we introduce can be considered an instantiation of the generic component concept presented in
(Ehrig et al., 2002c) (also in this volume). In 3.4. we discuss this relation.

This paper is organized as follows: First we introduce Petri net modules in Section 2. The module operations
are presented in Section 3. In both sections we use a small example to illustrate the introduced notions. A
summary and future work are given in the conclusion in Section 4.

Journal of Integrated Design and Process Science SEPTEMBER 2002, Vol. 6, No. 3, 122

2. Petri Net Modules

In this section we define Petri net modules. More precisely the notions and results we present in this paper
are given for place/transition nets. Since we use a categorical approach these notions and results easily can
be transferred to other Petri net classes provided they are given categorically.

Petri net modules consist of three nets, namely the import net I M P, the body net BO D, and the export net
EXP. These are related with two different kinds of morphisms. So we first need to define the different
notions of morphisms and to invest their specific properties. The use of those constructions and conditions
can be seen in the subsequent section (Section 3.) where module operations are introduced.

Due to space limitations we have skipped the proofs here. All proofs can be found in (Padberg, 2001). Here
we give only the basic constructions that are required for understanding.

2.1. Preliminaries

First we give a short intuition of the underlying basics. The precise definitions can be found in (Padberg,
2001). Here we use the algebraic notion of Petri nets as introduced in (Meseguer and Montanari, 1990).
Hence a Petri net is given by the set of transitions and the set of places and the pre- and post domain

function.
re
N=T p:; PP, where P? is the free commutative monoid over P, or the set of finite multisets over

P. So anptﬁgnent w € P® can be presented as a linear sum w = ¥,cpA,p and we can extend the usual
operations and relations as @, ©, <, and so on. Nevertheless we need the pre- and post-sets as well. Hence
we have as usually *¢ the set of all places in the pre- domain of a transition ¢. Analogously £, *p and p°.
Moreover we need to state how often is a basic element with in an element of the free commutative monoid
given. We define this for an element p € P and aword w € P® with w, = \p € P?.

Subnets N’ € P(N) of a given net N with N’ C N can be easily defined by subsets of places and
transitions, where the pre- and postdomain of transitions may be extended. P(NN) denotes the set of all
subnets. Note that this subnet relation is not an inclusion in terms of plain morphisms.

2.2. Morphismsof Petri Nets

Morphisms are the basic entity in category theory; they can present the internal structure of objects and
relate the objects. So they are the basis for the structural properties a category may have and can be used
successfully to define various structuring techniques.

Based on the algebraic notion of Petri nets (Meseguer and Montanari, 1990) we use simple homomorphisms
that are generated over the set of places. These morphisms map places to places and transitions to transitions.
They preserve firing and they yield nice categorical properties as cocompleteness.

Plain morphisms are presented as usual by an arrow —— .
Definition 1 (Plain Morphisms)
A plain morphism f : Ny —— Ny isgiven by f = (fp, fr) with fp : P, —— P, and fr :
T, —— Ty sothat
prego fr = [opres
and post analogously.
These morphisms give rise to the category PIN. O

A more elaborate notion of morphisms are substitution morphisms. These map places to places as well.
But they can map a single transition to a whole subnet. Hence they substitute a transition by a net. These

Transactions of the SDPS SEPTEMBER 2002, Vol. 6, No. 3, 123

morphisms are more complicated and do net yield nice categorical properties. But they capture a very broad
idea of refinement and hence are adequate for the relation between the export net and the body net.
Subsequently substitution morphisms are presented by an undulate arrow ~~~ .

Definition 2 (Substitution M orphisms)
A substitution morphism f : Ny ~ Ny isgiven by f = (fp,f;) with fp : P —— P, and f :
Ty — P(N2) with§,(t) := N. C Ny such that N} = (PL, T¢, preb, post)

° fp(.t) € P2t and
o fr(t*) € P}

Composition of substitution morphisms f : N ~~~ Ny andg: Ny ~—= Njisgiven by:
gof:=(gpo fp,grofr)wheregr o fr : Ty —— P(Ns) isdefined by gr o f () := U,eqy N5 Snce
all N3 C Nj this construction is well defined. O

Note that these morphisms do not preserve properties. They can be restricted in order to preserve liveness
(see for example (Urba3ek and Padberg, 2002)).

Example 3 (Substitution Mor phisms)

(P

Figure1l. A substitution morphism.

The green ! transition is mapped to the subnet consisting of green places and transitions. The striped
transition is mapped to the subnet consisting of striped places and transitions.

The places in the pre- and post-domain have to be preserved in following sense: Places in the pre-domain
of the transition are mapped to places in the subnet to which the transition has been mapped. O

Conversely we can determine the net that surrounds a transition, i.e. all the adjacent places and the transition
itself present a subnet of the target net.

Definition 4 (Net of a Transition)
Given atransition ¢ € T for some net N, then net(t) the net surrounding ¢ is given by :

net(t) := (P, T" pre’, post")
with

e Pl="tUt",

1t may be grey if you have a black & white presentation. Then we assume the readers substitute susequently green by grey.

Journal of Integrated Design and Process Science SEPTEMBER 2002, Vol. 6, No. 3, 124

e T' = {t},and

o pret : T' —— PP withpret(t) = pre; (),
analogously post!

<&

The net surrounding a transition is the basis to relate the two notions of morphisms. Plain morphisms are
a special case of substitution morphisms, where each transition is mapped the surrounding net of its target
transition.

The other way round: if a substitution morphisms maps all transitions to subnets containing only one tran-
sition, then it is plain as well.

Lemma 5 (Plain M orphisms and Substitution M or phisms)
Each plain morphism f : Ny —— Ny givenby f = (fp, fr) can be expressed as a substitution morphism
fre N1~ Ny givenby f' = (fp,fr) wherefr(t) = f(net(t)).

Moreover, if a substitution morphism f : Ny ~~= Ny by f = (fp,f;) hasfor all t € T} §,(t) = net(t')
for some ¢ € T, so that f{(prei(t)) = pres(t') and f{ (posti(t)) = posta(t') then it is plain with
fr(t) =1t <&

Proof istrivial.

The above fact can be expressed in categorical terms as well. Then we have a functor relating the two
categories of Petri nets with the different morphisms.

Lemma 6 (Category SPN of Petri Netswith Substitution Mor phisms)

SPN consisting of Petri nets and substitution morphisms is a category. Moreover, PN is a (full) subcat-

egory of SPN and we have the inclusion functor 7 : PN —— SPN, with I(f) := f’ asin Lemma 5.
&

Proof istrivial.

The inclusion functor defined above is cocontinuous, that means colimits are preserved. Given a colimit
diagram in PN then the inclusion into SPN vyields again a colimit diagram.

This is an essential result as it allows defining the module operations in terms of operation on Petri nets in
Section 3.

Lemma7 (Inclusion I : PN —— SPN is Cocontinuous)
&

In the subsequent proof we show the preservation of pushouts explicitly as they are one of the main con-

structions we use.
The proof can be found in (Padberg, 2001) here we just sketch the preservation of pushouts.

Transactions of the SDPS SEPTEMBER 2002, Vol. 6, No. 3, 125

Proof Sketch:
Given the following pushout (1) in PIN, then we have the commutative square (2) in SPN as I isa functor.

NO N1 NO NI
1)\1
g (1) 7 g @] Y
11 gll
% 1)\
No 7 N3 Ny N3 11
h 11
f” A\l

Ny

Let f": Ny ~~ Nyandg” : Ny ~~~ Nywithg"of =f"o0g.
We construct unique h : N3~~~ N4 where hp isthe uniquely induced morphism by pushout B in Set.
by : T3 —— P(N4) isgiven by
by (g (1)) = g (1)
br(f'(t2)) := g7(t2) witht; € T;
b, iswell defined as T3 is pushout is Set. Vv

So, colimits in PIN are colimits in SPIN as well. But these consistmerely ofplain morphisms. For diagrams
where one morphism is plain and the other is a substitution morphism we need the subsequent condition
that ensures the existence of pushouts.

Definition 8 (Compatibility Condition for Pushouts)
Given a plain morphism f : Ny —— N; and a substitution morphism g : Ny ~~~ N, the PO-
compatibility condition is satisfied if:
For all ¢y, t, € Ty we have fr(ty) = fr(ty) implies g, (to) = g, ().
Wethe call f and g jointly injective. o

Lemma 9 (Pushoutsin SPN)
Inthe category SPIN we have pushouts for a plain morphism f : N —— N; and a substitution mor phism
g: Ny ~~~ N, if the PO-compatibility condition is satisfied. O

Due to space limitation we refer again to (Padberg, 2001) and give here only the construction of the pushout.

Proof Sketch:
Given a plain morphism f : Ny —— N; and a substitution morphismg : Ny ~~~ N, s0 that the
PO-compatibility condition is satisfied, then we have N; := (P, t3, pres, posts) where

e P; = P, +p, P, ispushout in Set,

o T3 :=1T \ {tl € T1t|t € T()} W To,
hence we have: #; € Ty impliest; € T, V t5 € Ty (%)
and,

Journal of Integrated Design and Process Science SEPTEMBER 2002, Vol. 6, No. 3, 126

o pres — gp(prei(ts)) itz €Ty
plprea(ts)) ;t3 €T

posts is defined analogously.

N3 iswell defined due to (x). Vv

2.3. The Category of Modules of Petri Nets

We now introduce modules of Petri nets. The import is mapped to the body net by a plain morphism. The
export net is mapped to the body net by a substitution morphism. This substitution morphism expresses the
refinement of the export by the body net.

Definition 10 (Petri Net M odules)
A Petri net modue MOD = (IMP,EXP,BOD) consists of two morphisms

IMP "> BOD <*“~ EXP wherem isa plain morphismand is a substitution morphism.
A (Petri) net module morphism mod

MOD; —— MOD, is given by mod = EXP
(modr, modg, modg) with mody : hg
IMP, —— IMP,, modg : EXP, —— EXDP,,
and mods : BOD, ——= BOD,, where IMP —>BOD mode
modr, modg, modg are plain and the following \ \
conditions hold:
mod; EXPy

1. modg o m1 = m9 o mody

2. modpg ory = r9 o modg, [MP2—>BOD2
This gives rise to the category PNMod of Petri net modules. O

Example 11 (Smple M odule)

We have an example with three modules that describe the process of writing urging and offering letters.
The module Mody, given in Figure 2 provides the writing of a letter via the export to the environment. It
imports two precise processes for the urging and offering letters. In Figure 3 we show the corresponding
modules. In Example 16 we then illustrate the composition of these modules.

The module Mody in Figure 2 has the import net 1M By with the two transitions Urge and Offer and
their adjacent places. These are mapped to the net BODYjy by a non-injective morphism. The import
describes that this module assumes these two transitions to be abstractions. The export net £ X Ey consists
of a transition and two adjacent places.

Transactions of the SDPS SEPTEMBER 2002, Vol. 6, No. 3, 127

Figure2. MODyy.

The places are mapped to the corresponding places in the body net BO I}y,. The transition is mapped to the
whole net BO Dy, . Hence the morphism EX Py ~~~ BODyy is a substitution morphism.
The export abstracts from the possibilities to write either an urging or offering letter. O

Next we state that we can construct arbitrary colimits in the category PNMod. In (Padberg, 2001) we
construct the initial object, arbitrary coproducts and pushouts for the proof. Here we merely state the

construction of pushouts as these are the formal foundation of the union operation for modules given in the
next section.

Lemma 12 (PNMod is cocomplete)

Proof Sketch:

PNMod has pushouts that are denoted by MODs := MOD; +pyop, MODy for mod;
MOD() — MOD1 and modg : MOD() — MODQ
We have a component-wise construction, so we obtain the subsegquent diagram

IMP, BOD,
IMP, (1) IMP, BOD;) BOD,
IMP; o BOD;

where (1) and (2) are pushouts in the category PN and ms : IM P; —— BO Djs isthe induced pushout
morphism. AsIMP, —— BODiand IMP, —— BOD, areplain soisms.

Journal of Integrated Design and Process Science SEPTEMBER 2002, Vol. 6, No. 3, 128

Analogously, we obtain — as I is cocontinuous — from pushout (3) in SPN the induced morphism » :
EXP; ~—~ BOD;),:

EXP, BOD,
EXP1 (3) EXP2 BOD1 (2) BOD2
EX Py~~~ ¢ s BOD;
Hence we obtain MOD; = (IMP; —=~ BODs; <~~ EX P;) asthe pushout. v

3. Composition of Petri Net M odules

In order to construct models of large systems we propose to use a variety of operations to put modules
together. We call these module operations. The use of various module operations directly rises the question
whether the nodules obtained by different operations ina still consistent. In order to guarantee this we prove
compatibility between the module operations.

In this section we define three module operations, namely union, disjoint union, and composition. Suse-
quently we state their compatibility (for the proof see (Padberg, 2001)). These are important results since it
ensures the consistency of modules that are composed in various ways.

3.1. Module Operations

The first operation we introduce is the Digoint Union. Disjoint union is a special case of the Union of
modules. Union allows a defined overlapping of the modules that is glued together.

Definition 13 (Digoint Union of Petri Net M odules)

Given Petri net modules MOD; = (IMP, —~~ BOD; <<~ EXP,)fori ¢ I thenthereis MOD :=
W;cr M O D; given by the coproduct in category PNMod. O

In Example 16 we use the disjoint union for combining the modules Modp and MO Dy;.

Definition 14 (Union of Petri Net M odules)

Given the Petri net modules MOD; = (IMP;, -~ BOD; <“~ EXP;) for i = 0,1,2 with the
net module morphisms mod; : MODy —— MOD; and mody : MODy —— MOD- then there
iISMODs3 := MOD: +n0p, MODy given by the corresponding pushout in category PNMod. <

The next module operation Composition describes the hierarchical composition of two modules, where the
first module uses the export of the second one for its import. This results in a new module with the import
of the second one, the export of the first one and a new composed body.

Definition 15 (Composition of Petri Net M odules)

Given two Petri net modules MOD; = (IMP; —> BOD; <"~ EXP;) for i = 1,2 and let
h : IMP, ~ EXP, be a morphism so that the PO-compatibility conditions is satisfied for

Transactions of the SDPS SEPTEMBER 2002, Vol. 6, No. 3, 129

my and ro o h, then the composition MOD; = MODy; ®, MOD; is defined by MOD3 =
mfomz rhory

(IMP, 22 BOD; 2% EXPy) with:

EXP
{

r1

¥
IMP, ™~ BOD,

~
N~

ma my
IMP, —— BODy —— BODs

Example 16 (M odule Operations)
In Example 11 we have the import IM By of two transitions with disjoint sets of places. To match this
import we first do a disjoint union of the following modules Modp and M O Dy (see Figure 3).

Urging Letter Offering Letter

EXR, | . EXRy

(Sales Dep)!- - (Sales Dep

Figure3. MODy and MODo

The resulting module M O Dy is the composed with module M O Dy In Figure 4 we show the construction
with the intermediate nets. BODyy o is the pushout of BODyo +ruvp,, BODy . In Figure 5 we finally
see the result of the composition. Note that IM Byyo = IM Pyo and EX Pyyyo = EX Py

Journal of Integrated Design and Process Science SEPTEMBER 2002, Vol. 6, No. 3, 130

Jana paysiul4

J1340 1°9

daq safes JonaT %

Jana buibin

Jana Buuayo

1o)97 paysiulg

1940 199

Figure 4. Composition of Modyo and MO Dy

SEPTEMBER 2002, Vol. 6, No. 3, 131

Transactions of the SDPS

Finished Letter

Get Urge 7 Q
O |

Type Adress

Get Offer 7

----- = |

| .‘ Type Adress

2es Do) Offering Letter
BO Urgring Letter

MRvuo | Rvuo

Figure5. Modwyo

3.2. Compatibility Results

We now come to the main result of this paper: The compatibility of the module operations with each other.
This yields a kind of distributivity law for composition and (disjoint) union. Other kinds of such laws are
stated informally in Subsection 3.3.

The compatibility of union and composition requires a technical condition ensuring that pushouts that pre-
serve jointly injective morphisms, i.e. that preserve they the conditions given in Definition 8. here we skip
this condition and again refer to (Padberg, 2001).

Theorem 17 (Compatibility of Union and Composition)
Given f!' : MODy, —= MOD; and ¢¢ : MODy —= MOD,, as wdl as fY
MOD), —= MOD) andg' : MOD) —— MOD!, \e have

(MOD1 +pop, MODs) @ (MOD] +mony MODY)

(MOD; Gy, MODY) +(MODyoK, MOD], (MODs ®p, MODY)

provided that the compositions via h, hy, h1, and hy are well-defined, the compatibility condition (Definition
5in (Padberg, 2001)) is satisfied, and the following compatibility condition holds:

Journal of Integrated Design and Process Science SEPTEMBER 2002, Vol. 6, No. 3, 132

hlofll: é.IOhO

and
hoogt =gl oh &
20497y = 9gg °ho

For the proof see (Padberg, 2001).

As a direct consequence of the above Theorem we have that union is also compatible with disjoint union.
This follows directly since disjoint union is a special case of union.

Corollary 18 (Compatibility of Digoint Union and Composition)
Given (M OD;)icr and (M OD:);cr then we have

H(MOD; @4, MOD)) = |4 MOD; &, |+ MOD;,
el el el

provided that the compositions via i, and (k;);c; are well-defined. O

3.3. Lawsfor Module Operations

Here we state informally the basic laws we have for module operations These laws make use of the nice
properties colimits have. Clearly, they result from the underlying theory and do not present a surprise for
readers familiar with category theory. Hence we do not treat then in detail. Here we also have skipped the
assumptions.

Nevertheless such laws are of eminent importance for the practical use. So we have stated them here explic-
itly.

Associativity

MOD; & (MODy W MOD3) = (MOD; & MOD3) & MODs
MOD; ® (MODy ® MOD3) & (MOD; ® MOD5) ® MOD;

due to properties of colimits

Commutativity

MOD{ Y MODys = MODy ¥ MOD;
MOD: +yop, MODy = MOD3 +yvop, MODy

due to properties of colimits

Transactions of the SDPS SEPTEMBER 2002, Vol. 6, No. 3, 133

Distributivity

(MOD1 +rOoD, MODQ) ® (MODll +MOD6 MODIZ)

12

(MODy ® MOD}) +(nopyen, mopy (MOD2 @y, MOD)

lH(MOD; © MOD]) = |[{ MOD; © |+ MOD;
i€l el i€l

see Theorem 17 and Corollary 18

3.4. Relation to the Transfor mation-Based Component Framewor k

In (Ehrig et al., 2002a) a very promising approach has been presented as an instantiation of a generic
component approach. Main results concerning compositionality are given in (Ehrig et al., 2002b) and show
that semantics and correctness for a system can be inferred from that of its components. Our approach
presented in this paper can be considered as an instance of this general framework as presented in (Ehrig et
al., 2002c) in this volume.

This abstract approach gives a general frame for the modularization of process description techniques. There
a generic transformation ¢rafo : SPEC; = SPEC, is introduced. For the general framework the
extension properties is required. That is for each inclusion 4 : SPEC; —— SPEC] and each trans-
formation trafo : SPEC, = SPEC, there are i3 : SPECy —— SPECY, and a transformation
trafo' : SPEC] — SPEC so that the following diagram commutes:

SPEC,—"~ SPEC!

trafo“ ﬂtrafo’

SPECy———— SPEC}

If we use the substitution morphisms in Definition 2as transformations and injective plain morphisms as
inclusions then the extension property is satisfied because of Lemma 9. Due to the satisfaction of this
property we can obtain the transformation semantics as well. The composition is obviously based on the
same concepts.

In section 4 in (Ehrig et al., 2002b) an example based on algebraic high level nets and so-called double
pushout transformations is given. Apart from the data type substitution morphisms introduced in Definition
2 are slightly more general than the double pushout transformations in (Ehrig et al., 2002c).

4. Conclusion

In this paper we have presented Petri net modules as a formal modeling technique for component-based
systems. We have investigated Petri net modules that have the same internal structure as components in
the CSE approach. Moreover we have several module operations that allow putting modules together in
a well-defined and consistent way. Hence Petri net modules present an adequate and powerful modeling
technique for the process view of components. We have shown that they conform the basic principles of
component-based software engineering and the component concept in the CSE approach.

Journal of Integrated Design and Process Science SEPTEMBER 2002, Vol. 6, No. 3, 134

In (Padberg and Buder, 2001) we have presented a case study using Petri net modules for the modeling of a
telephone service center.

We have developed a Petri net model of an automated telephone service center with a variety of telephone
services. The overall system consists of three major services: the telephone enquiry service, the message
delivery service, and the payment service. All services start with an announcement concerning the selection
of the corresponding service. The telephone enquiry service gives the customer information about telephone
numbers. The customer is asked for the data; either the name, the postal code, the city or the street. The
corresponding entry in the database is announced subsequently. The message delivery service forwards a
message recorded by the customer to another recipient. Here the customer leaves a message, a telephone
number and set a time for delivering the message. Then the order is entered into the database and carried out
at the specified point of time. Finally the payment service allows changing the payment mode or checking
the account balance. Our case study contains twelve basic modules that can be composed to an abstract
description of the overall system. Subsequently we present four basic modules concerning the message
delivery service.

The work we have presented here is a first step towards a full theory as well as towards a practical approach
for modeling components.
Future work in this area comprises:

e Transfer of this module concept to other formal techniques used for the modeling of other views.

e Extension to further important module operations as renaming, refinement, or even recursion as in
(Ehrig and Mahr, 1990).

e Explicit descriptions of dependencies and propagation of dependencies within and between modules
(e.g. the relevance for an evolution of components has already be stated in (GroRe-Rhode et al., 2000)).

e In order to transfer the module semantics of (Ehrig and Mahr, 1990) we first need to develop an loose
semantics for Petri nets. This is an open issue for behavioral specifications in general.

References

Battiston, E., F. De Cindio and G. Mauri (1991a). OBJSA Nets: A Class of High-Level Nets Having Objects
as Domains. In: Advances in Petri Nets (Rozenberg/Jensen, Ed.). Springer.

Battiston, E., F. De Cindio, G. Mauri and L. Rapanotti (1991b). Morphisms and Minimal Models for OBJSA
Nets. In: 12'h International Conference on Application and Theory of Petri Nets. Gjern, Denmark.
pp. 455-476. extended version: Technical Report i. 4.26, Progretto Finalizzato Sistemi Informatici e
Calcolo Parallelo. Consiglio Nazionale delle Ricerche (CNR), Italy, Jan, 1991.

Broy, M. and T. Streicher (1992). Modular functional modelling of petri nets with individual tokens. Ad-
vances in Petri Nets.

Buchholz, P. (1994). Hierachical high level Petri nets for complex system analysis. In: Application and
Theory of Petri Nets. Vol. LNCS 815. Springer. pp. 119-138.

Christinsen, S. and N.D. Hansen (1994). Coloured petri nets extended with channels for synchronous com-
munication. In: Application and Theory of Petri Nets. Vol. LNCS 815. Springer. pp. 159-178.

Deiters, W. and V. Gruhn (1994). The FUNSOFT Net Approach to Software Process Management. Interna-
tional Journal on Software Engineering and Knowledge Engineering 4(2), 229-256.

Transactions of the SDPS SEPTEMBER 2002, Vol. 6, No. 3, 135

Desel, J., G. Juhas and R. Lorenz (2000). Process semantics of Petri nets over partial algebra. In: Proceed-
ings of the XXI International Conference on Applications and Theory of Petri Nets (M. Nielsen and
D. Simpson, Eds.). Vol. LNCS 1825. Springer. pp. 146-165.

Ehrig, H., A. Habel, H.-J. Kreowski and F. Parisi-Presicce (1991). From graph grammars to high level
replacement systems. In: Lecture Notes in Computer Science 532. Springer Verlag. pp. 269-291.

Ehrig, H. and B. Mahr (1990). Fundamentals of Algebraic Specification 2: Module Specifications and Con-
straints. Vol. 21 of EATCS Monographs on Theoretical Computer Science. Springer Verlag. Berlin.

Ehrig, H. and F. Orejas (2001). A Generic Component Concept for Integrated Data Type and Process Spec-
ification Techniques. Technical Report 2001/12. Technische Universitat Berlin, FB Informatik.

Ehrig, H., F. Orejas, B. Braatz, M. Klein and M. Piirainen (2002a). A Generic Component Concept for
System Modelling. In: Proc. FASE 2002: Formal Aspects of Software Engineering.

Ehrig, H., F. Orejas, B. Braatz, M. Klein and M. Piirainen (2002b). A Transformation-Based Component
Framework for a Generic Integrated Modeling Technique. In: Proc. of the Sixth World Conference on
Integrated Design& Process Technology (IDPT’02). CD-ROM, 15 pages.

Ehrig, H., F. Orejas, B. Braatz, M. Klein and M. Piirainen (2002c). A transformation-based component
framework for a generic integrated modeling technique. Journal of Integrated Design and Process
Science 6(3), 36-63.

Fehling, R. (1993). A concept of hierarchical Petri nets with building blocks. In: Advancesin Petri Nets 93.
Springer. pp. 148-168. Lecture Notes in Computer Science 674.

GroRe-Rhode, M., R.-D. Kutsche and F. Biibl (2000). Concepts for the evolution of component-based soft-
ware systems. Technical Report 2000/11. TU Berlin.

He, X. (1996). A Formal Definition of Hierarchical Predicate Transition Nets. In: Application and Theory
of Petri Nets. Vol. LNCS 1091. Springer. pp. 212-229.

Jensen, K. (1992). Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use. Vol. 1: Basic
Concepts.. EATCS Monographs in Theoretical Computer Science ed.. Springer Verlag.

Kindler, E. (1995). Modularer Entwurf verteilter Systeme mit Petrinetzen. PhD thesis. Technische Univer-
sitat Miinchen, Institut fir Informatik.

Meseguer, J. and U. Montanari (1990). Petri Nets are Monoids. Information and Computation 88(2), 105—
155.

Miiller, H. and Weber, H., Eds.) (1998). Continuous Engineering of Industrial Scale Software Systems. IBFI,
SchloB Dagstuhl. Dagstuhl Seminar Report #98092.

Padberg, J. (2001). Place/Transition Net Modules: Transfer from Algebraic Specification Modules. Techni-
cal Report TR 01-3. Technical University Berlin.

Padberg, J. and M. Buder (2001). Structuring with Petri Net Modules: A Case Study. Technical Report TR
01-4. Technical University Berlin.

Journal of Integrated Design and Process Science SEPTEMBER 2002, Vol. 6, No. 3, 136

Sibertin-Blanc, C. (1994). Cooperative Nets. In: Application and Theory of Petri Nets' 94. pp. 471-490.
Springer LNCS 815.

Simeoni, M. (1999). A Categorical Approach to Modularization of Graph Transformation Systems using
Refinements. PhD thesis. Universita Roma ”La Sapienza”.

UrbaSek, M. and J. Padberg (2002). Preserving liveness with rule-based refinement of place/transition sys-
tems. In: Proc. IDPT 2002: Sxth World Conference on Integrated Design and Process Technology,
CD-ROM (Society for Design and Process Science (SDPS), Eds.). p. 10.

Weber, H. (1999). Continuous Engineering of Communication and Software Infrastructures. Vol. 1577 of
Lecture Notes in Computer Science 1577. pp. 22-29. Springer Verlag. Berlin, Heidelberg, New York.

Weber, H. and H. Ehrig (1988). Specification of concurrently executable modules and distributed modular
systems. In: Proc. IEEE Workshop on Future Trends of Distr. Comp. Systems in the 1990s, Hongkong.
IEEE. pp. 202-215.

Transactions of the SDPS SEPTEMBER 2002, Vol. 6, No. 3, 137

