
Specifying Integrated Refactoring with

Distributed Graph Transformations?

Paolo Bottoni1, Francesco Parisi-Presicce1;2, Gabriele Taentzer3

1University of Rome \La Sapienza",
2George Mason University, 3Technical University of Berlin

Abstract. With refactoring, the internal structure of a software system
changes to support subsequent reuse and maintenance, while preserving

the system behavior. To maintain consistency between the code (repre-

sented as a 
ow graph) and the model (given by several UML diagrams
of di�erent kinds), we propose a framework based on distributed graphs.

Each refactoring is speci�ed as a set of distributed graph transformations,

structured and organized into transformation units. This formalism could
be used as the basis for important extensions to current refactoring tools.

1 Introduction

Refactoring is the process of changing a software system so as to preserve its

observable behavior while improving its readability, reusability, and 
exibility.

Refactoring has its origins in some circles of the Smalltalk community, though

its principles can be traced back to the idea of writing subprograms to avoid

repetitious code fragments. It is now a central practice of extreme programming

[BF01], and can be carried out in a systematic way, as witnessed for instance in

[FBB+99]. Although refactoring techniques can be applied in the context of any

programming paradigm, refactoring is particularly e�ective with object-oriented

languages and is usefully combined with the notion of design pattern.

The input/output view of the behavior of the system is not intended to

change with refactoring. However, the changes can have several consequences

for the computing process, as expressed for instance by the sequence of method

calls, or by state changes of an object or an activity. Since refactoring is usually

performed at the source code level, it becomes di�cult to maintain consistency

between the code and its model, expressed for example with UML diagrams,

usually �tting to the original version of the code.

Several tools have been developed to assist refactoring: some are packaged

as stand-alone executables, while others have integrated refactorings into a de-

velopment environment. Many tools refer directly and exclusively to speci�c

languages: C# Refactory (http://www.xtreme-simplicity.net/) supports 12

refactorings on pieces of C# code, including extraction of methods, superclasses

and interfaces, and renaming of type, member, parameter or local value; Co-

reGuide6.0 (http://www.omnicore.com) is based on Java and provides refac-

torings such as extract method and move/rename class/package. Xrefactory

? Partially supported by the EC under Research and Training Network SeGraVis.



(http://www.xref-tech.com) manages refactoring in C and Java, including push-

ing down and pulling up of �elds and methods, and insertion/deletion/shift/exchange

of parameters, in addition to the usual method extraction and various renam-

ings. None of these tools mentions diagrams or the e�ect that these refactorings

have on other views of the system, including documentation.

Two strategies can be adopted to preserve consistency among the di�erent

views: either recover the speci�cation after a chosen set of changes of the code,

as in Fujaba [NWZ01], or de�ne the e�ects of a refactoring on the di�erent parts

of the model. The latter option is quite easily realized on structural models,

where transformations on such diagrams are notationally equivalent to the lexical

transformation on the source code, less so on behavioral speci�cations.

The class diagram, referred to as 'the model', is considered in objectiF

(http://www.microtool.de/objectiF) which, in addition to supporting a wide

variety of languages, allows transformations both in the code and in the class

model, with the changes propagated automatically to both views. No mention

is made, however, of diagrams describing the behavioral aspects of the sys-

tem. Eclipse (http://www.eclipse.org) integrates system-wide changes of code

with several refactor actions (such as rename, move, push down, pull up, ex-

tract) into the Java Development Tools (JDT) that automatically manages

refactoring. Class diagrams are implicitly refactored, too. Finally, JRefactory

(http://jrefactory.sourceforge.net) supports 15 refactorings including pushing

up/down methods/�elds and extract method/interface. The only diagrams men-

tioned are class diagrams, which are reverse engineered from the .java �les.

Class diagram editors do not extend changes to all related diagrams, limiting

their "automation" to source code. Hence, direct intervention is needed to restore

consistency among the di�erent UML diagrams representing the same subsystem.

We discuss an approach to maintaining consistency between source code and

both structural and behavioral diagrams, using the formal framework of graph

transformations. In particular, the abstract syntax of UML diagrams is rep-

resented through graphs, and an abstract representation of the source code is

expressed through suitable attributed graph structures. The UML diagrams and

the code are seen as di�erent views on a software system, so that the preservation

of consistency between the views is accomplished by specifying refactoring as a

graph transformation distributed on several graphs at once. Complex refactor-

ings, as well as the checking of complex preconditions, are decomposed into col-

lections of distributed transformations, whose application is managed by control

expressions in appropriate transformation units. It is then possible to describe

'transactional' refactorings [TB01] as combinations of primitive transformations

that, individually,may not be behavior-preserving, but that, in appropriate com-

positions under appropriate control, may globally preserve behavior.

Paper outline. In Section 2 we review some approaches to refactoring and to

software evolution using graph rewriting and in Section 3 we present a motivat-

ing example. Background notions on distributed graph transformation are given

in Section 4. In Section 5, we �rst reformulate the problem of maintaining con-

sistency among di�erent forms of speci�cation and code as the speci�cation of



suitable distributed graph transformations, and then we illustrate our approach

by means of two refactorings. Conclusions are given in Section 6.

2 Related Work

Since Opdyke's seminal thesis [Opd92], where preconditions for behavior preser-

vation are analysed, formal methods have been applied towards a clear de�ni-

tion of the conditions under which refactoring takes place. More recently, the

approach has been complemented in Robert's thesis, where the e�ect of refac-

toring is formalized in terms of postconditions [Rob99], so that it is possible to

treat and verify composite refactorings, in which the preconditions for a prim-

itive refactoring are guaranteed by the postconditions for a previous one. In

general, it is very di�cult to provide proofs of the fact that refactorings preserve

the behavior of a program, due mostly to the lack of a formal semantics of the

target language. The approach in [Opd92] is based on proofs that the enabling

conditions for each refactoring preserve certain invariants, without proving that

the preservation of the invariants implies the preservation of the behavior.

Fanta and Rajlich proposed a collection of algorithms which implement a set

of refactorings on C++ code, exploiting the abstract semantic tree for the code

provided by the GEN++ tool [FR98]. These algorithms directly access the tree,

but are not formalized in terms of tree modi�cation.

Recent work in the UML community has dealt with the e�ects of refactoring

on UML diagrams, mainly class or state diagrams [SPTJ01]. As these works

consider model refactoring prior to code generation, they do not take into account

the possible associated modi�cations of code.

Mens [Men99] studies how to express code transformations in terms of graph

transformations, by mapping diagrams onto type graphs. Such type graphs are

comparable to the abstract syntax description of UML models speci�ed in the

UMLmetamodel. The work by Mens et al. in [MDJ02] exploits several techniques

also used in this paper, such as control expressions, negative conditions, and

parameterized rules. As these studies focus on the e�ect of refactorings on the

source code, they do not investigate the coordination of a change in di�erent

model views with that in the code.

Since some refactorings require modi�cations in several diagrams, we propose

a constrained way of rewriting di�erent graphs, as a model for a full formaliza-

tion of the refactoring process, derived from distributed graph transformations.

This is based on a hierarchical view of distributed systems, where high-level

\network" graphs de�ne the overall architecture of a distributed system, while

low-level "speci�cation" ones refer to the speci�c implementation of local sys-

tems [TFKV99]. Such an approach has also been applied to the speci�cation of

ViewPoints, a framework to describe complex systems where di�erent views and

plans must be coordinated [GEMT00]. In the ViewPoint approach, inconsisten-

cies between di�erent views can be tolerated [GMT99], while in the approach

proposed here di�erent graphs have to be modi�ed in a coordinated way so that

the overall consistency of the speci�cation is always maintained.



3 An example

We introduce an example which represents in a synthetic way a situation often

encountered when refactoring, i.e. classes have a similar structure, or follow

common patterns of collaboration. In particular, we illustrate the problem of

exposing a common client-server structure in classes otherwise unrelated.

Consider a set of client classes, indicated as ClienthXi, and a set of server

classes, indicated as ServerhXi, providing services to the clients (the names are

arbitrary and have been chosen only to facilitate reading).

class ClienthXi f
protected ServerhYi servhYi;
protected ServerhYi getServerhYi() f // dynamic server lookup g
protected void exploitServicehXi() f

servhYi = getServerhYi();
Object result = servhYi.servicehYi(this);
// code using result

g
g

class ServerhYi f
public Object servicehYi(Object requester) f // service implementation g

g

Several types of primitive refactorings can be combined to extract the client-

server structure1 . First of all, we rename all the variables servhYi as serv using
the rename inst variable refactoring. Similarly we rename all the methods

of type getServerhYi, exploitServicehXi, and servicehYi to their common

pre�xes using the rename method refactoring. extract code as method is then

applied to all client classes to extract di�erent versions of the method exploit,

containing the speci�c code which uses the result provided by the call to

service. We then add an abstract class, through the add class refactoring,

to which we pull up the instance variables serv and the now identical meth-

ods exploitService. The client classes are subclasses of this abstract class. We

proceed in a similar manner to create an interface Server declaring a method

service, of which the server classes are implementations (we can use interfaces

here as we do not have either structure or code to pull up).

The result of this sequence of refactoring is described by a new collection of

classes, where the parts in bold indicate the modi�cations.

abstract class AbstractClient f
Server serv;

abstract Server getServer();

void exploitService() f
serv = getServer();

1 We use the names of refactorings in the Refactoring Browser [Rob99].



Object result = serv.service(this);

exploit(result);

g
abstract void exploit(Object arg);

g

class ClienthXi extends AbstractClient f
Server getServer() f //code from getServerhYi g
void exploit(Object arg) f // previous code using result g

g

interface Server f
Object service(Object requester);

g

class ServerhYi implements Server f
public Object service(Object requester) f return servicehYi(requester); g
Object servicehYi(Object requester) f // service implementation g

g

Each individual refactoring implies changes in class diagrams, to modify the

class structures and inheritance hierarchies. However, some refactorings also

a�ect other forms of speci�cation. For example, extract code as method af-

fects sequence diagrams, as it introduces a self call during the execution of

exploitService(). State machine diagrams may be a�ected as well, if states

such as WaitingForService, ResultObtained and ResultExploited are used

to describe the process realized by exploitService. To re
ect process unfolding,

the latter state can be decomposed into ExploitStarted and ExploitCompleted.

4 The Formal Background

Distributed rule application follows the double-pushout approach to graph trans-

formation as described in [TFKV99], using rules with negative application con-

ditions. For further control on distributed transformations, transformation units

[KKS97] on distributed graph transformation are used.

4.1 Distributed Graph Transformation

We work with distributed graphs containing typed and attributed nodes and

edges. Edge and node types for a given family of graphs F are de�ned in a

type graph T (F) and the typing of a graph G 2 F consists of a set of injective

mappings from edges and nodes in G to edges and nodes in T (F). Distributed
graph transformations are graph transformations structured at two abstraction

levels: the network and the object level. The network level describes the system's

architecture by a network graph, and allows its dynamic recon�guration through

network rules. At the object level, graph transformations are used to manipulate



local object structures. To describe a synchronized activity on distributed object

structures, a combination of graph transformations on both levels is needed.

A distributed graph consists of a network graph where each network node is

re�ned by a local object graph. Network edges are re�ned by graph morphisms

on local object graphs, which describe how the object graphs are interconnected.

A distributed graph morphismm is de�ned by a network morphismn { which is a

normal graph morphism { together with a set S of local object morphisms,which

are graph morphisms on local object graphs. Each node mapping in n is re�ned

by a graph morphism of S on the corresponding local graphs. Each mapping of

network edges guarantees a compatibility between the corresponding local object

morphisms. The morphisms must also be consistent with the attribute values.

Following the double-pushout approach, a distributed graph rule p : L
l

 
I

r

! R is given by two distributed graph morphisms l and r. It transforms a

distributed host graph G, into a target graph G0 if an injective match m : L! G

exists, which is a distributed graph morphism. A comatch m0 : R! G0 speci�es

the embedding of R in the target graph. The elements in the interface graph

I must be preserved in the transformation. In our case, I can be understood

to simply be the intersection of L and R. A rule may also contain negative

application conditions (NAC) to express that something must not exist for the

rule to be applicable. These are a �nite set of distributed graph morphisms

NAC = fL
ni! N

i
g and can refer to values of attributes [TFKV99]. Several

morphisms L
ni! N

i
can become necessary in an NAC to express the conjunction

of basic conditions. For the rule to be applicable, no graph present in a NAC

must be matched in the host graph in a way compatible with m : L ! G. We

also allow the use of set nodes, which can be mapped to any number of nodes in

the host graph, including zero. The matching of a set node is exhaustive of all

the nodes in the host graph satisfying the condition indicated by the rule.

The application of distributed graph transformations is synchronized via sub-

rules. A subrule of an object level rule identi�es that portion of the rule which

modi�es nodes or edges shared among di�erent local graphs, so that the modi�-

cations have to be synchronized over all the involved rules. Hence, synchronous

application is achieved by rule amalgamation over the subrules. For details, see

[TFKV99]. In this paper we use dotted lines to denote NACs and grey shading

to indicate subrules. Non-connected NACs denote di�erent negative application

conditions (see Figure 3). The rules in the following �gures are only the local

components of distributed transformations. For the case discussed in the paper,

the network components of the rules are usually identical rules. We will discuss

later the few cases in which non-identical rules are needed at the network level.

4.2 Transformation Units

Transformation units are used to control rule application, with the control condi-

tion speci�ed by expressions over rules [KKS97]. The concept of a transformation

unit is de�ned independently from any given approach to graph transformation.A

graph transformation approach A consists of a class of graphs G, a class of rules



R, a rule application operator =) yielding a binary relation on graphs for every

rule of R, a class E of graph class expressions, and a class C of control condi-

tions. Given an approach A, a transformation unit consists of an initial and a

terminal graph class expression in E (de�ning which graphs serve as valid input

and output graphs), a set of rules in R and a set of references to other trans-

formation units, whose rules can be used in the current one, together with a

control condition over C describing how rules can be applied. Typically, C con-
tains expressions on sequential application of rules and units as well conditions

or application loops, e.g. applying a rule as long as possible. We adopt here the

syntax for control expressions in [KP02].

Here, we apply transformation units to distributed graph transformation, so

that A is thus de�ned: G is the class of distributed graphs, R the class of dis-

tributed rules, and =) the DPO way of rule application, as de�ned in [TFKV99].

The control expressions in C are of the type mentioned above and described in

[KP02], while the class E is not needed here. It can trivially be left empty to

indicate that no special initial and terminal graph classes need to be speci�ed.

We relate rule expressions to graph rules by naming rules and passing pa-

rameters to them, to be matched with speci�c attributes of some node. By this

mechanism,we can restrict the application of rules to those elements which carry

an actual reference to the code to be refactored. To this end, the rules presented

in the transformation units are meant as rule schemes to be instantiated to actual

rules, assigning the parameters as values of the indicated attributes.

5 Refactoring by Graph Transformation

In this section, we analyse some examples of refactoring involving transforma-

tions in more than one view, i.e. in the code and at least one UML diagram.

Following [Rob99], refactorings are expressed by pre- and post-conditions. A

typical interaction with a refactoring tool can be modelled by the following list

of events: (1) The user selects a segment of code. (2) The user selects one from

a list of available (possible composite) refactorings. (3) The tool checks the

preconditions for refactoring. (4) If the preconditions are satis�ed, refactoring

takes place, with e�ects as described in the postconditions. Otherwise a message

is issued to the user.

The choice to perform a speci�c refactoring is usually left to the software

designer, and we ignore here the relative process. We consider the e�ect of refac-

torings by de�ning graph transformation rules, possibly distributed over di�er-

ent view graphs, and managed in transformation units. Complex refactoring are

modeled as sequences of individual refactoring steps. The composition of trans-

formation units can give rise to complex refactorings. The e�ect of refactoring

on di�erent views is expressed through schemes of graph rewriting rules, which

have to be instantiated with the proper names for, say, classes and methods, as

indicated in the code transformation.

Preconditions, even if checked on the textual code, involve the analysis of

structural properties, such as the visibility of variables in speci�c portions of



code, or the existence of calls to some methods, which may be distributed over

diagrams of di�erent types.

5.1 Graph Representation of Diagrams and Code

In the line of [Men99], we consider type graphs for de�ning the abstract syntax

for concrete visual languages, such as those de�ned in UML. In particular, we

refer to UML class, sequence, and state diagrams, with type graphs given by the

metamodel de�nitions in [OMG01].

We also assume the possibility of representing the source code in the form of

a 
ow graph for a method, as is typical in compiler construction [App98]. This

is a directed graph where nodes are lines of code and a prev/next relation exists

between two nodes if they are consecutive lines, or the line represented by the

source node can branch execution to the variable represented by the target node.

Moreover, each Line node is attached to a set of nodes describing the variables

mentioned in the line (for de�nition or usage), and the methods, if any, called in

the line. Some of these variables can be local to the Method environment, while

the other variables used in the method, but not local to it (and not de�ned in the

class) are necessarily passed to the method. Local variables are de�ned in speci�c

lines of code. Finally, a set of Parameter nodes describing the types of arguments

to a method, and Classi�er nodes, describing types of variables, parameters and

methods are also present. Figure 1 describes the resulting type graph. Such a

type graph is simpler than the one in [MDJ02] for the representation of relations

among software entities, which also considers inheritance among classes, and the

presence of subexpressions in method bodies. Here, we deal with inheritance in

the UML class diagram and, since we are not interested in representing the whole

body of a method, we only keep trace of references to variables and methods and

not of complete expressions. On the other hand, we maintain a representation

of code lines and of reachability relations among them, which allows us to have

a notion of block that will be used in Section 5.2.

Distributed graphs are suited to describe relationships between diagrams

and code fragments. Following the approach of [GEMT00], a network graph NG

describes the type graph for the speci�cation of the whole software system at

some stage of the evolution process. In NG, a network node is either associated

with one local object graph { representing either a UML diagram or the code


ow graph (we call such nodes content nodes) { or it is an interface node. Here,

we consider only the Class, Sequence, and StateMachines families of diagrams

discussed in the text, and the Code Flowgraph. For each pair of diagram nodes,

a common interface node exists. Interface nodes are re�ned at the local level by

the common graph parts of two diagrams in the current state. Network edges

connect diagram nodes and interface nodes and are re�ned at the local level

by de�ning how common interface parts are embedded in diagrams. Hence, an

interface graph is related to its parent graphs by two graph embeddings (being

injective graph morphisms). For example, an interface between Class diagrams

and Flow graphs will present Method, Variable, and Class nodes, an interface

between State Machine diagrams and Sequence diagrams may have nodes for



Fig. 1. The type graph for code representation.

states and transitions dealing with the call of a method2 or other events, and

an interface between Code and Sequence Diagrams will contain nodes for call

actions. Several network nodes of the same type can be used in the speci�cation

of a software system. For instance, di�erent sequence diagrams are used to depict

di�erent scenarios, or a class can be replicated in di�erent class diagrams to show

its relationships with di�erent sets of other classes.

The following table indicates the need for modi�cations in di�erent diagrams,

where the �rst column presents the name of some refactorings implemented in

the Refactoring Browser [Rob99], involving modi�cations of class structures;

the second column lists the types of diagrams a�ected by the refactoring; the

third column indicates if a new diagram of the indicated type has to be added

(+) or removed (-), involving a modi�cation at the network level. The = sign

indicates that no modi�cation at this level need occur. Basically, only state

machine diagrams can be added or removed. From a practical point of view, the

creation of new state diagrams is usually not needed for small classes.

Refactoring A�ected Diagrams Creation/Deletion

Add Class Class State+

Remove Class Class, Sequence State-

Rename Class Class, Sequence =

Remove Method Class, Sequence, State =

Add Parameter to Method Class =

Extract Code As Method Class, Sequence, State =

Push Up/Down Method Class, Sequence, State =

2 We could as well refer to Activity Diagrams in a similar way.



5.2 Code Extraction

As a �rst example, consider the extract code as method refactoring by which

a segment of code is isolated, given a name, and replaced in the original code by

a call to a newly formed method.

A precondition for such a refactoring is that the code to be extracted con-

stitute a block, i.e. it has only one entry point and one point of exit, although it

does not have to be a maximal block, i.e. it can be immersed in a fragment of

code which has the block property itself. Moreover, the name to be given to the

method must not exist in the class hierarchy to which the a�ected class belongs.

The post-conditions for this refactoring assert that: 1) a new method is created

whose body is the extracted code; 2) such a method receives as parameters all

the variables which are not visible to the class and which are used in the code

(they had to be passed or to be local to the original method); 3) the code in the

original method is replaced by a call to the new method.

Figure 2 contains the local rule for the code graph. It is part of a distributed

rule, named ecamAll after the initials of the refactoring. In Figure 2, a set node

indicates the lines of code, in the original version of the method, which lie be-

tween the �rst and last lines of the block to be moved. Another set node indicates

the variables to be passed as parameters to the new methods. These are variables

referenced in the block, but neither de�ned within it, nor in the class. The rest

of the method is left untouched. However, one has to check that no branches

exist from lines in the block to other parts of the method, nor must branches

exist from other parts of the method to the middle of the block. This is checked

in the negative application conditions. The values of �rst and last, as well as the

namesmorig and mnew of the original method and of the new one, are provided

by the rule expression activating the application of the transformation. Nodes of

type Parameter, Class and Method are shaded, as they and their interrelations

are shared with other diagrams, thus identifying the subrules.

Figure 3 describes the local rule of ecamAll acting on class diagrams. At

the structural level, only the existence of a new method in the class can be

shown. The e�ects on the referred variables and the existence of a call for this

method, observable in the textual description, are not re
ected here. The two

negative application conditions state that a method with the same signature as

the new one must not appear in any class higher or lower in the inheritance

hierarchy of the modi�ed class. These conditions make use of additional gen

edges, produced by the rules of Figure 4 which construct the transitive closure

of the Generalization relation in the inheritance hierarchy in class diagrams. The

set of rules to compute the closure is completed by a rule insert down gen which

creates gen edges betwen a class and its descendants, like insert gen creates edges

between a class and its ancestors. An inverse sequence of operations eliminating

the gen edges must be performed at the end of the refactoring process.

The newly created call is also observed at the behavioral level, as shown in

Figure 5. It inserts a CallAction to the new Method, named mnew, and the

corresponding activation of the Operation spawning from an activation of the

old Method,morig, in the Class cname. As the subrule identi�es these elements



Fig. 2. The component of ecamAll(cname, morig, mnew, �rst, last) for the code 
ow
graph.

2: Method

name=morig

: Method

name=mnew

2: Method

name=morig

: Method

name=mnew

: Class

: Method

name=mnew

: Class

: Method

name=mnew

gengen

1: Class

name = cname

1: Class

name = cname

owner

owner

owner
feature

owner

featurefeature
feature

owner owner

feature feature

Fig. 3. The component of ecamAll(cname, morig, mnew, �rst, last) for class diagrams.

for amalgamation, this transformation occurs in a synchronized way on all the

sequence diagrams presenting an activation of morig. However, as several activa-

tions of the same method can occur in one sequence diagram, this local rule has

to be applied as long as possible on all sequence diagrams. The transformation of

the sequence diagrams should be completed by transferring all the CallActions,

originating frommorig and performed in lines that have been extracted tomnew,

to the activation of mnew. A rule completeEcamSequence, not presented here for

space reasons, is responsible for that.

Finally, the component of ecamAll which operates on state machine diagrams

inserts a new state and a couple of transitions for all the states to which a

Transition labelled with a CallEvent formorig exists. The new state is reached

with a Transition labelled with a CallEvent for mnew. Return to the previous

state occurs by a \completed" Event, indicating the completion of the operation.

All the transformations above have to be applied in a synchronized way to

maintain consistency of diagrams and code. The network level transformations



2: Class

1: Class

gen

3: Class

2: Generalization

specialization

generalization

3: Class

2: Generalization

specialization

generalization

4: Class

gen

2: Class

1: Class

4: Class

gen

gen

insert_gen(string cname)

compute_gen()

1: Class

name = cname

1: Class

name = cname

3: Generalization

specialization

generalization

3: Generalization

specialization

generalization

gen

gen

Fig. 4. The rule scheme for computing the transitive closure of the Generalization

relation.

1: Message 2: CallAction

4: Method

name=morig

3: Operation

5: ClassifierRole
receiver

1: Message 2: CallAction

: Method

name=mnew

: Operation

5: ClassifierRole

receiver

: Message

pre

succ

: CallAction

sender

4: Method

name=morig

3: Operation

receiver

6: Class

name = cname

6: Class

name = cname

base

base

specification

specification

specification

Fig. 5. The component of ecamAll(cname, morig, mnew, �rst, last) for sequence dia-
grams.

simply rewrites nodes into themselves. With each such rewriting, a transforma-

tion of the associated local graph occurs. An overall transformation unit de-

scribes this refactoring. This can be expressed as:

ExtrCodeAsMthd(String cname, String morig, String mnew, int �rst, int last) =

asLongAsPossible insert gen() end;

asLongAsPossible insert down gen() end;

asLongAsPossible compute gen() end;

if applicable(ecamAll(cname, morig, mnew, �rst, last)) then

asLongAsPossible ecamAll(cname, morig, mnew, �rst, last) end;

asLongAsPossible completeEcamSequence(cname, morig, mnew) end;

else null end;

asLongAsPossible remove gen() end;



1: State

Name = sname
1: State

Name = sname

: State

: Transition : Transition

3: CallEvent

: Event

name = „completed“

: Operation

name = mnew

2: Transition

: CallEvent

4: Operation

name = morig

trigger trigger

trigger

referred

referred

source

target source

target

3: CallEvent

2: Transition

4: Operation

name = morig

trigger

referred

target
target

5: Class

name = cname 5: Class

name = cname

owner

owner

feature

feature

owner

feature

Fig. 6. The component of ecamAll(cname, morig, mnew, �rst, last) for state machine

diagrams.

As transformations occur both at the network and local level (but at the

network level they are identical), applying them as long as possible allows the

transformation of all local graphs a�ected by refactoring, while at each time the

associated network node is rewritten into itself. Note that the rules presented

above should be complemented so that the elements to which a transformation

has already been applied are tagged and the presence of the tag must be checked

to prevent the process from applying a rule again to the same element. The

transformation unit is then completed by removing the tags.

5.3 Method movement

As shown in Figure 7, the code of a Methodmorig can be moved from its de�ning

source Class to a di�erent target Class in which it takes a new name mnew.

A Method with the name mnew must not already appear (higher or lower) in

the hierarchy of the target Class, as indicated by the NACs. Since the original

method could refer to members of its original class, the signature for the method

is enriched with a reference to the original class, as indicated by the Parameter

node whose attribute name takes the value \orig" in Figure 7, illustrating the

component of the distributed rule mmAll(morig, source, mnew, target) for class

diagrams. (Again, the name mmAll derives from the initials of the refactoring.)

The case where the method has to be moved to the superclass would be ex-

pressed by a rule scheme similar to the one in Figure 7, but which would require

the existence of an inheritance relation between the nodes labelled ClassX and

ClassY and where one of the NACs would be omitted. In the code 
ow graph,

the code of morig has to be replaced with a forwarding method that simply calls

mnew in the target class. We do not show this transformation here.



Fig. 7. The component of mmAll(morig, source, mnew, target) for class diagrams.

Besides class diagrams, sequence diagrams have to be modi�ed as well, ac-

cording to the transformation scheme depicted in Figure 8. Hence, a CallAction

for mnew towards the target Class must be inserted. While the call to the for-

warding method does not modify the behavior of the class, it has to be re
ected

in this diagram to prevent subsequent re�nements of the diagram from violating

the correct sequence of calls. Again, the transformation of diagrams should be

completed by a transfer of all calls originating from the morig method to the

activation of the mnew method.

The overall transformation unit is controlled by a rule expression of the form:

MoveMethod(String morig, String source, String mnew, String target) =

asLongAsPossible insert gen() end;

asLongAsPossible insert down gen() end;

asLongAsPossible do compute gen() end;

asLongAsPossible mmAll(morig, source, mnew, target) end;

asLongAsPossible completeEcamSequence(morig, source, mnew, target) end;

asLongAsPossible remove gen()

which causes the 
ow graph for the old method, together with all the network

nodes of type ClassDiagram and SequenceDiagram whose local nodes contain

references to the moved method, to be a�ected by the transformation.

In Figures 7 and 8 we consider the case where methods are instance methods

and the code is moved between unrelated classes. The cases for static methods,

or for calls to methods in classes in the same hierarchy (event is a self call),

require some obvious modi�cations.



1: Message 2: CallAction

4: Method

name=morig

3: Operation

5: ClassifierRole
receiver

1: Message 2: CallAction

: Method

name=mnew

: Operation

5: ClassifierRole
receiver

: Message

pre

succ

: Message

pre

succ

: CallAction

7: ClassifierRole

sender
receiver

sender

4: Method

name=morig

3: Operation

7: ClassifierRole

6: Class

name = source

6: Class

name = source

8: Class

name = target

8: Class

name = target

base
base

base

base

specification
specification

specification

receiver

Fig. 8. The rule scheme for sequence diagram modi�cation in move method.

6 Conclusions

We have presented an approach to maintaining consistency between code and

model diagrams in the presence of refactorings. Each refactoring is described by

a transformation unit, with parameters depending on the speci�c code modi�-

cation, applied to the diagrams a�ected by the change. This framework avoids

the need for reverse engineering, which reconstructs the models from the mod-

i�ed code, by propagating only the incremental changes to the original model.

The model proposed can also be seen as a way to maintain consistency in the

di�erent diagrams through re-engineering steps, before proceeding to the actual

code modi�cation. Since there is no 'preferred' object in a distributed graph, the

model can be used to propagate changes made on any diagram to the remaining

ones, and not necessarily from the code to the documentation, as in refactoring.

A more thorough study of existing refactorings, and experimentation on actual

code, is needed to produce a library of distributed transformations which can be

used in practical cases. The formalism can then be exploited to analyze possible

con
icts or dependencies between di�erent types of refactorings. We are now

investigating the use of abstract syntax as a replacement for representation of

concrete code, which would also favor the integration of the approach in existing

refactoring tools based on abstract syntax representations.

References

[App98] A. W. Appel. Modern Compiler Implementation in Java. Cambridge Uni-

versity Press, 1998.

[BF01] K. Beck and M. Fowler. Planning Extreme Programming. Addison Wesley,
2001.

[FBB+99] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts. Refactoring:
Improving the Design of Existing Code. Addison Wesley, 1999.



[FR98] R. Fanta and V. Rajlich. Reengineering object-oriented code. In Proceedings

of ICSM 1998, pages 238{246. IEEE Computer Society Press, 1998.
[GEMT00] M. Goedicke, B. Enders, T. Meyer, and G. Taentzer. Towards integration

of multiple perspectives by distributed graph transformation. In M. Nagl,

A. Sch�urr, and M. M�unch, editors, Proc. AGTIVE 1999, pages 369{377,
2000.

[GMT99] M. Goedicke, T. Meyer, and G. Taentzer. Viewpoint-oriented software de-

velopment by distributed graph transformation: Towards a basis for living
with inconsistencies. In Proc. 4th IEEE Int. Symp. on Requirements Engi-

neering, pages 92{99, 1999.

[KKS97] H.-J. Kreowski, S. Kuske, and A. Sch�urr. Nested graph transforma-
tion units. Int. J. on Software Engineering and Knowledge Engineering,

7(4):479{502, 1997.

[KP02] M. Koch and F. "Parisi Presicce". Describing policies with graph constraints
and rules. In A. Corradini, H. Ehrig, H.-J. Kreowski, and G. Rozenberg,

editors, Graph Transformation. Proc. ICGT02, pages 223{238, 2002.

[MDJ02] T. Mens, S. Demeyer, and D. Janssens. Formalising behaviour preserving
program transformations. In A. Corradini, H. Ehrig, H.-J. Kreowski, and

G. Rozenberg, editors, Graph Transformation. Proc. ICGT02, pages 286{

301, 2002.
[Men99] T. Mens. Conditional graph rewriting as a domain-independent formalism

for software evolution. In M. Nagl, A. Schuerr, and M. Muench, editors,

Applications of Graph Transformation with Industrial Relevance, pages 127{
143, 1999.

[NWZ01] J. Niere, J.P. Wadsack, and A. Z�undorf. Recovering UML Diagrams from

Java Code using Patterns. In J.H. Jahnke and C. Ryan, editors, Proc.

of the 2nd Workshop on Soft Computing Applied to Software Engineering.

Centre for Telematics and Information Technology, University of Twende,

The Netherlands, February 2001.

[OMG01] OMG. UML speci�cation version 1.4.

http://www.omg.org/technology/documents/ formal/uml.htm, 2001.

[Opd92] W. F. Opdyke. Refactoring Object-Oriented Frameworks. PhD thesis, Uni-

versity of Illinois at Urbana-Champaign, 1992.

[Rob99] D. B. Roberts. Practical Analysis for Refactoring. PhD thesis, University

of Illinois, 1999.
[SPTJ01] G. Suny�e, D. Pollet, Y. Le Traon, and J.-M. J�ez�equel. Refactoring UML

models. In M. Gogolla and C. Kobryn, editors, Proc. UML 2001, pages

134{148. Springer, 2001.
[TB01] L. Tokuda and D. Batory. Evolving object-oriented designs with refactor-

ings. Automated Software Engineering, 8:89{120, 2001.

[TFKV99] G. Taentzer, I. Fischer, M. Koch, and V. Volle. Visual Design of Dis-
tributed Systems by Graph Transformation. In H. Ehrig, H.-J. Kreowski,

U. Montanari, and G. Rozenberg, editors, Handbook of Graph Grammars

and Computing by Graph Transformation, Volume 3: Concurrency, Paral-

lelism, and Distribution, pages 269{340. World Scienti�c, 1999.


