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Abstract 

Refactoring is an important source of software transformation, which 

changes the internal structure of a software system, while preserving its 

behavior. Even though the input/output view of a system’s behavior does not 

change, refactoring can have several consequences for the computing 

process, as expressed for instance by the sequence of method calls or by 

state changes of an object or an activity. Such modifications must be 

reflected in the system model, generally expressed through UML diagrams. 

We propose a formal approach, based on distributed graph transformation, 

to the coordinated evolution of code and model, as effect of refactorings. 

The approach can be integrated into existing refactoring tools. Due to its 

formal background, it makes it possible to reason about the behavior 

preservation of each specified refactoring. 

1. Introduction 

Software and processes specifications are valuable company assets. The diffusion of UML in 

large programming organizations is already creating a vast amount of documentation in the form 

of collections of UML diagrams, being inspected by developers and other designers, and in some 

cases used to communicate with the shareholders involved in a project. Repositories of 

documentation facilitate software reuse and design pattern identification. Ideally, refinements or 

adaptations of existing programs should maintain a trace to the original material, and software 

transformations should be reflected back to the documentation. 

An important source of software transformation is refactoring. In refactoring, the internal 

structure of a software system changes, while preserving its behavior, as expressed by the 
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input/output relation. However, refactoring can have several consequences for the computing 

process, as expressed for instance by the sequence of method calls or by state changes of an 

object or an activity. Several types of refactoring are now known and widely used (Fowler, 1999). 

For these types, it is demonstrable that they preserve program behavior, and it is usually known in 

which way they modify its static specification, in the form of class diagrams. Refactoring can also 

occur in design, involving modifications of interaction, state machine, or activity diagrams. 

However, it is not always the case that all transformations induced by refactoring are actually 

mapped back to the relevant documentation. Since refactoring is usually performed at the source 

code level, it becomes difficult to maintain consistency between the code and its specification -

expressed for example with UML diagrams - which usually refers to the original version of the 

code. In particular, one has to identify which diagrams are interesting when modifying a piece of 

software in the first place. In such situations, it is easy to lose consistency between the code and 

the specification. Two strategies can be adopted to preserve consistency: either recovering of the 

specification after a chosen set of changes, or coherently defining the effects of each refactoring 

on the different artefacts of a software project. While changes in structural specifications are 

notationally equivalent to lexical transformations on the source code, transformations of the 

behavioral specifications may be significantly more intricated. 

We discuss an approach to the problem of maintaining consistency between source code and 

diagrams, both structural and behavioral, using the formal framework of graph transformation. In 

particular, Abstract Syntax Trees describe the source code, while UML diagrams are represented 

as graphs, conforming to the abstract syntax presented in the UML metamodel. The UML 

diagrams and the code are hence seen as different views on a software system, so that consistency 

between the views and the code is preserved by modeling coherent refactorings as graph 

transformations distributed on several graphs. Complex refactorings, as well as checking of 

complex preconditions, are decomposed into collections of distributed transformations whose 

application is managed by control expressions in appropriate transformation units. 

Paper organization. In the rest of this introduction, we set the background for our work, by 

introducing the refactorings used in the motivating example of Section 2, reviewing some 

approaches to refactoring and to software evolution using graph rewriting, and illustrating 

motivations for the coherent refactoring of code and models. Background notions on graph 

transformation are given in Section 3. In Section 4, we reformulate the problem of maintaining 



consistency among different forms of specification and code as the definition of suitable 

distributed graph transformations, and illustrate our approach by two important refactorings. 

Section 5 discusses the principles under which one can establish correspondences between 

abstract representations of the code and of the model. Section 6 discusses forms of behavior 

preservation and sketches the way to how formal results for graph transformation help in 

reasoning about it. Conclusions are given in Section 7. 

1.1 Selected refactorings 

The number of refactorings which are seen useful in practice, proposed in literature, or 

implemented in systems, is continually increasing. While a complete coverage of refactorings is 

beyond the scope of this paper, we illustrate here the basic refactorings used in the example of 

Section 2. A rich set of refactorings, both primitive and complex is given in (Fowler, 1999). In 

general, all refactorings require that no name clashes are generated as a consequence of it. For 

instance, if a new method is introduced or has its name changed, a check is needed to ensure that 

no method with the same signature is already present in the inheritance hierarchy. Hence, we only 

mention additional checks other than checks for name clashes for specific refactorings. 

RenameVariable and RenameMethod change the name of a variable or method to highlight 

structural or behavioral analogies in a set of classes: all references to these features must be 

renamed. RenameMethod is one of the constituents of the ChangeMethodSignature refactoring, 

with sub-refactorings such as ChangeReturnType and ChangeParameterType, or addition and 

removal of parameters. The EncapsulateVariable refactoring hides information by making a 

variable private and providing public getter and setter methods for accessing and updating it. All 

direct references to the variable are replaced by dynamic calls to these methods. InsertClass 

expands the inheritance hierarchy by introducing a new class B between a class A and its original 

superclass C. B becomes the superclass for A and has C as its superclass. PullUpMethod allows 

replicated methods to be moved from subclasses into a common superclass. To apply this 

refactoring, the body of the pulled up method must not refer to any variable only defined in 

subclasses. ExtractMethod derives from the composition of several primitive refactorings, but it 

is so widespread that it can be considered as a single one. It removes a block of code from a 

method and uses it to create a new method, substituting the code in the original method by a call 

to the new one. Beyond avoidance of name clashes, preconditions for it require that all variables 

which are accessed by the extracted code and have a local scope be passed as parameters, and that 



the removed code forms a block, i.e. it has a single entry point and a single exit point. 

1.2 Related Work 

Several tools have been developed to assist refactoring; some are packaged as stand-alone 

executables, while others integrate refactorings into a development environment. Many tools refer 

directly and exclusively to a specific language, for example C# Refactory (http://www.xtreme-

simplicity.net/) for C#, or CoreGuide6.0 (http://www.omnicore.com) for Java. Xrefactory 

(http://www.xref-tech.com) assists in modifying code in C and Java. All of these provide a variety 

of refactorings, typically renamings and method extraction. None of these tools mentions 

diagrams and the effects on other views of the system, including documentation. 

The class diagram, referred to as ’the model’, is instead considered in objectiF (http: 

//www.microtool.de/objectiF) which, in addition to supporting a variety of languages, allows 

transformations of both the code and the class model, with changes propagated automatically to 

both views. Other kinds of diagrams, especially those describing behavioral aspects of the system, 

are not refactored. Eclipse (http://www.eclipse.org) integrates system-wide changes of code with 

several refactor actions (such as rename, move, push down, pull up, extract). Class diagrams are 

implicitly refactored, too. Finally, JRefactory (http://jrefactory.sourceforge.net) supports 15 

refactorings including pushing up/down methods/fields and extract method/interface. The only 

diagrams mentioned are class diagrams which are reverse engineered from the .java files.  

Reverse engineering is also present in Fujaba (Niere et al., 2001), where the user can 

reconstruct the model after a chosen set of changes of the code. A more efficient option would be 

to define the effects of a refactoring on the different parts of the model. This is more easily 

realized on structural models, where transformations on such diagrams are notationally equivalent 

to the lexical transformation on the source code, than on behavioral specifications. Modern 

refactoring tools, however, work on abstract representations of the code, rather than on the code 

itself, typically in the form of an Abstract Syntax Tree (AST), following Roberts’ (1999) line. 

Refactorings are defined also on model diagrams. Sunyé et al. (2001) illustrate refactoring of 

statecharts, typically to extract a set of states to be part of a composite state. Transformations of 

concrete diagrams are specified by pre and post conditions, written as OCL constraints. Metz et 

al. (2002) consider the UML metamodel to propose extensions to use case models, which would 

allow significant refactorings of such models and avoid improper current uses. These papers, 

however, do not consider the integration with possible source code related to these models. 



Current class diagram editors do not extend changes to all other related diagrams, limiting their 

"automation" to the source code, with the result that direct intervention is needed to restore 

consistency among possibly various UML diagrams representing the same subsystem. We adopt 

UML metamodel instances and draw a correspondence between these and abstract syntax trees 

representing code. Hence, a common graph-based formalism can be used as basis for an 

integrated management of refactoring both, the code and the model in an integrated way.  

Graph rewriting has been introduced as a basis for managing transformations induced by 

refactoring in work by Mens, alone (2000, 2001) and with others (2002). In these papers, a non-

standard graph representation of code is used, so that this approach is not able to leverage from 

the availability of AST representations in existing tools. Moreover, integrated refactoring of 

model and code by graph transformation has not been considered up to now. 

1.3 Outline of the approach 

Our approach aims at precisely specifying integrated refactoring of model and code, maintaining 

the consistency between them achieved during the development of a software project. 

Indeed, software development follows typical patterns. Authors can start some modelling 

activity, update and refine their models, start writing code, and modify it. If a CASE tool is 

available, code can be generated from models, e.g. skeletons of classes or collaboration skeletons 

for some pattern. Moreover, developers can decide to compile the code, reverse-engineer, and 

update some parts of the model from the generated abstract syntax tree. As a result of this first 

phase of development, parts of the code and of the model have had an independent evolution, so 

that they can be consistent or not, while other parts have evolved in a coordinated way. The model 

and the code can then be checked to identify parts consistent with one another, either by 

circumstance or by construction. To this end, we assume that at any time a pair of graphs exists 

providing abstract representations of the code and of the model. The code representation is in the 

form of an AST, while the model is given through UML diagrams, and constitutes an instance of 

the UML meta-model. The checking phase produces an interface graph IG and a pair of graph 

morphisms from IG to the AST and UML graphs respectively. The morphisms establish the 

correspondence between code and models. The relations between these of graphs (compare Figure 

1) must be managed by the CASE tool.  

The subsequent phases of refactoring can then be triggered on the code or the model. For any 

refactoring supported by the CASE tool in which the user acts on the code or on the model, the 



corresponding modifications on the other graph must be enforced. After refactoring, the cycle can 

start again with new developments, and so on. Such a process is depicted in Figure 2. 

AST InterfaceGraph UML
 

Figure 1. The graphs to be managed by a CASE tool. 

While refactoring tools work on both abstract and concrete representations of code, they are 

usually restricted to the manipulation of structural aspects of the model, namely class diagrams. 

Although this is intuitively justifiable by the stated assumption that refactoring does not affect the 

behavior of systems, the combination of refactoring with other forms of code evolution can lead 

to inconsistencies between the model and the code. This could be avoided by a careful 

consideration of what a refactoring involves, as shown in the following two subsections. 

Deve lopment Check ing Refactoring
 

Figure 2. An activity diagram depicting the sequence of activities at the basis of our approach. 

1.3.1 Modification of collaborations 

Consider refactoring ExtractMethod in which a block of code blk is removed from a method 

morig in a class C, a new method mnew is created, block blk is inserted as the body of mnew and 

a call to mnew replaces the original code in morig. If the execution of morig is represented in a 

collaboration diagram (as in Figure 3a)), but the refactoring tool cannot manipulate such a 

diagram, then the activation of mnew cannot be explicitly represented. Now suppose that mnew is 

subsequently moved to another class D which is coupled to C, and finally modified so that some 

new activities are executed during its execution, involving a call to a method meth in a third class 

E. The designer can now assume that the last addition of the call to meth is significant enough to 

show it in the collaboration. But as we have lost the consistency between the model and the code, 

a simple-minded addition of the call to meth as a descendant of the call to morig would result in 

an inconsistent model, as shown in Figure 3b). This can be avoided if all the steps in this process 

are reflected in the collaboration: the extraction of blk to mnew would be reflected by a self-call 

stemming from the activation for morig, the movement of mnew to class D would transform the 

self-activation to a call to this new class and the consequent activation of mnew in it, so that the 



call of meth would now be in the correct position, as in Figure 3c). 

 
Figure 3. a) original sequence diagram; b) inconsistent situation from not reflecting the extraction 

of mnew; c) desired consistent situation. 

1.3.2 Modification of activity graphs 

Activity graphs are special types of state machines used for describing complex processes, 

involving several classifiers, where the state evolution of the involved elements is modelled. 

Suppose that an action is performed to the effect of setting a field variable to some value, say x = 

15. Hence, a state s appears in the model indicating that an assignment has to occur at that time. 

If the EncapsulateVariable refactoring is subsequently applied to the variable x, the code x = 

15 is replaced by setX(15). The state in the activity diagram now becomes a CallState s’. 

(Compare similar modifications in activity diagrams in Figures 5 c) and 6 c).) 

2. An Example of Refactoring 

We illustrate the refactorings of Section 1.2 with a typical case in software development. Let us 

consider the design of an intelligent Audio player, able to dynamically identify a MusicSource, 

for example on the basis of some preferences, and to obtain from this source a piece of Music. 

It then sets up an environment, in which it require the received piece to play itself. 

A first version produces the following, strongly coupled, set of classes. Moreover, the player 

must expose its preferences in a public variable for the music source to select some piece of 

music. This prevents reuse of the Audio class in a non-controlled environment. Figure 5 shows 

components of the UML model: class (5a), sequence (5b) and two activity diagrams (5c). 
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class Audio { 

  protected MusicSource ms; 

  private Environment; 

  public MusicDescription preferences; 

  protected findMusicSource() { // lookup for a music source } 

  protected void playMusic() { 

       ms = findMusicSource(); 

       Music toPlay = ms.provideMusic(this); 

       // code to set the playing environment env 

       toPlay.play(env); 

  } 

} 

class Music { 

   void play(Environment env) { // code to play in the environment env } 

} 

class MusicSource { 

   public Music provideMusic(Audio requester) { 

   MusicDescription desc = requester.preferences; 

   // code to retrieve music according to desc and sending it back as result 

   } 

} 

class Environment { // fields and methods to define a playing environment } 

With a view to the possibility of reuse, the programmer decides to protect the preferences, by 

applying the EncapsulateVariable refactoring, discussed in Section 1.2. After this first step, the 

affected code looks as follows, where the parts in bold mark the changed elements. The new 

situation is reflected in the model diagrams of Figure 6. 
class Audio { 

 protected MusicSource ms; 

 private Environment; 

 private MusicDescription preferences; 

 protected findMusicSource() { // same implementation as before } 

 protected void playMusic() { // same implementation as before } 

 public MusicDescription getPreferences() { return preferences; } 

 public void setPreferences(MusicDescription desc) { preferences = desc; } 

} 

class MusicSource { 

 public Music provideMusic(Audio requester) { 

  MusicDescription desc = requester.getPreferences();  

  // same code using desc as before  

 } 

} 
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Figure 5. Components of the UML model for the first version of code. a) Class diagram. b) 
Sequence diagram. c) Activity diagrams. 

The code above presents several possibility for refactorings, allowing the introduction of an 

abstract notion of player, able to retrieve a content source, interrogate it in order to obtain some 

content and setting an environment for it to be played. The concrete players will differ from each 

other for the type of source they have to retrieve and the way in which they define the 



environment. On the other hand, content sources must have a generic ability to accept a player 

and sending the appropriate content to it, while the different forms of content will have specific 

realizations of the play method. To this end, a first step is to extract the code for playing in an 

environment from the playMusic method into a setEnvironment method. Method playMusic 

is then renamed to playContent. Analogously, findMusicSource is renamed to findSource 

and the variable musicSource to source, while in class Music, provideMusic is renamed to 

provideContent. Refactorings are then performed to introduce new classes and interfaces in an 

existing hierarchy, by creating and inserting the abstract class AbstractPlayer and the 

interfaces Content and ContentSource. We can now pull up methods and variables from Audio 

to AbstractPlayer. Finally, all return and parameter types referring to the concrete classes are 

now changed to the newly inserted types. The resulting code is reported below. Again, parts in 

bold show the modified parts with respect to the previous version. The reader can reconstruct the 

UML diagrams according to these modifications. 
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+ MusicDescription getPreferences()
+ void setPreferences(MusicDescription desc)
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Figure 6. The UML diagrams after variable encapsulation. a) class diagram, b) sequence diagram, 
c) activity diagram. 



abstract class AbstractPlayer { 

 protected ContentSource source; 

 private Description preferences; 

 private Environment env; 

 protected abstract ContentSource findSource(); 

 protected abstract void setEnvironment(); 

 protected void playContent() { 

  source = findSource(); 

  Content toPlay = source.provideContent(this); 

  setEnvironment(); 

  toPlay.play(env); 

 } 

 Description getPreferences() { return preferences; } 

 void setPreferences(Description desc) { preferences = desc; } 

} 

class Audio extends AbstractPlayer { 

 ContentSource findSource() { // code from findMusicSource } 

 void setEnvironment() { // previous code used to set env } 

} 

interface ContentSource { Content provideContent(AbstractPlayer requester); } 

class MusicSource implements ContentSource { 

 Content provideContent(AbstractPlayer requester) { 

  Description desc = requester.getPreferences(); 

  // previous code from provideMusic exploiting desc; 

 } 

} 

interface Content { void play(Environment env); } 

class Music implements Content { // same implementation as before } 

class Environment { // same implementation as before } 

3. The Formal Background 

The algebraic approach to graph transformation (Corradini et.al., 1997) is the formal basis for our 

work on refactoring, as graphs are natural means to represent code and model structures. Their 

modification is performed by applying graph rules. To handle model and code-related graphs in a 

separate but consistent way, we apply concepts of distributed graph transformation. Finally, the 

concept of transformation units is used to obtain a global control on structured graph 

manipulations, useful to specify complex refactorings. 

3.1 Graph Transformation 

Graphs are often used as abstract representation of code and diagrams, e.g. of UML diagrams. 

Formally, a graph consists of a set of vertices V and a set of edges E such that each edge e in E 



has a source and a target vertex s(e) and t(e) in V, resp. Each vertex and edge may be attributed by 

some data value or object, formally expressed by elements of an algebra on some algebraic 

signature Σ. The theory of graph transformation is largely independent of the notion of graph, so 

that one can be chosen which best reflects domain-specific structures. Here, we consider typed 

attributed graphs. Graph manipulation is performed by the so-called double-pushout approach to 

graph transformation, DPO (Corradini et.al., 1997), based on category theory. Using typed 

graphs, structural aspects occur on two levels: the type level (modelled by a type graph T) and the 

instance level (modelled by an instance graph). An instance graph is correctly typed if it can be 

mapped in a structure-preserving manner to T, formally expressed by a graph homomorphism. 

A graph rule r: L → R consists of a pair of T-typed instance graphs L, R such that the union L 

∪ R is defined. That means graph objects which occur in both, L and R, have the same type and 

attributes and, if edges, the same source and target vertices. The left-hand side L represents the 

pre-conditions of a modification, while the right-hand side R shows the effect of the modification. 

Vertex identity is expressed via names, while edge identity is deduced from the identity of the 

connected vertices. Additionally, graph rules comprise attribute computations where left-hand 

sides may contain constants or variables of set X, while right-hand sides capture the proper 

computations, denoted as elements of term algebra TΣ (X). 

A rule may also contain a set of negative application conditions (NAC), expressing graph parts 

that must not exist for the rule to be applicable. NACs are finite sets of graphs NAC={Ni| L⊆ Ni, i 

≥0 }, expressing the conjunction of basic conditions, and can refer to values of attributes (Fischer 

et.al, 1999). For a rule to be applicable, none of the prohibited graph parts Ni - L present in a NAC 

may occur in the host graph G so that this occurrence is compatible with a rule match m. A match 

is an injective graph homo-morphism m: L∪ R → G ∪ H, such that m(L) ⊆ G and m(R) ⊆ H, i.e. 

the left-hand side of the rule is embedded into G and the right-hand side into H. In this paper we 

use dotted lines to denote NACs. Non-connected NACs denote different negative application 

conditions (see Figure 14 for an example). A graph transformation from a graph G to a graph H, 

p(m): G ⇒ H, is given by a rule r and a match m with m(L - R) = G - H and m(R - L) = H - G, i.e. 

precisely that part of G is deleted which is matched by graph objects of L not belonging to R and 

symmetrically, that part of H is added which is matched by new graph objects in R. Operationally, 

the application of a graph rule is performed as follows: First, find an occurrence of L in graph G. 

Second, remove all the vertices and edges from G matched by L - R. Make sure that the remaining 



structure D= G-m(L-R) is still a proper graph, i.e. no edge is left which dangles because its source 

or target vertex has been deleted. In this case, the dangling condition is violated and the 

application of the rule at match m is not possible. Third, glue D with R-L to obtain graph H. A 

typed graph transformation system GTS=(T,I,R) consists of a type graph T and a finite set R of 

graph rules with all left and right-hand sides typed over T. GTS defines formally the set of all 

possible graphs by Graphs(GTS)={G|I ⇒*
R G } where G ⇒*

R H ≡ G ⇒r1(m1) H1 … ⇒rn(mn) Hn = H 

with r1, …, rn in R and n >= 0. It follows from the theory that each graph G is correctly typed. 

3.2 Distributed Graph Transformation 

Distributed graph transformation (Fischer et. al., 1999) is graph transformation structured at two 

abstraction levels: the network and the object level. The network level contains the description of 

a system’s architecture by a network graph, and its dynamic reconfiguration by network rules. At 

the object level, graph transformations manipulate local object structures. To describe a 

synchronized manipulation on distributed graphs, a combination of graph transformations on both 

levels is needed. A distributed graph consists of a network graph where each network vertex is 

refined by a local graph. Network edges are refined by graph homomorphisms on local graphs 

which describe how the local graphs are interconnected. Each local graph may be typed 

differently, only restricted by the fact that an interface type graph is fully mapped to all connected 

local type graphs. In the following, we use distributed graphs where the network graphs consist of 

three vertices: for the model, for the code and for their interface. Furthermore, two network edges 

are needed, starting from the interface vertex and going to the model and code vertices, 

respectively. The corresponding refinement graphs are called model graph, code graph and 

interface graph. The interface graph holds exactly that subgraph which describes the 

correspondences between the other two local graphs. 

A distributed graph rule r is defined by a network rule n – which is a normal graph rule – 

together with a set S of local rules – graph rules on local graphs – for all those network vertices 

which are preserved. Each preserved network edge guarantees a compatibility between the 

corresponding local rules. The rules must also be consistent with common attribute values. In the 

following, the network rules will always be identical, meaning that the network is not changing.  

Two local rule applications on the model and the code graph will be synchronized by applying 

a common subrule on their interface graph. The rules in the following figures are local rules 

where we will use grey levels to indicate subrule parts. We introduce two operators to assemble a 



distributed rule from local ones: asOftenAsPossible means to apply a local rule as often as 

possible at different matches in parallel, while || just denotes the distributed application of rules. 

3.3  Transformation Units 

Transformation units (Kreowski et al., 1997) are used to control rule application, with the control 

condition specified by expressions over rules. The notion is defined independently of any given 

approach to graph transformation. It just assumes a certain graph transformation approach A 

consisting of a class of graphs G, a class of rules R, a rule application operator yielding a binary 

relation on graphs for every rule of R, a class E of graph class expressions, and a class C of 

control conditions. A transformation unit consists of: an initial and a terminal graph class 

expression (defining valid input and output graphs); a set of rules; a set of references to other 

transformation units, whose rules can be used in the current one; and a control condition over C 

describing how rules can be applied. Typically, C contains expressions on sequential application 

of rules and units, as well as conditions and loops, e.g. applying a rule as long as possible. We 

adopt here the syntax for control expressions presented in (Koch, Parisi Presicce, 2002). 

In this paper, we apply transformation units to distributed graph transformation, so that G is 

the class of distributed graphs, R the class of distributed rules, and the DPO way of rule 

application, as defined in (Fischer et.al., 1999), is the rule application operator. We adopt the class 

C described in (Koch, Parisi-Presicce, 2002), while the class E is not needed here and can trivially 

be left empty to indicate that no special initial and terminal graph classes need be specified. 

We relate rule expressions to graph rules by giving names to rules and passing parameters to 

them, to be matched to specific attributes of some vertex. By this mechanism, we can restrict the 

application of rules to those elements which carry an actual reference to the code to be refactored. 

To this end, the rules presented in the transformation units are meant as rule schemes to be 

instantiated to actual rules, assigning the parameters as values of the indicated attributes. 

4. Refactoring by Graph Transformation 

We present the general setting of refactoring by graph transformation and analyse a sample 

refactoring which involves transformation of the code and more than one UML diagram. 

Furthermore, we show the use of transformation units over distributed graph transformations to 

enforce synchronization and atomicity of the transformations in different diagrams. 



4.1 Graph Representation of Diagrams and Code 

The abstract representations of code and UML models are given in the form of graphs, obeying 

the constraints imposed by a type graph. For the code, we refer to the JavaML definition of an 

abstract syntax for Java (Badros, 2000), and we consider the type graph provided by its DTD. 

Indeed, any JavaML document is structured as a tree, i.e. a special kind of graph where an XML 

element is represented by a typed vertex and its attributes by vertex attributes. The graph edges 

show the sub-element relation and are untyped and not attributed. We call this graph the code 

graph. For UML (OMG, 2002), the abstract syntax of the UML metamodel provides the type 

graph to build an abstract representation of the diagram, that we call the model graph. 

As an example, Figure 7 shows the code graph for class Audio. Due to reasons of space, we 

omit the representation of the fields ms and env and of the method findMusicSource. Similarly, 

Figure 8 presents the model graph for the class diagram of Figure 5a (without dependencies). 

Here and in the following figures, only the important fields of model elements are shown. Details 

of model elements occurring in more than one figure are shown only in one. One can notice that 

the vertices that would be directly connected to a class vertex in the code graph, appear in the 

model graph as feature elements for which the class is an owner. Figures 9 and 10 present the 

components of the model graph for the sequence and activity diagrams of Figure 5. 

c1‘: class
name = „Audio“

: java-class-file

m1‘: method
name= „playMusic“
id = „Audio:mth1“
visibility = protected

: type
name= „void“
primitive = true

: assignment-expr
op =  „=„

c6‘: send
message= „findMusicSource“

: block

a1‘: field
name= „preferences“
visibility = public

: type
name= „MusicDescription“

: lvalue a2‘: var-set
name= „ms“

: local-variable
name =  „toPlay“
id = „Audio:var1“ : type

name= „Music“

c7‘: send
message= „provideMusic“

: target a2‘: var-ref
name= „ms“

: arguments o8‘: this

1

2

: java-source-program

c8‘: send
message= „play“ : target

o6‘: var-ref
name= „toPlay“
idref=„Audio:var1“

i1‘: arguments

3

o5‘: var-ref
name= „env“

c1‘: class
name = „Audio“

: java-class-file

m1‘: method
name= „playMusic“
id = „Audio:mth1“
visibility = protected

: type
name= „void“
primitive = true

: assignment-expr
op =  „=„

c6‘: send
message= „findMusicSource“

: block

a1‘: field
name= „preferences“
visibility = public

: type
name= „MusicDescription“

: lvalue a2‘: var-set
name= „ms“

: local-variable
name =  „toPlay“
id = „Audio:var1“ : type

name= „Music“

c7‘: send
message= „provideMusic“

: target a2‘: var-ref
name= „ms“

: arguments o8‘: this

1

2

: java-source-program

c8‘: send
message= „play“ : target

o6‘: var-ref
name= „toPlay“
idref=„Audio:var1“

i1‘: arguments

3

o5‘: var-ref
name= „env“  

Figure 7. A part of the code graph for the first version of the code of class Audio. 

The model graphs, though presented here separately, are construed as different views on one 



large graph representing the whole model. Indeed, the behavioral diagrams are associated with the 

model elements which own or contribute to the model’s behavior. As an example, object 

m1:Method for playMusic appears in Figure 8 as a behavioral feature of class Audio, and in 

Figure 10 as the element whose behavior is defined by the component of the model graph for 

activity diagrams. Conversely, object o2:operation appears as the specification for the same 

method in Figure 8, and as the operation for a CallOperationAction object in Figure 9. In the 

next section, we will show how transformation units for distributed transformations can be used 

to modify both graphs, code and model, in a coordinated way. This coordination is based on the 

existence of correspondences between elements in the two graphs, indicated by similar names 

(e.g. “c1’ ” in Figure 7 and “c1” in Figure 8) and further discussed in Section 5. 

m1:Method
name= „playMusic“
visibility=#protected
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name= „Audio“
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visibility=#protected
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visibility=#public
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Figure 8. The abstract graph for the class diagram of Figure 5a 



o8: Object
name= „a“

:CollaborationInstanceSet

:InteractionInstanceSet

o7: Object
name= „m“

o6: Object
name= „toPlay“

:Stimulus

:Stimulus

:Stimulus
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Figure 9. The abstract graph for the sequence diagram of Figure 5b 
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Figure 10. The abstract graph for the activity diagram of Figure 5c for executing playMusic. 

 

4.2 Encapsulation of Variables 

The preconditions for EncapsulateVariable require that no method exist in the hierarchy with 



the same signature as the setter and getter methods to be created. So, we use NACs on rules 

transforming the code and model graphs. Neither graph expresses the hierarchy directly, so that 

the transitive closure of inheritance must be evaluated before checking the precondition. Rule 

insert_up_gen_code in Figure 11 starts the identification of a class ancestors by inserting an 

edge, labelled gen, between a class and its superclass in the code graph. The input to the rule is 

the name of the class for which the hierarchy is built. Direct subclasses are found by an analogous 

rule insert_down_gen_code. The hierarchy construction is completed by the rule of Figure 12. 

In all these cases, the dotted gen line in the LHS indicates a negative application condition: a gen 

edge must not already exist between the classes to be related.  
insert_up_gen_code(inString cname): 

3: class
name = x

2: superclass
name = x

1: class
name = cname

gen

3: class
name = x

2: superclass
name = x

1: class
name = cname

gen

3: class
name = x

2: superclass
name = x

1: class
name = cname

gen

3: class
name = x

2: superclass
name = x

1: class
name = cname

gen

 
Figure 11. The rule to start the computation of the ancestors of the class named cname. 

compute_gen_code(): 

2: class

1: class

3: class

gen

2: class

1: class

3: class

gen
gen

gen

gen gen

2: class

1: class

3: class

gen

2: class

1: class

3: class

gen
gen

gen

gen gen

 
Figure 12. The rule to complete the construction of the hierarchy. 

Code graph transformation is now specified by rule encapsulate_variable_code in Figure 

13, where cname identifies the class to be modified, and varname the name of the variable to be 

encapsulated. This rule is complemented by NACs, two of which are shown in Figure 14. These 

two check the absence of methods with the same signature in the class, while the others check the 

absence in the whole hierarchy, i.e. in a class associated with cname through a gen edge. 

All uses of the variable are substituted by calls of the corresponding methods. Hence, Figure 

15 shows the rule replacing direct access to the variable with a call of the getter, while Figure 16 



shows the rule taking care of value updates. 
encapsulate_variable_code(in String cname, in String varname): 

a‘: field
name= varname
visibility = x

c‘: class
name = cname

a‘: field
name= varname
visibility = private

m2‘: method
name= „get“+varname
id = cname + „:mth“ + c
visibility = x

c‘: class
name = cname

: formal_arguments

m1‘: method
name= „set“+varname
id = cname + „:mth“ + d
visibility = x

p1‘: formal_argument
name = „arg“
id = cname + „:frm“ + d

1: type
name = t

1: type
name = t

: type
name = t

: type
name = void

: type
name = t

: return

: var-ref
name= „varname“

: asignment-expr
op= „=“

: block

: lvalue

a1‘: var-set
name= „varname“

: var-ref
name= „arg“
id = cname + „:frm“ +d

a‘: field
name= varname
visibility = x

c‘: class
name = cname

a‘: field
name= varname
visibility = private

m2‘: method
name= „get“+varname
id = cname + „:mth“ + c
visibility = x

c‘: class
name = cname

: formal_arguments

m1‘: method
name= „set“+varname
id = cname + „:mth“ + d
visibility = x

p1‘: formal_argument
name = „arg“
id = cname + „:frm“ + d

1: type
name = t

1: type
name = t

: type
name = t

: type
name = void

: type
name = t

: return

: var-ref
name= „varname“

: asignment-expr
op= „=“

: block

: lvalue

a1‘: var-set
name= „varname“

: var-ref
name= „arg“
id = cname + „:frm“ +d  

Figure 13. LHS and RHS of the rule for variable encapsulation in the code graph. 

a‘: field
name= varname

: method
name= „get“+varname

c‘: class
name = cname

3: type

a‘: field
name= varname

: method
id= „set“+varname

c‘: class
name = cname

3: type
name= t

: formal_arguments

: formal_argument
name = „arg“

: type
name = t

: type
name= void

a‘: field
name= varname

: method
name= „get“+varname

c‘: class
name = cname

3: type

a‘: field
name= varname

: method
id= „set“+varname

c‘: class
name = cname

3: type
name= t

: formal_arguments

: formal_argument
name = „arg“

: type
name = t

: type
name= void

 
Figure 14. Two NACs for the rule in Figure 13, to check that no method exists with the same 

signature as the inserted setter and the getter methods. 

Consistency between model and code is maintained by applying a set of rules which operate 

locally on the components of the model graph for the diagrams considered above. Figure 17 

shows the encapsulate_variable_model rule acting on the class diagram. Negative application 

conditions analogous to those for the code graphs are also used, guaranteeing a check of the 

overall consistency of the representations. Consequently, we need to compute the transitive 

closure of the inheritance relation also for model graphs, through rules insert_up_gen_model, 



insert_down_gen_model, and compute_gen_model. Rules encapsulate_variable_model and 

encapsulate_variable_code are applied in parallel along their common subrule shown in grey. 
field-access(in String cname, in String varname): 

ac: field-access
field= varname

c2‘: send
name= „get“+varname

1: var-ref
id = i

: target

c‘: class
name= cname

a‘: field
name= varname

1: var-ref
id = i

c‘: class
name= cname

a‘: field
name= varname

m‘: method m‘: method
ac: field-access
field= varname

c2‘: send
name= „get“+varname

1: var-ref
id = i

: target

c‘: class
name= cname

a‘: field
name= varname

1: var-ref
id = i

c‘: class
name= cname

a‘: field
name= varname

m‘: method m‘: method

 
Figure 15. The rule to replace accesses to varname in cname with calls to the getter. 

field-set(in String cname, in String varname): 

ac: field-set
field= varname

c3‘: send
name= „set“+varname

1: lvalue 1: lvalue

2: expr-elems

: arguments

2: expr-elems

c‘: class
name= cname

a‘: field
name= varname

c‘: class
name= cname

a‘: field
name= varname

m‘: method
m‘: method

ac: field-set
field= varname

c3‘: send
name= „set“+varname

1: lvalue 1: lvalue

2: expr-elems

: arguments

2: expr-elems

c‘: class
name= cname

a‘: field
name= varname

c‘: class
name= cname

a‘: field
name= varname

m‘: method
m‘: method

 
Figure 16. The rule to replace updates of varname in cname with calls to the setter. 

The effect on activity diagrams is shown by the rule getEncVarInActivity in Figure 18, 

replacing variable access with a call of a getter. For simplicity, we omit all input and output pins. 

We do not present the whole distributed rule, but show only the local rule acting on the model 

graph. If the variable replacement in the model graph corresponds to some variable replacement 

in the code graph, all possible rule applications of getEncVarInActivity have to be applied 

synchronously with code rule field-access along their common subrule, which is shown in 

grey. An analogous rule exists for replacing variable updates with calls of the setter method. 

Finally, we consider the required modifications for sequence diagrams, for the case of variable 

encapsulation. Since sequence diagrams do not show read and write actions on attributes, the 

encapsulation does not directly cause a refactoring. In order to maintain a consistent model, the 

user has to specify if and where the refactoring should be represented for this part of the model. In 

particular, whenever a method m is called, in which the encapsulated variable is used, it is 



necessary to introduce a Stimulus s’ to call the relevant setter or getter method. From the 

ordering of subtrees in the code graph of m, one can identify the stimulus s for which s’ is the 

successor (or predecessor) in the new activation sequenc, and pass it as a parameter to the rule. 

For space reasons, we omit the representation of the relative rule getEncVarInInteraction. 

The rules in Figures 15, 16, and 18 must be applied at all possible instances of their left hand 

side in the distributed graphs. There may be several such instances, and we want to apply a 

transformation in a transactional way, i.e. the overall application is possible only if corresponding 

parts can be coherently transformed. We use therefore transition units to specify some form of 

control on the application. In particular, we use the control construct asOftenAsPossible which 

indicates that a local rule must be applied in parallel on all (non conflicting) instances of the 

antecedent. In particular, contextual elements can be shared by different instances, but no 

overlapping is possible on elements which are removed or transformed by the rule. Moreover, we 

use the construct || which indicates the distributed application of two or more rules. 

To sum up, EncapsulateVariable is expressed by a transformation unit as follows: 
EncapsulateVariable(in String cname, in String varname):= 

 asLongAsPossible insert_up_gen_code() || insert_up_gen_model() end; 

 asLongAsPossible insert_down_gen_code() || insert_down_gen_model() end; 

 asLongAsPossible compute_gen_code() || compute_gen_model() end; 

 encapsulate_variable_code(cname, varname) ||  

  encapsulate_variable_model(cname,varname); 

 asLongAsPossible field_access(cname,varname) || 

  (asOftenAsPossible getEncVarInActivity(cname,varname) end) end; 

 asLongAsPossible field_set(cname,varname) || 

  (asOftenAsPossible setEncVarInActivity(cname,varname) end) end; 

The user can also decide to request a modification of interaction diagrams. In this case, he or 

she has to interactively provide a value for the stimulus after or before which to place the new 

call, and the transformation unit is completed by the following construct. 
asOftenAsPossible getEncVarInInteraction(cname,varname,stimulus) end 

asOftenAsPossible setEncVarInInteraction(cname,varname,stimulus) end 

By applying the transformation unit, both code and model graphs are transformed to reflect the 

existence and usage of the new methods. As an example, the code graph for the class Audio now 

appears as shown in Figure 19 (the body of playMusic is not shown as it remained unchanged). 

With respect to Figure 7, the visibility of field preferences has changed from public to private, 

and two new methods have been inserted, as specified in rule encapsulate_variable_code. The 

graph in Figure 19 is a subgraph of the code graph, obtained by applying the transformation unit 



EncapsulateVariable, i.e. it results from applying the local rule encapsulate_variable_code 

once with arguments cname = “Audio” and varname = “preferences”. 
encapsulate_variable_model(in String cname, in String varname): 

a: Attribute
name= varname
visibility = x

c: Class
name = cname

a: Attribute
name= varname
visibility = private m1: Method

name= „get“+varname
visibility = x

c: Class
name = cname

m2: Method
name= „set“+varname
visibility = x

p1: Parameter
name = „arg“

1: Classifier
name = t

1: Classifier
name = t

type type

type

type

feature

feature

feature
feature

owner owner
owner
owner

op2: Operation

op1: Operation

: Parameter
kind = #return

a: Attribute
name= varname
visibility = x

c: Class
name = cname

a: Attribute
name= varname
visibility = private m1: Method

name= „get“+varname
visibility = x

c: Class
name = cname

m2: Method
name= „set“+varname
visibility = x

p1: Parameter
name = „arg“

1: Classifier
name = t

1: Classifier
name = t

type type

type

type

feature

feature

feature
feature

owner owner
owner
owner

op2: Operation

op1: Operation

: Parameter
kind = #return  

Figure 17. LHS and RHS of the rule for variable encapsulation on the class diagram component 
of the model graph. 

getEncVarInActivity(in String cname, in String varname): 

1:ActionState

2:Procedure

ac:ReadAttributeAction

2:Procedure

c2:CallOperationAction

1:CallState

m1: Method

a: Attribute
name= varname

c: Class
name = cname

a: Attribute
name= varname

c: Class
name = cname

op: Operation
name= „get“+varname

op: Operation
name= „get“+varname

m1: Method

1:ActionState

2:Procedure

ac:ReadAttributeAction

2:Procedure

c2:CallOperationAction

1:CallState

m1: Method

a: Attribute
name= varname

c: Class
name = cname

a: Attribute
name= varname

c: Class
name = cname

op: Operation
name= „get“+varname

op: Operation
name= „get“+varname

m1: Method

 
Figure 18. The rule for modifying variable access in activity diagrams. 



c1‘: class
name = „Audio“

: java-class-file

m1‘: method
name= „playMusic“
id = „Audio:mth1“
visibility = protected

: type
name= „void“
primitive = true

a1‘: field
name= „preferences“
visibility = private

: type
name= „MusicDescription“

: java-source-program

a3‘: field
name= „env“
visibility = private

: type
name= „Environment“

m3‘: method
name= „getpreferences“
id = „Audio:mth2“
visibility = public

: type
name= „MusicDescription“

m4‘: method
name= „setpreferences“
id = „Audio:mth3“
visibility = public

: type
name= „void“
primitive = true

: formal_arguments p2‘: formal_argument
name= „arg“
id = „Audio:frm1“

: type
name= „MusicDescription“

: return
: var-ref
name= „preferences“

: asignment-expr
op= „=“

: block

: lvalue a2‘: var-set
name= „preferences“

: var-ref
name= „arg“
id = „Audio:frm1“

c1‘: class
name = „Audio“

: java-class-file

m1‘: method
name= „playMusic“
id = „Audio:mth1“
visibility = protected

: type
name= „void“
primitive = true

a1‘: field
name= „preferences“
visibility = private

: type
name= „MusicDescription“

: java-source-program

a3‘: field
name= „env“
visibility = private

: type
name= „Environment“

m3‘: method
name= „getpreferences“
id = „Audio:mth2“
visibility = public

: type
name= „MusicDescription“

m4‘: method
name= „setpreferences“
id = „Audio:mth3“
visibility = public

: type
name= „void“
primitive = true

: formal_arguments p2‘: formal_argument
name= „arg“
id = „Audio:frm1“

: type
name= „MusicDescription“

: return
: var-ref
name= „preferences“

: asignment-expr
op= „=“

: block

: lvalue a2‘: var-set
name= „preferences“

: var-ref
name= „arg“
id = „Audio:frm1“  

Figure 19. The code graph for class Audio after the EncapsulateVariable refactoring. 

4.3 Extract Method 

In the words of Martin Fowler, «If you can do Extract Method, it probably means you can go on 

more refactorings. It’s the sign that says "I’m serious about this"». Hence, we present our 

approach to managing this refactoring, without figures due to lack of space. A more detailed 

version of this specification, but with a different code representation, is in (Bottoni et al., 2003). 

The precondition that the name for the new method does not exist in the class hierarchy is 

checked as for variable encapsulation. In general, we can assume that the code and model graphs 

are complemented by all the needed gen edges. The precondition that the code to be extracted 

constitute a block is easily checkable on the code graph. Indeed, this code can be a whole subtree 

rooted in a block, if, switch, loop, do-loop vertex, or be a collection of contiguous subtrees 

of a same method vertex, composed of stmt-exprs not comprising any construct try, throw, 

return, continue, break, synchronized, and such that no label appears in them. 

We then need to identify all the variables to be passed to the new method. We can inspect the 

code graph to identify all the var-set and var-ref elements where the name of the variable is 

not the name of a formal-argument of the original method or a name for a local-variable 



declaration present in the subtree to be moved. Additionally, if the subtree presents some local-

variable vertex, we have to check that there are no var-set or var-ref elements for that 

variable, in the subtrees remaining with the original method. The creation of the call for the new 

method is achieved by substituting the removed subtrees with a send element which has the name 

of the new method as value of the attribute message, target this, and the list of formal-

arguments as derived before. In the model, we modify the class diagram by simply showing the 

presence of the new method in the class, as the effects on the referred variables and the existence 

of a call for this method are not reflected at the structural level. 

For the activity diagrams, we need to identify the Action associated with a given Operation. 

Such an Action can be further detailed through a collection of Actions associated with it. So, we 

need to identify all those vertices which correspond to roots of the moved subtrees, detach them 

from the description of the Operation, and exploit them to create the description of the 

Operation associated with the new method. 

For interaction diagrams, the situation is different from that for variable encapsulation. The 

system can identify the existing instances of Stimulus which occur before and/or after the 

extracted code, and insert the Stimulus to a CallOperationAction, for an Operation with the 

name of the new Method, on the same receiver as the sender. Moreover, each instance of 

CallOperationAction, originating from the original Operation instances, and related to a 

vertex in the extracted subtrees, must now be related to an instance of Stimulus whose activator 

is the Stimulus for the new Operation. The existing predecessor and successor associations 

for the first and last such instances of Stimulus must be transferred to the new Operation. All 

these transformations must be applied as often as possible, so as to affect all the descriptions of 

the behavior of the refactored method. Indeed, calls to such methods can occur in different 

scenarios, meaning that the sequence diagrams for all such scenarios must be modified. 

5. Building Correspondences between Code and Model Graphs 

In order to manage distributed transformations involving the Abstract Syntax tree (AST) (viewed 

as a graph) and the graph representing the UML model, we need to establish an interface graph IG 

and two morphisms µAST and µUML from it to the two graphs. This requires the construction of a 

correspondence between types of vertices in the two graphs. To this end, we adopt for AST the 

concrete representation given by JavaML, an XML-based specification, while the graph for the 



UML model is constructed in accordance with the UML metamodel. 

In this section, we sketch the principles directing the construction of the correspondences, as 

the complete construction is beyond the scope of (and the space allowed for) this paper. In 

particular, we consider the structural and behavioral aspects of the specification separately. 

From the structural point of view, we can proceed top-down and see that JavaML class 

vertices correspond to UML Class vertices, and a JavaML field to a UML Attribute. 

However, care must be taken in managing aspects of the structural definition involving relations 

to other classes. For example, the subclass relation is represented in UML by the presence of a 

pattern involving two Class vertices, a Generalization vertex, and two associations relating 

thee latter vertex to the other two, one with the role of specialization, the other being a 

generalization. In JavaML, a superclass vertex, with a name attribute, constitutes a leaf of 

the tree rooted in the class vertex. In such a case IG would contain only a CLASS vertex mapping 

to a class vertex in AST through µAST, and to a Class vertex in UML through µUML. The 

definition of the morphisms requires checking that the superclass relation is consistently 

represented in the two graphs. A similar situation occurs for the implements construct. 

As concerns behavioral aspects, the method vertex in JavaML contains all the information 

present in the code to characterize the method, in particular its signature and its body. However, 

in the UML metamodel, this information is distributed across an Operation vertex, maintaining 

information about the signature, and a Method vertex which simply contains the code of the 

method body. As regards the signature, similarly to before, we relate method and Operation 

vertices, and we check the agreement of the type information, without associating the type 

subvertices for method to the Classifier vertices describing those types in UML. This is due to 

the fact that a type vertex is present in JavaML every time it is necessary, but need to be present 

only once, and associated with other vertices an arbitrary number of times, in a UML diagram 

As we are interested in modelling not only the static declaration of a method, but also its 

behavior, as modelled in collaboration, sequence, state, or activity diagrams, we recur to action 

semantics as defined in (OMG, 2003). Here, a Method is associated with a Procedure, which has 

a Composition relation with an Action vertex. We put such an Action in correspondence with 

the stmt-elems vertex, usually a block, which is the root of the subtree for the description of the 

method vertex. In general, we want to put into relation semantically equivalent elements, so we 

will consider the different types of Action that can be associated with stmt-elems. A major 



difference exists, though. The JavaML file presents the stmt-elems of a block in an order which 

corresponds to the sequence of statements in the original code. The UML model on the other 

hand, does not require that an order is specified for independent actions. Control flow actions 

indeed exist, such as ConditionalAction or LoopAction, and also idioms such as Iteration 

can be expressed. However, actions not related through some chain of DataFlow objects, need not 

be realized in any given order. If desired, though, the modeller can prescribe the existence of 

ControlFlow objects, defining predecessor and successor Actions.  

The process of building such correspondences, i.e. of introducing elements in the interface 

graph and establish the morphisms from this to the code and model graphs can be modelled by 

rewriting rules. Figure 20 shows two local rules whose distributed application on the code and 

model graph, respectively, produces the following effect: if there are, both in the code and model 

graph, elements representing a class s which is a superclass for a class c whose representations in 

the two graphs have already been put in correspondence, as witnessed by the identifiers c1 and 

c1’ for the two instances, then the two representations of class s are put in correspondence, as 

witnessed by the production of the identifiers c1 and c1’. 

c1‘: class
name = c

: java-class-file

: superclass
name = s

c1‘: class
name = c

: java-class-file

: superclass
name = s

: class
name = s

c2‘: class
name = s

c1‘: class
name = c

: java-class-file

: superclass
name = s

c1‘: class
name = c

: java-class-file

: superclass
name = s

: class
name = s

c2‘: class
name = s
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name= c

:Class
name= s
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name= c

c2:Class
name= s

:Generalization

generalizationspecialization

:Generalization

generalizationspecialization
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name= c

:Class
name= s
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name= c

c2:Class
name= s

:Generalization

generalizationspecialization

:Generalization
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Figure 20: Two rules to establish correspondences concerning class inheritance. 

6. Behavior Preservation in Refactoring 

The refactorings in Section 4 are historical ones, whose behavior preservation properties are 

widely discussed. In general, it is important to have a methodology to formally verify properties 

of (new) refactorings. The approach based on graph transformations provides a formal basis to 

perform these checks and to generate conditions ensuring the desired preservation properties. We 



restrict our discussion to checks that can be carried out statically, not based on flow analysis.  

Several kinds of behaviour preservation are relevant to the refactorings studied here. Some of 

them are briefly described next (Mens et al. 2002): 

• Type preservation is the behaviour exhibited by a refactoring that does not change the type 

of any entity not deleted. 

• Access preservation requires that the refactoring maintains the access of a method to at 

least the same variables accessed before the refactoring. The access may now be through 

one or more intermediate method calls. 

• Update preservation occurs when each method produces, after the refactoring, the same 

variable changes produced before the refactoring. 

• Call preservation is the behaviour exhibited by a refactoring when each method causes the 

execution, after the refactoring, of at least the same methods called before the refactoring. 

  The refactorings presented here are based on typed graph transformations. Since these 

transformations always guarantee that all the resulting graphs are correctly typed over the same 

type graph, type preservation (according to the type graph) is always exhibited by our 

refactorings. No additional verification is needed. 

This kind of behaviour preservation is not sufficient to ensure that the resulting graph is an 

acceptable code or model graph. Well-formedness constraints are needed to rule out undesired 

configurations of the produced graph (instance of the type graph). For example, we have seen the 

requirement that no names, whether for variable or method, are in conflict in any class.  

Now, in order to verify that these constraints are satisfied after the application of refactoring 

rules, we can enlist the help of established results on consistent graph transformations in (Heckel 

et al., 1995). The approach there consists of considering a subgraph forbidden from the result of 

the application of a rule and deriving from it (by applying the rule backwards) a number of NACs 

for the rule, preventing the application of the rule if it causes the construction of the forbidden 

subgraph. The construction in (Heckel et al., 1995), applied to the above constraint and to the rule 

for variable encapsulation in Figure 13, yields NACs of the type shown in Figure 14. 

Not all constraints can be expressed by such simple ‘forbidden’ graphs. More general 

constraints can be defined by using propositional logic (Matz, 2002) to compose ‘atomic’ 

constraints, formed by simple forbidden graphs, and injective graph morphisms describing the 

conditional existence of graph (sub)structures (Koch, Parisi Presicce, 2002),. 



For example, to express the fact that no method can have the same name and the same formal 

argument as another method in the same class, we can write the proposition NOT 

(constraint_parameter AND NOT two_parameter_constraint), where the two graphs are 

presented in Figure 21. This proposition is satisfied only if it is not the case that the two methods 

named mnew have each exactly one parameter of the same type. 

Another type of constraints, refactoring-specific, addresses the problem of unwanted side 

effects of a refactoring. These constraints can be expressed with pre- and/or post conditions to the 

refactoring: with the latter, if the post-condition is not met, the transformation must be ‘undone’ 

and the previous model restored, while with the former (more efficient) method, application 

conditions are checked to prevent the transformation by a refactoring if it produces unwanted 

effects. For example, a new method m defined in class C should not override an existing method m 

with the same signature in a subclass of C, or be overridden by an existing method with the same 

signature defined in a superclass of C. This constraint is needed, for example, in both sample 

refactorings presented in Section 4. The graph constraint_parameter_gen in Figure 22, must 

be used, together with the version for inheritance of two_parameter_constraint above, to 

express the constraint for the case of a method with exactly an argument. When the name of the 

method (mnew) is either set+varname or get+varname, this technique can be used to produce the 

appropriate NACs for the rule in Figure 17. If we know the maximum number of arguments for a 

method in the code, we can construct similar forbidden configurations for each number of 

arguments. Otherwise, we have to define graph schemes, typically using set vertices (Bottoni et 

al., 2000), to be matched to any number of arguments. 
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Figure 21. The two graphs to express the constraint for methods with only one parameter. 

The above techniques can add NACs individual rules to obtain the desired effect. But what 

about transformation units? As an example, EncapsulateVariable requires the application of 



different rules, some of them asLongAsPossible. It is possible to prove that this refactoring has a 

“functional” behaviour, i.e., that it always produces a resulting graph (termination of the sequence 

of transformations), which does not depend on the order in which some of the elementary (even 

non behaviour-preserving) transformations are applied. The latter property is called confluence 

and can be argued as follows, without giving a formal proof, by relying on results for attributed 

graph transformations, easily adaptable to the distributed ones. The possible choices inside the 

transformation unit depend on the possibility of applying rules in parallel. Rules 

insert_up_gen_code and insert_up_gen_model are sequentially independent since they only 

add elements to the graph; therefore both sequential orders of application produce the same effect 

as their simultaneous application. The construct asLongAsPossible does eventually terminate 

because each application reduces the number of pairs of vertices not connected by an edge 

labelled gen. A similar argument applies for the insert_down and compute rules, while for the 

rules encapsulate_variable, the application is required to be simultaneous, overlapping on the 

shaded entities. In general, by adapting to distributed graph transformations existing results on 

attributed graph transformations, critical pair analysis could be applied after taking the control 

structure in the transformation units into account, i.e. ignoring pairs of rules in sequential 

segments and considering only pairs of rules which may be applied in parallel. Termination can 

be proved in general by finding a well-founded ordering associated to the application of the rules 

indicating that the rules obey some layering conditions (Bottoni et al., 2000). 
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Figure 22. Forbidden graph for avoiding overriding between existing methods and a new method. 

Historically, two factors have contributed to the limited use of formal methods to verify the 

preservation of behaviour in refactoring. One factor is due to the need of defining a formal 

semantics for the target language, and a formal semantics is not always available for real complex 

languages such as C++. The other reason is the need to automate refactorings, which requires a 

significant engineering effort to build appropriate tools to manipulate ASTs and UML diagrams. 



Our approach alleviates in part the second problem, since tools for graph transformations, such as 

AGG (Ermel et al. 1999), are available to deal with attributed typed graph transformations with 

pre- and post- conditions (Matz 2002). 

7. Conclusions 

We have presented an approach, based on graph transformation, to maintain consistency between 

code and model diagrams in the presence of refactorings. The approach allows the coordinated 

transformation of two graphs representing the abstract syntax, as derived from the code by a 

parser, and the UML model of the software system. A correspondence is established between 

these two graphs, starting from the correspondence between types of vertices in the abstract 

syntax trees, as defined by the JavaML markup language, and types of elements and associations 

in the UML diagrams, as defined by the UML meta-model. 

Although the approach has been concretely demonstrated using the Java language and the 

JavaML coding of the abstract syntax, it can be applied to any type of abstract syntax for object-

oriented languages, provided that a non-ambiguous correspondence between the abstract syntax 

and the components of the UML model can be established. 

As a consequence, an integrated tool can be devised, able to perform refactoring on code and 

model diagrams, so as to maintain the original correspondences between these components. This 

would require the integration of the current ability of modern refactoring tools to manipulate 

ASTs, with a more general interpreter for transformation units. Indeed, it is not needed that the 

tool exploits graph transformations in order to manipulate the tree. As all refactorings are 

individually described by a transformation unit, and a tool has a finite number of them available, 

it is sufficient that the tree transformation is wrapped so as to communicate the parameters which 

characterize it to the other parts of a distributed transformation. If the transformation occurs on a 

part of the code for which the corresponding parts of the model have been identified, the relevant 

modifications would automatically be performed. 

The opposite process could also be envisaged in which a refactoring of the model would reflect 

into a modification of the corresponding code. This can be easily performed on structural 

diagrams, for which we have seen that there is a close correspondence between elements of 

JavaML and of the UML meta-model. Future work will have to identify refactorings in the 

behavioral diagrams for which it is possible to identify the needed transformations in the code. 
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