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Abstract Visualizing and simulating formal models in
a flexible way becomes increasingly important for the
design of complex systems. With GENGED, a tool is
available which automatically generates a visual envi-
ronment to process (create, edit, check, simulate) visual
models over a specified visual language. Both the spec-
ification of the language and the model manipulation
are based on graph grammars. In this paper, we present
the means to transform visual models into application
oriented views, called scenario views. We show how a
model is consistently transferred to a scenario views and
animated there. The extension of GENGED concerning
scenario animation is discussed.

Keywords: GENGED, visual modeling languages, graph
transformation, visual modeling environment, simulation,
scenario animation

1 Introduction

The success of visual modeling techniques in computer
science and engineering resulted in a variety of meth-
ods and notations addressing different application do-
mains and different phases of the development process.
To tackle the problem of increasing complexity in model-
ing formalisms and in establishing the required tool sup-
port for all variants of visual notations, meta-modeling
concepts for specifying visual modeling languages (VLs)
have been developed like e.g. the UML meta model [30].

The advantages of having a meta model for a spe-
cific VL are clear: it allows the automatic generation of
a tool to build and check models according to the de-
scribed VL syntax. Instead of programming a complete
editor and simulator for a specific VL from scratch, it
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is only necessary to specify the kind of models we will
deal with. The generated tool should be able to allow
the construction of valid diagrams (VL diagrams which
are instances of a specific VL) in an editor component
and, if dynamic system behavior is modeled, to perform
simulation of the modeled behavior in a simulator com-
ponent. A VL model in our approach therefore consists
of a set of VL diagrams representing the different states
of a system during simulation.

The GENGED approach and environment, for spec-
ifying visual languages and generating visual environ-
ments to edit and simulate models visually has been de-
veloped at the Technical University of Berlin [2]. Some
examples for visual languages defined in GENGED which
model the behavior of systems, are statecharts [5], dif-
ferent types of Petri nets [20] or deterministic automata
[4].

Despite the benefits, the simulation of VL models
is often ineffective in the user validation process. The
behavior of a VL model based on (semi-) formal and ab-
stract notations may not always be comprehensible to
users and thus makes the requirements validation pro-
cess less effective. Consequently, we need a modeling
technique that on the one hand

— is as formal as possible to avoid ambiguities and
— allows the systematic construction of (partial) spec-
ifications,

and on the other hand

— describes requirements (and the model behavior) in
a way that customers can easily understand and val-
idate them,

— supports early detection of inconsistencies and pos-
sible requirements missing in the model.

Scenarios are a new way of representing system re-
quirements. In a scenario, a part of the system is de-
scribed by a sequence of state changes caused by events
such as user-system interactions. Scenarios were first used
in the field of human-computer interaction [13]. Mean-
while they receive considerable attention in requirements



engineering [22,32]. In his book about scenario-based
programming [24], Harel proposes to use ”play-in sce-
narios” to set up the requirements by ”teaching” the
modeling tool about desired and unwanted scenarios.
During the process of playing-in scenario-based require-
ments, the underlying tool automatically and incremen-
tally generates rigorous models (so-called live sequence
charts) that are consistent with these teachings. Although
this thought is intriguing, more research has to be done
not only on the algorithmical side but also concerning
the human aspect as to which are easy-to-use means to
tell a “behavior-free system shell what we want from
it. The other, more common use of scenarios Harel de-
scribes, is the execution (simulation) of the system model
which is done by “playing-out scenarios to verify the
model against the requirements.

In Catalysis [16], a methodology for the development
of object- and component-based systems, scenarios are
visualized by before-and-after snapshots of object dia-
grams where an action occurs between the two snap-
shots. Sets of actions (action types) are described by in-
formal textual statements (action specifications) where
the effects of the actions are given by pre- and post con-
ditions on the object diagram. In GENGED, the speci-
fication of model behavior in the sense of action types is
done visually by graph rules called simulation rules. The
application of a simulation rule to a concrete VL diagram
(simulation step) corresponds to an action in Catalysis,
and the VL diagrams modeling system states before and
after the rule application can be seen as before-and-after-
snapshots of an action. The simulation of VL models in
GENGED is depicted in the upper half of Fig. 1. A se-
quence of simulation steps defines a scenario of the VL
model.

The aim of this paper is to further facilitate the
user validation process for behavior models in an view-
oriented fashion. We present a new concept for systemat-
ically generating so-called “scenario views from VL mod-
els. A scenario view presents a scenario of the VL model
in the layout of a specific application domain. The con-
sistent transformation of a formal behavior model to the
respective scenario view is based on the GENGED ap-
proach. We call the simulation steps of a VL model an-
imation steps when the VL diagrams before and after a
simulation step are shown in the scenario view. By the
transformation of a VL model to a scenario view, the
view might show only some aspects or parts of the sys-
tem. Different views can reflect (parts of) the behavior
defined in the VL model. Fig. 1 sketches the relation be-
tween VL models (whose VL diagrams are instances of a
meta model, i.e. a VL specification) and scenario views
in different application domains.

View transformation is applied to the VL. model, thus
realizing a consistent mapping of simulation steps to
animation steps in the respective scenario view. Conse-
quently, requirements can be interactively demonstrated
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Fig. 1 Different views on formal models

and clarified in a scenario view helping to produce an
improved VL model.

For certain modeling formalisms, such as Petri nets,
there are tools supporting model animation (see e.g. the
SimPEP-tool for the animation of low-level nets in PEP
[23]). In contrast to such formalism-based approaches,
the generic framework GENGED offers a basis for a
more general formalization of VL. model behavior which
is applicable to various Petri net classes and other visual
modeling languages. Tools describing formalisms based
on meta-modeling such as DOME [14] or KOGGE [26]
are more related to our approach, but they usually allow
only some kind of textual language to define the meta
model and to express a model’s behavior. We feel that
visual means (such as graphs and graph grammars) are
more adequate to express features of visual languages
and visual models.

In the area of visual language definition based on
graph transformation, the following tool environments
for visual modeling come closest to our approach but
do not support scenario views for specific application
domains:

— DiaGen [27] is based on hyper-edge graph grammars.
Visual editors and simulators can be generated.

— MetaEnv [11] is an environment to define the seman-
tics for visual models. A visual model which has been
defined by an external CASE tool is translated to
its semantic domain (High Level Timed Petri Nets)
using graph grammars. The semantic model can be
simulated, translated into C code and animated (the
Petri net firing steps are translated back to the orig-
inal visual diagram notation).

— In ATOM? [15], the syntax of visual modeling lan-
guages is defined on the basis of Entity-Relationship
diagrams, graph grammars, Python and OCL. More-
over, graph grammars are used for code generation,
simulation and model transformation.

— Progres [28] is an integrated environment for pro-
grammed graph rewriting systems. Here, the focus
lies on an executable specification language based on
graph grammars for specifying object structures and
operations. Complete specifications can be translated
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to C and Tcl/ Tk code for diagram editor prototypes.
The environment does not offer meta-modeling fea-
tures.

— VisPro [34] uses special graph grammars for syn-
tax specification in order to create syntax directed
editors for visual programming languages. The set
of VLs is restricted to diagrammatic VLs, e.g. pre-
defined symbols can be connected by lines and arrows
only.

In GENGED we focus on the visual definition of vi-
sual languages and model manipulation and hence we
allow the combination of graph grammars with a variety
of graphical layout options as basis for a systematic def-
inition of the relationship between a formal model (e.g.
a Petri net or a statechart) and corresponding scenario
animations.

The remainder of this paper is organized as follows.
In Section 2, the notion scenario in general and relevant
issues for scenario animation are discussed. An example
for a scenario represented and animated in the layout of
a specific application domain is given. Section 3 explains
the basic ideas of the GENGED approach, i.e. the defi-
nition of VLs and VL models as well as their simulation
in the GENGED simulation environment. In Section 4,
a methodology is developed that extends the GENGED
approach discussed so far, in order to support the sys-
tematic generation and animation of scenario views for
specific VL models. The application of the new method-
ology is illustrated by the development of scenario views
for a VL model, namely for the well-known Producer-
Consumer system.

2 Scenario Animation: An Example

The term “scenario” is used with different meanings in
different contexts. We therefore state a definition from
[22] where a scenario is informally defined to be a form
of interaction sequence between a system and a set of
actors.

Definition 1 (Scenario)

A scenario is an ordered set of events, usually interac-
tions between a system and a set of actors external to
the system. It may comprise a concrete sequence of in-
teraction steps or a set of possible interaction steps.

Scenarios can be defined by a specification defining
one specific system state as the start state of the sce-
nario and describing possible transitions from one state
to another state. Interaction consists in the selection of
one out of several possible state transitions leading from
the current state to the next one. Technically, in our
graph-grammar-based approach, a set of possible inter-
action steps is defined by a simulation grammar whose
start diagram defines the start state of the scenario. Con-
crete sequences of interaction steps then are all possi-

ble derivation sequences that can be obtained by con-
sequently applying rules from the simulation grammar
starting with the start diagram.

2.1 Advantages of using Scenarios in Behavior
Modeling

Scenarios are a natural means for developing partial mod-
els. A scenario captures a sequence of events or of user-
system interactions as seen by the user. Thus, they pro-
vide a decomposition of a system into functions from a
user’s perspective. Each function can be treated sepa-
rately — a classical application of the principle of sepa-
ration of concerns.

Ezample 1 (Producer-Consumer Scenario)

As an example for a scenario, we model the well-known
Producer-Consumer system. We apply a simple graph-
like modeling language V' L for message-passing between
components via channels, with two types of nodes (com-
ponents drawn as boxes and messages drawn as con-
tainers), and two types of arcs (channels drawn as lines
connecting two components, and arcs connecting a mes-
sage node to a component node). In the VL model the
states of the system are given as VL diagrams. All VL
diagrams in our VL model consist of five components,
a Producer, a Buffer and three Consumers. Some ltems
which are produced by the Producer, are passed to the
Buffer, taken from the Buffer by a Consumer and con-
sumed by him. We have the constraint that producers,
buffers and consumers may hold at most one item at
a time. Fig.2 shows one state of our VL model, where
one item is in the buffer, and another one is held by a
consumer.

Consumer
Producer Buffer Consumer
— 1
Consumer
—1

N __I

Fig. 2 VL diagram modeling one state of the Producer-
Consumer model

The behavior of the VL model can be formally ex-
pressed by a graph grammar where the rules represent
simulation steps: each rule contains in the left-hand side
the situation which exists before the event has occurred,
and in the right-hand side the changed situation after
the event. For our Producer-Consumer model, this sim-
ulation grammar is introduced later in Section 4.

A scenario in the sense of Def. 1 is given by an or-
dered set of simulation steps together with a start state.



In our simple example, the user interaction consists of
triggering the next simulation step in case that there is a
choice of actions in the current system state. Fig. 3 shows
a scenario. The producer produces an item, delivers it to
the buffer from where it is removed by a consumer, and,
in the last step, consumed.

A
Consumer
Producer Buffer Consumer consume
produg Consumer
a— Consumer

Consumer

Consumer

y W /Ay Al

Producer Buffer Consumer y 4
A Consumer
—
m Consumer ‘
(]
Consumer
y v /&y 4 remove
deliver Producer Buffer Consumer
1 y 4
| Ttem | Consumer

Fig. 3 Scenario of the Producer-Consumer model, modeled
as sequence of VL diagrams

2.2 Scenario Views

To support an intuitive understanding of system behav-
ior, especially for non-experts in the specific formal mod-
eling language, it is desirable to have a visualization of
(parts of) the VL model in the application domain and
show the behavior directly in the layout of the applica-
tion domain.

Ezample 2 (Kitchen Scenario View)

As an example, a scenario view for the Producer-Consumer

model is considered for the concrete application domain
of a kitchen: The producer is a cook and a consumer is
some person eating (consuming) the cakes (items) which
are produced by the cook and put onto a table (the
buffer) in front of the consumer. Thus, the scenario in
Fig. 3 can be presented in the kitchen scenario view as
depicted in Fig. 4. Note that only one consumer is shown
because the behavior of the consumer component in gen-
eral is interesting for the user validating the model.

For a representation of a VL model’s behavior di-
rectly in an application-specific layout (e.g. the kitchen
view), the graphical objects used in the VL model need
to be mapped onto icons belonging to an application-
oriented kind of layout. The choice of representations
suitable for the VL model objects depends on the nature
of a problem domain and its complexity, the preferences
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of users, the degree of their expertise in the problem
domain, and on the modeling phase.

In an early modeling phase, when the model is still
on a very abstract level, a concrete visualization might
have nothing to do with the real application domain of
the model. For algorithm animation, there might not
even be a real application domain (e.g. for modeling
“mutual exclusion). But a realistic scenario from some
easy-to-imagine real-world application domain (in the
sense of a metaphor, where the literal meaning also is
not the meaning intended) may help to get insights that
are more difficult to get when looking at the formal
model. Ideally, such a metaphor is used to communi-
cate new concepts — the user recognizes anomalies be-
tween the existing knowledge (the formal model) and
new information provided by the metaphor, and creates
new knowledge by correcting the model to accommodate
both sources (see [12]). This process can be improved
if the user is given multiple metaphors, each correcting
invalid extensions that might have been based on a sin-
gle one. An example for two different metaphors for the
Producer-Consumer model is given in Section 4 where
the kitchen metaphor and the bottle machine metaphor
are introduced as basis for scenario animation (cf. Fig.
10).

In a later modeling phase, a visualization could even
be on a higher abstraction level than the formal model
itself. Consider for example a quite complex Petri net
modeling a network protocol. We only want to know
whether each host in the network is getting a message
at some time and forwarding it. But the Petri net might
contain so many places and transitions modeling the con-
trol conditions that we cannot immediately see whether
the behavior is modeled correctly. In a visualization we
would like to see only a graph of network nodes (hosts)
where an arc appears between two of them if a message
is sent from one node to another. This could be done by
defining visualizations only for the few marked places
of the net which concern the sending of a message. In
this case, the visualization does not add a fictitious ap-
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plication domain but cuts out details that have to be
present in the formal model but make it rather difficult
to validate the behavioral requirements.

Technically, we distinguish the representation of ob-
jects of a VL model from icons visualizing the context
which can be thought of as the ’stage for the show’ or
‘global situation’ in which a VL model is interpreted.
The context can be closely coupled with the overall be-
havior of the VL model under consideration and facili-
tates the users’ comprehension of this behavior.

2.8 Animation in Scenario Views

Another issue concerned with capturing the process of
visualizing dynamic behavior, is the nature of anima-
tion. Graphics used in a scenario view can be defined
to be either static or dynamic. Static graphics are still
and unchanging (the context graphics). Dynamic graph-
ics visualize some execution process undergoing succes-
sive changes by continuously modifying some of their
attributes (e.g. they move or change their size or color).
The definition of graphics for animation as building blocks
for scenario views is a subjective activity which depends
on the view designers’ creativity and imagination as well
as their interpretation of what a VL model is for and how
to convey the formal meaning through animation. Here,
the nature of animation differs considerably from the
notion of simulation as realized e.g. in GENGED. The
Producer-Consumer scenario depicted in Fig. 3 is an ex-
ample for a simulation run. Simulation visualizes state
changes within the means of the VL model itself. The
user who validates a model sees a graph, a statechart
or a Petri net, where simulation steps are carried out
by switching to another graph (as in Fig. 3), to another
marking (as in a Petri net), or by highlighting another
state (as in a statechart). Moreover, simulation relies on
discrete steps and cannot depict changes continuously,
e.g. the motion of an object. Animation visualizes the
state changes in a scenario view which shows the model
behavior using graphics from the application domain.
Moreover, state changes can be depicted dynamically in
the sense that the changes of graphical attributes (mo-
tion, change of size or color, ..) can be presented as con-
tinuous films.

It is widely accepted that effective validation is per-
formed when the users observe dynamic representation
of the system’s requirements. Thus, in this paper, we ad-
vocate the integration of continuous animation in GEN-
GED on top of the simulation features. It is very im-
portant that precision introduced by the VL model is
carried over to the scenario view in the sense that the
representation of a particular requirement should not de-
viate from or even contradict the actual meaning of the
requirements as given by the VL model.

In the next two sections we describe how VL mod-
els including VL diagrams like in Fig. 2 and scenario

views like the kitchen view can be defined and related
such that the behavior is transferred from the model to
the scenario view in a coherent way. For instance, we
want to ensure that the behavioral constraint “Produc-
ers, Buffers and Consumers may hold at most one item
at a time” is satisfied also in the kitchen view. Moreover,
we discuss how the simulation steps in a scenario can be
enhanced by more sophisticated animation features like
e.g. continuous motion of objects.

3 The GenGED Approach

GENGED (short for Generation of Graphical Environ-
ments for Design) [3,21] is based on the well-defined con-
cepts of algebraic graph transformation [9]. The process
for the validation of requirements using GENGED is car-
ried out in two steps, the specification of a visual mod-
eling language VL (described in Section 3.1), and the
specification of a certain VL model (see Section 3.2). A
VL model consists of a VL start diagram edited using
the VL diagram editor generated from the VL specifica-
tion, and a simulation specification. From the simulation
specification, the VL simulation environment is gener-
ated allowing the user to interact visually with the VL
model by generating scenarios in order to validate the
VL model’s properties. The two-step workflow for using
the GENGED environment is illustrated in Fig. 5.

Alphabet
Editor R
VL Alphabet
e VL Syntax Grammar
Editor

VL Diagram Editor

VL Specification

VL Model

T~ VL Diagram A
™ Simulation Rules | | Simulation | !

' / Component /,'

\

. ~-

VL Simulation Environment

Fig. 5 The GENGED environment

3.1 VL Specification

A VL is defined by its VL alphabet describing the sym-
bols of a VL and their spatial relations, and a set of
editing rules limiting the number of meaningful models
(VL syntax grammar). The VL alphabet together with
the VL syntax grammar defines then the VL specifica-
tion which is the basis for the generation of a VL-specific



graphical editor for diagrams corresponding to the spec-
ified VL.

Definition 2 (VL Alphabet)
A VL alphabet Ay, = (TG, CsP) is given by a type graph
TG and a constraint satisfaction problem CsP.

— A type graph TG = (Vs UV4 U Vg, Es U Es U Eg)
is an attributed graph signature which can be repre-
sented as a graph whose nodes are sorts and edges are
operations. The nodes in Vg specify the symbol types
of the language, the edges in Eg : Vg — Vg link types,
the nodes in V4 attribute types (data types), and the
edges in E4 : V4 — Vg couple the attribute types with
symbol types. The subgraph defined by (VsUVa, EgU
E4) comprises the abstract syntazx of the VL alpha-
bet. The concrete syntaz (the graphics used for the
layout of symbols and links) is represented by nodes
in Vg and edges in Eg : Vg — Vg coupling the sym-
bol types with their respective layout graphics in Vg.

— A graphical constraint satisfaction problem CSP which
is a set of equations defining the spatial relations be-
tween different symbols by restricting the scope of
constraint variables (denoting position and size of
graphics). The CsP has to be solved by an adequate
variable binding in each diagram over the VL alpha-

bet (see e.g.[3]).

VL diagrams are instances of a VL alphabet, e.g.
graphs typed over the abstract syntax of the type graph.
Conceptually, the layout for each symbol (the concrete
syntax) is added to the abstract syntax by linking the
symbol vertices to graphics. The Csp of the VL alphabet
then is used to compute a concrete configuration of valid
variable bindings for the positions and sizes of graphics.

Definition 3 (VL Diagram)

Let Ay, be a VL alphabet according to Def. 2. Then, a
VL diagram Dvy is an attributed graph typed over the
type graph TG of Ay . Additionally, the variable bind-
ing defining the layout configuration satisfies the Csp of
AVL-

Ezample 8 (VL Alphabet and Diagram)

We consider the graph-like VL to visualize component-
based message-passing systems that was introduced in-
formally in Section 2 (called Component VL from now
on). Fig. 6 (a) shows a simplified kind! of the VL al-
phabet for the Component VL. Symbol types are given
by the nodes Component, Message, MessAssoc (Message
Associations) and Channel of the abstract syntax graph
in the upper part of Fig. 6 (a). The edges labeled s and
t denote the source and target relations of channels. At-
tribute types are nodes depicted as rounded rectangles
and contain the String datatype for component names
(CName) and message texts (MName).

! In this article we do not concentrate on the definition of
graphics and CsPs which is comprehensively described in [2].
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Fig. 6 (a) VL alphabet of the component VL and (b) VL
diagram typed over the VL alphabet

In the lower part of Fig. 6 (a) we see the respective
symbol type layout (the concrete syntax): components
are drawn as boxes with their names inside, messages are
cylindric containers containing text (e.g. address, sender,
content,...), channels are thick lines connecting two com-
ponents, and message associations are arcs connecting a
message and the component which is keeping the mes-
sage currently. The Csp (not shown in Fig. 6 (a)) makes
sure, e.g., that message containers are always depicted
below component boxes, and that the channels between
components touch the borderlines of the boxes.

One VL diagram according to this alphabet showing
a state of a Producer-Consumer model, is illustrated in
Fig. 6 (b). Here, in the upper part of the figure, the nodes
are instances of the respective symbol types in the type
graph. Note that we abstract from the notion of Mes-
sage: a message can be anything to be passed between
components, not just text.

Sometimes two different kinds of diagrams are logi-
cally related, e.g., class diagrams and statecharts. In this
case, a VL specified in GENGED would comprise a com-
bination of both kinds of diagrams. A concrete diagram
(e.g. a statechart) then can be seen as one view on the
complete model. See [6] for the definition of such a com-
bined VL for a two-level architecture design language
consisting of a network level (a graph) and a specifica-
tion level where each graph node is refined by a behavior
specification (a Petri net).

The editing of a VL diagram is realized by applying
syntax grammar rules (covering the insertion and dele-
tion of symbols as well as the modification of symbol
attributes) to the respective VL diagram in the gener-
ated visual editor. In addition to syntax directed editing,
GENGED supports free-hand editing based on a parse
grammar [8]. For rule applications, the graph transfor-
mation engine AGG [29,1] is used. The VL syntax gram-
mar restricts the set of VL diagrams comprising the VL
to the meaningful ones.

Definition 4 (VL Grammar)
Let Ay be a VL alphabet according to Def. 2. A VL
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grammar GGy, = (Svi,Rulesyr) w.r.t. Ay consists

of

— a start diagram Sy, a VL diagram w.r.t. Ayr ac-
cording to Def. 3,

— a set of rules Rulesyy where each rule r € Rulesyr,
consists of a left-hand side L and a right-hand side
R which are VL diagrams, a rule morphism L-o> R
which is a partial attributed graph morphism on the
abstract syntaz level, and (optionally) some negative
application conditions.

Definition 5 (VL Specification, VL)

The visual language V L which is described by the visual
language specification Specyr = (Ayr,GGvyr) with
GGy = (Svyr,Rulesyr)) is given by all VL diagrams
Dy derivable from the start diagram Sy with the VL
rules in Rulesyy,:

VL= {DVL|SVL :*>Ruleva DVL}

3.2 Simulation Specification

The behavior of a VL model is specified by VL rules
called simulation rules which represent transitions be-
tween system states. All VL diagrams that can be gen-
erated by applying simulation rules beginning from the
start diagram comprise the VL model. Technically, a VL
model is a sublanguage of the visual modeling language
VL.

Definition 6 (VL Model)

A VL model VLM is a sublanguage of VL defined by
the VL specification Specvim = (Avi, GGsimu), where
GGsimu = (Svi, Rulessimy)) is a simulation grammar.
For each simulation rule r € Rulesgimy, the left-hand
side L contains the subpart of the state relevant for the
state transition to be considered. In the right-hand side
R, the update of this subpart is modeled after the state
transition has been performed.

VLM = {Dvr|Svim = Rules,in, Dvi}

One derivation sequence Sy 1y :*>Rulessi»,nu Dy, of
a VL model corresponds to a scenario. The choice of
rules and rule matches and the resulting rule applica-
tions leading to such a scenario is called simulation of a
VL model.

Using the GENGED simulation component, simula-
tion rules may also be grouped to simulation expressions
by various control structures such as loops, sequential
composition of rules and conditional rule applications.
The set of simulation expressions together with the start
diagram defines the simulation specification. In order to
keep the examples simple, we restrict ourselves to simu-
lation grammars here and do not regard more complex
simulation specifications. Thus, a simulation specifica-
tion corresponds to a simulation grammar in this paper.

Ezample 4 (Simulation Grammar)

A part of the simulation grammar for our Producer-
Consumer model is shown in Fig.7. The complete simula-
tion grammar consists of four rules corresponding to the
possible actions produce, deliver, remove and consume.

L/NAC

1:Component

1:Component

produce

Producer
=

2:Component <-
[scampalen | \ ol
1:Channel

2:MessAssoc

L/NAC

deliver |Producer

Item

- By 4

Producer — Buffer
[ —— [——— [——1
e e

Fig. 7 Simulation grammar for the Producer-Consumer
model

The rules remove and consume are not shown in Fig.
7 as they are constructed analogously. Rule morphisms
from the left-hand side L to the right-hand side R are
indicated by numbers. A negative application condition
(NAQC) specifies a situation which must not occur for the
rule to be applied and is indicated by dashed boxes in
the abstract syntax of the left-hand sides of the rules and
by crossed-out objects at the concrete syntax level. The
NACs model the system constraint that a component
may hold at most one message. The layout (the concrete
syntax) of the symbols and links in the rule graphs (L, R
and the NAC) is computed automatically as a solution
of the Csp defined for the VL alphabet.

To apply a simulation rule to a diagram of our VL
model (the graph depicted in Fig. 6 (b)), we have to find
a mapping from the objects (nodes and edges) in L to
the objects in the graph. Moreover, the NAC of the rule
must not be present in the graph. Only one rule from our
simulation grammar is applicable to the state in Fig. 6
(b), namely rule remove. The application of a rule to a
graph resulting in a graph modified according to the rule
is called a derivation. In the case of our simulation gram-
mar, the derivations are called simulation steps because
the rules model the transitions from one system state
to another. Fig. 8 illustrates a simulation step. The rule
remove is applied to graph G resulting in graph H.
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Fig. 8 A simulation step for the Producer-Consumer model

3.8 Generation of Simulation Grammars for arbitrary
VL Models

In Section 3.2, we simply defined the simulation gram-
mar with respect to our producer-consumer model and
thus gave our VL model an operational semantics. Usu-
ally, it is desirable to consider more than one VL model
for a specific VL (such as Petri nets, for instance). Then
the specification of the respective simulation grammar
for each different net by the user is not feasible. Rather,
the operational semantics should be fixed once for a spe-
cific VL and cover all VL models.

There are essentially two ways to define operational
semantics for behavioral models by graph transforma-
tions [10]. In the first approach, graph transformation
rules specify an abstract interpreter for the entire lan-
guage as proposed, for example, in [5] for a simple version
of statecharts. Such an interpreter is valid for the whole
language and can be applied to all valid diagrams. This
first approach has been followed in the GENGED envi-
ronment (see Fig. 5) up to now, where the simulation
grammar is edited by the language designer using the
grammar editor. The disadvantage is that such an ab-
stract interpreter is not a good basis for animation since
animation is highly dependent on a specific model.

As a second approach to operational semantics, each
model can be “compiled” into a set of rules. Roughly,
models are translated to simulation rules by a “com-
piler”, for example yet another graph grammar. The re-
sulting set of simulation rules is specific to a particu-
lar model. Note that if such a compiler is specified as
graph grammar, the right-hand side of a compiler rule
contains a complete rule?. This second “compilative” ap-
proach is followed in this paper because the generated
model-specific simulation rules provide a good basis for
animation. We describe a “compiler” grammar for our
Component VL which generates for each VL diagram

2 Technically, this generated rule is represented as graph.
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over the Component alphabet a corresponding simula-
tion grammar (and thus establishes a VL model). Ap-
plied to our producer-consumer diagram in Fig. 6 (b),
the compiler grammar generates the set of simulation
rules introduced in Section 3.2.

Compiler rules can be generally specified as follows:
We distinguish between static and dynamic symbol types
in a VL. Static symbols do not change (they comprise the
context of a VL model), and dynamic symbols change
during simulation. In our Component VL, for instance,
components and channels are static symbols whereas
messages are dynamic. Each left-hand side of a com-
piler rule contains the static symbols which are part of
an action (a transition between two system states of a
VL model). The corresponding right-hand side contains
a simulation rule covering the respective transition from
one system state to the next, containing the static sym-
bols from the left-hand side plus dynamic symbols which
are deleted or generated by the simulation rule. Fig. 9
illustrates the abstract syntax of the compiler rules for
our Component VL.

L /NAC R| L/NAC R
Component 1:Component ‘ gen_ .
"N 1 newMsg(String)|| . |(string)
i Channel ; : -
""""""" '
(String)
L /NAC R|L R
Component Component gen_ ‘ 1:Component ‘ . ‘ 1:Component ‘
delMsg(String)
B t (String)
i Channel : -
""""""" '
(String)

R| L/NAC

R

1:Component

MessAssoc

2:Component | | 98- )

mvMsg(String| P S ("é‘:m?
| — e

| | T || et

MText = |

(string

(Str!ng)‘ Message ‘ Message

Fig. 9 Compiler rules to generate simulation grammars from
VL diagrams over the Component alphabet

For each different action type in a conceivable VL
model (generate a new message, move the message along
a channel to a right neighbour component, delete a mes-
sage), there is one rule in the compiler grammar. For the
generation and deletion of messages, only single compo-
nent symbols are concerned. Hence, the first two rules
require one component symbol in their respective left-
hand sides. The NACs ensure that the component al-
lowed to generate a message is one of the first in the
communication chain (e.g. it has no left neighbours, like
the producer in Fig. 2) and, analogously, the component
allowed to delete a message is one of the last in the chain
(e.g. it has no right neighbours, like one of the three con-
sumers in Fig. 2). For the movement of messages along
a channel, we have to consider two components with a
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channel between them. Each compiler rule has to be ap-
plied exactly once at each possible match.

As an example we consider the generation of the
simulation grammar for the Producer-Consumer model
partly depicted in Fig. 7. These simulation rules are gen-
erated by applying the compiler rules from Fig. 9 to
the Producer-Consumer diagram from Fig. 6 (b): The
first simulation rule produce is generated by applying
the compiler rule gen_newMsg(String) in a way that
the “1:Component” node from the left-hand side of the
compiler rule is mapped to the “l1:Component” node in
the diagram. The string variable (the message text) is
mapped to “Item”. According to the right-hand side of
the compiler rule, the simulation rule produce is the re-
sult of the compiler rule application. The other simula-
tion rules are generated analogously.

4 Generation of Scenario Views in GenGED

In this section, we explain how scenario views are de-
fined by an extension of the VL alphabet defined so far
(called Kernel Alphabet from now on). The extension
embeds new symbol types that are visualized in a new
layout but are connected to the old symbol types of the
kernel alphabet to allow a coherent translation from all
diagrams in the old layout to the scenario view.

As sketched in Section 2, our aim is the integration
of animation operations (such as continuous motion of
graphics) with the simulation features in GENGED in a
way that the behavior of the VL model is carried over
consistently to the scenario view. Therefore, it is neces-
sary to scrutinize the relationship between a VL model
and its corresponding visualization to avoid the devel-
opment of ad-hoc visualizations that are not related to
the model. Instead, scenario views should be developed
systematically and be driven by the underlying behav-
ior (formalized as simulation grammar in GENGED) for
which the visualization is used. Hence, our approach is
based on a formal view transformation graph grammar
which is used not only to transform the start diagram
of the underlying VL model to its new layout in the
scenario view, but also to map the simulation rules to
animation rules in the scenario view. These animation
rules are modeled by grammar rules which are enhanced
by operations for continuous changes of objects such as
motions or changes of size or color. Note that in our ap-
proach the original formal model is not changed since the
visualization process takes place after the formal speci-
fication of the model.

4.1 Extending the Kernel Alphabet to a View Alphabet

Let us consider two sample scenario views for our ab-
stract Producer-Consumer model for two different ap-
plication domains:

— the kitchen view (presented already in Section 2),
where the producer is a cook and the consumer is
some person eating the cakes (items) which are pro-
duced by the cook and put onto a table (the buffer),

— and a bottle machine view, where people can return
empty bottles with refundable deposit. The machine
(the buffer) accepts an empty bottle (the item ) from
a person (the producer). Then the bottle is trans-
ported via a conveyor belt to a box (the consumer).
The bottle falls into the box (it is consumed).

Fig. 10 shows a state of a Producer-Consumer model
(for simplicity we have only one consumer here), its ab-
stract syntax and two snapshots of this state accord-
ing to the two different application domains kitchen and
bottle machine. Note that the channels specified in the
formal model are not depicted in the first scenario view
but one channel namely that one between the buffer and
the consumer has a visualization as conveyor belt in the
second scenario view such that the two views are not
isomorphic but structurally different.

Abstract Syntax

7
) Producer,
! 7

Producer Buffer ~ Consumer

e

Item

|
' Formal Model
|

Scenario View 2

Scenario View 1

Fig. 10 Two scenario view snapshots of a state of the
Producer-Consumer model

On a first glance, it seems that for both the VL model
and its two views, the abstract syntax remains the same
and only the layout for the symbols is different. But, as
in the GENGED approach symbol types are connected
with symbol graphics, we cannot simply exchange the
concrete syntax levels. Consider, for example, the layout
for component nodes: In the formal model, each compo-
nent symbol is drawn as a box. In the kitchen scenario
view, a component may be either visualized as a cook (if
it is named “Producer” in the formal model), or as a ta-
ble (if it is the buffer) or as a person sitting on a chair (if
its meaning is “Consumer”). The visualization depends
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not only on the symbol type in the abstract syntax of the
formal model, but also on the textual attributes which
carry the meaning of each symbol in a VL model.

Thus, for the definition of a new scenario view, we
have to find a way to extend the kernel alphabet by
model-specific symbols which are visualized differently
in the scenario view. We call the extended alphabet View
Alphabet. Again, we use the notions dynamic and static
symbols for symbols that are deleted or generated in
some simulation rule (dynamic symbols) and symbols
that are preserved by all simulation rules, e.g. that com-
prise the context (static symbols). The corresponding
symbol types in the alphabet are called dynamic or static
symbol types.

Definition 7 (View Alphabet)

For a given kernel alphabet with a set of symbol and link
types and a given VL model consisting of a VL diagram
and a set of simulation rules over this kernel alphabet, a
view alphabet is constructed as follows:

1. The initial view alphabet is the kernel alphabet.

2. (Static symbols)
For each static symbol A in the VL diagram a new
symbol type node is added to the view alphabet. The
new symbol type node is connected to the original
symbol’s type node of the kernel alphabet and is at-
tributed by the new layout graphic for the scenario
view. Formally, the new node represents a subtype of
the original symbol type, so we call the new symbol
type node subtype and its connection to the origi-
nal symbol type a subtype link. For each link in the
VL diagram between the static symbol A and a static
symbol B, sublinks are inserted in the view alphabet
between the corresponding subtypes.

3. (Dynamic symbols)
If there exists a link between a static symbol type S
and a dynamic symbol type D in the kernel alphabet,
then for each of the static subtypes of S in the view
alphabet, a dynamic subtype of D is generated, linked
to the static subtype and (by subtype link) to its dy-
namic symbol type D in the kernel alphabet. The new
dynamic subtype of D is attributed by the new layout
graphic for the scenario view.

4. (Layout Constraints)
A new constraint satisfaction problem defining lay-
out restrictions is specified for the links between the
subtypes according to their spatial relations.

Note that the original kernel alphabet is not changed
by the construction of a view alphabet; even the origi-
nal layout of the old symbol types is still available. At-
tributes are not always needed in the model-specific part
of the view alphabet since attributes usually describe
some semantic notion of a symbol. In the scenario view,
this notion might be already captured by the visualiza-
tion of the corresponding subtype symbol. If they are
needed (e.g., for graphical constraint computation), the
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attributes are simply copied to all subtypes of the at-
tributed symbol type.

Example 5 (Kitchen View Alphabet)

An example for a view alphabet is given by Fig. 11
showing the view alphabet for the kitchen view of the
Producer-Consumer model. For the static symbol type
Component we constructed the subtypes C-Producer, C-
Buffer and C-Consumer. For the static symbol type Chan-
nel, the subtypes Ch-Producer-Buffer and Ch-Buffer-Cons-
umer are constructed. The sublinks from the Channel-
subtypes to the Component-subtypes are added accord-
ing to the Producer-Consumer diagram in Fig. 6 (b). For
the dynamic symbol types Message and MessAssoc, sub-
types are created for all Component subtypes. All sub-
types are linked to the corresponding supertypes in the
kernel alphabet and to their scenario view layout graph-
ics (as indicated by the dashed lines in Fig. 11). The
layout of the view alphabet subtypes (formally defined
by a CsP, not shown here) is indicated by the spatial re-
lations between the layout graphics. The new CsP con-
straints ensure that the respective icons are positioned
adequately, e.g. that the cake is depicted on top of the
stove or on top of the table depending on the respective
component subtype the message is associated to.

Kernel Alphabet

‘ Channel t:j Component,l‘_‘ MessAssocjﬂ( Message ‘

Ch-Producer-BﬁErJ ‘ Ch-Buffer- C}gnsume\‘\
—
|| C-Producer ‘ C-Buffer ‘ / C-Consumer

,/ //I‘ MA-BuﬁM ‘ MA- Consum}/‘
1
/ IM-Buffer ,M
/

Fig. 11 View alphabet for the kitchen view of the Producer-
Consumer model

4.2 Translating the VL Model according to o View
Alphabet

Now we extend in a systematic way the abstract syntax
of our VL model such that it fits to the view alphabet:
We define a view transformation based on the view al-
phabet. The view transformation is formalized as graph
grammar whose rules are applied on the one hand to
the VL diagram representing the start state of our VL
model, and on the other hand to the VL model’s sim-
ulation rules. Fig. 12 shows the abstract syntax of the
view transformation rules for the kitchen view of our
Producer-Consumer model. View transformation rules
extend the abstract syntax of a VL diagram by symbols
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Fig. 12 View Transformation grammar for the kitchen view of the Producer-Consumer model

typed over the new subtypes in the view alphabet. The
new layout of a VL diagram whose abstract syntax has
been extended by view transformation is fixed already
by the concrete syntax for the new symbols as defined
in the view alphabet.

The construction of the view transformation rules is
quite straightforward: Depending on its kernel symbol
type and its textual attribute, each symbol is extended
by a corresponding subtype symbol, and each link be-
tween two symbols by a sublink between the correspond-
ing subtype symbols.

We have two rules for each of the three component
subtypes in our view alphabet: one rule adds the specific
component subtype node, the other treats the case that
the component holds a message: in this case a specific
message subtype node is created and associated to the
component. Two other rules add the channel subtype
nodes and links.

The view transformation grammar is used to trans-
form a VL model to a scenario view layout in two steps:
Firstly, the start diagram of the VL model is transformed
by applying the view transformation rules to it as long as
the rules are applicable. Secondly, the simulation rules
(see Fig. 7) are transformed into the scenario view lay-
out as well by applying the view transformation rules
to the left-hand side and to the right-hand side of each
simulation rule. A view transformation applied to the
simulation rule deliver is shown in Fig. 13. Instances of
the subtype symbols (and, implicitly, their new layout)
are added to each rule side. Note that the original layout
of instances according to the kernel alphabet is not lost
by the view transformation but only left out in Fig. 13.

4.8 Animation of Scenarios in the Scenario View

The implementation of the concepts presented so far in
the GENGED environment is work in progress. An ani-
mation editor [19] allows to enrich the transformed sim-
ulation rules for the scenario views by animation oper-
ations realizing continuous changes of graphics such as

L/NAC R
Producer —  Buffer
A

2:Component

/| CName
Producer
1:Component
1:MessAssoc
[amessassoc |

Item

CName

Buffer

deliver 1:Channel

View Transformation of R
R J L

A cName
n
Producer 1
1:Component,

deliver

:
.

tem /¢
.

,

,

[cromen]
;

/

Ch-Producer-Buffer

:
4 - f
,

1 | MA-Producer|

,

‘\

Fig. 13 A simulation rule transformed into the layout for
the kitchen scenario view

moving, appearing or disappearing, growing or shrink-
ing or changing the color. The view designer defines
these animation operations visually, e.g. by drawing a
required on-screen route interactively on the scenario
background. Moreover, more than one animation oper-
ation can be defined for one rule: a time-line diagram
at the bottom of the screen in Fig. 14 shows the start-
ing time and duration for each animation operation and
allows the view designer to change them. Animation op-
erations are executed during rule application, such that
not only discrete steps from one system state to another
are shown but rather a continuously animated change of
the scene. Scenario animation then comprises the appli-
cation of these enriched simulation rules (called anima-
tion rules) in the layout of the scenario view to states of
the VL model. Fig. 14 shows the animation editor where
the upper part depicts the animation rule. In the lower
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part, the time line for the synchronization of starting and
ending times for animation operations is shown. In our
example, one linear-move operation starts half a second
after the beginning of the animation step and lasts 3 sec-
onds. The second linear-move operation starts while the
first operation is still running and ends after 5 seconds,
i.e. it takes longer than the first motion.

X+ Animation Editor WRERBLI
File Edit Animate Extras Help
MECIRENF
Rules produce
9 R produce " 3 ane sor s00
@ 8 Whsinst:Cakeonstoy| || P Do g b e
#fu Linear Move RN o B
/g |Linear Move - e
R deliver = d‘qﬁ Z
R remove —
R consume —
2]
T
" " I " " I " " I -
t t t t t t t t } |
0 1 2 3 4 5 6 7 8 9
Linear Mowe [LHS Inst: CakeOnStove]
2 29 Linear Move [LHS: Inst: CakeOnStove] B
|+R. i} | D
l | [roox |
L

Fig. 14 The animation editor in the extended GENGED
environment

Single animation steps can be viewed in the anima-
tion environment by applying an animation rule to a VL
diagram. Animation sequences can be recorded by per-
forming a sequence of animation rule applications. The
complete animation specification then is stored in the
XML-based SVG format (Scalable Vector Graphics [33])
and can be viewed by any external SVG viewer tool.

In a conceivable GENGED user interface for han-
dling different views, the formal model should be shown
in the layout of the kernel alphabet in one window, the
scenario views (one or more at a time) in other windows.
The triggering of the simulation or animation steps (by
selecting a rule) is visualized in all scenario views (and
the formal model itself) at once. If there is a structural
change in the formal model (such as adding a compo-
nent), then the generation of adequate scenario views
has to be repeated, i.e. if the view alphabet is changed
by the view designer, the view transformation grammars
must be re-generated.

4.4 Summary: The Complete Methodology in GENGED

Summarizing, we presented a methodology enriching the
GENGED environment by means to define scenario views
and their animation in a generic way. Our approach
is heavily based on graph grammars which allow flex-
ible model transformations for various purposes. Fig. 15
presents the GENGED environment (whose basic fea-
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tures were depicted in Fig. 5) now extended by the sce-
nario view methodology proposed in this paper.

Alphabet ()]
Editor

VL Specification

VL Kernel Alphabet
) _,VL Syntax Grammar

Grammar

VL Diagram Editor

VL Model

[ =
VL Diagram
> Simulation Rules

View Alphabet

VL Kernel Alphabet

# + model specific subtypes
and their layout

\ VL Model in Scenario View

N @ VL Diagram and

AN __ ~Simulation Rules
S Animation in the layout of an .
s Editor et i e
RN application domain -
’ ~ P
’ S (4) -7

N Ao
- ~ Animation Grammar -

VL Simulation and BRI, ) EUPPEL
Animation Environment ([l Aniatataii

‘ Animation Specification in SVG ‘

Fig. 15 The GENGED environment extended by features
for scenario view definition and animation

We explain Fig. 15 by adding to the workflow dif-
ferent roles for users of the GENGED environment (dif-
ferent roles need not necessarily be taken by different
persons) and describing who is doing what:

(1) The language designer defines the VL Specification
by using the Alphabet Editor to define the VL Ker-
nel Alphabet and using the Grammar Editor to define
the VL Syntax Grammar. Additionally (if the VL is
a visual behavior modeling language), he defines the
operational semantics (the Compiler) in terms of a
compiler grammar using again the Grammar Editor.

(2) The model designer uses the VL Specification to edit
a VL diagram and evokes the Compiler to generate
Simulation Rules from his VL Diagram. Alternatively,
the Simulation Rules can be defined “by hand” using
the Grammar Editor. The VL Diagram together with
the Simulation Rules specifify the VL Model.

(3) The view designer specifies a Scenario View by defin-
ing the View Alphabet (extending the VL Kernel Al-
phabet by subtypes according to the VL Model). Ad-
ditionally, he defines the View Transformation Gram-
mar over the view alphabet. Applying the View Trans-
formation Grammar to the VL Model, he generates a
transformed VL Model in the Scenario View.

(4) The animation designer uses the Animation Editor to
enhance the transformed simulation rules for the sce-
nario view by animation operations and thus con-
structs Animation Rules for the scenario view.

(5) the model validator works in the VL Simulation and
Animation environment by loading a VL Model (either
in the original layout or in the layout of a scenario
view) and simulating (or animating) its behavior by
applying the rules of the corresponding simulation
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(or animation) grammar. He can also generate ani-
mation sequences and export them to the SVG for-
mat, to be viewed by an external SVG viewer tool.

5 Conclusion and Future Work

We have reasoned about the benefits of a visual environ-
ment for the employment of visual modeling techniques
by discussing the GENGED approach. In general, ex-
isting tools supporting visual modeling are restricted to
a fixed visual modeling language. The advantage of the
GENGED approach is to support the generation of a
small application specific visual modeling environment
including the systematic derivation of scenario views in
the layout of an arbitrary application domain. This is
done by means of a formal view transformation gram-
mar, where the resulting animation rules are enhanced
by animation operations for, e.g., continuous motion of
icons. The definition of the operational semantics for vi-
sual models can be abstractly described by a grammar
generator (compiler). A model designer may use these
compilers without being aware of the theoretical back-
ground of their abstract specification. In order to learn
more about the practicability and feasibility of this ap-
proach, more complex case studies (VLs and scenario
views) have to be examined as future work.

Due to the generic and modular definition of syntax,
behavior and animation for formal visual models, the
presented framework reduces considerably the amount of
work to realize a domain-specific animation of a system’s
behavior. Yet, it would be even more desirable to have
an interconnection between GENGED and other tools
supporting the definition of VL models, e.g. the large
world of Petri net or UML tools. The motives for such
a tool interconnection are obvious: Petri net tools which
are focussed on formal analysis of their models could
profit from the scenario view support offered by GEN-
GED, whereas GENGED might export a Petri net to a
Petri net tool for formal analysis.

Within the Petri Net Baukasten [17] of the Petri
Net Researcher Group, the presented scenario anima-
tion framework of GENGED is planned to become an
extension of the functionality provided by the Petri net
tool environment Petri Net Kernel (PNK) [25] and by
the external tools integrated over the PNK. In order to
offer the features of GENGED to PNK users, an XML
conversion between the XML file formats of the PNK
and GENGED has been implemented [20]. Up to now,
place/transition nets edited with the PNK can be con-
verted to the GENGED format and vice versa. Work is
in progress to support the conversion of other Petri net
classes as well. An exchange then can take place for nets
belonging to net classes which are known both to GEN-
GED (suitable grammars for syntax and operational se-
mantics exist) and to the PNK (a specification of the
Petri net class and its firing rule exists). Thus, the gen-
eration of scenario views in GENGED becomes possible

for Petri nets which have been edited by the PNK or
imported from other tools to the PNK.

A more open tool interconnection is a modular ap-
proach where the formal model defined elsewhere is not
converted into the GENGED format and then imported
by GENGED, but where the tool wanting to perform an
animation, triggers animation steps by messages to GEN-
GED encoding rule applications for a specific scenario
view. This requires a library of scenario views (animation
modules) in GENGED and the ability to process remote
method invocation (as implemented e.g. by Java-RMI).
An application for such a modular use of scenario views
is described in [7]. Here, the integration of the tools PLA-
TUS, designed to construct visual behavior models and
analyze their performance, and GENGED for defining
animation modules is discussed.

Future work will be done to enhance the GENGED
environment in order to model and check scenario views
and to offer animation features to other tools via an in-
terface for remote method invocation. As views play an
important role not only for animation, we will consider
the abstraction of our methodology to allow more gen-
eral aspect-oriented views such as the combination of
various diagram languages in UML [30]. Adequate case
studies using different visual modeling techniques will be
investigated to validate the usefulness of our approach
towards a rapid prototyping environment for visual mod-
eling, simulation and animation.
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