
PNGT’04 Preliminary Version

View Transformation in Visual Environments
applied to Algebraic High-Level Nets

Claudia Ermel 1, Karsten Ehrig 2,

Institut für Softwaretechnik und Theoretische Informatik
Technische Universität Berlin, Germany

Abstract

Graph transformation systems are a well-founded and adequate technique to de-
scribe the syntax of visual modeling languages and to formalize their semantics.
Moreover, graph transformation tools support visual model specification, simula-
tion and analysis on the basis of the rich underlying theory.

Despite the benefits of model validation by simulation, sometimes it is preferable
for users to see the model’s behavior not in the abstract layout of the formal model,
but as scenarios presented in the layout of the specific application domain. Hence,
we propose the integration of a domain-oriented animation view with the model
transformation system. An animation view allows to define scenario animations
in a systematic way based on the formal model. The specification of the well-
known Dining Philosophers system as algebraic high-level Petri net serves as running
example for the extension of the model by an animation view and the derivation of
animation rules from the model transformation system. A scenario animation then
is obtained as transformation by applying the animation rules to model states. This
visualizes the behavior of the model in the layout of philosophers sitting around a
table and eating with chopsticks. A prototypical implementation of the concepts in
GenGED, a visual language environment, is presented.

Key words: graph transformation, Petri nets, animation view

1 Introduction

During the last decades the growing complexity of software systems led to
a shift of paradigm in software specification from textual to visual modeling
techniques which are used to represent aspects like e.g. distribution, compo-
nents, parallelism and processes in a more natural way.

1 Email: lieske@cs.tu-berlin.de
2 Email: karstene@cs.tu-berlin.de

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Ermel and Ehrig

The success of visual modeling techniques resulted in a variety of methods
and notations addressing different application domains, perspectives and dif-
ferent phases of the software development process. Common visual notations
like e.g. the UML [19] are often semi-formal in the sense that the syntax and
semantics of the models are defined informally with different, sometimes even
incompatible interpretations. The use of graph transformation techniques pro-
vides support to improve the preciseness of visual modeling techniques.

With graph transformation systems the concrete and abstract syntax of
various visual modeling languages can be described, and the semantics can
be formalized. Moreover, graph transformation tools [5] such as AGG [18,1],
GenGED [2,11] or DiaGen [14] support visual model specification, simula-
tion and analysis on the basis of the rich underlying theory. By simulation
we mean to show the before- and after-states of an action as diagrams of the
visual language used to define the formal model. Scenarios then are given
as sequences of actions, where the after-state of one action is the before-state
of the next action. In Petri nets, for example, a simulation is performed
by playing the token game. Different system states are different markings,
and a scenario is determined by a firing sequence of transitions resulting in
a sequence of markings. Using graph transformation, simulation is specified
by a behavior grammar, and a scenario corresponds to a derivation sequence
where the behavior rules are applied to a start diagram (given as graph), and,
consequently, to the derived diagrams.

Despite these benefits, often the simulation of abstract visual behavior
models (e.g. Petri nets, graphs or statecharts) is not flexible enough and,
hence, can be ineffective in the model validation process. The behavior of
a model based on (semi-) formal and abstract notations may not always be
comprehensible to users, due to several reasons, like e.g.: different aspects
like control flow and data flow are represented in a similar way (a common
problem in understanding Petri nets); information belonging to one model is
distributed in several submodels based on different visual modeling languages
(this can also lead to inconsistencies between the submodels); too much detail
is integrated in the model representation (e.g. in order to be able to perform
a complete formal analysis of the model); if the chosen modeling formalism
does not allow to model a distinguished feature by an adequate model ele-
ment, auxiliary elements (such as stereotypes in UML) or workarounds are
used which make it difficult for other people than the modelers themselves to
understand what is meant.

To this end, instead of simulating the model behavior, animation has be-
come a popular way to present a model’s behavior. Animation shows model
aspects in a layout visually different from the formal model. Actions are visu-
alized in a movie-like fashion, such that not only discrete steps (a before-state
and an after-state) are shown but rather a continuously animated change of
the scene. Unfortunately, the step from the formal behavior specification to
the animation may introduce new errors or inconsistencies in addition to those

2

Ermel and Ehrig

in the model which we want to discover by the validation.

Therefore, this paper proposes the use of formal views and view transfor-
mation on the basis of graph transformation for well-founded model simulation
and animation in order to facilitate the validation of model behavior in visual
environments. We extend the concepts of typed, attributed graph transforma-
tion by means for view integration and view restriction in order to to define
an adequate abstraction level for the simulation of visual behavior models.
Moreover, additional views for the animation of model behavior are added
in a systematic way to the model such that on the one hand customers can
easily understand and validate the model behavior, and on the other hand,
the additional views do not change the semantics of the modeled system and
can easily be replaced by other views. The definition of these so-called ani-
mation views and the animation of specific model behavior scenarios supports
the early detection of inconsistencies and possible missing requirements in the
model which cannot always be found by formal analysis only.

An animation view presents a state of the model in the layout of a specific
application domain. We call the simulation steps of a model animation steps
when the states (diagrams) before and after a simulation step are shown in the
animation view. By the transformation of a behavior model to an animation
view, the view might show only some aspects or parts of the system. Differ-
ent views can reflect (parts of) the behavior defined in the behavior model.
Fig. 1 sketches the relation between formal behavior models and animation
views in different application domains. Formal behavior models (e.g. Petri

statestate

VL Definition

Simulation Step
state

VL Model 1

statestate
Simulation Step

state

VL Model 2

statestate
Animation Step

state

View 1.1

statestate
Animation Step

state

View 1.n

statestate
Animation Step

state

View 2.1

statestate
Animation Step

state

View 2.n

Fig. 1. Different views on formal models

nets or state charts) are elements of a visual language, i.e. diagrams over the
corresponding VL. Such a language is given in the graph transformation rep-
resentation as a combination of a VL type graph and a VL syntax grammar
defining the valid diagrams for the VL. The behavior of a model is defined as
a graph transformation system where the start graph corresponds to the ini-
tial state and the behavior rules specify the valid state transitions (simulation
steps). We call the set of valid model states induced by the behavior rules VL
model. View transformation is applied to the complete VL model on the basis
of a view transformation system, thus realizing a consistent mapping of simu-

3

Ermel and Ehrig

lation steps to animation steps in the respective animation view. Moreover, by
adding continuous animation operations to the animation steps the resulting
scenario animations are not only discrete-event steps but can show the model
behavior in a movie-like fashion. Consequently, requirements and scenarios
can be interactively played out and validated in one or more animation views.

The paper is organized as follows. In Section 2, the running example is
introduced, the well-known model of The Dining Philosophers modeled as
algebraic high-level net (AHL net). The formal definition of AHL nets is re-
viewed. In Section 3 we define the graph transformation system for the Dining
Philosophers net and give a general construction for mapping the behavior of
AHL nets to graph transformation systems. Section 4 formally defines views
and their interaction and integration. Moreover, we introduce animation views
[10] as a special kind of views and apply the concept of view transformation
to realize a consistent mapping from the behavior model to an animation
view. This is illustrated by the definition of an animation view for the Dining
Philosophers net. The main implementation issues of the visual environment
GenGED are presented in Section 5 with a focus on the definition of anima-
tion viewss. Finally, in Section 6, we summarize the main achievements and
outline some open problems and directions for future work.

2 The Dining Philosophers modeled as AHL Net

An AHL net is a specific, well-defined high-level net variant, a combination of
a place/transition net [17] and an algebraic datatype specification SPEC. Arc
inscriptions ar SPEC-terms and tokens are elements of a corresponding SPEC-
algebra [7]. In this section, we review the definition of AHL nets and their
behavior as given in [15], and present our running example, the specification
of the well-known Dining Philosophers as AHL net. The pre- and postdomain
of a transition are given by a multiset of pairs of terms and places, i. e. as
elements of a commutative monoid.

Definition 2.1 (Algebraic High-Level Net)
An algebraic high-level net N = (SPEC, P, T, pre, post, cond) consists of an al-
gebraic specification SPEC = (S, OP,E; X) with equations E and additional
variables X over the signature (S, OP), sets P and T of places and transitions
respectively, pre- and postdomain functions pre, post : T → (TOP (X)×P)⊕ as-
signing to each transition t ∈ T the pre- and postdomains pre(t) and post(t) re-
spectively and a firing condition function cond : T → Pfin(EQNS(S, OP,X))
assigning to each transition t ∈ T a finite set cond(t) of equations over the
signature (S,OP) with variables X.

Remarks
• TOP (X) is the set of terms with variables X over the signature (S, OP).

TOP (X)×P is defined by TOP (X)×P = {(term, p)|term ∈ TOP (X), p ∈ P}.
4

Ermel and Ehrig

• The pre- and postdomain functions pre(t) (and similar post(t)) have the
form pre(t) =

∑n
i=1(termi, pi) (n ≥ 0) with pi ∈ P, termi ∈ TOP (X).

This means that {p1, ...pn} is the predomain of t with arc-inscription termi

for the arc from pi to t if {p1, ..., pn} are disjoint (unary case) and arc-
inscription termi1 ⊕ ... ⊕ termik for pi1 = ... = pik (multi case). In our
sample AHL net (see Example 2.3) we have the multi case.

Definition 2.2 (Marking and Firing Behavior of AHL Nets)

Let N = (SPEC, P, T, pre, post, cond) be an AHL net according to Def. 2.1,
and let A be a (S, OP,E)-algebra.

• A marking m is an element m ∈ (A× P)⊕.

• Enabling and firing of transitions is defined as follows: let V ar(t) be the set
of local variables occurring in pre(t), post(t) and cond(t). An assignment
asgA : V ar(t) → A is called consistent for t ∈ T if the equations cond(t)
are satisfied in A under asgA. A transition t ∈ T is enabled under a con-
sistent assignment asgA : V ar(t) → A and a marking m ∈ (A × P)⊕, if
preA(t, asgA) ≤ m.

The marking preA(t, asgA) – analogously postA(t, asgA) – is defined for
pre(t) =

∑n
i=1(termi, pi) by preA(t, asgA) =

∑n
i=1(asgA(termi), pi), where

asgA : TOP (V ar(t)) → A is the extended evaluation of terms under as-
signment asgA. The successor marking m′ is defined in the case of t being
enabled by m′ = m 	 preA(t, asgA) ⊕ postA(t, asgA) and gives raise to a
firing step m[t, asgA〉m′.

Example 2.3 (The Dining Philosophers as AHL Net)
As example we show the AHL net for The Dining Philosophers in Fig. 2
(see [17,15] for the corresponding Place/Transition net). We identify five
philosophers as well as their chopsticks by numbers. Fig. 2 (a) shows the
initial situation where all philosophers are thinking and all chopsticks are
lying on the table. Fig. 2 (b) shows the AHL net with corresponding initial
marking (all philosopher numbers are on place thinking, all chopstick numbers
on place table). In Fig. 2 (b), the transition take is enabled as a thinking
philosopher and his left and right hand side chopsticks are available. The
firing of transition take with the variable binding p = 2, for example, results in
the AHL net with the same net structure as in Fig. 2 (b), but with a different
marking: token 2 is removed from place thinking and added to place eating,
and tokens 2 and 3 are removed from place table, as the chopstick computing
operation (p mod 5) +1 is evaluated to 3.

As datatype specification we have the specification NAT for natural num-
bers. The tokens on all places are elements of a corresponding NAT -algebra
[7], i.e. natural numbers. The arcs are inscribed each by one or more vari-
ables or terms from TOP (X) denoting computation operations to be executed
on token values if the transition fires.

5

Ermel and Ehrig

???

???
???

??? ???

2

1 3

4

1

2 3

4

5

(a)

5

(b)

2 34
5

1

2 34
5

1
take

BASIS

p p

(p mod 5) +1

p p
(p mod 5) +1

p
p

put

SPEC

table

eating

thinking

Fig. 2. The Dining Philosophers (a) modeled as AHL Net (b)

3 AHL Nets as Graph Transformation Systems

In this section, we review some basic concepts of the graph-transformation
based approach for the generic description of visual languages (VLs) and show
how the Dining Philosophers example can be presented in this approach.

3.1 The Visual Language of AHL Nets

The generic description of a VL using graph transformation results in a VL
specification consisting of a visual alphabet (a type graph) and a visual syntax
grammar. VL sentences are graphs typed over the type graph and can be
derived by applying the syntax grammar rules. Two levels of descriptions are
considered, called abstract syntax and concrete syntax. The abstract syntax
level describes the symbols and links used in the VL, whereas the concrete
syntax level describes their layout. The abstract syntax of a visual alphabet
is defined by an attributed graph structure signature, whereas the concrete
syntax extends this signature according to the layout of symbols, specified by
graphical operation symbols (cf. [3]) and by a graphic constraint statisfaction
problem on positions and sizes of the used graphics.

In the following, we present attributed graph structures as defined in [8].

Definition 3.1 (Attributed Graph Structure Signatures) A graph struc-
ture signature GSIG = (SG, OPG) is an algebraic signature with unary op-
erations op : s → s′ in OPG only. An attributed graph structure signature
ASSIG = (GSIG,DSIG) consists of a graph structure signature GSIG and
a data signature DSIG = (SD, OPD) with attribute value sorts S ′

D ⊆ SD such
that S ′

D = SD ∩ SG and OPD ∩OPG = ∅.
ASSIG is called well-structured if for each op : s→ s′ in OPG we have s /∈ SD.

ASSIG-algebras and ASSIG-homomorphisms build a category [8] which
is denoted by ASSIG-Alg. In the following, we call ASSIG-algebras at-
tributed graphs and ASSIG-homomorphisms attributed graph morphisms.

Now we can define the attributed graph structure signature ASSIGAHL for
AHL nets. AHL nets are considered as ASSIGAHL-algebras.

6

Ermel and Ehrig

Definition 3.2 (Visual Alphabet for AHL Nets)
The visual alphabet for AHL nets (shown visually in Fig. 3) is given by the

attributed graph structure signature ASSIGAHL = (GSIGAHL, DSIGAHL). In
Fig. 3, the sorts of GSIGAHL are represented as nodes. The operations are
the arcs between the sort nodes (the op-links between graph sorts), from sort
nodes to data nodes, (the attr-links between graph sorts and attribute sorts)
and the arcs connecting the abstract syntax sort nodes and the concrete syntax
sort nodes (the graphic-links). The DSIG part (data signature) consists of
the attribute value sorts of the basic specification, i.e. Nat and Bool and
their usual operations. The attribute values are used for the arc inscriptions,
tokens and transition firing conditions.

ArcPT

Place

ArcTP

TransitionToken

Nat Nat Nat

opsPT

Bool

EdgeTk
attrtv

optPT

optTP opsTPopsTk
optTk

attriTPattriPT attrcond

Net
opPNet opTNet

graphicPl graphicAPT graphicATP graphicTr

Abstract
Syntax

Concrete
Syntax

Fig. 3. Type Graph visualizing the ASSIG for AHL Nets

Visual sentences of a specific VL are ASSIG-algebras (attributed graph
structures) where the layout constraints of the corresponding Csp are satisfied.
For the AHL net alphabet, the constraints define for example that the token
number is drawn within the place figure, that an arc inscription is positioned
near the center of the corresponding arc, and that a firing condition is written
in the lower part of the transition rectangle.

In general, a VL syntax grammar (S, P) consisting of an empty start graph
S and a set P of language defining rules, defines the allowed editing opera-
tions and restricts the set of visual sentences to the meaningful ones. The
VL syntax grammar together with the corresponding VL alphabet define the
visual language V L = {V LS | S ∗

=⇒P V LS}, where V LS is the set of all VL
sentences derivable from the start sentence S of the VL syntax grammar with
the VL syntax rules R.

3.2 Modeling the Behavior of AHL Nets by Graph Rules

In this section we focus on simulating the dynamic behavior of visual models
based on a visual language (VL models). Formally, this is done by defining a
suitable graph transformation system in ASSIG-Alg.

Therefore, we first define the double-pushout approach to graph transfor-
mation on the basis of category ASSIG-Alg.

7

Ermel and Ehrig

Proposition 3.3 (Pushouts of ASSIG-Homomorphisms) Let M be a dis-
tinguished class of all homomorphisms f which is defined by f ∈ M if fGSIG

is injective and fDSIG = idDSIG for f in ASSIG-Alg. Given f : A→ B ∈M
and a : A→ C then there exists their pushout in ASSIG-Alg.

Proof: See [8].

Category ASSIG-Alg and class M are fixed throughout this section.

Definition 3.4 (Typed Attributed Graph Transformation System)
A typed attributed graph transformation system GTS = (S, P) based on
(ASSIG-Alg, M) consists of an ASSIG-algebra S, called start graph and a
set P of rules, where

(i) a rule p = (L
l← I

r→ R) of ASSIG-algebras L, I and R attributed over
the term algebra TDSIG(X) with variable set X of variables (Xs)s∈SDSIG

,
called left-hand side L, interface I and right-hand side R, and homomor-
phisms l, r ∈M , i.e. l and r are injective and identities on the data type
TDSIG(X),

(ii) a direct transformation G
p,m
=⇒ H

via a rule p and a homomorphism
L

m→ G, called match, is given by the
diagram to the right, called double-pushout
diagram, where (1) and (2) are pushouts in
ASSIG-Alg ,

L

(1)m

��

I

(2)

loo r //

i
��

R

m∗

��
G Dg

oo
h

// H

(iii) a typed attributed graph transformation, short transformation, is a se-

quence G0 ⇒ G1 ⇒ ...⇒ Gn of direct transformations, written G0
∗⇒ Gn,

(iv) the language L(GTS) is defined by L(GTS) = {G | S ∗⇒ G}.

This leads to the following definition of a VL model:

Definition 3.5 (VL Model) Let VL be a visual modeling language used
for the formal specification of behavior models, given by the VL alphabet
TG. Then, a VL model is a subclass of VL sentences modeling all possible
states of one specific behavior model, given by the typed, attributed graph
transformation system M = (TG, S, P), where S is the initial state (a VL
sentence) and P is a set of graph rules, called behavior rules. The VL model
states are given by the language ML ⊆ V L defined by the VL model: ML =
{D|S ∗

=⇒ D}.

For each VL behavior rule L
r→ R, L contains the subpart of the state

relevant for the state transition to be considered, and R models the update
of this subpart. Thus, a VL behavior rule represents the change caused by a
state transition. For example, a certain Petri net is a VL model according to
Def. 3.5 with respect to the visual Petri net language: The VL model is the
set of all sentences over the Petri net language with the same net structure
i.e. one fixed net but different markings. The markings are given by an initial

8

Ermel and Ehrig

marking and all reachable markings in the given net, which is expressed by
the behavior rules for Petri nets.

This “classical” approach to translate Petri nets to graph transformation
systems has its roots in the works of Kreowski [12], Parisi-Presicce et al. [16]
and Corradini et al. [6]. In the case of high-level Petri nets, multiple and
individual tokens can be represented by using attributed graph grammars
where tokens in high-level nets can be data of arbitrary algebraic data types.

In the following, we show that the token game of a Petri net can be given
in terms of the behavior of a VL model according to Def. 3.5. We construct
behavior rules which correspond to firing the transitions of the net. More
precisely, we have to ensure that a transition in the net is enabled if and only
if the corresponding rule is applicable to the visual sentence corresponding to
the net and that firing a transition in the net corresponds to a derivation step
in the grammar and vice versa. The token game then can be simulated by
applying the behavior rules to a VL sentence modeling a marked Petri net
(a VL model state). For each Petri net behavior rule L

r→ R, L defines the
predomain of a certain transition, and R defines corresponds to its postdomain.
Thus, r removes the marking from the transition’s predomain and adds the
required marking to the places in its postdomain. This approach to model
Petri net behavior can be applied to various types of low-level and high-level
Petri nets.

For AHL nets, one behavior rule is defined for each transition in the net.
Variables and operations from the algebraic specification are used in the rules.
The formal relationship between AHL nets and attributed graph grammars
is presented in [4]. There we give a proof of the semantical compatibility
of AHL nets and their representation as graph transformation system based
on the formal semantics of AHL net behavior (as given in Def. 2.2) and the
construction of graph derivations as pushouts in the category ASSIG-Alg of
attributed graphs and graph morphisms.

Example 3.6 (VL Model for the Dining Philosophers)
Based on our VL for AHL nets, the VL model for the Dining Philosophers

comprises all those VL sentences containing the places thinking, table and eating

as well as the transitions take and put and the arcs with term inscriptions as
depicted in Fig. 2 (b). As initial marking we assume all philosopher data
elements (1, ..., 5) on place thinking, all chopsticks (1, ..., 5) on place table and
no tokens on place eating. As our net contains two transitions, we have two
behavior rules for the transitions put and take realizing the transformations
of an eating philosopher to a thinking philosopher and back (see Fig. 4). The
effect of rule put is that the philosopher puts his two chopsticks down onto
the table. Rule take is the reversed rule of put. We use a variable for the
philosopher token (p). The data values for the two chopsticks p and (p mod 5)

+ 1 are computed by matching p to a number and by computing the value of
(p mod 5) + 1 according to the current binding of the variable p.

9

Ermel and Ehrig

thinking

table

eating

thinking

table

eating

put

p

p

(p mod 5) +1

p

p

p

(p mod 5) +1
p

thinking

table

eating

thinking

table

eating

take

Fig. 4. Behavior rules for the AHL net model Dining Philosophers

Note that it is possible to generate behavior rules for arbitrary AHL nets
automatically according to the general definition of firing transitions in AHL
nets. The algorithm for generating behavior rules is given in Def. 3.7.

Definition 3.7 (Translation of AHL Net Transitions to Graph Rules)
Each transition t ∈ T is translated to an attributed graph rule rt : Lt → Rt.
The attributed graphs in Lt and Rt of such a rule are ASSIGAHL-algebras.
Both contain Place nodes for all places in the pre- and postdomain of t. In Lt

[Rt], the places pi in the predomain [postdomain] are marked according to the
following algorithm:

for each arc a : pi → t [a : t→ pi]
for each arc inscription term tm ∈ inscr(a)

generate a token node of type Token attributed by a copy tk of tm;
connect the token node by an arc of type EdgeTk to place pi;

It is shown formally in [4] that this translation preserves the semantics, i.e.
that for each firing sequence in the AHL net there is a unique transformation
in the translated graph transformation system such that the resulting graph
corresponds to the marking of the AHL net.

The behavior rules are the basis for animation introduced in Section 4.

4 Animation Views for AHL Nets

To bridge the gap between the underlying descriptive specification of a process
(e.g. as Petri net) and a natural dynamic visual representation of processes be-
ing simulated, we suggest the definition of an animation view for a VL model.
On the one hand, this animation view must be easy to comprehend; people
who are non-specialists in the underlying formal process modeling technique
(e.g. Petri nets) should be able to observe (interesting parts of) the functional
behavior of the model. On the other hand, the behavior shown in the ani-
mation view has to correspond to the behavior defined in the formal model.
Hence, in this section we propose a graph transformation based view transla-
tion for a VL model from its formal specification to an animation view. Thus,
at first we give some general definitions concerning views on VL models, and
then define animation views as a special case of a view.

10

Ermel and Ehrig

4.1 Views for Behavior Models

Fig. 5 shows some aspects of the char-
acterization of views in UML [19]. Dif-
ferent stakeholders are to be seen who
look at different (sets of) diagrams
where each diagram contains informa-
tion about a subset of elements from
the same underlying model (depicted
here as a set of model elements). From
this informal characterization of mod-
els and views, we intend to reflect the
following features in our formalization:

Views

Diagrams

UML
Model elements

Views

Diagrams

UML
Model elements

Fig. 5. Relation of Model and Views

• The basic system model is a VL model (see Def. 3.5), i.e. a typed graph
transformation system M = (TG, S, P).

• A view is an incomplete specification of a system, focusing on a particular
aspect or subsystem. Hence, in our formalization, a view is a VL model
which is a part of a larger VL model. This part of relation is captured in
the formal definition of views (Def. 4.1) by a type graph morphism from
the type graph of the view TGV to the type graph of the larger VL model
TG. We define views at the level of type graphs for visual languages to
emphasize the fact that a view usually is presented using an adequate type
of diagrams, i.e. a special VL. Note that the recursive way to define views
allows us to have views of other views. The behavior of a view is given by
the restricted graph transformation system M to the type graph of the view
TGV (where the rules of the view are subrules of the rules of M).

• Different views of the same VL model can be related to each other. This rela-
tion is expressed formally in the definition of interaction of views (Def. 4.3).

• Two different views of a VL model can be composed to one common view
by gluing their common parts. This is called integration of views (Def. 4.4).

Definition 4.1 (View / Restriction)

Let M = (TG, S, P) be a VL model (see Def. 3.5) in VL. Then the pair
(V, v) with the VL model V = (TGV , SV , PV) and the embedding v : V →
M is called view of M or restriction of M to TGV , written V = M |TGV

.
The embedding v = (tV : TGV → TG, s : SV → S, fP :
PV → P) is called view embedding. tV : TGV → TG is
the type graph inclusion and s : SV → S is graph restric-
tion to TGV , written SV = S|TGV

, where the diagram
to the right is a pullback.

SV

(PB)g1

��

// TGV

t1
��

S m
// TG

For each p ∈ P there exists a subrule pV ∈ PV such that fP (pV) = p and
seV : pV → p is the subrule embedding induced by tV .

Obviously, view embeddings may be composed. This allows to regard a view
(V0, v0) of another view (V1, v1) of M as an extended view (V0, v0; v1) of M .

11

Ermel and Ehrig

Definition 4.2 (Extension of a View)
Let (V0, v0 : V0 → V1) be a view of V1 and (V1, v1 : V1 → V2) be a view
of V2. Then (V0, v0; v1 : V0 → V2) is also view of V2 with v0; v1 being the
composition of view embeddings constructed by componentwise inclusion and
subrule embedding: v0; v1 = (t1 ◦ t0, fS1 ◦ fS0 , fP1 ◦ fP0). We call the view
(V0, v0; v1 : V0 → V2) extension of view (V0, v0 : V0 → V1).

Additionally, we define constructions for the interaction between two views
and for the integration of different views into one view. Based on these con-
structions, we give a formalization for the consistency of views depending on
their view interaction.

Definition 4.3 (Interaction of Views)

Let (V1, V1
v1−→M) and (V2, V2

v2−→M) be two differ-
ent views of M = (TG, S, P) with V1 = (TG1, S1, P1)
and V2 = (TG2, S2, P2). The interaction of views is
defined as VL model I = (TGI , SI , PI) given by the

two common views (I, I
i1−→ V1) and (I, I

i1−→ V2) in
the pullback to the right (called interaction pullback).

TG1

t1

""FF
FF

FF
FF

F

TGI

i1

;;wwwwwwwww

i2 ##GG
GG

GG
GG

G (PB) TG

TG2

t2

<<xxxxxxxxx

Definition 4.4 (Integration of Views)

Let (V1, V1
v1−→ M) and (V2, V2

v2−→ M) be two
different views of M = (TG, S, P) with interaction
I = (TGI , SI , PI). The integration of V1 and V2

is the VL model U = (TGU , SU , PU) where the di-
agram to the right is a pushout (called integration
pushout). The rule set PU consists of the set of amal-
gamated rules pU = p1 ⊕ p2 over the subrule embed-
dings p1 ← pI → p2 induced by the interaction I.

TG1

t1

##HHHHHHHHH

TGI

i1

;;wwwwwwwww

i2 ##GG
GG

GG
GG

G (PO) TGU

TG2

t2

;;vvvvvvvvv

4.2 Defining Animation Views for VL Models

In order to represent the behavior of a VL model directly in a domain-oriented
layout, the system states are mapped onto graphical representations for real-
world objects and values (modeled by the type graph of the animation view).

The nature of animation differs considerably from the notion of simulation
as modeled so far. Simulation visualizes state changes within the means of
the VL model itself. The simulator sees a Statechart or a Petri net, where
simulation steps are carried out by switching to another marking (of a Petri
net) or by highlighting another state (in a Statechart). Moreover, simulation
relies on discrete steps and cannot depict continuous changes (e.g. there is
no state between a marking of a Petri net and the successor marking after a
transition has fired). Hence, we model animation actions by graph rules in the
layout of the animation view, and enhance these animation rules by attributes
for continuous changes of objects such as motions or changes of size or color.

Both the formal model F = (TG, S, P) and its animation view are different

12

Ermel and Ehrig

views of the same integrated VL model M . This integrated VL model M is
constructed by adding the symbols and links needed for the animation view
to the original type graph TG, to the start graph S and to the behavior rules
in P . We specify this construction by graph rules called view transformation
rules. On the basis of these view transformation rules it is possible to en-
force coherence between the behavior rules of the original VL model and the
animation rules of the animation view.

Definition 4.5 (Animation View of a VL Model)
Let TGA be the alphabet of an animation domain. Let F = (TGF , SF , PF)

be a VL model over a formal behavior specification language V L. Let M =
(TG, S, P) be a VL model with the integrated type graph TG = TGF ∪TGA,
where TG is constructed as pushout in ASSIGAHL over a common interface.
Let V GT be a set of rules (called view transformation rules), typed over TG.
The start graph S of M is derived from SF by applying the rules of V GT to
SF in a given order, where each rule is applied as often as possible, before
the next rule is applied. The rules in P are called animation rules. For each
animation rule L

r→ R ∈ P , L [R] is derived from LF [RF] of the corresponding

behavior rule LF
rF→ RF ∈ PF , by applying the rules of V GT (analogously to

the derivation of S) to the graphs in the rule sides.

Then an animation view of M is defined as view V = M |TGA
.

We suggest the following guidelines for the definition of view transforma-
tion rules to be applied to VL sentences over a Petri net alphabet:

• The animation context contains the part of the view which is not changed
by animation and where all animated symbols should be linked to. This
corresponds to the Net symbol of the Petri net alphabet. Therefore, the Net

symbol should be linked to the top-level symbol of the animation context.

• The animated part of the animation view consists of icons which are changed
(moved) during animation. These icons directly correspond to the tokens
of the Petri net. The layout and position of the icons depends on the place
where the token is lying in the active state. Therefore, the symbols for the
animated part should be linked to tokens depending on their places.

• Transitions and their adjacent arcs denoting their pre- and postdomains
correspond to animation rules applicable to specific states of the model in
the animation view. They are not linked to symbols from TGA.

Example 4.6 Animation View for The Dining Philosophers

Fig. 6 shows the integrated alphabet for the Dining Philosophers anima-
tion view where the AHL net alphabet (lower part of Fig. 6) is united with
an animation domain alphabet (upper part of Fig. 6). The animation context
consists of a round table with numbered plates on top. The animated part
are the thinking and eating philosophers positioned around the table, and the
chopsticks besides the plates. The position of a philosopher is defined in our

13

Ermel and Ehrig

animation domain alphabet by a constraint relating the philosopher’s icon’s
position to the position of her (numbered) plate icon. Constraints ensure as
well that plates are ordered in a circle on the table.

Place

Net

Transition

PreArc

PostArc

Token

Nat

NatTkValue

PostArcInscr

PreArcInscr

TrCond Bool

Nat

EatingPhilo ThinkingPhiloTable Chopstick

EP- Number PlateNumber TP- NumberNat Nat Nat
C- Number

PlacePlace

NetNet

TransitionTransition

PreArcPreArc

PostArcPostArc

TokenToken

Nat

NatTkValueTkValue

PostArcInscrPostArcInscr

PreArcInscrPreArcInscr

TrCondTrCond Bool

Nat

EatingPhiloEatingPhilo ThinkingPhiloThinkingPhiloTableTable ChopstickChopstick

EP- NumberEP- Number PlateNumberPlateNumber TP- NumberTP- NumberNat Nat Nat
C- NumberC- Number

Nat

Fig. 6. Integrated alphabet for The Dining Philosophers

Fig. 7 shows the view transformation rules which are typed over the inte-
grated alphabet in Fig. 6.

Net TableL

thinking

R
PlName

“thinking” Place

Token
TkValue

p

ThinkingPhilo

TP-Number
p

Net Table
PlName
“thinking” Place

Token
TkValue

p

ThinkingPhilo

TP-Number
p

Net TableL
eating

R
PlName
“eating” Place

Token
TkValue

p

EatingPhilo

EP-Number
p

Net Table
PlName
“eating” Place

Token
TkValue

p

EatingPhilo

EP-Number
p

Net TableL

table

R
PlName
“table” Place

Token
TkValue

p

Chopstick

C-Number
p

Net Table
PlName
“table” Place

Token
TkValue

p

Chopstick

C-Number
p

Net Table
L R

Net Tableinit

NetNet TableTableL

thinking

R
PlName

“thinking”
PlName

“thinking” PlacePlace

TokenToken
TkValue

p
TkValue

p

ThinkingPhiloThinkingPhilo

TP-Number
p

TP-Number
p

NetNet TableTable
PlName
“thinking”
PlName
“thinking” PlacePlace

TokenToken
TkValue

p
TkValue

p

ThinkingPhiloThinkingPhilo

TP-Number
p

TP-Number
p

NetNet TableTableL
eating

R
PlName
“eating”
PlName
“eating” PlacePlace

TokenToken
TkValue

p
TkValue

p

EatingPhiloEatingPhilo

EP-Number
p

EP-Number
p

NetNet TableTable
PlName
“eating”
PlName
“eating” PlacePlace

TokenToken
TkValue

p
TkValue

p

EatingPhiloEatingPhilo

EP-Number
p

EP-Number
p

NetNet TableTableL

table

R
PlName
“table”

PlName
“table” PlacePlace

TokenToken
TkValue

p
TkValue

p

ChopstickChopstick

C-Number
p

C-Number
p

NetNet TableTable
PlName
“table”

PlName
“table” PlacePlace

TokenToken
TkValue

p
TkValue

p

ChopstickChopstick

C-Number
p

C-Number
p

NetNet TableTable
L R

NetNet TableTableinit

Fig. 7. View transformation rules for The Dining Philosophers

One initial rule generates the fixed animation context and links it to the
abstract syntax of the Net symbol. Token rules then link each token depending
on its place to its new animation symbol (a corresponding icon at a certain
position within the fixed animation context). After suitable application of
all these view transformation rules, a sentence of an AHL net VL model is
transformed into a sentence of the integrated VL, which now also contains the
animation view.

Fig. 8 illustrates an animation rule derived by applying the view transfor-
mation rules in Fig. 7 to the behavior rule take in Fig. 4.

14

Ermel and Ehrig

take

L

take

1:Place
TokenTkValue

p

PlName
“thinking”

2:Place
PlName
“table

”

Token

Token
TkValue

(p mod 5) +1 TkValue
p

3:Place

PlName
“eating”

Net Table

ThinkingPhilo

TP -Number
p

Chopstick

-C-Number
left(p)

Chopstick -C-Number
p

R

1:Place

PlName
“thinking”

2:Place

PlName
“table”

Token

TkValue
p

3:Place PlName
“eating”

Net Table

EatingPhilo

TP -Number
p

Fig. 8. Derived animation rule for The Dining Philosophers

The second animation rule for put is constructed analogously and equals
the reversed rule for take. The animation rules now model the behavior of the
Dining Philosophers according to the AHL net model, but visualized also in
the animation view.

5 Implementation of Animation Views in GenGED

Fig. 9 presents the GenGED environment for generic visual language defini-
tion and model simulation, now extended by the methodology for animation
view definition and scenario animation as proposed in this paper.

Alphabet
Editor

VL Specification

VL Alphabet
VL Syntax Grammar

Grammar
Editor

VL Model

VL Diagram
Behavior Rules

VL Diagram Editor

VL Simulation and
Animation Environment

Integrated View Alphabet

VL Alphabet
+ Animation Domain AlphabetView Transformation Rules

VL Model in Animation View

VL Diagram and Animation
Rules in the layout of an
application domain

Enhanced Animation Rules

Animation
Editor

Animation Specification in SVG

(1)

(1)

(2)

(2)

(3)

(3)
(3)

(3)

(3)

(4)

(4)
(5)

Alphabet
Editor

Alphabet
Editor

VL Specification

VL Alphabet
VL Syntax Grammar

VL Specification

VL Alphabet
VL Syntax Grammar

Grammar
Editor
Grammar
Editor

VL Model

VL Diagram
Behavior Rules

VL Model

VL Diagram
Behavior Rules

VL Diagram EditorVL Diagram Editor

VL Simulation and
Animation Environment
VL Simulation and
Animation Environment

Integrated View Alphabet

VL Alphabet
+ Animation Domain Alphabet

Integrated View Alphabet

VL Alphabet
+ Animation Domain AlphabetView Transformation RulesView Transformation Rules

VL Model in Animation View

VL Diagram and Animation
Rules in the layout of an
application domain

Enhanced Animation Rules

VL Model in Animation View

VL Diagram and Animation
Rules in the layout of an
application domain

Enhanced Animation Rules

Animation
Editor

Animation
Editor

Animation Specification in SVGAnimation Specification in SVG

(1)

(1)

(2)

(2)

(3)

(3)
(3)

(3)

(3)

(4)

(4)
(5)

Fig. 9. The GenGED environment extended by features for animation

We explain Fig. 9 by adding to the workflow different roles for users of
the GenGED environment (different roles need not necessarily be taken by
different persons) and describing who is doing what:

(1) The language designer defines the VL Specification by using the Alphabet

Editor to define the VL Alphabet and using the Grammar Editor to define the
VL Syntax Grammar.

(2) The model designer uses the VL Specification to edit a VL Diagram and de-
fines the Behavior Rules using the Grammar Editor. The VL Diagram together
with the Behavior Rules specifify the VL Model.

(3) The view designer specifies an Animation View by defining the alphabet
for the animation domain and merging it with the VL Alphabet to an inte-
grated View Alphabet. To this end, the Alphabet Editor has been extended

15

Ermel and Ehrig

by a MergeAlphabet action allowing to integrate two different alphabets.
The common symbols and links (identified by equal names) are glued and
appear only once in the integrated alphabet. The information about their
original alphabet(s) is stored for each symbol of the integrated alphabet.
Moreover, the view designer defines the View Transformation Rules over the
View Alphabet. Applying the View Transformation Rules to the VL Model, he
generates a transformed VL Model in the Animation View. To this end, the
Grammar Editor has been extended by an ApplyMetaGrammar action to
apply a meta grammar (containing e.g. the view transformation rules)
to a model grammar (e.g. the behavior rules plus start graph). Starting
with the first meta rule, each meta rule is applied as often as possible
to the LHS and RHS of each model rule. The view designer has to take
care that the application of the meta rules terminates. In our view trans-
formation rules, a NAC equal to the RHS ensures that each rule can be
applied only once at each match.

(4) The animation designer uses the Animation Editor [9] to produce Enhanced

Animation Rules extending the animation rules by animation operations
realizing continuous changes of graphics such as moving, or changing the
size or the color. The animation designer defines these animation opera-
tions visually, e.g. by drawing a required on-screen route interactively on
the scenario background. Moreover, more than one animation operation
can be defined for one rule and the starting time and duration for each
animation operation can be specified.

(5) the model validator works in the VL Simulation and Animation Environment.
He or she simulates (or animates) the behavior of a VL model by applying
the behavior or animation rules to the current model state. Single ani-
mation steps can be viewed in the animation environment by applying an
animation rule to a VL diagram. Animation sequences can be recorded
by performing a sequence of animation rule applications. The complete
animation then is stored in the XML-based SVG format (Scalable Vector
Graphics [20]) and can be viewed by any external SVG viewer tool. In
the VL Simulation and Animation Environment the model validator can switch
between the different views for one model. Thus, the formal model can
be shown in the layout of e.g. the AHL net alphabet, or the animation
view is activated to show the model behavior in the layout of the appli-
cation domain. The triggering of the simulation or animation steps (by
selecting a rule) is visualized in all selected views at once.

6 Conclusion

In this paper we have extended the generic description of visual languages
based on graph transformation systems by the notions VL model, views on
a VL model and, especially, animation views of a VL model. A VL model
is a visual presentation of the states of a behavior model, where VL is a

16

Ermel and Ehrig

visual modeling language used for the formal specification of behavior models.
In our running example, we have formally specified the VL model for The
Dining Philosophers using AHL nets. This VL model can be animated in
our approach by integrating the VL alphabet with a freely chosen domain-
specific animation alphabet and transforming the VL model states to states
typed over the integrated alphabet. This view-transformation based approach
ensures that the behavior in the VL model is mapped consistently to the
animation view.

On the practical side, the GenGED tool environment [2] has now been
extended in order to be able to manage the combination of different views by
allowing to merge their alphabets (view integration) in the alphabet editor.
Moreover, in the generated environment it is now possible to select a view for
the simulation or animation of a VL model.

Future work is planned to cover the animation of still more visual behavior
specification languages, e.g. considering selected diagram types from UML.
In more complex cases the VL models may lead to large graph transformation
systems which are difficult to handle and to understand. Therefore, for prac-
tical use, structuring concepts for graph transformation (see e.g. [13]) should
be incorporated in the presented approach, and also implemented in the tool
AGG [1], which is the underlying graph transformation engine for GenGED.
Work is in progress to implement type graphs with inheritance and multiplic-
ities as underlying language model in AGG, which should make it easier to
go the step from a meta model description (e.g. a UML class diagram) to the
corresponding type graph for a UML based visual language.

References

[1] AGG Homepage, http://tfs.cs.tu-berlin.de/agg.

[2] Bardohl, R., A Visual Environment for Visual Languages, Science of Computer
Programming (SCP) 44 (2002), pp. 181–203.

[3] Bardohl, R., C. Ermel and H. Ehrig, Generic Description of Syntax, Behavior
and Animation of Visual Models, TR 2001/19, TU Berlin (2001). http://www.
cs.tu-berlin.de/%7Elieske/public/TR-Anim01.ps.gz

[4] Bardohl, R., C. Ermel and J. Padberg, Formal Relationship between Petri
Nets and Graph Grammars as Basis for Animation Views in GenGED, in:
Proc. IDPT 2002: Sixth World Conference on Integrated Design and Process
Technology (2002). http://www.cs.tu-berlin.de/%7Elieske/public/IDPT02.ps.gz

[5] Bardohl, R., G. Taentzer, M. Minas and A. Schürr, Application of Graph
Transformation to Visual Languages, in: H. Ehrig, G. Engels, H.-J. Kreowski
and G. Rozenberg, editors, Handbook of Graph Grammars and Computing by
Graph Transformation, Volume 2: Applications, Languages and Tools (1999).

17

http://tfs.cs.tu-berlin.de/agg
http://www.cs.tu-berlin.de/%7Elieske/public/TR-Anim01.ps.gz
http://www.cs.tu-berlin.de/%7Elieske/public/TR-Anim01.ps.gz
http://www.cs.tu-berlin.de/%7Elieske/public/IDPT02.ps.gz

Ermel and Ehrig

[6] Corradini, A. and U. Montanari, Specification of Concurrent Systems: From
Petri Nets to Graph Grammars, in: G. Hommel, editor, Proc. Workshop on
Quality of Communication-Based Systems, Berlin, Germany (1995).

[7] Ehrig, H. and B. Mahr, Fundamentals of Algebraic Specification 1: Equations
and Initial Semantics, EATCS Monographs on TCS 6, Springer, Berlin, 1985.

[8] Ehrig, H., U. Prange and G. Taentzer, Fundamental theory for typed attributed
graph transformation, in: F. Parisi-Presicce, P. Bottoni and G. Engels, editors,
Proc. 2nd Int. Conference on Graph Transformation (ICGT’04), Springer
LNCS 3256 (2004), pp. 161–177.

[9] Ehrig, K., Konzeption und Implementierung eines Generators für
Animationsumgebungen für visuelle Modellierungssprachen, TR 2003-17, TU
Berlin (2003).

[10] Ermel, C. and R. Bardohl, Scenario Animation for Visual Behavior Models: A
Generic Approach, Software and System Modeling: Special Section on Graph
Transformations and Visual Modeling Techniques 5 (2004).

[11] GenGED Homepage, http://tfs.cs.tu-berlin.de/genged.

[12] Kreowski, H.-J., A Comparison between Petri-nets and Graph Grammars, in:
LNCS 100 (1981), pp. 1–19.

[13] Kreowski, H.-J. and S. Kuske, Graph transformation units with interleaving
semantics, Formal Aspects of Computing 11 (1999), pp. 690–723.

[14] Minas, M., Diagram Editing with Hypergraph Parser Support, in: Proc. IEEE
Symp. on Visual Languages, Capri, Italy, 1997, pp. 226–233.

[15] Padberg, J., H. Ehrig and L. Ribeiro, Algebraic high-level net transformation
systems, Mathematical Structures in Computer Science 5 (1995), pp. 217–256.

[16] Parisi-Presicce, F., H. Ehrig and U. Montanari, Graph Rewriting with
Unification and Composition, in: 3rd Workshop on Graph Grammars and their
Application to Computer Science, Springer LNCS 291 (1987), pp. 496–514.

[17] Reisig, W., Petri Nets, EATCS Monographs on Theoretical Computer Science
4, Springer, 1985.

[18] Taentzer, G., AGG: A Graph Transformation Environment for Modeling and
Validation of Software, in: Proc. Application of Graph Transformations with
Industrial Relevance (AGTIVE’03), Springer LNCS 3062 (2004).

[19] Unified Modeling Language – version 1.5, (2004), available at http://www.omg.
org/technology/documents/formal/uml.htm.

[20] WWW Consortium (W3C), Scalable Vector Graphics (SVG) 1.0 Specification.
http://www.w3.org/TR/svg, (2000).

18

http://tfs.cs.tu-berlin.de/genged
http://www.omg.org/technology/documents/formal/uml.htm
http://www.omg.org/technology/documents/formal/uml.htm
http://www.w3.org/TR/svg

	Introduction
	The Dining Philosophers modeled as AHL Net
	AHL Nets as Graph Transformation Systems
	The Visual Language of AHL Nets
	Modeling the Behavior of AHL Nets by Graph Rules

	Animation Views for AHL Nets
	Views for Behavior Models
	Defining Animation Views for VL Models

	Implementation of Animation Views in GenGED
	Conclusion
	References

