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Abstract. Graph constraints and application conditions are most im-
portant for graph grammars and transformation systems in a large va-
riety of application areas. Although different approaches have been pre-
sented in the literature already there is no adequate theory up to now
which can be applied to different kinds of graphs and high-level struc-
tures. In this paper, we introduce an improved notion of graph constraints
and application conditions and show under what conditions the basic
results can be extended from graph transformation to high-level replace-
ment systems. In fact, we use the new framework of adhesive HLR cate-
gories recently introduced as combination of HLR systems and adhesive
categories. Our main results are the transformation of graph constraints
into right application conditions and the transformation from right to
left application conditions in this new framework.

1 Introduction

According to the requirements of several application areas the rules of a graph
grammar have been equipped in [4] by a very general notion of application
conditions. In a subsequent paper [8], the notion of application conditions is
restricted to contextual conditions like the existence or non-existence of certain
nodes and edges or certain subgraphs in the given graph. In [9], the authors
introduce graphical consistency constraints, also called graph constraints, that
express very basic conditions on graphs as e.g. the existence or uniqueness of
certain nodes and edges in a graphical way.

Basic results for graph constraints and application conditions have been shown
in [9, 10] first for the single and later in the double pushout approach for different
kinds of graphs. Unfortunately there is no adequate theory up to now which can
be applied not only to graphs but also to high-level structures in the sense of [5].

A new version of high-level replacement systems, called adhesive HLR systems,
has been introduced in [6] combining HLR systems in the sense of [5] and adhesive
categories (see [11]). This new framework has been used not only to reformulate



the basic results like local Church Rosser, Parallelism and Concurrency Theorem
from [5], but also to present an improved version of the Embedding Theorem [3]
and the local Confluence Theorem, known as Critical Pair Lemma [12]. Moreover
it can be applied to all kinds of graphs and Petri nets satisfying the HLR1 and
HLR2 conditions in [5] and also to typed attributed graphs in [7].

In this paper we use adhesive HLR categories and systems to improve and gen-
eralize the basic notions and results for constraints and application conditions
from graphs to high-level structures. For this purpose we present an improved
notion of graph constraints, based on positive and negative atomic constraints,
and of application conditions, based on atomic conditional conditions. In our
main theorems we show how to transform constraints into right application con-
ditions, and right into left application conditions in the framework of adhesive
HLR systems. As additional condition we only need finite coproducts and a
suitable E-M -factorization which is valid in all our example categories.

The paper is organized as follows. In section 2 we present our improved notions
of graph constraints and application conditions. In section 3 we give a short in-
troduction of adhesive HLR categories together with some basic properties. Then
we generalize graph constraints and application conditions to the framework of
adhesive HLR categories. In section 4, we present the main results for graphs
and high-level structures and give several illustrating examples for graphs and
place transition nets. A conclusion including further work is given in section 5.

2 Constraints and application conditions for graphs

In the following, we assume that the reader is familiar with the notions of graphs
and graph morphisms, see e.g. [3, 2]. Graph constraints, first investigated by [9],
allow to express basic conditions on graphs as e.g. the existence or uniqueness
of certain nodes and edges in a graphical way.

Definition 1 (graph constraint). An atomic graph constraint is of the form
PC(a) or NC(a) where a: P → C is an arbitrary graph morphism. It is said to be
a positive or negative atomic graph constraint, respectively. A graph constraint
is a Boolean formula over atomic graph constraints, i.e. every atomic graph
constraint is a graph constraint and, for every graph constraint c, ¬c is a graph
constraint and, for every index set I and every family (ci)i∈I of graph constraints,
∧i∈Ici and ∨i∈Ici are graph constraints. A graph G satisfies PC(a) (NC(a)),
written G |= PC(a) (NC(a)), if for every injective morphism p: P → G there
exists (does not exist) an injective morphism q: C → G such that q ◦ a = p.
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Fig. 1. Satisfiability of atomic constraints



A graph G satisfies a graph constraint ¬c, written G |= ¬c, if and only if G does
not satisfy the graph constraint c. G satisfies ∧i∈Ici (∨i∈Ici), written G |= ∧i∈Ici

(∨i∈Ici), if and only if G satisfies all (some) graph constraints ci with i ∈ I .

Example 1. Examples of graph constraints:

PC( → ) There exists at most one node.

PC( → ) Every node has a loop.

NC( → ) The graph is loop-free.

¬PC( → ) There exists a node without loop.

PC(∅ → ) There exists a node with a loop.

NC(∅ → ) There exists no node with a loop.∧∞

k=1
NC(∅ → Ck) The graph is acyclic (Ck denotes a cycle of length k).

Remark. The definition of graph constraints generalizes the one in [9], because
we allow negative atomic constraints and non-injective a.

Fact . If a is non-injective and G |= PC(a), then there is no injective p: P → G.

Proof. Assume there is an injective p: P → G. Then G |= PC(a) implies the
existence of an injective q: C → G with q ◦ a = p. This implies a injective
(contradiction).

Fact . If a is non-injective, then G |= NC(a).

Proof. Assume G 6|= NC(a). Then there exist injective p: P → G and q: C → G
with q ◦ a = p. The injectivity of p implies the injectivity of a (contradiction).

Application conditions for graph replacement rules were first introduced in [4].
In a subsequent paper [8], a special kind of application conditions were con-
sidered which can be represented in a graphical way. In particular, contextual
conditions like the existence or non-existence of certain nodes and edges or cer-
tain subgraphs in the given graph can be expressed. In [9] so-called conditional
application conditions were introduced.

Definition 2 (application condition over a graph). An (conditional) atomic
application condition over a graph L is of the form P(x,∨i∈Ixi) or N(x,∧i∈Ixi)
where x: L→ X is an arbitrary graph morphism and xi: X → Ci with i ∈ I are
injective graph morphisms. It is said to be a positive or negative atomic applica-
tion condition, respectively. An application condition over L is a Boolean formula
over atomic application conditions over L, i.e. every atomic application condi-
tion is an application condition and, for every application condition acc, ¬ acc
is an application condition and, for every index set I and every family ( acci)i∈I

of application conditions, ∧i∈I acci and ∨i∈I acci are application conditions.
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Fig. 2. Satisfiability of atomic application conditions

A match m: L → G satisfies accL = P(x,∨i∈Ixi) (N(x,∧i∈Ixi)), written m |=
accL, if for all injective morphisms p: X → G with p ◦ x = m there exists (does
not exist) i ∈ I and an injective morphism qi: Ci → G with qi ◦ xi = p.

A match m: L→ G satisfies an application condition of the form ¬ acc, written
m |= ¬ acc, if and only if m does not satisfy the application condition acc. A
match m satisfies ∧i∈I acci (∨i∈I acci), written m |= ∧i∈I acci (∨i∈I acci), if
and only if m satisfies all (some) acci with i ∈ I .

Remark. The definition of an application condition slightly generalizes the ones
in [8, 9]. Let us consider the well-known negative application condition NAC(x),
where x: L → X is a graph morphism. A match m: L → G satisfies NAC(x),
written m |= NAC(x), if there does not exist an injective morphism p: X → G
with p ◦ x = m. NAC(x) is equivalent to P(x,∨i∈Ixi) for I = ∅ and hence a
special case of positive atomic application conditions.

Example 2. Examples of application conditions and their meaning for an injec-
tive match m: L→ G:

NAC(
1 2

→
1 2

) There is no edge from node m(1) to node m(2).
∧∞

k=1
NAC(

1 2

→ Pk) There is no path connecting node m(1) and m(2).
(Pk denotes a path of length k)

P(
1 2

→
1 2

→
1 2

) If there is an edge from m(1) to m(2),
then there also is an edge from m(2) to m(1).

A rule p = 〈L ← K → R〉 consists of two injective graph morphisms with a
common domain K. Given a rule p and a graph morphism K → D, a direct
derivation consists of two pushouts (1) and (2). We write G⇒p,m,m∗ H and say
that m: L→ G is the match and m∗: R→ H is the comatch of p in H .

L K R

G D H

m m∗(1) (2)

Definition 3 (application condition for a rule). An application condition
A(p) = (AL, AR) for a rule p = 〈L ← K → R〉 consists of a left application
condition AL over L and a right application condition AR over R. A direct
derivation G⇒p,m,m∗ H satisfies an application condition A(p) = (AL, AR), if

m |= AL and m∗ |= AR.



3 Constraints and application conditions for high-level

structures

The main idea of high-level replacement systems is to generalize the concepts
of graph replacement from graphs to all kinds of structures which are of inter-
est in Computer Science and Mathematics. In the following, we will consider
constraints and application conditions in adhesive HLR-categories (see [6]) and
prove our transformation results on this general level.

Definition 4 (adhesive HLR-category). A category C with a morphism
class M is called adhesive HLR category, if 1) M is a class of monomorphisms
closed under compositions and decompositions (g ◦ f ∈ M , g ∈ M implies
f ∈ M), 2) C has pushouts and pullbacks along M -morphisms, i.e. pushouts
and pullbacks, where at least one of the given morphisms is in M , and M -
morphisms are closed under pushouts and pullbacks, and 3) pushouts in C along
M -morphisms are VK-squares, i.e. for any commutative cube in C where we
have the pushout with m ∈ M in the bottom and the back faces are pullbacks,
it holds: the top is pushout ⇔ the front faces are pullbacks.
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Example 3. All examples of adhesive categories defined in [11] are adhesive HLR
categories for the class M of all monomorphisms. As shown in [11] this includes
the categories Sets of sets, Graphs of graphs and several variants of graphs like
typed, labelled and hypergraphs. Moreover this includes the category PT-Net
of place transition nets considered in [5] already. The following categories are
important examples of adhesive HLR categories where M is not the class of all
monomorphisms: the category 〈AGraphsATG, M〉 of typed attributed graphs
with type graph ATG and class M of all injective morphisms with isomorphism
on the data part is (see [7]), the category 〈AHL-Net, M〉 of algebraic high
level nets with class M of all strict injective net morphisms, and the category
〈Spec, M〉 of algebraic specifications with class M of all strict injective specifi-
cation morphisms [5].

Fact (HLR properties of adhesive HLR categories). Given an adhesive
HLR-category 〈C, M〉, the following HLR conditions are satisfied.

1. Pushouts along M -morphisms are pullbacks.

2. Pushout-pullback decomposition: If the diagram (1)+(2) is a pushout, (2) a
pullback, and l, w ∈M , then (1) and (2) are pushouts and also pullbacks.
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3. Uniqueness of pushout complements for M -morphisms: Given b: A → B in
M and s: B → D then there is up to isomorphism at most one C with
l: A→ C and u: C → D such that diagram (1) is a pushout.

Proof. See [6, 11].

General assumption. In the following, we assume that 〈C, M〉 is an adhesive
HLR category with binary coproducts and epi-M -factorizations, that is, for every
morphism there is an epi-mono-factorization with monomorphism in M .

We will consider structural constraints and application conditions in our gen-
eral framework. Structural constraints, short constraints, correspond to graph
constraints in section 2, but not necessarily to logical constraints defined by
predicate logic.

Definition 5 (constraints). An atomic constraint is of the form PC(a) or
NC(a) where a: P → C is an arbitrary morphism. PC(a) is said to be positive
and NC(a) negative. A constraint is a Boolean formula over atomic constraints.
An object G satisfies PC(a) (NC(a)), written G |= PC(a) (NC(a)), if for every
morphism p: P → G in M there exists (does not exist) a morphism q: C → G
in M such that q ◦ a = p (see figure 1). Satisfiability of arbitrary constraints is
defined in the usual way (see definition 1).

Definition 6 (application condition over an object). An atomic applica-
tion condition over an object L is of the form P(x,∨i∈Ixi) or N(x,∧i∈Ixi) where
x: L → X is an arbitrary morphism and xi: X → Ci with i ∈ I are morphisms
in M . It is said to be a positive or negative atomic application condition, re-
spectively. An application condition over L is a Boolean formula over atomic
application conditions over L. A match m: L→ G satisfies accL = P(x,∨i∈Ixi)
(N(x,∧i∈Ixi)), written m |= accL, if for all morphisms p: X → G in M with
p ◦ x = m there exists (does not exist) i ∈ I and a morphism qi: Ci → G in M
with qi ◦ xi = p (see figure 2). Satisfiability of arbitrary application conditions
is defined in the usual way (see definition 2).

The special case of negative atomic application conditions NAC(x) and general
application conditions for rules (see definition 3) are defined as in the graph case.

General Remark. In the case I = ∅ we have P(x,∨i∈Ixi) ≡ NAC(x), where
m |= NAC(x) means that there is no p ∈ M with p ◦ x = m. Moreover we have
N(x,∧i∈Ixi) ≡ true for I = ∅, because m∗ |= N(x,∧i∈∅xi)⇔ ∀p(p ∈M ∧p◦x =
m∗ ⇒ ¬(∃i ∈ I = ∅...))⇔ ∀p true⇔ true.



4 Main results for graphs and high-level structures

In the following, we will show that arbitrary constraints can be transformed into
right application conditions and that right application conditions can be trans-
formed in left application conditions. We first show that positive and negative
atomic constraints can be transformed into right application conditions.

Lemma 1 (transformation of positive atomic constraints into right ap-
plication conditions). Given a positive atomic constraint PC(a) with a: P → C
and comatch m∗: R → H. Then there is a right application condition T (PC(a))
such that m∗ |= T (PC(a))⇔ H |= PC(a).

Construction. Let T (PC(a)) be the right application condition

T (PC(a)) = ∧SP(R
s
→S,∨i∈I (S

ti◦t
→ Ti))

1. The conjunction ∧S ranges over all “gluings” S of R and P in figure 3(a).
More precisely over all triples 〈S, s, p〉 with arbitrary s: R→ S and p: P → S
in M such that the pair 〈s, p〉 is jointly epimorphic. For each such triple
〈S, s, p〉 we construct the pushout (1) of p and a leading to t: S → T and
q: C → T .

2. The disjunction ∨i∈I ranges over all S
ti◦t
→ Ti with epimorphism ti such that

ti ◦ t and ti ◦ q are in M . For I = ∅ we have T (PC(a)) = ∧SNAC(R
s
→S).
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Fig. 3. Construction of T (PC(a))/Correspondence of T (PC(a)) and PC(a)

Proof. See appendix A.



Example 4. Consider the positive atomic graph constraint PC( → ) (see

example 1) and the rule p = 〈 ← → 〉. According to the con-
struction in lemma 1 the graph constraint can be transformed into the following

conjunction of right positiv atomic application conditions ∧4

i=1
P( → Si,

Si → Ti) ∧ P( → S5,∨2

j=1
S5 → T5j) with Si, Ti, T5j as shown below. The

condition expresses the positiv atomic application condition “Every node out-
side (see T1, T4) and inside (see T2, T3, T51, T52) the comatch must have a loop.”,
where S1, S2, S3 correspond to injective and S4, S5 to non-injective comatches.
Altogether this condition means that for each comatch m∗ : R → H each node

of H must have a loop, which is equivalent to H |= PC( → ).
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Lemma 2 (transformation of negative atomic constraints into appli-
cation conditions). Given a negative constraint NC(a) with a: P → C and
comatch m∗: R → H. Then there is an application condition T (NC(a)) such
that m∗ |= T (NC(a))⇔ H |= NC(a).

Construction. Let T (NC(a)) be the following right application condition

T (NC(a)) = ∧SN(R
s
→S,∧i∈I (S

ti◦t
→ Ti)),

where the morphisms s: R → S and ti ◦ t: S → Ti are the same as in the con-
struction of lemma 1 and m∗ |= T (NC(a)) is now defined by: For all 〈S, s, p〉 as
given in the construction, all p′′: S → H in M with p′′ ◦ s = m∗ there is no i ∈ I
and q′′: Ti → H in M with q′′ ◦ ti ◦ t = p′′. For I = ∅ we have, according to the
general remark after definition 6, m∗ |= T (NC(a))⇔ true.

Proof. See appendix A.

Example 5. According to example 3 we now consider place transition nets. Con-
sider the negative atomic net constraint NC(∅ → ). H satisfies this con-
straint if H contains no subnet of the form , where we call such a place a

“sink place”. Consider the rule p = 〈 ← → 〉. Accord-
ing to the construction in lemma 2 the constraint can be transformed into the
application condition N(R → S1,∧3

i=1
S1 → T1i) ∧ N(R → S2,∧2

i=1
S2 → T2i)



where R, S1, S2, Tij are given below. The condition means “No sink place is al-
lowed to be outside or inside the comatch, e.g. no sink place is allowed in H .”,
where S1 takes care of injective and S2 of non-injective comatches m∗: R→ H .

T11

∅ P

C

R

S1

T11

T12 T13

id

T21

∅ P

C

R

S2

T21

T22

id

The transformation in lemma 1 and 2 can be extended to arbitrary constraints.

Theorem 1 (transformation of constraints into application conditions).
Given a constraint c and a comatch m∗: R → H. Then there is an application
condition T (c) such that m∗ |= T (c)⇔ H |= c.

Proof. For atomic constraints, the transformation is given in the proof of lemma
1 and 2, respectively. For arbitrary constraints, the transformation is inductively
defined as follows: T (¬c) = ¬T (c), T (∧i∈Ici) = ∧i∈IT (ci) and T (∨i∈Ici) =
∨i∈IT (ci). Now the proof of the statement is straightforward.

In the following, we will show that arbitrary right application conditions can
be transformed into left application conditions. For this purpose, we first show
that right positive and then right negative atomic application conditions can be
transformed into corresponding left atomic application conditions.

Lemma 3 (transformation from right positive atomic to left positive
application conditions). Given a rule p = 〈L← K → R〉 and a right positive
atomic application condition accR then there is a left positive atomic application
condition accL such that for all direct derivations G⇒p,m,m∗ H we have:

m |= accL ⇔ m∗ |= accR.

Construction. Let accR = P(R
x
→X,∨i∈I(X

xi→Ci)) be a right positive atomic
application condition in figure 4. Then we construct a left positive atomic appli-

cation condition accL = p−1( accR) = P(L
y
→Y,∨i∈I′(Y

yi

→Di)) with I ′ ⊆ I or
p−1( accR) = true as follows:

1. If the pair 〈r: K → R, x: R→ X〉 has a pushout complement, define y: L→ Y
by two pushouts (1) and (2), otherwise p−1( accR) = true.

2. For each i ∈ I , if the pair 〈r∗: Z → X, xi: X → Ci〉 has a pushout comple-
ment, then i ∈ I ′ and yi: Y → Di is defined by two pushouts (3) and (4),
otherwise i /∈ I ′. Since pushout complements of M -morphisms (if they exist)
are unique, the construction yields a unique result up to isomorphism.
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Fig. 4. Transformation of application conditions

Proof. See appendix A.

Example 6. Consider the rule p = 〈
1 2

←
1 2

→
1 2

〉 and – accord-
ing to the remark after definition 2 – the right application condition accR =

NAC(
1 2

→
1 2

) (see example 2), meaning that an edge between the nodes
in the comatch must not exist. According to the construction of lemma 3 with
I = ∅ the right atomic application condition is transformed into the left atomic

application condition accL = NAC(
1 2

→
1 2

) with I = ∅ meaning that two
parallel edges between the nodes in the match must not exist.

L K R

Y Z X

Remark. 1. Dually we can construct from accL a right atomic application con-
dition accR = p( accL) such that m |= accL ⇔ m∗ |= p( accL).
2. For I = ∅, accR is a negative atomic application condition, i.e. accR ⇔
NAC(x). In this case p−1( accR) is either true or also a negative atomic appli-
cation condition, i.e. p−1( accR)⇔ NAC(y). For I 6= ∅, accR is a “real” atomic
application condition and p−1( accR) may be either true, a negative atomic ap-
plication condition (if I ′ = ∅) or also a “real” atomic application condition.
3. Since xi (i ∈ I) and also r and r∗ are in M , also zi and yi are in M in (3)
and (4) respectively (M -morphisms are closed under pushouts and pullbacks).

Lemma 4 (transformation from right negative atomic to left negative
application conditions). Given a rule p = 〈L← K → R〉 and a right negative
atomic application condition accR then there is a left negative atomic application
condition accL such that for all direct derivations G⇒p,m,m∗ H we have: m |=
accL ⇔ m∗ |= accR.

Construction. Let accR = N(R
x
→X,∧i∈I(X

xi→Ci)) be a right negative
atomic application condition. Then we construct a left negative atomic applica-
tion condition accL = p−1( accR) as follows:

1. If I = ∅ then accR = true and we define accL = true.



2. If I 6= ∅ and 〈r, x〉 has no pushout complement then accL = true.
3. If I 6= ∅ and 〈r, x〉 has a pushout complement then define y: L → Y by two

pushouts (1) and (2) in figure 4. Moreover for each i ∈ I if 〈r∗, xi〉 has a
pushout complement then i ∈ I ′ and yi: Y → Di is defined by pushouts (3)
and (4) in figure 4, otherwise i 6∈ I ′. Now define

accL = p−1( accR) = N(L
y
→Y,∧i∈I′(Y

yi

→Di))

where accL = true in the case I ′ = ∅.

Proof. See appendix A.

Example 7. Consider the same rule p as in example 5 and the following right
negative atomic application condition accR = N(R → X, X → C) which corre-
sponds to N(R → S2, S2 → T22) in example 5. H |= accR means that for each
non-injective comatch m∗ : R→ H the place in m∗(R) must not be a sink place.
According to the general construction in figure 4 we obtain the following left
negative atomic application condition accL = N(L → Y, Y → D). G |= accL

means that for each non-injective match m : L→ G the place in m(L) must not
be a sink place. Note that a non-injective match m : L → G can only identify
the places, because otherwise the gluing condition would be violated.

L R

Y X

D C

The transformation in lemma 3 and 4 can be extended to arbitrary right appli-
cation conditions.

Theorem 2 (transformation from right to left application conditions).
Given a rule p = 〈L ← K → R〉 and right application condition accR then
there is a left application condition accL such that for all direct derivations
G⇒p,m,m∗ H we have: m |= accL ⇔ m∗ |= accR.

Proof. For right atomic application conditions, the transformation is defined as
in the proof of lemma 3 and 4, respectively. For arbitrary right application con-
ditions, the transformation is defined as follows: p−1(¬ accR) = ¬p−1( accR),
p−1(∧i∈I acciR) = ∧i∈Ip

−1( acciR), and p−1(∨i∈I acciR) = ∨i∈Ip
−1( acciR).

Now the proof of the statement is straightforward.

5 Conclusion

In the present paper we have introduced a general notion of constraints and
application conditions that is more expressive than previous ones in the graph



case and is formulated now for high-level structures in the new framework of
adhesive HLR categories (see [6]). It is shown that constraints can be transformed
into right application conditions for rules and that right application conditions
can be transformed into left ones. As a consequence, we have a mechanism
to integrate constraints into rules and to ensure that the constraints remain
satisfied.

Further topics could be the followings.

(1) Extension of the notions of constraints and application conditions: Although
the constraints are more general than the ones in [9], there are constraints which
cannot be expressed up to now. E.g. the constraints like “Every node has an
outgoing or incoming edge” and “There exists a node such that all outgoing
edges are labelled by a” could be expressed if one would extend the concepts by
alternative or conditional atomic graph constraints and existential satisfaction of
graph constraints. Also the extension of constraints from statical (propositional
logic) to dynamical (temporal logic) constraints [10] and a transformation be-
tween logical and graphical constraints (e.g. OCL-Constraints [1]) is interesting.

(2) Extensions of the theory: In [8], the local Church Rosser theorems I and II
are proved for single-pushout rules with negative atomic application conditions.
These results are also valid for the double-pushout rules with arbitrary applica-
tion conditions in high-level structures provided that the notion of independence
is extended such that the induced matches satisfy the corresponding application
conditions. Moreover, it would be important to generalize the results in [6] to
rules with application conditions.

(3) Applications of the theory: The theory can be applied already not only
to graph transformations over labelled graphs (see [3, 2]) but also to several
variants of graphs like typed attributed graphs and hypergraphs and also to Petri
nets (see [5, 6]) and examples 4-7. For building up Petri nets satisfying some
net constraints, one could integrate the constraints as application conditions
into the rules. Another important application of adhesive HLR categories and
corresponding systems is typed attributed graph transformation as presented in
[7], where also a slight extension of the general assumption in section 3 seems to
be useful.

A Appendix

In this appendix we present the proofs of all lemmata given in section 4.

Proof of Lemma 1. 1. Let m∗ |= T (PC(a)). We have to show H |= PC(a), i.e.
for all morphisms p′: P → H in M there is a morphism q′: C → H in M with
q′ ◦ a = p′. Given a morphism p′: P → H in M and a comatch m∗: R → H , we
construct the coproduct R+P with injections inR and inP in figure 3(b). By the
universal property of coproducts, there is a unique morphism f : R+P → H with
f ◦ inR = m∗ and f ◦ inP = p′. Now let f = p′′ ◦ e be an epi-mono factorization
of f with epimorphism e and monomorphism p′′ in M , and define s = e ◦ inR



and p = e ◦ inP . Then the pair 〈s, p〉 is jointly epimorphic, because e is an
epimorphism, and p is in M , because p′′ ◦ p = p′′ ◦ e ◦ inP = f ◦ inP = p′ is in M
(M -morphisms are closed under decomposition). Hence 〈S, s, p〉 belongs to the
conjunction ∧S of T (PC(a)). Moreover we have p′′◦s = p′′◦e◦inR = f◦inR = m∗

with monomorphism p′′ in M .

In the case I 6= ∅, m∗ |= T (PC(a)) implies existence of i ∈ I and q′′: Ti → H
in M with q′′ ◦ ti ◦ t = p′′. Now let q′ = q′′ ◦ ti ◦ q then q′ is in M , because
q′′ is in M by construction and ti ◦ q is in M by step 2 in the construction
(M -morphisms are closed under decompositions). Finally we have H |= PC(a),
because q′ ◦ a = q′′ ◦ ti ◦ q ◦ a = q′′ ◦ ti ◦ t ◦ p = p′′ ◦ p = p′.

In the case I = ∅, the existence of p′′ ∈ M with p′′ ◦ s = m∗ contradicts
m∗ |= T (PC(a)) = ∧SNAC(s). Hence our assumption to have a p′: P → H in
M is false, which implies H |= PC(a).

2. Let H |= PC(a). We have to show m∗ |= T (PC(a)), i.e. for all triples 〈S, s, p〉
constructed in step 1 and all monomorphisms p′′: S → H in M with p′′ ◦ s = m∗

we have to find i ∈ I and a morphism q′′: Ti → H in M with q′′ ◦ ti ◦ t = p′′.
Given 〈S, s, p〉 and p′′ in M as above we define p′ = p′′ ◦ p: P → H . Then p′ is in
M , because p and p′′ are in M , and H |= PC(a) implies q′: C → H in M with
q′ ◦a = p′. Hence p′′ ◦p = p′ = q′ ◦a. The universal property of pushouts implies
the existence of a unique morphism h: T → H with h ◦ t = p′′ and h ◦ q = q′.
Now let h = q′′ ◦ e′ be a epi-mono factorization of h with epimorphism e′ and
monomorphism q′′ in M . Then q′′◦e′◦t = h◦t = p′′ in M implies e′◦t is in M and
q′′ ◦e′ ◦q = h◦q = q′ in M implies e′ ◦q in M (M closed under decompositions).

Hence according to construction step 2 e′ ◦ t belongs to the family (S
ti◦t
→ Ti)i∈I

of T (PC(a)) such that e′ = ti: T → Ti for some i ∈ I . In the case I 6= ∅ we have
q′′ in M and q′′ ◦ ti ◦ t = q′′ ◦ e′ ◦ t = h ◦ t = p′′ implies m∗ |= T (PC(a)). In the
case I = ∅ we have a contradiction which means that our assumption to have
p′′ ∈M with p′′ ◦ s = m∗ is false. This implies m∗ |= ∧SNAC(s) = T (PC(a)).

Remark. The proof of lemma 1 in both directions does not require that a: P → C
is in M . If a is not in M , however, then t is not in M . (In fact, p in M in
pushout (1) implies (1) pushout and pullback such that t in M would imply a
in M). Hence there is no ti in M s.t. ti ◦ t is in M . This implies I = ∅, s.t.
T (PC(a)) = ∧SNAC(s). Hence we have for a not in M or T = ∅ the equivalence

m∗ |= ∧SNAC(s)⇔ H |= PC(a).

Proof of Lemma 2. 1. Let m∗ |= T (NC(a)) and I 6= ∅. The claim H 6|= NC(a)
implies the existence of morphisms p′: P → H and q′: C → H in M with q′◦a = p′

and will lead to a contradiction. Given p′: P → H in M as above and m∗ we
construct the coproduct R + P . This leads to a unique f : R + P → H with
f ◦ inR = m∗ and f ◦ inp = p′. Now let f = p′′ ◦ e an epi-mono-factorization of
f with epimorphism e and monomorphism p′′ in M and define s = e ◦ inR and
p = e◦inP . Similar to part 1 of the proof of lemma 1 we have that 〈S, s, p〉 belongs
to the family ∧S of T (NC(a)) and we have p′′ ◦ p = p′′ ◦ e ◦ inP = f ◦ inP = p′.



Moreover we have p′′ ◦ s = p′′ ◦ e ◦ inR = f ◦ inR = m∗ with monomorphism
p′′ in M and q′ ◦ a = p′. Now pushout (1) in the figure 3, implies existence
of h: T → H with h ◦ t = p′′ and h ◦ q = q′. Now let h = q′′ ◦ e′ epi-mono-
factorization of h with epimorphism e′ and monomorphism q′′ in M . Then, by
the decomposition property of M , p′′ = h◦ t = q′′ ◦ e′ ◦ t in M implies e′ ◦ t in M
and q′ = h ◦ q = q′′ ◦ e′ ◦ q implies e′ ◦ q in M . Hence e′ ◦ t belongs to the family
ti ◦ t in the construction of T (NC(a)). Hence there is i ∈ I with e′ = ti: T → Ti

and q′′ in M with q′′ ◦ ti ◦ t = q′′ ◦ e′ ◦ t = h ◦ t = p′′.

Our assumption m∗ |= T (NC(a)) implies that for all 〈S, s, p〉 as in the construc-
tion and all p′′: S → H in M with p′′ ◦ s = m∗ as given above there is no i ∈ I
and q′′: Ti → H in M with q′′ ◦ ti ◦ t = p′′. This is a contradiction to existence
of i ∈ I and q′′ constructed above.

2. Let H |= NC(a) and I 6= ∅. The claim m∗ 6|= T (NC(a)) will lead to a contra-
diction. For I 6= ∅, m∗ 6|= T (NC(a)) implies the existence of 〈S, s, p〉 as in the
construction of T (NC(a)), and existence of p′′: S → H in M with p′′ ◦ s = m∗,
existence of i ∈ I with ti ◦ t, ti ◦ q in M , and existence of q′′: Ti → H in M
with q′′ ◦ ti ◦ t = p′′. Now let p′ = p′′ ◦ p, then p, p′′ in M implies p′ in M .
Further let q′ = q′′ ◦ ti ◦ q, then q′′, ti ◦ q in M implies q′ in M . This implies
q′ ◦a = q′′ ◦ ti ◦ q ◦a = q′′ ◦ ti ◦ t ◦ p = p′′ ◦ p = p′. Hence we have in contradiction
to H |= NC(a) p′ and q′ in M with q′ ◦ a = p′. For I = ∅, m∗ 6|= T (NC(a))
implies existence of p′′ ∈M with p′′ ◦ s 6= m∗. But this contradicts H |= NC(a).

3. Let I = ∅. Then m∗ |= T (NC(a)) ⇔ true because T (NC(a)) = true in this
case. The claim H 6|= NC(a) leads according to part 1 of the proof to I 6= ∅
which contradicts I = ∅. Hence we have H |= NC(a). This means we have for
I = ∅ m∗ |= T (NC(a))⇔ H |= NC(a)⇔ true.

Remark. The proof of lemma 2 does not require that a is in M . If a is not in
M we have again I = ∅ (as in remark after lemma 1).

Proof of Lemma 3. Let G =⇒
p,m,m∗

H be any direct derivation.

Case 1. The pair 〈r: K → R, x: R → X〉 has no pushout complement. Then
p−1( accR) = true and m |= p−1( accR). We have to show m∗ |= accR. This is
true, because there is no p: X → H with p ∈ M and p ◦ x = m∗. Otherwise,
since the pair 〈r, m∗〉 has a pushout complement, the pair 〈r, x〉 would have a
pushout complement in contradiction to case 1 (pushout-pullback decomposi-
tion, r, p ∈ M).

Case 2. The pair 〈r: K → R, x: R→ X〉 has a pushout complement and I 6= ∅.

Case 2.1. m |= p−1( accR). We have to show m∗ |= accR, i.e. given a morphism
p: X → H in M with p ◦ x = m∗ we have to find an i ∈ I and a morphism
q: Ci → H in M with q ◦ xi = p. From the double pushout for G ⇒p,m,m∗ H
and p ◦ x = m∗ we obtain the following decomposition in pushouts (1), (2),
(5), (6): First (5) is constructed as pullback of p and d1 leading to pushouts (1)



and (5) (pushout-pullback decomposition lemma, r, p in M), with same square
(1) as in the construction because of uniqueness of pushout complements for
M -morphisms. Then (2) is constructed as pushout and we have p′: Y → G with
p′ ◦ y = m and pushout (6) induced by the pushouts (2) and (2) + (6). Since
p is in M , z and p′ are in M (M -morphisms are closed under pullbacks and
pushouts).
In the case I ′ = ∅ we have no p: X → H with p ∈M and p◦x = m∗, because this
would imply p′: Y → G with p′ ∈ M and p′ ◦ y = m violating m |= p−1( accR).
Having no p with p ◦ x = m∗, however, implies m∗ |= accR. In the case I ′ 6= ∅
we have by m |= p−1( accR) an i ∈ I ′ ⊆ I with yi: Y → Di and q′: Di → G in
M with q′ ◦ yi = p′. Now we are able to decompose pushouts (6) and (5) into
pushouts (4)+(8) and (3)+(7) respectively using the same technique as above
now from left to right (pushout-pullback decomposition, l∗, q′ ∈ M) leading to
a morphism q: Ci → H in M with q ◦ xi = p. This implies m∗ |= accR.

L K R

Y Z X

G D H

l r

l∗ r∗

d2 d1

y x

p′ z p

m m∗

(2) (1)

(6) (5)

= =

Y Z X

Di Zi Ci

G D H

l∗ r∗

l∗∗ r∗∗

d2 d1

yi xi

q′ z q

p′ p

(4) (3)

(8) (7)

= =

Fig. 5. Decomposition of pushouts

Case 2.2. m∗ |= accR. We have to show m |= p−1( accR). Due to case 2 we have
p−1( accR) 6= true. Hence for each morphism p′: Y → G in M with p′ ◦y = m we
have to find an i ∈ I ′ and a morphism q′: Di → G in M with q′ ◦ yi = p′. Given
a morphism p′ in M with p′ ◦ y = m we can construct pushouts (1), (2), (5),
(6) as above, where this time we first construct (6) as pullback leading in the
right-hand side to a morphism p: X → H in M with p◦x = m∗. Now m∗ |= accR

implies the existence of an i ∈ I and a morphism q: Ci → H in M with q◦xi = p.
Due to pushout (5) the pair 〈r∗, p〉 has a pushout complement, so that this is
also true for xi: X → Ci with q ◦ xi = p. Hence we have an i ∈ I ′ and can
decompose pushouts (5) and (6) into pushouts (3)+(7) and (4)+(8) from right
to left leading to a morphism q′: Di → G in M with q′ ◦ yi = p′. This implies
m |= p−1( accR).

Case 3. The pair 〈r, x〉 has a pushout complement, but I = ∅.

Case 3.1. m∗ 6|= accR = NAC(x) implies p ∈M with p ◦ x = m∗. As shown in
case 2.1 we obtain p′ ∈M with p′ ◦ y = m which implies m 6|= NAC(y).

Case 3.2. m 6|= p−1( accR) = NAC(y) implies in a similar way m∗ 6|= NAC(x)
using the construction in case 2.2.



Proof of Lemma 4. Let G =⇒
p,m,m∗

H be any direct derivation. We have to show

(?) m |= accL ⇔ m∗ |= accR.

Case 1. I = ∅. Then accR = accL = true which implies (?).

Case 2. I 6= ∅ and 〈r, x〉 has no pushout complement then accL = true. We have
to show m∗ |= accR. Assume m∗ 6|= accR. Then there is p ∈M with p◦x = m∗.
Since 〈r, m∗〉 has a pushout complement the pushout-pullback decomposition
lemma with r, p ∈ M implies that also 〈r, x〉 has a pushout complement. Con-
tradiction. Hence m∗ |= accR.

Case 3. Let I = ∅ and I ′ = ∅ and 〈r, x〉 has a pushout complement. In this case
we have accL = true and we have to show m∗ |= accR. Assume m∗ 6|= accR.
Then there is p ∈ M with p ◦ x = m∗ and i ∈ I , qi ∈ M with qi ◦ xi = p. This
implies m∗ = qi◦xi◦x. Since 〈r, m∗〉 has a pushout complement and r, qi, xi ∈M
the pushout-pullback decomposition lemma implies that also 〈r∗, qi ◦ xi〉 and
〈r∗, xi〉 has a pushout complement. Contradiction to I ′ = ∅. Hence m∗ |= accR.

K R

Z X

Zi Ci

D H

r

r∗

d1

x

xi

qi

z

m∗

p

(1)

(3)

(5)

Case 4. Let I 6= ∅ and I ′ = ∅ and 〈r, x〉 has a pushout complement. In this case
we use the following negations:

a) m 6|= accR = N(L
y
→Y,∧i∈I′(Y

yi

→Di))⇔
∃p′: Y → G, p′ ∈M , p′ ◦ y = m and ∃i ∈ I ′ ∃q′i: Di → G, q′i ∈M ,q′i ◦ yi = p′.

b) m∗ 6|= accR = N(R
x
→X,∧i∈I(X

xi→Ci))⇔
∃p: X → H , p ∈M , p ◦ x = m∗ and ∃i ∈ I ∃qi: Ci → H , qi ∈M , qi ◦ xi = p.

Case 4.1. m 6|= p−1( accR) = accL and we have to show m∗ 6|= accR. By
m 6|= accL we have p′ ∈ M , i ∈ I ′ and q′i ∈ M as given in a). From the
double pushout of G ⇒p,m,m∗ H and m = p′ ◦ y with p′ ∈ M we can construct
pushouts (2), (6), (1), (5) in figure 5 by the pushout-pullback decomposition
lemma with l, p′ ∈ M leading to the commutative diagram in figure 5 with
p ∈M , p ◦x = m∗. Using q′i ◦ yi = p′ we are able to decompose the pushouts (6)
and (5) to pushouts (4), (8) and (3), (7) (by the pushout-pullback decomposition
lemma with l∗, q′i ∈M) leading to morphisms qi: Ci → H , qi ∈M with qi◦xi = p
(see figure 5). This implies m∗ 6|= accR as given in b).

Case 4.2. Let m∗ 6|= accR and we have to show m 6|= accL. By m∗ 6|= accR

we have p ∈ M , i ∈ I , and qi ∈ M as given in b). From the double pushout of



G ⇒p,m,m∗ H and m∗ = p ◦ x with p ∈ M we can construct pushouts (1), (5),
(2), (6) in figure 5 leading to p ∈ M with and p ◦ x = m∗. Using qi ◦ xi = p we
are able to decompose the pushouts (5) and (6) to pushouts (3), (7) and (4), (8)
in figure 5 with q′ ∈M and q′ ◦ yi = p′. This implies m 6|= accR as given in a).
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11. Stephen Lack and Pawe l Sobociński. Adhesive categories. In Proc. of Foundations
of Software Science and Computation Structures (FOSSACS’04), volume 2987 of
Lecture Notes in Computer Science, pages 273–288. Springer-Verlag, 2004.

12. Detlef Plump. Hypergraph rewriting: Critical pairs and undecidability of conflu-
ence. In Term Graph Rewriting: Theory and Practice, pages 201–213. John Wiley,
New York, 1993.


