
VLFM 2004 Preliminary Version

Towards Graph Transformation Based
Generation of Visual Editors using Eclipse

Karsten Ehrig 1, Claudia Ermel 2, Stefan Hänsgen 3,
Gabriele Taentzer 4

Institut für Softwaretechnik und Theoretische Informatik
Technische Universität Berlin

Germany

Abstract

This work discusses the state-of-the-art of visual editor generation based on graph
transformation concepts on one hand, and using the Eclipse technology which in-
cludes the Graphical Editor Framework (GEF), on the other hand. Due to exist-
ing shortcomings in both approaches, we present a combined approach for a tool
environment that allows to generate a GEF-based editor from a formal, graph-
transformation based visual language specification.

Key words: editor generation, visual editor, Eclipse, graph
transformation, visual languages

1 Introduction

Visual language techniques play an important role in software system devel-
opment. Often application-specific visual notations are used for which a tool
environment consisting of visual editors, simulators, etc. is needed. A lot of
work has been done to develop concepts and tool support for generating the
desired tool environments. They rely on meta-modeling concepts, grammar-
based approaches, or some kind of logics. In the following, we concentrate
on generators based on graph transformation like DiaGen [16], AToM3 [12]
and GenGED [1], which allow the precise description of visual modeling lan-
guages and the generation of visual environments. Furthermore, we consider
the development environment Eclipse [3] which offers support for graphical
editor development based on visual language models in form of a number of

1 Email: karstene@cs.tu-berlin.de
2 Email: lieske@cs.tu-berlin.de
3 Email: haensgen@cs.tu-berlin.de
4 Email: gabi@cs.tu-berlin.de

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Ehrig, Ermel, Hänsgen, Taentzer

plug-ins (e.g. EMF [5], Draw2D and GEF [4]). The aim of this paper is to
bring together graph transformation-based tool generation with the Eclipse
technology.

Following a graph-transformation based approach to visual language (VL)
definition, a graph grammar is specified which describes the visual alphabet
by a type graph and the language syntax by graph rules. Additional attributes
store the concrete layout of all language elements. Thus, graph grammars can
precisely define the syntax of a VL. From this VL definition visual editors are
generated in e.g. DiaGen and GenGED. The generated editors cover the
basic functionalities of visual editors, but often more sophisticated features
are not captured and difficult to be added by the customer.

Visual editor development can be based on the Eclipse technology. It
contains the Eclipse Modeling Framework (EMF) for generating mainly the
underlying models of visual editors. From an EMF class diagram, EMF gen-
erates a set of Java classes for manipulating the model and a basic, tree based
editor for model instances. The generated classes provide basic support for
creating/deleting model elements and persistency operations like loading and
saving. For a complete VL description the generated model has to be ex-
tended by additional syntax checks implementing certain constraints e.g. by
the Object Constraint Language (OCL) [17]. Moreover, the visual editor has
to be hand-coded on the basis of GEF, no high-level description of visual
representations is offered to support a complete editor generation.

In this paper, we present the first development steps of a new tool environ-
ment, called Tiger (Transformation-based generation of modeling environ-
ments). It combines the advantages of formal VL specification techniques
(as offered by the graph transformation engine AGG [20]) with sophisticated
graphical editor development features (as offered by the Eclipse Graphical
Editor Framework GEF). Using the AGG engine makes direct use of graph
transformation concepts following the double-pushout approach to typed, at-
tributed graph transformation [8]. Graph transformation is used on the ab-
stract syntax level. Tiger is extending the AGG engine by a concrete visual
syntax definition for flexible means for visual representation of models. From
the definition of the visual language the Tiger generator will generate Java
[19] source code which can be easily extended by various kinds of functional-
ities. The generated Java code will implement a standard visual editor using
the Graphical Editor Framework (GEF). The resulting visual editor is offered
to the user in form of a plug-in for Eclipse. Fig. 1 shows an overview of the
Tiger software architecture.

This paper is organized as follows: In Section 2, we review and compare the
basic concepts of visual editor development, on the one hand based on graph
transformation, and, on the other hand based on Eclipse/GEF. Section 3
describes the aims and the architecture of our envisaged Tiger framework for
visual language specification and GEF-based editor generation. In Section 4,
we present the results of the first development step of the Tiger framework.

2

Ehrig, Ermel, Hänsgen, Taentzer

uses
Plugin for

generates

Eclipse Environment / GEF

Tiger

AGG (Engine) Generated Visual Environment

Java Codetransformation,

and parsing

editing,
uses AGG for

Fig. 1. Architecture Overview

In this step, we realized the generation of editors for graph-like diagrams
on the basis of a VL specification and an AGG syntax grammar. The VL of
Petri nets is the example to demonstrate in Section 5 the use of the Tiger VL
structures and the look-and-feel of the generated editors. The paper concludes
with an outlook on ideas for future development steps of Tiger.

2 Graphical Editor Development: State of the Art

In this chapter we review the state of the art of model-based graphical editor
development. We compare editor generation concepts using models for visual
languages based on graph transformation to editor development concepts using
the graphical editor framework GEF.

2.1 Graph-Transformation based Editor Generation

Graph-transformation based editor generators have the benefit of providing a
solid, formal VL specification compared to other metamodel-based approaches
like EMF. The static part of such a formal VL specification, i.e. the VL al-
phabet, is given by a type graph (the abstract syntax of the VL) plus the
necessary layout specification. Language constraints restricting the set of
valid VL diagrams are modeled by restricting the editing operations which
are allowed in the generated editor. Using a meta-model like EMF, many
language constraints can only be expressed by adding e.g. OCL constraints
or natural-language comments to the metamodel class diagram. Hence, the
meta-modeling approach is better suited for graph-like diagrams of low com-
plexity. Using graph transformation, only editing operations are allowed which
result in a valid VL diagram. An editing operation in the generated editor
is combined to a corresponding change of the internal abstract syntax graph
of the diagram. An editor operation is modeled as a graph rule (typed over
the VL type graph) being applied to the abstract syntax graph of the current
diagram. The graph grammar defining these editor operations is called VL
syntax grammar because it defines (together with the VL alphabet) the com-

3

Ehrig, Ermel, Hänsgen, Taentzer

plete syntax of the VL. Syntax rules using negative application conditions are
a well-defined and constructive way to express which diagrams belong to a
VL. Editing based on a syntax grammar is called syntax-directed editing and
allows to edit syntactically correct diagrams only. Besides, syntax rules can
specify complex editing operations like the deletion of a complete hierarchy
level in a statechart in one step. When a diagram has been edited, other
graph grammars (like simulation grammars) can be applied to perform model
simulation or model analysis, based on the same graph transformtion engine.

Visual editor and environment generators like DiaGen [16], AToM3 [12]
and GenGED [1] generate their own VL specific editors from VL specifica-
tions based on graph-transformation. They create their own editor features
for layouting diagrams, undo/redo, zooming, etc. In GenGED, layouting is
based purely on graphical constraint solving, a flexible and elegant way to
model layout constraints. Unfortunately, in some cases this leads to perfor-
mance problems as the computation of large constraint satisfaction problems
can be quite complex. Therefore, GenGED (as well as DiaGen) allows the
editor designer to write VL-specific layout algorithms in Java which replace
the constraint solver when the VL becomes more complex. This solution re-
quires some knowledge in Java programming and about the internal language
model from the editor designer. AToM3 offers a standard layout algorithm
in its generated editors which is adequate only for simple graph-like diagrams.
For more complex VLs, the editor user has to take care of an adequate diagram
layout by positioning the diagram elements by hand on the panel.

All of the generated environments are not meant to be integrated into other
existing tool environments. As standalone applications they do not always
offer the standard look-and-feel of common editor features like e.g. zooming
or undo/redo.

2.2 Eclipse Graphical Editor Framework (GEF)

Eclipse [3] is an open platform for tool integration managed by an open
community written in Java [19]. Eclipse is open source, i.e. the source code
is freely available under a worldwide Public License. The plug-in technology
allows flexible program development and integration. Extensive plug-in con-
struction toolkits and examples allow the easy development of own application
plug-ins supporting basic application functionalities.

The Graphical Editor Framework (GEF) [4] plug-in is part of the Eclipse
project and allows the designer to develop graphical editors for models of a
specific application domain. Sample GEF-based editors are available for state
diagrams, activity diagrams, class diagrams, GUI builders, process flow edi-
tors, etc. Basic editor functionalities like cut, copy and paste, undo and redo
are offered by GEF to be included in a graphical editor. The development of
graphical editors based on GEF makes use of these basic editor functionalities.

GEF-based editors require at least a minimal Eclipse environment such as

4

Ehrig, Ermel, Hänsgen, Taentzer

the Eclipse Runtime-Workbench. The GEF-based editor is linked by action
handlers to the Eclipse environment. GEF assumes a meta-model of the visual
language the editor is to be built for. This meta-model (called model in
GEF) is a distinct package offering all model-based operations like creation
and deletion of symbols, connection of symbols by links as well as persistency
operations. The values defined by the model are the only data that is persisted
and restored for each model instance (diagram). Hence, the model has to
include layout information (e.g. symbol positions) for each of its elements.

GEF provides viewers that can be used anywhere in the Eclipse workbench
(e.g. graphical or tree-based viewers). GEF editors are based on the Model-
View-Controller architecture (Fig. 2). The controllers (usually there is one so-
called EditPart for each symbol type) build the bridge between the views and
the model. These EditParts are responsible for the communication between
the model and the corresponding views: a Command, e.g. a DeleteCommand,
leads to a change in the model and to a notification from the model to the
corresponding EditPart which initiales an appropriate update of the view.

Fig. 2. Model-View-Controller

The disadvantage of using GEF is that the underlying model is not defined
completely (it is only given in terms of a meta-model when EMF is used, or
as a hand-implemented Java package). Therefore it may be the case that the
editor allows the editing of diagrams which are not valid in the VL.

Hence, our approach is to combine GEF features and formal, graph-trans-
formation based VL specification in a new editor generator as described in the
following sections.

3 The Tiger Environment: Aims and Architecture

With Tiger, we envisage a fruitful combination of the features for graphi-
cal editor development offered by Eclipse and GEF and the power of graph
transformation tools for defining the syntax and semantics of visual modeling
languages. The overall aim of Tiger is to allow the generation of modeling en-
vironments based on GEF and on formal graph transformation specifications
defining, checking or transforming the diagrams of a specific VL (e.g. syn-
tax grammars, simulation grammars, consistency checking grammars, model
transformation grammars, etc.).

5

Ehrig, Ermel, Hänsgen, Taentzer

For the graph transformation structures used for VL definition, we rely
on the tool environment AGG which offers not only a graph transformation
engine for typed, attributed, conditional graph rewriting but also algorithms
for checking graph conditions and analysis of graph grammars (such as critical-
pair analysis). These analysis techniques can be used to provide syntactic as
well as semantic checks on visual languages. The formal basis of Tiger differs
from that of GenGED. Instead of transforming attributed graph structures
as done in GenGED, we transform typed attributed graphs now. Both kinds
of graphs are equally powerful [7], but typed attributed graphs offer a simpler
and more compact approach to visual language definition.

For the generation of modeling environment components we rely on the
GEF framework. Visual editors based on model definitions, will play an im-
portant role within nearly all Tiger components: On the one hand, we will
have the component designer which allows the visual definition of the VL
specification itself from which the modeling environment is generated, and
on the other hand we will have the generated modeling components, namely
the editor component for editing a model, the simulator/animator compo-
nent for simulating/animating a model’s behavior, the analysis component
for performing model analysis and visualizing the analysis results, the model
transformation component for realizing model conversions from one model-
ing language to another (e.g. from function block diagrams to Petri nets in
order to perform Petri net based analyis of the model). All these compo-
nents need visual editors or at least viewers for showing parts of the model
or intermediate model states. In the following we summarize all the different
components which may be generated from one VL specification by the notion
<vl>.environment.

In Fig. 3, the basic components of the Tiger software architecture are
shown. The basic AGG data structures are in the package AGG-Engine.

G

E

F

<vl>.model

<vl>.environment

SVG

gxl

XMI...

tiger.vl_designer

tiger.generator

VL−Definition

Abstract Syntax

Concrete Syntax

Generated Environment

User Interface
gtxl
VL
specifi−
cation

tiger.vlspec

AGG−Engine

Fig. 3. Software Architecture

The packages tiger.generator and tiger.vlspec build the core packages of
the Tiger tool. The VL specification will be designed by the VL designer
using the tiger.vl designer component building the VL specification using the

6

Ehrig, Ermel, Hänsgen, Taentzer

data structures defined in the tiger.vlspec package.

The tiger.generator generates the diagram and grammar editors, as well as
the simulation, animation, analysis and model transformation components be-
longing to the <vl>.environment where <vl> should be replaced with the con-
crete editor name. Moreover, the tiger.generator generates the visual model
from the VL specification in the package <vl>.model.

The basic VL specification package tiger.vlspec allows a VL specification
to be saved in the Graph Transformation Exchange Language (GTXL) format
[21,11]. This is an XML based exchange format for graph transformation
systems which is based on the exchange format for graphs GXL [22] and
reflects different graph transformation system structures and different graph
transformation techniques in order to allow tool cooperation in the graph
transformation community.

4 The First Development Step

Since the Tiger project is ongoing work in an early stage, we here present the
current state of the development. As the aim of our software design we have
almost completed the first development step in order to have a feedback for
designing the next developing steps. Therefore, we have imposed the following
design decisions on the first development step:

• We generate diagram editors (instead of complete modeling environments).

• We use the VL alphabet plus syntax grammar as VL specification; thus
we generate graph-transformation based editors. Later we add additional
grammars to the VL specification for e.g. simulating, parsing.

• We allow graph-like languages (e.g. Petri nets, class diagrams) [15] only.

• We use Eclipse JET [6] for source code generation as part of the Eclipse
Modeling Framework (EMF) [5]; thus we use Eclipse to generate our new
Eclipse Editor Plug-in.

Fig. 4 shows the package tiger.vlspec which is implemented in the first
development step. A VL specification (VLSpec) consists of a VL alphabet
and a VL syntax grammar (AGG-Engine.GraGra). A VL alphabet consists
of SymbolTypes and LinkTypes. In our approach, graph-like languages consist
of NodeSymbolTypes (e.g. places and transitions for Petri nets) and EdgeSym-
bolTypes (e.g. arcs for Petri nets) with the restriction that EdgeSymbolTypes
may be connected to NodeSymbolTypes only. This restriction is embedded
in the constructor of class LinkType at the first development step only. The
classes AttributeType, SymbolType and LinkType have direct correspondences
to the AGG-Engine and hence to the abstract syntax representation.

The graphical layout for a NodeSymbol of a certain NodeSymbolType is
given by the class ShapeFigure. The shape of NodeSymbols can be rectangle,
circle, ellipse and closed polygon for graph-like languages. The stroke and fill

7

Ehrig, Ermel, Hänsgen, Taentzer

1 *

Alphabet
name: String

SymbolType
getName(): String

LinkType
name: String

{interface}

NodeSymbolType
name: String

EdgeSymbolType
name: String

begin

end1 *

AttributeType
name: String

datatype: String

{ordered}

*

* *

Connection

name: String
strokeColor: Color

strokeWidth: int
strokeStyle: Style

ShapeFigure

name:String
shape: Shape

borderColor: Color
fillColor: Color

ConnectionConstraint
kind: Enum

Figure
getName(): String
getPosition(): Point

TextFigure

name: String
font: Font

fontColor: Color
visibility: Boolean

1 *
*

1

*

0..1

LayoutConstraint
kind: Enum

first

second

1

1

* *

*

11

*

tiger.vlspec.alphabet

{interface}

LinkLayout

marker: MarkerKind
borderColor: Color

fillcolor: Color

0..1

1

VLSpec
name: String

AGG-Engine

GraGra
name: String

syntaxgragra

Fig. 4. Package tiger.vlspec

colors are given by the attributes borderColor and fillColor. SymbolTypes may
be attributed by an ordered list of AttributeTypes e.g. to model the place and
transition names in Petri nets. The standard layout for a textual attribute
of type AttributeType is given by class TextFigure with attributes font and
fontColor where font is of type java.awt.Font which already includes style and
size attributes. The graphical relations between TextFigures and ShapeFigures
are expressed by LayoutConstraints on interface Figure.

Figures can be connected by Connections which represent the concrete
graphical layout for the EdgeSymbolTypes. Connections are lines or polylines.
The graphical layout is given by the attributes strokeColor (color of the con-
nection), strokeWidth (connection width), and strokeStyle (e.g. dashed or
solid connection). The graphical representation of a link (e.g. a colored ar-
row) is modeled by the attributes marker, borderColor, and fillColor of the
class LinkLayout.

Relations between two Figures can be modeled as LayoutConstraints (e.g.
below(TextFigure, ShapeFigure)), and relations between a Figure and a Con-
nection can be modeled as ConnectionConstraints (e.g. nearCenter(TextFigure,
Connection)). For graph-like languages we use the default GEF graph lay-
outer and therefore we do not need a graphical constraint solver to compute
the layout of the symbols and links in the first development step.

For the editor generation the JET compiler reads the visual alphabet spec-
ification and the generator template files which define the code generation
skeleton with code placeholders. JET replaces the placeholder with the spe-
cific code from the visual alphabet specification. This generation process leads

8

Ehrig, Ermel, Hänsgen, Taentzer

to a new generated Eclipse Editor Plug-in Project which could be directly ex-
ecuted in the Eclipse Runtime-Environment.

In the new Editor Plug-in the generator creates a SymbolFigure and an
EditPart for each symbol type in the visual alphabet. The SymbolFigures
contain the editor code for the graphical layout of the symbols and its at-
tributes. The EditParts represent the controller framework between the editor
and the underlying model which is directly represented by an AGG Instance
Graph. Therefore model changes lead to an update of the editor view via the
corresponding EditParts.

For user interaction the generator creates icons for the defined symbols in
the editor palette. Now the user is allowed to draw a symbol in the editor panel
and to define the symbol attribute values in a Properties Dialog. Invoking an
edit operation leads to an execution of the corresponding syntax rule in the
AGG-Engine. The transformed diagram is directly displayed in the editor
panel by the editor controller framework.

Diagram

Concrete Syntax
Representation

Abstract Syntax
Representation

NodeSymbol
Link Link

beginend endbegin NodeSymbolEdgeSymbol

Arc Arc
sourcetarget

Node Node Node
source target

AGGGraph Place ArcPT Transition
arcPTsource arcPTtarget

Fig. 5. Representation of a Diagram

Fig. 5 shows the representation of a simple diagram (a Petri net) in Tiger
as concrete and abstract syntax. In the diagram, a place is connected to a
transition by an arc. Place and transition are represented by NodeSymbols
and arc is represented by an EdgeSymbol in the concrete syntax. NodeSymbols
and EdgeSymbols are connected by Links. In the abstract syntax, NodeSymbols
and EdgeSymbols are both represented by Nodes, and Links are represented
by Arcs in between in order to have a one-to-one correspondance to the AGG
data structures (see AGG-Graph in Fig. 5).

5 Example: Petri Nets

As example to present the concepts in more detail, we use Place/Transition
nets (P/T nets for short) [18]. Places are ellipses in our visual editor, and
transitions are rectangles. The marking of a place is represented as natural

9

Ehrig, Ermel, Hänsgen, Taentzer

number inside the place ellipse. Places and transitions have names. A place
name is shown below the place ellipse and a transition name inside the transi-
tion rectangle. For simplicity, arc weights uniformly correspond to the token
number “1”, hence arc inscriptions are omitted.

5.1 The Petri Net Alphabet

A sample alphabet for the VL of Petri nets is presented in Fig. 6 and con-
forms to the general structure of VL alphabets as given in Fig. 4. We use the
NodeSymbolTypes Place and Transition for the Petri net nodes, the EdgeSym-
bolTypes ArcPT for Petri net arcs from a place to a transition and ArcTP
for arcs from a transition to a place, and the LinkTypes arcPTsource, arcPT-
target, arcTPsource and arcTPtarget for linking the edge symbols to the node
symbols. AttributeTypes (textual attributes) include the names of places and
transitions, their positions and the token number on a place. Layout informa-
tion (depicted in the bottom of Fig. 6) is given by ShapeFigures, Connections
and TextFigures linked to the corresponding NodeSymbolTypes, EdgeSym-
bolTypes and AttributeTypes, respectively.

:EdgeSymbolType
ArcTP

:LinkType
arcTPtarget

:NodeSymbolType
Place

:LinkType
arcPTsource

:EdgeSymbolType
ArcPT

:NodeSymbolType
Transition

:LinkType
arcTPsource

:AttributeType
PlaceName

:AttributeType
Token

:AttributeType
PlacePosition

:AttributeType
TransName

:AttributeType
TransPosition

:ShapeFigure
PlaceFigure

:TextFigure
PlNameFigure

:TextFigure
TokenFigure

:ShapeFigure
TransFigure

:TextFigure
TrNameFigure

:Connection
ArcTPconn

:Connection
ArcPTconn

:LayoutConstraint
BELOW

:LayoutConstraint
INSIDE

:LayoutConstraint
BELOW

:LinkLayout
FILLEDTRIANGLE

:LinkLayout
FILLEDTRIANGLE

begin

end

end

begin

begin

end

end

begin

first second first second firstsecond

:LinkType
arcPTtarget

Fig. 6. Alphabet for Place/Transition Nets

For the NodeSymbolType Place the ShapeFigure PlaceFigure defines the
shape to be an ellipse. We do not add information about the shapeColor and
fillColor attributes of the ShapeFigure here because we use the default values,
e.g. shapeColor=black and fillColor=none.

The Place attribute PlName contains the place name of type String, an

10

Ehrig, Ermel, Hänsgen, Taentzer

AttributeType. String attributes are by default layouted as TextFigure, making
use again of default definitions for the layout of the text, e.g. font=(“Arial”,
Font.ITALIC, 12), fontColor=black. The TextFigure PlNameFigure for the place
name is connected to the ShapeFigure of the Place NodeSymbolType by the
LayoutConstraint BELOW which means that the place name text is positioned
below the ellipse shape of the place.

The Place attribute Token is represented by the AttributeType Token, whose
layout is again a TextFigure. The LayoutConstraint INSIDE defines that the
TokenFigure is always drawn inside the PlaceFigure.

The last Place attribute, the PlacePosition is again an AttributeType, namely
the x and y coordinates (type Point) of the place figure. The position of a
SymbolType figure is the only layout information which is given as Attribute-
Type because the position contains information that is necessary to store and
load a diagram (a concrete P/T net) in the generated editor. All the other lay-
out attributes like ShapeFigure or LayoutConstraint serve for the generation
of the visual editor features. For example, the class generated for the Cre-
atePlace command implements the Ellipse figure class and thus incorporates
the shape information. The LayoutConstraint INSIDE leads to the generation
of a hierarchy of figures in GEF, where e.g. the TokenFigure is a child figure
of the parent figure PlaceFigure.

Fig. 7 shows the abstract syntax of the instance diagram in Fig. 9 (a
P/T-Net) over the alphabet shown in Fig. 6. For the instance diagram we use
the more compact AGG notation and represents Links by Arcs and Attributes
of the alphabet symbols as AGG Attributes of the corresponding AGG Nodes.

:Place
Plname = place1

Token = 1

:Place
Plname = place2

Token = 1

:Place
Plname = place3

Token = 0

:Place
Plname = place4

Token = 0

:Transition
Trname = t1

:ArcPT :ArcPT

:ArcTP :ArcTP

:arcPTsource

:arcPTtarget

:arcPTsource

:arcPTtarget

:arcTPsource

:arcTPtarget

:arcTPsource

:arcTPtarget

Fig. 7. AGG Instance Diagram over the P/T-Net Alphabet

5.2 The Petri Net Syntax Grammar

The VL syntax grammar contains only language generating rules. We get the
abstract syntax grammar if we restrict the start graph and all rules according
to the VL type graph. Fig. 8 shows the abstract syntax rules which define our
Petri net VL. The start graph of the Petri net VL syntax grammar is empty.
For each symbol of the Petri net VL there exists one generating rule. Negative
application conditions (NACs) ensure in the first two rules that place names
and transition names are unique. In the last two rules the NACs require
that no more than one arc in each direction may be inserted between a place

11

Ehrig, Ermel, Hänsgen, Taentzer

and a transition. Note that this uniqueness of arcs cannot be expressed by
multiplicity constraints as e.g. used in EMF.

L

L

R

R

R

LNAC

NAC L

NAC

NAC

RPlace

InsTrans(tn)Transition

TrName = tn

Trans Place

PlName = pn

Trans

Transition

TrName = tn

PlName = pn

Place

Token = tok

Trans

ArcTP

Place Trans Place TransPlace Trans

ArcPT ArcPT

insArcPT

insArcTP

Place PlaceinsPlace(pn,tok)

arcPTsource arcPTsourcearcPTtarget arcPTtarget

ArcTP arcTPtarget arcTPtargetarcTPsource arcTPsource

Fig. 8. Syntax grammar for the Petri net VL.

5.3 The Generated Petri Net Editor

Fig. 9 shows the generated GEF based Petri net editor which relies on the
Petri net VL model.

The Petri net editor is divided into two panels. On the left hand side is the
editor palette and on the right hand side the editor frame. The editor palette
has the two default items Select for marking an editor symbol in the frame and
Marquee for selecting a set of symbols with a dashed rectangle in the frame.
Below the default items the palette contains icons for the generated VL-specific
language elements (the symbol types). The editor frame contains a sample
Petri net with one transition (t1), two pre-places (place1, place2), and two
post-places (place3, place4). There is a token marking “1” inside place1 and
place2. The symbol properties (e.g. names, token markings) can be changed
in a Properties Dialog. This plug-in also provides undo/redo functionality,
zooming and loading/saving.

Internally, the editing operations are now realized by applying editing rules
to the current diagram in the editor panel. All rules are applied to the abstract
syntax of a diagram only, hence, the transformation can be executed using the
AGG transformation engine. For example the syntax grammar rules depicted
in Fig. 8 can be applied to edit the P/T-Net shown in Fig. 7. The layout
of the resulting diagram is computed according to the layout information as
provided by the VL model resp. as incorporated in the generated VL editor.

The layout constraints (e.g. above, below, inside, right, left for figures
and atSource, atCenter, atTarget for connections) are translated by the editor
generator to static GEF constraints which are data attached to each figure that
gives additional guidance to the GEF layout manager. In the case of the place
layout constraint below(name text, place shape) the generator treats the name
text as child of the place shape figure. The position of the child is computed
relative to the position of its parent figure by defining a surrounding rectangle

12

Ehrig, Ermel, Hänsgen, Taentzer

Fig. 9. Generated Petri Net Editor Example with Properties Dialog

(the constraint) around both parent and child figure (see the selected area for
place1 in Fig. 9). Another typical example for the use of GEF constraints
for layout computation is the addition of a label to a connection where the
label should appear near the center of the connection line (layout constraint
atCenter(text figure, connection)).

6 Conclusion and Future Work

In this paper, we describe first ideas and the software architecture for a tool
generating visual modeling environments from formal visual language speci-
fications based on graph transformations and Eclipse-GEF. The envisaged
tool environment Tiger combines the advantages of formal VL specifications
using graph transformation (as offered by Agg) and of sophisticated graph-
ical editor development features (as offered by Eclipse-GEF). The gener-
ated modeling environments themselves are Eclipse plug-ins and hence can
be integrated in the Eclipse framework. The current state of this ongoing
work (the first development step) is restricted to generating graphical editors
for graph-like languages where the generation is graph-transformation based.
This means, the VL specification so far consists of an alphabet (a type graph
plus layout attributes) and a syntax grammar. In addition to the purely lan-
guage generating syntax grammar a complete VL editing grammar could be
defined. The editing grammar contains additional rules to define necessary
and convenient editing operations. These additional rules concern e.g. the
deletion of symbols or the change of attribute values. Moreover, editing rules
can be defined by the editor designer to specify complex editor operations
concerning more than one symbol whereas in the generated editor at the first

13

Ehrig, Ermel, Hänsgen, Taentzer

development step only insertion / deletion of basic symbols were allowed. For
example, a complex editing rule for statecharts can specify the deletion of a
complete hierarchy level in a statechart [10] in one step. Note that the exten-
sion of the VL syntax grammar to the VL editing grammar must not lead to
an extension of the defined visual language.

An alternative for syntax-directed editing based on graph transformation is
free-hand editing. A free-hand editor would offer more general symbol editing
commands like in the first development step (emulated by simple editing rules
without NACs), but add a parse button in the toolbar which evokes the parsing
of the current diagram, internally realized by applying parse rules. For our
Petri net example, the parsing rules are the inverted rules of the VL syntax
grammar shown in Fig. 8. The application of the parsing rules tries to reduce
the abstract syntax graph of the diagram edited so far to the empty stop
graph (see e.g. [2]). If this is possible, the diagram is valid, otherwise an error
message informs the user that the diagram is invalid. The advantage of the
free-hand editing approach is that the editing of intermediate invalid diagrams
is tolerated by the editor. Similar to parsing, a diagram could also be checked
according to additional model constraints, as done in e.g. AToM3 where a
class diagram (the meta-model) is combined with constraints in e.g. OCL [17]
which can be checked at any time during the editing process.

A sample editor for Petri nets is presented, together with the correspond-
ing Petri net alphabet the editor is generated from. Since the development of
Tiger is at a very first stage, it is beyond the scope of this paper to com-
pare it with none graph transformation-based generators for visual modeling
environments (such as MetaCASE [14], and GME [13], etc.).

Near future work (the second development step) extends the VL specifica-
tion to include additional transformation rules (e.g. parsing rules, simulation
rules) to allow more specific means for model manipulation in the generated
environment. Further development steps aim at allowing more general kinds
of diagrams instead of graph-like languages only. To allow a user friendly
definition of the VL specification a VL-Designer component should be imple-
mented soon. Here, the experiences made with GenGED [1], a generator for
graphical environments providing a nice graphical user interface for editing
VL specifications, will be helpful. More general kinds of diagrams then can
be used to realize even more sophisticated components of the generated mod-
eling environment, such as animation of model behavior in different views [9]
or model transformation.

References

[1] Bardohl, R., GenGED – Visual Definition of Visual Languages based on
Algebraic Graph Transformation, Technical University of Berlin, Verlag Dr.
Kovac, 1999.

14

Ehrig, Ermel, Hänsgen, Taentzer

[2] Bardohl,R. and Ermel,C., Visual Specification and Parsing of a Statechart
Variant using GenGED, Statechart Modeling Contest at IEEE Symposium
on Visual Languages and Formal Methods (VLFM’01), Stresa, Italy, 2001.
http://www2.informatik.uni-erlangen.de/VLFM01/Statecharts/

[3] Eclipse Consortium, Eclipse – Version 2.1.3, 2004, available at http://www.
eclipse.org.

[4] Eclipse Consortium, Eclipse Graphical Editing Framework (GEF) – Version
2.1.3, 2004, available at http://www.eclipse.org/gef.

[5] Eclipse Consortium, Eclipse Modeling Framework (EMF) – Version 1.1.1, 2003,
available at http://www.eclipse.org/emf.

[6] Eclipse Consortium, Java Emitter Templates (JET), Eclipse Modeling
Framework – Version 1.1.1, 2003, available at http://www.eclipse.org/emf.

[7] Ehrig, H., Attributed Graphs and Typing: Relationship between Different
Representations, Technical University of Berlin, 2003.

[8] Ehrig, H. and Prange, U. and Taentzer, G., Fundamental Theory for Typed
Attributed Graph Transformation. In Proc. 2nd Int. Conference on Graph
Transformation (ICGT’04), Parisi-Presicce, F. and Bottoni, P. and Engels, G.,
2004.

[9] Ermel, C. and Bardohl, R., Scenario Animation for Visual Behavior Models: A
Generic Approach, Journal on Software and System Modeling: Special Section
on Graph Transformations and Visual Modeling Techniques, Vol. 5, Springer,
2004.

[10] Harel, D., Statecharts: A visual formalism for complex systems, Science
of Computer Programming, vol. 8, pp. 231-274, Elsevier Science Publ.,
Amsterdam, 1987.

[11] Lambers, L., A new Version of GTXL: An Exchange Format for Graph
Transformation Systems, International Workshop on Graph-Based Tools
(GraBaTs), Italy, 2004.

[12] de Lara, J., Vangheluwe, H., 2002. AToM3: A Tool for Multi-Formalism
Modelling and Meta-Modelling. In Proc. FASE’02, Springer LNCS 2306, pp.
174 - 188. See also the AToM3 home page, http://atom3.cs.mcgill.ca

[13] Ledeczi, A. and Maroti, M. and Bakay, A. and Karsai, G. et al., The Generic
Modeling Environment. In Proc. WISP’01, published by IEEE, Budapest,
Hungary, 2001.

[14] MetaCase Consulting, Domain Specific Modeling: 10 Times Faster Than UML,
Whitepaper available at http://www.metacase.com/papers/index.html.

[15] Minas, M., Specifying Graph-like Diagrams with DiaGen, in Electronic Notes in
Theoretical Computer Science, vol. 72, issue 2, published by Elsevier, 2002.

15

http://www2.informatik.uni-erlangen.de/VLFM01/Statecharts/
http://www.eclipse.org
http://www.eclipse.org
http://www.eclipse.org/gef
http://www.eclipse.org/emf
http://www.eclipse.org/emf
http://atom3.cs.mcgill.ca
http://atom3.cs.mcgill.ca
http://atom3.cs.mcgill.ca
http://www.metacase.com/papers/index.html
http://www.metacase.com/papers/index.html
http://www.metacase.com/papers/index.html

Ehrig, Ermel, Hänsgen, Taentzer

[16] Minas, M. and Viehstaedt, G., DiaGen: A Generator for Diagram Editors
Providing Direct Manipulation and Execution of Diagrams, Proc. IEEE Symp.
on Visual Languages, September, 5-9, Darmstadt, Germany, pp. 203–210, 1995.

[17] Object management group (OMG), Object constraint language – Version 2.0,
2002, available at http://www.klasse.nl/ocl.

[18] Reisig, W., Petri Nets, EATCS Monographs on Theoretical Computer Science,
vol. 4, Springer-Verlag, 1985.

[19] Sun Microsystems, Java – Version 1.5, 2004, available at http://java.sun.
com.

[20] Taentzer, G., AGG: A Graph Transformation Environment for Modeling
and Validation of Software, Proc. Application of Graph Transformations
with Industrial Relevance (AGTIVE’03), Pfaltz, J. and Nagl, M.,
Charlottesville/Virgina, USA, 2003.

[21] Taentzer, G., XML-based Exchange Formats for Graphs and Graph
Transformation Systems, http://www.tfs.cs.tu-berlin.de/projekte/
gxl-gtxl.html, EU Working Group APPLIGRAPH on Application of Graph
Transformation, 2002.

[22] Winter, A., An Overview on the GXL Graph Exchange Language, S. Diehl (ed.)
Software Visualization, International Seminar at Dagstuhl Castle, Germany,
Springer LNCS 2269, pp. 324–336, 2002.

16

http://www.klasse.nl/ocl
http://java.sun.com
http://java.sun.com
http://www.tfs.cs.tu-berlin.de/projekte/gxl-gtxl.html
http://www.tfs.cs.tu-berlin.de/projekte/gxl-gtxl.html

	Introduction
	Graphical Editor Development: State of the Art
	Graph-Transformation based Editor Generation
	Eclipse Graphical Editor Framework (GEF)

	The Tiger Environment: Aims and Architecture
	The First Development Step
	Example: Petri Nets
	The Petri Net Alphabet
	The Petri Net Syntax Grammar
	The Generated Petri Net Editor

	Conclusion and Future Work
	References

