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Abstract. Adhesive high-level replacement (HLR) categories and sys-
tems are introduced as a new categorical framework for graph transfor-
mation in a broad sense, which combines the well-known concept of HLR
systems with the new concept of adhesive categories introduced by Lack
and Sobociński.
In this paper we show that most of the HLR properties, which had been
introduced ad hoc to generalize some basic results from the category
of graphs to high-level structures, are valid already in adhesive HLR
categories. As a main new result in a categorical framework we show the
Critical Pair Lemma for local confluence of transformations. Moreover we
present a new version of embeddings and extensions for transformations
in our framework of adhesive HLR systems.

1 Introduction

High-level replacement systems have been introduced in [1] to generalize the
well-known double pushout approach from graphs [2] to various kinds of high-
level structures, including also algebraic specifications and Petri nets. In order
to generalize basic results, like the local Church-Rosser, parallelism and concur-
rency theorem, several different conditions have been introduced in [1], called
HLR conditions. The theory of HLR systems has been applied to a large number
of example categories, where all the HLR conditions have been verified explicitly.
Unfortunately, however, these conditions have some kind of ad hoc character,
because they are just a collection of all the properties which are used in the
categorical proofs of the basic results. Up to now it has not been analyzed how
far these HLR properties are independent from each other or are consequences
of a more general principle.

This problem concerning the ad hoc character of the HLR conditions has
been solved recently by Lack and Sobociński in [3] by introducing the notion
of adhesive categories. They have shown that the concept of “van Kampen
squares”, short VK squares, known from topology [4], can be considered as such
a general principle. Roughly spoken a VK square is a pushout square which is
stable under pullbacks. The key idea of adhesive categories is the requirement
that pushouts along monomorphisms are VK squares. This property is valid not
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only in the categories Sets and Graph, but also in several varieties of graphs,
which have been used in the theory of graph grammars and graph transformation
[5] up to now. On the other hand Lack and Sobociński were able to show in [3]
that most of the ad hoc HLR conditions required in [1] can be shown for adhesive
categories. Together with the results in [1] this implies that the basic results
for the theory of graph transformation mentioned above are valid in adhesive
categories, where only the Parallelism Theorem requires in addition the existence
of binary coproducts.

Unfortunately the concept of adhesive categories incorporates an important
restriction, which rules out several interesting application categories. The HLR
framework in [1] is based on a distinguished class M of morphisms, which is re-
stricted to the class of all monomorphisms in adhesive categories. This restriction
rules out the category (SPEC, M) of all algebraic specifications with class M of
all strict injective specification morphisms (see [1]) and several other integrated
specification techniques like algebraic high-level nets [6, 7] and different kinds of
attributed graphs [8, 9], which are important in the area of graph transformation
and HLR systems.

In this paper we combine the advantages of HLR and of adhesive categories
by introducing the new concept of “adhesive HLR categories”. Roughly spoken
an adhesive HLR category is an adhesive category with a suitable subclass M of
monomorphisms, which is closed under pushouts and pullbacks. As main results
of this paper we are able to show that adhesive HLR categories are closed under
product, slice, coslice and functor category constructions and that most of the
important HLR properties of [1] are valid. These results are generalizations of
corresponding results in [3], where we remove the restrictions, that M is the
class of all monomorphisms and that adhesive categories in [3] are required to
have all pullbacks instead of pullbacks along M -morphisms only.

In sections 2 - 4 of this paper we review and recover the basic results for
HLR systems in [1] and adhesive grammars in [3] in the framework of adhesive
HLR categories and systems. Moreover, we present in section 5 a new version of
the results for embedding and extension of transformations [2, 10, 11]. This is the
basis to show in section 6 another main result of this paper: For the first time
we present a categorical version of the Critical Pair Lemma for local confluence
of transformations, discussed for hypergraphs in [12] and attributed graphs in
[9], in our new framework of adhesive HLR systems.

For lack of space we only give proof ideas for some of our results in this
paper. For a more detailed version we refer to our technical report [13].

2 Review of Van Kampen Squares
and Adhesive Categories

In this section we review adhesive categories as introduced by Lack and So-
biciński in [3].

The basic notion of adhesive categories is that of a so called van Kampen
square. The intuitive idea of a van Kampen square is that of a pushout which
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is stable under pullbacks and vice versa pushout preservation implies pullback
stability. The name van Kampen derives from the relationship between these
squares and the Van Kampen Theorem in topology [4].

Definition 1 (van Kampen square). A pushout (1) is a van Kampen (VK)
square, if for any commutative cube (2) with (1) in the bottom and back faces
being pullbacks holds: the top is pushout ⇔ the front faces are pullbacks.
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(1)
(2)

In the definition of adhesive categories only those VK squares are considered,
where m is a monomorphism. In this case the square is called a pushout along a
monomorphism. The first interesting property of VK squares in [3] shows that
in this case also n is a monomorphism and the square is also a pullback.

Definition 2 (adhesive category). A category C is an adhesive category, if

1. C has pushouts along monomorphisms, i.e. pushouts, where at least one of
the given morphisms is monomorphism,

2. C has pullbacks,
3. pushouts along monomorphisms are VK squares.

The most basic example of an adhesive category is the category Sets of sets.
Moreover it is shown in [3] that adhesive categories are closed under product,
slice, coslice and functor category construction. This implies immediately that

also the category Graphs of graphs G = (E
s,t

⇒ V ), and also several variants like
typed graphs, labelled graphs and hypergraphs are adhesive categories. This is
a first indication that adhesive categories are suitable for graph transformation.
Counterexamples for adhesive categories are Pos (partially ordered sets), Top
(topological spaces), Gpd (groupoids) and Cat (categories), where pushouts
along monomorphisms fail to be VK squares (see [3]).

The main reason why adhesive categories are important for the theory of
graph transformation and its generalization to high-level replacement systems
(see [1]) is the fact that most of the HLR conditions required in [1] are shown to
be valid already in adhesive categories (see [3]). This implies that basic results
like the Local Church-Rosser Theorem and the Concurrency Theorem (see [1])
are valid already in the framework of adhesive categories, while the Parallelism
Theorem needs in addition the existence of binary coproducts.

The main advantage of adhesive categories compared with HLR categories
in [1] is the fact that the requirements for adhesive categories are much more
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smooth than the variety of different HLR conditions in [1], which have been
stated “ad hoc” as needed in the categorical proofs of the corresponding results
mentioned above.

On the other hand HLR categories in [1] are based on a class M of morphisms,
which is restricted to the class of all monomorphisms in adhesive categories. This
rules out several interesting examples. In order to avoid this problem we combine
the two concepts leading to the notion of adhesive HLR categories in the next
section.

3 Adhesive HLR Categories

As motivated in the previous section we will combine the concepts of adhesive
categories [3] and HLR categories [1] leading to the new concept of adhesive
HLR categories in this section. Most of the results presented in this section
are generalizations of results for adhesive categories in [3], but we present new
interesting examples which are not instantiations of adhesive categories.

The main difference of adhesive HLR categories compared with adhesive
categories is the fact that we consider a suitable subclass M of monomorphisms
instead of the class of all monomorphisms. Moreover we require only pullbacks
along M -morphisms and not for general morphisms.

Definition 3 (adhesive HLR category (C, M)). A category C with a mor-
phism class M is called adhesive HLR category, if

1. M is a class of monomorphisms closed under isomorphisms and closed under
composition (f : A→ B ∈M , g : B → C ∈M ⇒ g ◦ f ∈ M) and decompo-
sition (g ◦ f ∈M , g ∈M ⇒ f ∈M),

2. C has pushouts and pullbacks along M -morphisms and M -morphisms are
closed under pushouts and pullbacks,

3. pushouts in C along M -morphisms are VK squares.

Remark 1. Most of the results in this paper can also be formulated under slightly
weaker assumptions, where the existence of pullbacks is required only if both
given morphisms are in M and pushouts along M -morphisms are required to be
M -VK squares only, i.e. only for the case f ∈ M or a, b, d ∈ M . This weaker
version is called “weak adhesive HLR category”. But presently we have no in-
teresting example of this weak case that is not also an adhesive HLR category.

Example 1. 1. All examples of adhesive categories are adhesive HLR categories
for the class M of all monomorphisms. As shown in [3] this includes the
category Sets of sets, Graphs of graphs and several variants of graphs like
typed, labelled and hypergraphs discussed above. Moreover this includes the
category PT-Net of place transition nets considered in [1].

2. The category (Spec, M1) of algebraic specifications with class M1 of all
monomorphisms is not adhesive, because pushouts along monomorphisms
are not necessarily pullbacks. But (Spec, M2) with class M2 of all strict
injective specification morphisms is an HLR2 category in the sense of [1]
and also an adhesive HLR category.
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For similar reasons the category AHL-Net of algebraic high-level nets (see
[7]) has to be considered with strict injective specification morphisms con-
cerning the specification part of the net morphism.

3. An important new example is the category (AGraphsATG, M) of typed
attributed graphs with type graph ATG and class M of all injective mor-
phisms with isomorphisms on the data part. In our paper [14] we explicitly
show that this is an adhesive HLR category satisfying all additional HLR
properties considered later in this paper.

The first important result shows that adhesive HLR categories are closed
under product, slice, coslice and functor category construction. This allows to
construct new examples from given ones.

Theorem 1 (construction of adhesive HLR categories). Adhesive HLR
categories can be constructed as follows:

– If (C, M1) and (D, M2) are adhesive HLR, then (C × D, M1 ×M2) is
adhesive HLR.

– If (C, M) is adhesive HLR, then so are the slice category (C\C, M∩C\C)
and the coslice category (C\C, M ∩ C\C) for any object C in C.

– If (C, M) is adhesive HLR, then every functor category ([X, C], M -functor
transformations) is adhesive HLR.

Remark 2. An M -functor transformation is a natural transformation t : F → G
where all morphisms t(X) : F (X)→ G(X) are in M .

Proof idea. In the case of product and functor categories the properties of adhe-
sive HLR categories can be shown componentwise. For slice and coslice categories
some standard constructions for pushouts and pullbacks can be used to show the
properties. ��

The second important result shows that most of the HLR conditions stated
in [1, 7] are already valid in adhesive HLR categories.

Theorem 2 (HLR properties of adhesive HLR categories). Given an
adhesive HLR category (C, M), the following HLR conditions are satisfied.

1. Pushouts along M -morphisms are pullbacks.
2. Pushout-pullback decomposition: Given the following diagram with l, w ∈M ,

(1) + (2) pushout and (2) pullback. Then (1) and (2) are pushouts and also
pullbacks.

3. Cube pushout-pullback property: Given the following commutative cube (3),
where all morphisms in top and bottom are in M , the top is pullback and the
front faces are pushouts. Then we have: the bottom is pullback ⇔ the back
faces of the cube are pushouts.
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4. Uniqueness of pushout complements for M -morphisms: Given
k : A → B ∈ M and s : B → D then there is up to isomorphism at
most one C with l : A → C and u : C → D such that diagram (1) is a
pushout.

Proof idea. These properties are shown for adhesive categories with class M of
all monomorphisms in [3]. The proofs can be reformulated for any subclass M
of monomorphisms as required for adhesive HLR categories. ��
Remark 3. The HLR conditions stated above together with the existence of bi-
nary coproducts compatible with M (see Thm. 3) correspond roughly to the
HLR conditions in [7] resp. HLR2 and two of the HLR2∗ conditions in [1]. The
HLR2 condition of [1] stating that M is closed under isomorphisms is not needed
in our context.

4 Adhesive HLR Systems

In this section we use the concept of adhesive HLR categories introduced in the
previous sections to present the basic notions and results of adhesive HLR sys-
tems in analogy to HLR systems in [1]. The Local Church-Rosser Theorem and
the Parallelism Theorem are shown to be valid in [1] for HLR1 categories, and
the Concurrency Theorem for HLR2 categories, where the existence of binary
coproducts is only needed for the Parallelism Theorem. Using the properties of
adhesive HLR categories in the previous section we can immediatly conclude
that the Local Church-Rosser Theorem and the Concurrency Theorem are valid
in adhesive HLR categories and the Parallelism Theorem in adhesive HLR cat-
egories with binary coproducts.

Definition 4 (adhesive HLR system). An adhesive HLR system
AS = (C, M, S, P ) consists of an adhesive HLR category (C, M), a start object
S and a set of productions P , where

1. a production p = L
l← K

r→ R consists of objects L, K and R called
left-hand side, gluing object and right-hand side respectively, and morphisms
l : K → L, r : K → R with l, r ∈M ,

2. a direct transformation G
p,m
=⇒ H via a production p and a morphism

m : L → G, called match, is given by the following diagram, called DPO-
diagram, where (1) and (2) are pushouts,
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L K

G D
f

l

m k(1)

R

H
g

r

n(2)

3. a transformation is a sequence G0 ⇒ G1 ⇒ ... ⇒ Gn of direct transforma-
tions, written G0

∗⇒ Gn,
4. the language L(AS) consists of all objects G in C derivable from the start

object S by a transformation, i.e. L(AS) = {G | S ∗⇒ G}.
Remark 4. 1. An adhesive HLR system is on the one hand an HLR system in

the sense of [1], where in [1] we have in addition a distinguished class T of
terminal objects, and on the other hand an adhesive grammar in the sense
of [3], provided that the class M is the class of all monomorphisms.

2. A direct transformation G
p,m
=⇒ H is uniquely determined up to isomorphism

by the production p and the match m, because due to Thm. 2 It. 4 pushout
complements along M -morphisms in adhesive HLR categories are unique up
to isomorphism.

3. All the examples for HLR1 and HLR2 systems considered in [1] and all sys-
tems over adhesive HLR categories considered in Ex. 1 are adhesive HLR
systems, which includes especially the classical graph transformation ap-
proach in [2].

The following basic results are shown for HLR2 categories in [1] and they are
rephrased for adhesive categories in [3]. According to Thm. 2 they are also valid
for adhesive HLR systems. A more detailed version of these results is presented
in [13].

Theorem 3 (Local Church-Rosser, Parallelism and Concurrency The-
orem). The Local Church-Rosser Theorems I and II, the Parallelism Theorem
and the Concurrency Theorem as stated in [1] are valid for all adhesive HLR
systems AS = (C, M, S, P ). Only for the Parallelism Theorem we have to re-
quire in addition that (C, M) has binary coproducts which are compatible with
M , i.e. m1, m2 ∈M implies m1 + m2 ∈M .

Proof. Follows from [1] and Thm. 2. ��

5 Embedding and Extension
of Adhesive HLR Transformations

In this section we present a categorical version of the Embedding Theorem for
graph transformation (see [2]) using the concept of initial pushouts first intro-
duced in [10]. The embedding theorem is not only important for the theory of
graph transformation, but also for the component framework for system mod-
elling introduced in [15]. In [11] it is shown how to verify the extension properties
used in the generic component concept of [15] in the framework of HLR systems.
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The Embedding Theorem and the Extension Theorem presented for adhesive
HLR systems in this section combine the results for both areas and will also be
used in the next section to show the Local Confluence Theorem. The key notion
is the concept of initial pushouts, which formalizes the construction of boundary
and context in [2]. The important new property going beyond [10] is the fact that
initial pushouts are closed under double pushouts under certain conditions. As
in Sec. 4 we assume also in this section that we have an adhesive HLR system.

We start with the definition of an extension diagram in the sense of [15, 11]
which means that a transformation t is extended to a transformation t′ via an
extension morphism.

Definition 5 (extension diagram). An extension diagram is a diagram (1)

G0

G0’

k0

Gn

Gn’

kn(1)

*

*

t

t’

where k0 : G0 → G′
0 is a morphism, called extension morphism, and t : G0

∗⇒ Gn

and t′ : G′
0

∗⇒ G′
n are transformations via the same productions (p0, ..., pn−1) and

matches (m0, ..., mn−1) resp. (k0 ◦m0, ..., kn−1 ◦mn−1) defined by the following
DPOs.

Li Ki

Gi Di

mi

Ri

Gi+1

Gi’ Di’

ki

Gi+1’

ki+1

(i = 0, ..., n-1) 

pi:

Remark 5. 1. The extension diagram (1) is completely determined (up to iso-
morphism) by t : G0

∗⇒ Gn and k0 : G0 → G′
0 (using the uniqueness of

pushout complements).
2. Extension diagrams are closed under horizontal and vertical composition

(using corresponding composition properties of pushouts).

The main problem is now to determine under which condition a transforma-
tion t : G0

∗⇒ Gn and an extension morphism k0 : G0 → G′
0 lead to an extension

diagram. The key notion is that of an initial pushout, which will be required for
the extension morphism k0 in the consistency condition below.

Definition 6 (initial pushout, boundary and context). Given f : A→ A′

a morphism b : B → A with b ∈M is called boundary over f if there is a pushout
complement such that (1) is an initial pushout over f . Initiality of (1) over f
means, that for every pushout (2) with b′ ∈ M there exist unique morphisms
b∗ : B → D and c∗ : C → E with b∗, c∗ ∈M such that b′ ◦ b∗ = b, c′ ◦ c∗ = c and
(3) is pushout. Then B is called boundary object and C context w.r.t. f : A→ A′.
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B D

C E
c*

b*

(3)

A

A’
c’

b’

f(2)

B

C

A

A’
c

b

f(1)

b

c

Remark 6. In the classical case of graph transformations [2] the boundary B of
a graph morphism f : A → A′ consists of all nodes in b ∈ A such that f(b)
is adjacent to an edge in A′\f(A). These nodes are necessary to glue A to the
context graph C = A′\f(A) ∪ f(b(B)) in order to obtain A′ as gluing of A and
C via B in the initial pushout (1).

As pointed out in the introduction of this section the closure of initial push-
outs under double pushouts is an important technical lemma.

Lemma 1 (closure property of initial pushouts). Let M ′ be a class of mor-
phisms closed under pushouts and pullbacks along M -morphisms. Moreover we
assume to have initial pushouts over M ′-morphisms. Then initial pushouts over
M ′-morphisms are closed under double pushouts. That means given an initial
pushout (1) over h0 ∈ M ′ and a double pushout diagram (2) with d0, d1 ∈ M ,
then (3) and (4) are initial pushouts over d ∈ M ′ respectively h1 ∈ M ′ for the
unique b : B → D with d0 ◦ b = b0 obtained by initiality of (1).

G0 D

G0’ D’

d0
h0 d

G1

G1’

d1
h1 (2)

B

C

G0

G0’

b0
h0(1)

B

C

D

D’

b
d(3)

B

C

G1

G1’

d1 o b
h1(4)

Proof idea. This can be shown shown stepwise for pushouts in the opposite and
in the same direction by using the properties of M and M ′. The complete proof
can be found in [13]. ��

The following consistency condition for a transformation t : G0
∗⇒ Gn and

an extension morphism k0 : G0 → G′
0 means intuitively that the boundary B of

k0 is preserved by t. In order to formulate this property we use the notion of a
derived span der(t) = G0 ← D → Gn of the transformation t, which connects
the first and the last object.

Definition 7 (derived span and consistency). The derived span of a direct
transformation G

p,n
=⇒ H as shown in Def. 4 is the span G ← D → H. The

derived span der(t) = (G0
d0← D

dn→ Gn) of a transformation t : G0
∗⇒ Gn is the
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composition via pullbacks of the spans of the corresponding direct transforma-
tions.
A morphism k0 : G0 → G′

0 is called consistent w.r.t. a transformation t : G0
∗⇒

Gn with derived span der(t) = (G0
d0← D

dn→ Gn) if there exist an initial pushout
(1) over k0 and a morphism b ∈M with d0 ◦ b = b0.

D
d0

Gn
dn

B

C

G0

G0’

b0 k0(1)

b

Remark 7. 1. The morphisms of the span G ← D → H are in M because M
is closed under pushouts. This implies that the compositions of these spans
exist and are M -morphisms, because pullbacks along M -morphisms exist
and M -morphisms are closed under pullbacks in adhesive HLR categories.

2. The consistency condition in [2], called JOIN condition, requires a suitable
family bi : B → Di of morphisms from the boundary B to the context
graphs Di of the direct transformations. In fact, our consistency condition
is equivalent to the existence of a corresponding family (bi)i=0,...,n−1.

3. For the definition of consistency and for Thm. 4 below – but not for Thm. 5
– it would be sufficient to require the existence of a pushout over k0 instead
of an initial one. Moreover we need only conditions 1 and 2 of Def. 3.

Now we are able to prove the Embedding and the Extension Theorem which
show that consistency is sufficient and also necessary for the construction of
extension diagrams. Moreover, we obtain a direct construction of the extension
kn : Gn → G′

n in the extension diagram.

Theorem 4 (Embedding Theorem). Given a transformation t : G0
∗⇒ Gn

and a morphism k0 : G0 → G′
0 which is consistent w.r.t. t, then there is an

extension diagram for t and k0 (see (1) in Def. 5).

Proof idea (n = 2). We construct pullback (0) leading to the derived span G0 ←
D0 ← D → D1 → G2 of the transformation t : G0 ⇒∗ G2. Given k0 consistent
w.r.t. t we have initial pushout (2) over k0 and b : B → D.

D0

D0’

G1

G1’

k1(1a)

B

C

G0

G0’

b0
k0(2)

D1

D1’

G2

G2’

k2(1b) (1c) (1d)

D
b (0)

This leads to M -morphisms B → D0 and B → D1 such that first D′
0 can be con-

structed as pushout object of B → D0 and B → C leading by decomposition to
pushout (1a) and by construction to pushout (1b). Then D′

1 can be constructed
as pushout of B → D1 and B → C leading by decomposition to pushout (1c)
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and by construction to pushout (1d). The given transformation t : G0
∗⇒ G2

together with the pushouts (1a) - (1d) constitutes the required extension dia-
gram. ��

Theorem 5 (Extension Theorem). Given a transformation t : G0
∗⇒ Gn

with derived span der(t) = (G0
d0← D

dn→ Gn) and an extension diagram (1)

G0

G0’

k0

Gn

Gn’

kn(1)

*

*

t

t’

B

C

b0

(2)

with initial pushout (2) over k0 ∈ M ′ for some class M ′ closed under pushouts
and pullbacks along M -morphisms and initial pushouts over M ′-morphisms, then
we have

1. k0 consistent w.r.t. t : G0
∗⇒ Gn with morphism b : B → D,

2. a direct transformation G′
0 ⇒ G′

n via der(t) and match k0 given by pushouts
(3) and (4) with d, kn ∈M ′,

3. initial pushouts (5) and (6) over d resp. kn.

G0 D

G0’ D’

d0
k0 d

Gn

Gn’

dn
kn(3) (4)

B

C

D

D’

b
d(5)

B

C

Gn

Gn’

dn o b
kn(6)

Remark 8. The extension theorem shows

1. Consistency of k0 w.r.t. t is necessary for the existence of the extension
diagram.

2. The extension diagram (1) can be represented by a direct transformation
with match k0 and comatch kn.

3. The extension kn : Gn → G′
n can be constructed by a pushout (6) of Gn and

context C along the boundary B with dn ◦ b : B → Gn.

Proof idea (n = 2). Given t and k0 with initial pushout (2) and the extension
diagram given by pushouts (1a) - (1d) in proof of Thm. 4, where D is pullback
in (0). Initiality of (2) and pushout (1a) lead to b∗0 : B → D0 and by Lem.
1 to an initial pushout over k1. This new initiality and pushout (1c) leads to
b1 : B → D1. The morphisms b∗0 and b1 lead to an induced b : B → D - using the
pullback properties of (0) - which allows to show consistency of k0 w.r.t. t. This
consistency immediately implies the pushout complement D′ in (3) and pushout
(4) of d and dn. Finally, the double pushout (3), (4) implies by Lem. 1 initial
pushouts (5) and (6) from (2). ��
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6 Critical Pairs and Local Confluence
of Adhesive HLR Systems

Critical pairs and local confluence have been studied for hypergraph transforma-
tions in [12] and for typed attributed graph transformation in [9]. In this section
we present a categorical version in adhesive HLR categories. As additional re-
quirements we only need an E′-M ′ pair factorization for cospans of morphisms -
in analogy to the well-known epi-mono-factorization of morphisms - and initial
pushouts over M ′-morphisms. These assumptions are stated where necessary.
Otherwise we only assume to have an adhesive HLR system.

It is well-known that local confluence and termination imply confluence. But
we only analyze local confluence in this paper and no termination nor general
confluence.

Definition 8 (confluence, local confluence). A pair of transformations
H1

∗⇐ G
∗⇒ H2 is confluent if there are transformations H1

∗⇒ X and H2
∗⇒ X.

An adhesive HLR system is locally confluent, if this property holds for each pair
of direct transformations, it is confluent, if it holds for all pairs of transforma-
tions.

In order to define and construct critical pairs we introduce the notion of
E′-M ′ pair factorization.

Definition 9 (E′-M ′ pair factorization). An adhesive HLR category has E′-
M ′ pair factorization, if M ′ is a class of morphisms closed under pushouts
and pullbacks along M -morphisms and E′ a class of morphism pairs with same
codomain and we have for each pair of morphisms f1 : A1 → C, f2 : A2 → C
that there is an object K and morphisms e1 : A1 → K, e2 : A2 → K, m : K → C
with (e1, e2) ∈ E′, m ∈M ′ such that m ◦ e1 = f1 and m ◦ e2 = f2.

A2

A1

K
e2

e1

C
m

f2

f1

Remark 9. It is sufficient to require this property for matches fi = mi : Li → G
(i = 1, 2). The closure properties of M ′ are needed in Lem. 2 and Thm. 6.

The intuitive idea of morphism pairs (e1, e2) ∈ E′ in most example categories
is that the pair is jointly surjective resp. jointly epimorphic. This can be achieved
in categories C with binary coproducts and E0-M0 factorization of morphisms,
where E0 ⊆ Epis and M0 ⊆ Monos. Given A1

f1→ C
f2← A2 we simply take an

E0-M0 factorization f = m ◦ e of the induced morphism f : A1 + A2 → C and
define e1 = e ◦ i1 and e2 = e ◦ i2, where i1, i2 are the coproduct injections. If
the category has no binary coproducts, or the construction above is not always
adequate - as in the case of typed attributed graph transformation - we may have
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another alternative to obtain an E′-M ′ pair factorization. In [14] an explicit E′-
M ′ pair factorization for typed attributed graph transformation is provided,
where M ′-morphisms are not necessarily injective on the data type part and
hence M ′ � M .

The main idea to prove local confluence is to show local confluence explicitely
only for critical pairs based on the notion of parallel independence (see [1]).

Definition 10 (critical pair). Given an E′-M ′ pair factorization, a critical
pair is a pair of non-parallel independent direct transformations P1

p1,o1⇐= K
p2,o2=⇒

P2 such that (o1, o2) ∈ E′ for the corresponding matches o1 and o2.

The first step towards local confluence is to show completeness of critical
pairs.

Lemma 2 (completeness of critical pairs). Consider an adhesive HLR sys-
tem with E′-M ′ pair factorization and M ′ ⊆ M . For each pair of non-parallel
independent direct transformations H1

p1,m1⇐= G
p2,m2=⇒ H2 there is a critical pair

P1
p1,o1⇐= K

p2,o2=⇒ P2 with extension diagrams (1) and (2) and m ∈M ′.

P1 K

H1 G

m(1)

P2

H2

(2)

Remark 10. If M ′ � M we have to require in addition that the pushout-pullback
decomposition (Thm. 2 It. 2) holds also with l ∈ M and w ∈ M ′ in diagram
(1)+(2) of Thm. 2.

Proof. With the E′-M ′ pair factorization for m1 and m2 we get an object K and
morphisms m : K → G ∈ M ′, o1 : L1 → K and o2 : L2 → K with (o1, o2) ∈ E′

such that m1 = m ◦ o1 and m2 = m ◦ o2. We can now build the following
extension diagram. First we construct the pullback over q1 and m, derive the
morphism t1 and by applying Thm. 2 It. 2 both squares are pushouts. In the
case M ′ � M of Rem. 10 we have the pushout-pullback decomposition because
l1 ∈M and m ∈M ′. With Def. 3 we can build the pushout over r1 and t1, derive
the morphism z1 and with pushout decomposition this square is a pushout. The
same construction is applied for the second transformation.

R1 K1 L1 L2 K2 R2

P1 N1 K N2 P2v2

w2w1

r2l2r1 l1

v1

u1 t1 o1 o2
t2 u2

H1 M1 G M2 H2
q2 n2n1 q1

z1 s1 s2 z2mk1

g2

m1 m2

k2

g1
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P1
p1,o1⇐= K

p2,o2=⇒ P2 are non-parallel independent. Otherwise there are morphisms
i : L1 → N2 and j : L2 → N1 with v2 ◦ i = o1 and v1 ◦ j = o2. Then q2 ◦ s2 ◦ i =
m ◦ v2 ◦ i = m ◦ o1 = m1 and q1 ◦ s1 ◦ j = m ◦ v1 ◦ j = m ◦ o2 = m2, that means
H1

p1,m1⇐= G
p2,m2=⇒ H2 ��

are parallel independent, contradiction.

From [12] in the case of hypergraph transformation it is known already that
confluence of critical pairs is not sufficient to show local confluence in general.
In fact, we need a slightly stronger property, called strict confluence.

Definition 11 (strict confluence of critical pairs). A critical pair P1
p1,o1⇐=

K
p2,o2=⇒ P2 is called strictly confluent, if we have

1. confluence: the critical pair is confluent, i.e. there are transformations
P1

∗⇒ K ′, P2
∗⇒ K ′ with derived spans der(Pi

∗⇒ K ′) = Pi
vi+2← Ni+2

wi+2→ K ′

for i = 1, 2.
2. strictness: Let der(K

pi,oi=⇒ Pi) = K
vi← Ni

wi→ Pi (i = 1, 2) and N5, N6 and
N pullback objects of pullbacks (1), (2) resp. (3) then there are morphisms
z5 and z6 such that (4), (5) and (6) commute.

P1

N1

K

N2

P2

v2

w2w1

v1

N3

K’

N4

v4

w4w3

v3
N5

w5

v5

N6

w6

v6
N

z1 z2

z5 z6

(6)(5)

(4)

(3)

(2)(1)

Remark 11. The strictness condition is a combination of corresponding condi-
tions stated in [12] and [9]. More precisely, commutativity of (4) is required in
[12] and that of (5) and (6) in [9]. In [12] however, commutativity of (5) and (6)
seems to be a consequence of inclusion properties. The intuitive idea of strictness
is that the common part N , which is preserved by each transformation of the
critical pair, is also preserved by the transformations P1

∗⇒ K ′ and P2
∗⇒ K ′

and mapped by the same morphism N → K ′.

Finally our last main result states that strict confluence of all critical pairs
implies local confluence. This result is also known as Critical Pair Lemma (see
[12, 9]).

Theorem 6 (Local Confluence Theorem - Critical Pair Lemma). An ad-
hesive HLR system with E′-M ′ pair factorization, M ′ ⊆M and initial pushouts
over M ′-morphisms is locally confluent, if all its critical pairs are strictly con-
fluent.

Remark 12. See Rem. 10 for the case M ′ � M . In the proof we need that M is
closed under decomposition (see Def. 3 It. 1) in order to show b3 ∈M .
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Proof. Given a pair of direct transformations H1
p1,m2⇐ G

p2,m2⇒ H2 we have to
show the existence of transformations t′1 : H1

∗⇒ G′ and t′2 : H2
∗⇒ G′. If the given

pair is parallel independent this follows from the local Church-Rosser theorem.
If the given pair is not parallel independent Lem. 2 implies the existence of a
critical pair P1

p1,o1⇐= K
p2,o2=⇒ P2 with extension diagrams (7) and (8) and m ∈M ′.

By assumption this critical pair is strictly confluent leading to transformations
t1 : P1

∗⇒ K ′, t2 : P2
∗⇒ K ′ and the diagram in Def. 11.

P1 N1 K N2 P2
v2 w2w1 v1

H1 M1 G M2 H2
q2 m2n1 m1

q1 s1 s2 q2m (15)(14)(13)(12)

*
(11)(10)

*

G

H2

G’

H1

K

P2

K’

P1 t2t1

t2’t1’

* *

m

q2q1

q

(7) (8)

B

C

m’

K

G

b
m(9)

Now let (9) be an initial pushout over m ∈M ′ and consider the double pushouts
(12), (13) and (14), (15) corresponding to extension diagrams (7) and (8) re-
spectively.

B

C

m’

K

G

b
m(9)

N1v1

M1m1

s1(13)

P1w1

H1n1

q1(12)

b1

c1

(16)

(17)

B

C

m’

c1

b1

(18)

N1

M1

s1

P1w1

Hn1

q1(12)

b’3

N3
v3

(19)

Initiality of (9) applied to pushout (13) leads to unique b1, c1 ∈ M such that
(16) and (17) commute and (18) is pushout. By Lem. 1 (18) is initial pushout
over s1. Dually we obtain b2, c2 ∈M with v2 ◦b2 = b. Using pullback property of
(3) in Def. 11 we obtain a unique b3 : B → N with z1 ◦ b3 = b1 and z2 ◦ b3 = b2.
Moreover b1, z1 ∈ M implies b3 ∈ M by decomposition property of M . In
order to show consistency of q1 w.r.t. t1 we have to construct b′3 ∈M such that
(19) commutes where (18)+(12) is initial pushout over q1 by Lem. 1. In fact
b′3 = w5 ◦ z5 ◦ b3 ∈M makes (19) commutative using (5) in Def. 11.

Dually q2 is consistent w.r.t. t2 using b′4 = w6 ◦ z6 ◦ b3 ∈ M and (6) in Def.
11. By the Embedding Theorem we obtain extension diagrams (10) and (11),
where the morphism q : K ′ → G′ is the same in both cases. This equality can be
shown using part 3 of the Extension Theorem, where q is determined by an initial
pushout of m′ : B → C and w3 ◦ b′3 : B → K ′ in the first and w4 ◦ b′4 : B → K ′

in the second case and we have w3 ◦ b′3 = w4 ◦ b′4 using commutativity of (4) in
Def. 11. ��
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7 Conclusion

In this paper we have introduced adhesive HLR categories and systems com-
bining the framework of adhesive categories in [3] and of HLR systems in [1].
We claim that this new framework is most important for different theories of
graphs and graphical structures in computer science, which are mainly based on
pushout constructions. As shown in this paper this includes first of all the double
pushout approach in the theory of graph transformation and HLR systems [2,
1, 5], where important new results have been presented in this framework which
are already applied to typed attributed graph transformation in [14]. Constraints
and application conditions for DPO-transformations of adhesive HLR systems
are considered already in [16]. On the other hand pushouts have also been used
in semantics in order to derive well-behaved labeled transition systems by Leifer
and Milner in [17], by Sassone and Sobociński in [18] and by König and Ehrig
in [19]. We agree with [3] that the role of adhesive categories - and even more
adhesive HLR categories - for this kind of applications is most likely to become
comparable to the role of cartesian closed categories for simply typed lambda
calculi as pointed out by Lambek and Scott in [20].
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