Graph Grammars and Petri Net Transformations

H. Ehrig, J. Padberg

Technical University Berlin, Germany
Institute for Software Technology and Theoretical Computer Science
E-mail: {ehrig, padberg}@cs.tu-berlin.de

Abstract The aim of this paper is a tutorial introduction to graph
grammars and graph transformations on one hand and to Petri net
transformations on the other hand. In addition to an introduction to
both areas the paper shows how they have influenced each other. The
concurrency concepts and semantics of graph transformations have been
generalized from those of Petri net using the fact that the token game of
Petri nets can be considered as a graph transformation step on discrete
graphs. On the other hand each Petri net can be considered as a graph,
such that graph transformations can be used to change the net structure
of Petri nets. This leads to a rule based approach for the development of
Petri nets, where the nets in different development stages are related by
Petri net transformations.

1 Introduction

The main idea of graph grammars is the rule-based modification of graphs where
each application of a graph rule leads to a graph transformation step. Graph
grammars can be used on one hand to generate graph languages in analogy to
the idea to generate string languages by Chomsky grammars in formal language
theory. On the other hand graphs can be used to model the states of all kinds
of systems which allows to use graph transformations to model state changes of
these systems. This allows to apply graph grammars and graph transformation
systems to a wide range of fields in computer science and other areas of science
and engineering. A detailed presentation of different graph grammar approaches
and application areas of graph transformations is given in the 3 volumes of
the Handbook of Graph Grammars and Computing by Graph Transformation
[R0oz97,EEKR99,EKMR99].

The intention of the first part of this paper is to give a tutorial introduction to
the basic concepts and results of one specific graph transformation approach,
called double-pushout approach, which is based on pushout constructions in the
category of graphs and graph morphisms. Although this approach is based on a
categorical concept, we do not require that the reader is familiar with category
theory: In fact, we introduce the concept of a pushout in the category of graphs
from an intuitive point of view, where a pushout of graphs corresponds to the
gluing of two graphs via a shared subgraph.

In Section 2 of this paper we give a general overview of graph grammars and
graph transformations including the main approaches considered in literature.

The basic concepts of the double-pushout approach are introduced in Section 3
using as example the Pacman game considered as a graph grammar. Concepts
and results concerning parallel and sequential independence as well as parallelism
of graph transformations are introduced in Section 4. The main results are the
local Church-Rosser Theorem and the Parallelism Theorem. The relationship
between graph grammars and Petri nets is discussed in Section 5 of this paper.
First we show how the basic concepts of both areas correspond to each other.
Then we give an overview of the concurrent semantics of graph transformations,
which has been developed in analogy to the corresponding theory of Petri nets.
In the second part of this paper we give an introduction to concepts and results
of Petri net transformations. This area of Petri nets has been introduced about
10 years ago in order to allow in addition to the token game of Petri nets, where
the net structure of fix, also the change of the nets structure [REP93,PER95]
This allows the stepwise development of Petri nets using a rule-based approach
in the sense of graph transformations, where the net structure of a Petri net is
considered as a graph. An intuitive introduction to Petri net transformations is
given in Section 6 using the stepwise development of Petri nets for a baggage
handling system as an example.

In Section 7 we show how the basic concepts of graph transformation - intro-
duced in Section 3 for the double-pushout approach - can be extended to Petri
net transformations in the case of place/transition nets. In addition we dis-
cuss a general result concerning the compatibility of horizontal structuring and
transformation of Petri nets, which has been used in the example of Section 6.
Moreover we give an overview of results as well for other Petri net classes, which
kind of Petri net transformations are preserving interesting properties like safety
and liveness.

The conclusion in Section 8 summarizes the main ideas of this paper and further
aspects concerning graph grammars and Petri net transformations.

2 General Overview of Graph Grammars and Graph
Transformation

The research area of graph grammars or graph transformations is a discipline of
computer science which dates back to the early seventies. Methods, techniques,
and results from the area of graph transformations have already been studied
and applied in many fields of computer science such as formal language theory,
pattern recognition and generation, compiler construction, software engineering,
concurrent and distributed systems modeling, database design and theory, logical
and functional programming, AI, visual modeling, etc.

The wide applicability is due to the fact that graphs are a very natural way
of explaining complex situations on an intuitive level. Hence, they are used in
computer science almost everywhere, e.g. as data and control flow diagrams,
entity relationship and UML diagrams, Petri nets, visualization of software and
hardware architectures, evolution diagrams of nondeterministic processes, SADT

diagrams, and many more. Like the token game for Petri nets, a graph transfor-
mation brings dynamic to all these descriptions, since it can describe the evolu-
tion of graphical structures. Therefore, graph transformations become attractive
as a modeling and programming paradigm for complex-structured software and
graphical interfaces. In particular, graph rewriting is promising as a comprehen-
sive framework in which the transformation of all these very different structures
can be modeled and studied in a uniform way.

Before we go into more detail let us discuss the basic question

2.1 What is Graph Transformation?
In fact, graph transformation has at least three different roots

— from Chomsky grammars on strings to graph grammars
— from term rewriting to graph rewriting
— from textual description to visual modeling.

Altogether we use the notion graph transformation to comprise the concepts
of graph grammars and graph rewriting. In any case, the main idea of graph
transformation is the rule-based modification of graphs as shown in Figure 1.

Figure 1. Rule-based Modification of Graphs

The core of a rule or production p = (L, R) is a pair of graphs (L, R), called
left hand side L and right hand side R. Applying the rule p = (L, R) means
to find a match of L in the source graph and to replace L by R leading to the
target graph of the graph transformation. The main technical problem is how
to connect R with the context in the target graph. In fact, there are different
solutions how to handle this problem leading to different graph transformation
approaches, which are summarized below.

2.2 Overview of Different Approaches

The main graph grammar and graph transformation approaches developed in lit-
erature so far are presented in the Handbook of Graph Grammars and Computing
by Graph Transformation vol 1: Foundations [Roz97].

1. The node label replacement approach, mainly developed by Rozenberg, En-
gelfriet and Janssens, allows replacing a single node as left hand side L by
an arbitrary graph R. The connection of R with the context is determined
by embedding rules depending on node labels.

2. The hyperedge replacement approach, mainly developed by Habel, Kreowski
and Drewes, has as left hand side L a labeled hyperedge, which is replaced by
an arbitrary hypergraph R with designated attachment nodes correspond-
ing to the nodes of L. The gluing of R with the context at corresponding
attachment nodes leads to the target graph.

3. The algebraic approaches are based on pushout and pullback constructions
in the category of graphs, where pushouts are used to model the gluing of
graphs. The double pushout approach, mainly developed by Ehrig, Schneider
and the Berlin- and Pisa-groups, is introduced in Sections 3-5 in more detail.

4. The logical approach, mainly developed by Courcelle and Bouderon, allows
expressing graph transformation and graph properties in modanic second
order logic.

5. The theory of 2-structures was initiated by Rozenberg and Ehrenfeucht as a
framework for decomposition and transformation of graphs.

6. The programmed graph replacement approach by Schuerr used programs in
order to control the nondeterministic choice of rule applications.

2.3 Aims and Paradigms for Graph Transformation

Computing was originally done on the level of the von Neumann Machine which
is based on machine instructions and registers This kind of low level computing
was considerably improved by assembler and high level imperative languages.
From the conceptual - but not yet from the efficiency point of view - these lan-
guages were further improved by functional and logical programming languages.
This newer kind of computing is mainly based on term rewriting, which - in
the terminology of graphs and graph transformations - can be considered as a
concept of tree transformations. Trees, however, do not allow sharing of common
substructures, which is one of the main reasons for efficiency problems concern-
ing functional and logical programs. This leads to consider graphs rather than
trees as the fundamental structure of computing.

The main idea is to advocate graph transformations for the whole range of com-
puting. Our concept of Computing by Graph Transformations is not limited to
programming but includes also specification and implementation by graph trans-
formations as well as graph algorithms and computational models and computer
architectures for graph transformations.

This concept of Computing by Graph Transformations has been developed as
basic paradigm in the ESPRIT Basic Research Actions COMPUGRAPH and
APPLIGRAPH as well as in the TMR Network GETGRATS in the years 1990-
2002. It can be summarized in the following way:

Computing by graph transformation is a fundamental concept for

— programming

— specification
concurrency

— distribution
visual modeling.

The aspect to support visual modeling by graph transformation is one of the
main intentions of the ESPRIT TMR Network SEGRAVIS (2002-2006). In fact,
there is a wide range of applications to support visual modeling techniques,
especially in the context of UML, by graph transformation techniques. A state
of the art report for applications, languages and tools for graph transformation
on one hand and for concurrency, parallelism and distribution on the other hand
is given in volumes 2 and 3 of the Handbook of Graph Grammars and Computing
by Graph Transformation [EEKR99] and [EKMR99]

3 Introduction to the DPO-Approach

As mentioned already in the general overview there are several algebraic graph
transformation approaches based on pushout and pullback constructions in the
category of graphs. The most prominent one is the double-pushout approach,
short DPO-approach, initiated by Ehrig, Pfender and Schneider in [EPS73].
The main idea is to model graph transformation by two gluing constructions for
graphs and each gluing construction by a pushout. Roughly spoken, a production
is given by p = (L, K, R), where L and R are the left and right hand side graphs
and K is a common interface of L and R. Given a production p = (L, K, R)
and a context graph D, which includes also the interface K, the source graph
G of a graph transformation G = H via p is given by the gluing of L and D
via K, written G = L +x D, and the target graph H by the gluing of R and
D via K, written H = R +x D. More precisely we will use graph morphisms
K - LK - R and K — D to express how K is included in L, R, and D
respectively. This allows to define the gluing constructions G = L +x D and
H = R+x D as pushout constructions (1) and (2) leading to a double pushout
in Figure 2.

~ KK ——
)

L
| o
G

D ——

(2)

N>

Figure 2. DPO-Graph Transformation

Before we present more technical details of the DPO-approach, let us point out
that it is based on graphs and total graph morphisms. In fact there is a slightly
more general approach using graphs and partial graph morphism, where a graph
transformation can be expressed by a single pushout. This approach has been
initiated by Raoult and fully worked out by Lwe leading to the single pushout
approach, short SPO-approach. A detailed presentation and comparison of both
approaches is given in volume 1 of the handbook [R0z97]. The DPO-approach
has been generalized from graphs to any other kind of high-level structures. This

leads to the theory of high-level replacement systems initiated in [EHKP91a],
which can be applied to Petri nets leading to net transformation systems con-
sidered in Section 6 and Section 7 of this paper.

3.1 Graphs and Graph Morphisms

A directed, labeled graph G, short graph, over fixed sets of colors 25 and 2y for
edges and vertices is given by

a = QE'<IQ—E$V£>9V

Figure 3. Directed Labeled Graph G

where E and V are the sets of edges and vertices of GG, s and t are the source
and target functions, and [, and [, are the edge and vertex label functions
respectively.

An example for such a graph G is the Pacman graph PG in Figure 4, where the
color * for the edges is omitted in PG.

e v={ o= [\® }

A VOO
e Identities of nodes and edges are 3. = = -
not shown explicitly (3 O O I
[Y-o—ee

Figure 4. Pacman Graph PG and Color Sets

A graph morphism f : G — G’ consists of a pair of functions f = (fg : E —
E' fy : V — V'), which is compatible with source, target, and label functions
of Gand G ie. fy-s=s"-fo,fv-t=t-fgl.-fe=Il.andl - f, =1,.
The diagram schema for graph morphisms and an example for a graph morphism
is given in Figure 5.

The category Graph has graphs as objects and graph morphisms as morphisms.
Let us point out that there are also several other notions of graphs and graph
morphisms which are suitable for the DPO-approach of graph transformation;
especially typed graphs and attributed graphs, where the color sets are replaced
by a type graph and a type algebra respectively.

3.2 Graph Productions and Graph Grammars

A graph production p = L L K 5 R consists of graphs L, K and R and
(injective) graph morphisms [: K — L and r : K — R mapping the interface
graph K to the left hand side L and the right hand side R respectively.

Ied B —=
tl
G 1 1’(’_39 e H
9 f 9, Y _hfv] ®
c-# > [S-FopeEy
B-e oo

Figure 5. Graph Morphism f: G — G’

A graph grammar GG = {S, P, 2} consists of a start graph, a set P of graph
productions as defined above, and a pair of color sets 2 = (£2g, {2y), where
S and the graphs in P are labeled over 2. An example is the Pacman graph
grammar

PGG = {PG, {moveP, moveG, kill, eat}},

where the start graph PG is given in Figure 4 and the graph productions moveP,
moveG, kill, eat in Figure 6. The production moveG is similar to moveP, where
pacman is replaced by the ghost. These productions allow pacman resp. the ghost
to move along an arc of the grid of the pacman graph PG. The productions eat
resp. kill allow pacman to eat an apple resp. the ghost to kill pacman, provided
that pacman and the apple resp. ghost are on the same node of the grid.

o —0 o —0 o —
moveP = e e

‘e @

- e -
v =l =

Figure 6. Graph Productions of the Pacman Graph Grammar

Similar to Chomsky grammars it is also possible to distinguish between terminal
and nonterminal color sets. In our case we have only terminal color sets. A graph

grammar without distinguished start graph is also called graph transformation
system.

3.3 Graph Transformation, Derivation and Graph Language

Given a graph production p = L LKL R, a graph G and a graph morphism
m : L — G, called match of L in G, then there is a graph transformation, also
called direct derivation, if a double-pushout diagram as shown in Figure 7 can
be constructed, where (1) and (2) are pushouts in the category Graph.

) @

m

G D H

Figure 7. Graph Transformation with Pushouts (1) and (2)

A graph transformation as given in Figure 7 is denoted by G 25 H, or G = H
via (p,m), where G is the source graph and H the target graph. In the next
section we will show that pushouts can be interpreted as gluing constructions.
Given a production and a match m : L. — G means that we require to be able
to construct a context graph D such that G is the gluing of L and D along K in
pushout (1) and H is the gluing of R and D along K in pushout (2) of Figure 7,
written
G=L+gD and H=R+gD.

The morphism R — H in Figure 7 is called comatch of the graph transforma-
tion. A graph transformation sequence, also called derivation, is given by a finite
sequence of graph transformations

Go =2, Gy "B L TEE G,
The graph language generated by a graph grammar GG = {S, P, 2} is the set of
all graphs derivable from the start graph S with productions in P.
An example of a graph transformation using the production moveP is given in
Figure 8, where pacman is moving from node 1 in graph G to node 2 in graph
H = G;. Moreover, Figure 8 shows a graph transformation sequence, where after
this first step the productions moveP again, and also eat and kill are applied.
In Figure 8 it is intuitively clear that G is the gluing of L and D along K and
H the gluing of R and D along K. Vice versa, given the production moveP and
the match m : L — G the context graph D can be constructed by removing
from G all items of L, which are not in the interface K. In our case it is only the
arc from pacman to node 1, which has to be removed. This is the first step in

L @ KMo o R
moveP = '\1 °; - 1 °, —_— 1®f2
& @

m@s ﬁs@s ﬁm
St s m%%

.‘C).‘C;.

580
G = Go "2s" @, m2%P i, 24 g, AL 6‘0’6%

<00

Figure 8. A Sample Graph Transformation and Derivation

the explicit construction of a graph transformation. It leads to a pushout (1) in
Figure 7 if a suitable gluing condition is satisfied which will be explained below.
The second step is the gluing of R and D along K leading to pushout (2) in
Figure7.

In general the construction of a graph transformation G 22 H from a production

p=1L L K5 Randamatchm: L — G is given in two steps, where the first
step requires that the gluing condition (see 3.5 below) is satisfied:

STEP 1 (DELETE): Delete m(L — I(K)) from G leading to a context graph
D (if the gluing condition is satisfied), s.t. G is the gluing of L and D along
K,ie. G=L+k D in (1) of Figure 7.

STEP 2 (ADD): Add R—r(K) to D leading to a graph H, s.t. H is the gluing
of R and D along K, i.e. H =R+ D in (2) of Figure 7.

3.4 Gluing Construction and Pushout

The idea of the gluing construction of graphs makes sense also for other kinds of
structures, where the idea is to construct the union of structures along a common
substructure. For structures given by geometrical figures this kind of union or
gluing is shown in Figure 9.

In the framework of category theory the idea of the gluing construction can be
formalized by the notion of a pushout: Given objects (e.g. sets, graphs or struc-
tures) A,B, and C and morphisms (e.g. functors, graph or structure morphisms)
f:A— Bandg: A— C an object D together with morphisms h : B — D and
k:C — D is called pushout of f and g if we have ho f = ko g (i.e. diagram (1)
in Figure 10 commutes) and the following universal property is satisfied:

For all objects D' and morphisms ' : B — D', k' : C — D' with h'o f = k' og
(i.e. the outer diagram in Figure 10 commutes) we have a unique morphism
d:D — D'st.doh=h and dok =k (i.e. diagrams (2) and (3) commute).

0 - &
Q-G

Figure 9. Gluing Construction for Geometrical Figures

Figure 10. Universal Pushout Property

In the category Sets of sets and functions the pushout object D is given by the
quotient set

D=B+C/=,short D=B+4C,

where B + C' is the disjoint union of B and C' and = the equivalence relation
generated by f(a) = g(a) for all @ € A. In fact D can be interpreted as the gluing
of B and C along A: Starting with the disjoint union B + C we glue together
the elements f(a) € B and g(a) € C for each a € A.

In the category Graph the pushout graph D can be constructed component-
wise for the set of edges and the set of vertices using the pushout construction
in Sets discussed above. This shows that also the pushouts in Graph can be
interpreted as a gluing construction (see Figure 8). In general, the pushout graph
D = (Dg,Dy,sp,tp,lep,lvp) is given as follows:

] ;ife=nhg(e)
lec(e")] ; ife=kg(e")

~ lup(v) = {UUBW | ifo=hy()
[vc(W")] ; ifv=Fky(")

lep(e) = {FGB(G:

In fact the pushout construction is well-defined and unique up to isomorphism.
This means that the graph D can also be replaced by any other graph D, which
is isomorphic to D, i.e. there is a bijective graph morphism f : D — D.
Uniqueness of pushouts up to isomorphism is a general property of pushouts
in arbitrary categories. Moreover, it is a general property that pushouts can be
composed horizontally and vertically leading again to pushouts.

3.5 Gluing Condition and Pushout Complement

In order to construct a graph transformation from a given graph production

p=(L T R) and a match m : L — G as shown in Figure 7 we have to
construct first a graph D and graph morphisms K — D and D — G s.t. diagram
(1) in Figure 7 becomes a pushout in the category Graph. In this case D is called
pushout complement of | : K — L and m : L — G. See also the left diagram
in Figure 11. In general, however, the pushout complement may not exist, or
may not be unique up to isomorphism. In Figure 11 we show two examples in
the category Sets, where in the middle there is no pushout complement D for
given functions : K — L and m : L — G. On the right hand side we have two
different non-isomorphic pushout complements D and D’.

~

_—
=~

O

Figure 11. Construction, Non-Existence and Non-Uniqueness

In the category Sets and Graphs we have uniqueness of the pushout comple-
ment up to isomorphism [: K — L is injective. For the existence of the pushout
complement we need a Gluing Condition. Given an injective graph morphism
l: K - L and a match m : L — G we can construct a pushout complement
D leading to the pushout (1) in Figure 11 if and only if the following Gluing
condition is satisfied that requires that the boundary of the match m : L — G
is included in the gluing part [(K) of L. More formally, we have:

Gluing Condition:
BOUNDARY C GLUING

where BOUNDARY and GLUING are subgraphs of L defined by

GLUING =(K)

— DANGLING ={x € Ly |3e € Gg —mg(Lg) :
(my (z) = sa(e) or my(z) =ta(e))}

— IDENTIFICATION ={z € K |y € K : (z # y and m(z) = m(y))},
where z € K means x € Ky with m = my or x € Kg with m = mg, and

— BOUNDARY = DANGLINGUIDENTIFICATION

This means that the boundary of the match m given by the graph BOUN DARY
consists of a dangling and an identification part. In the identification part we
have all those nodes and edges which are identified by the match m. The dangling
part consists of those nodes = € L so that my (z) is adjacent to an edge e € G,
which is not part of the match m(L). These edges are called dangling edges
because they lack either the source or the target node in the set theoretical
complement G —m(L) = (Gg —mg(Lg),Gy —my(Ly). For brevity we call the
nodes in DANGLING dangling nodes.

Now we can construct the pushout complement graph D in Figure 11 in the
diagram to the left by D = (Dg, Dy, sp,tp,lep,lyp) with

— Dg = (Gg\mg(Lg)) Ump(lp(KE))

— Dy = (Gv \ my(Lv)) Umy (lv(Kv))

Te = (In \mzr(Tr)) Umr(lr(Tk))

— $p,tp,lep,and l,p are defined by the restriction of sqg,tq,leq,and l,g re-
spectively.

Finally the graph morphisms in the diagram to the left in Figure 11d: D —» G
and h : K — D are given by the inclusion D C G and by k(z) = m ol(z) for
nodes and edges = € K.

In our pacman graph grammar PGG considered above we can have only injective
matches m : L — G, because the pacman graph PG in Figure 4 and Figure 8
has no loops. This implies that the identification part of the gluing condition is
always satisfied. But also the dangling part is satisfied for all productions and
all matches, because all nodes of the left-hand side L of each production are
gluing nodes. Hence especially all dangling nodes of L are gluing nodes. In the
graph transformation shown in Figure 8 both nodes 1 and 2 are dangling and
also gluing nodes.

4 Concepts of Parallelism

In this section we present main concepts and results for parallelism of graph
transformations. We start with the concepts of parallel and sequential inde-
pendence leading to a local Church-Rosser Theorem which corresponds to the
concept of concurrency by interleaving. However, using the concept of paral-
lel productions and derivations, the DPO-approach also allows to model true
concurrency. The Parallelism Theorem shows equivalence of true concurrency
and interleaving in our framework. Finally the Parallelism Theorem allows to
formulate shift equivalence leading to canonical parallel derivations.

4.1 Parallel and Sequential Independence

Two graph transformations G = H; via (p1,m;), G = H, via (p2,ms) are
called parallel independent if the matches my : Ly — G and ms : Ly — G only
overlap in gluing items which are preserved by both graph transformations, i.e.

mi(L1) N ma(la) € mi(l)K1)) N ma(l2)K2))

for p; =(L; & K; = R;) andi=1,2.

In Figure 12 we show two productions p; = move P and py = move G with
matches my : Ly — PG and ms : Ly — PG which satisfy the conditions for
parallel independence. In fact, the matches overlap exactly in node 1 which is
gluing node for both productions and hence preserved by the corresponding
derivations. The first derivation PG = H; via (move P, m;) is explicitly shown
in fig 8 with PG = G and H; = H. Moreover, the match my : Ly — PG can be
extended to a match ms : Ly — Hp leading to a derivation Hy = X via (move
G, m}). In fact, the two derivations PG = H; via (move P, m;) and Hy = X
via (move@G, m}) are sequential independent in the sense defined below.

Two graph transformations G = H; via (p1,m1) (with comatch m} : Ry — Hj)
and H; = X via (p2,ms) are called sequential independent if the comatch
mj : Ry = Hip) and the match m), : Ly — H») only overlap in gluing items, i.e.

mi(Ri) N ma(L2) C mi(ri(K1)) N ma(l2(K2))

Parallel and sequential independence of graph transformations are suitable con-
ditions to allow interleaving of graph transformations as shown in the following
theorem:

4.2 Local Church-Rosser Theorem

The following conditions for graph transformations are equivalent and each of
them is leading to the diamond of parallel and sequential graph transformations
in Figure 13, called local Church-Rosser property.

1. G = H; via (p1,m1) and G = H, via (p2, m2) are parallel independent

* -9, L
moveP 4 — @ z

o
\
s
o-ganct

AT G T

e

*—0
moveG —

Figure 12. Parallel Independence

3.—}.
1
[

-

2. G = H, via (p1,m;) and H; = X via (p2,m}) are sequential independent
3. G = H, via (p2,mYy) and Hy = X via (p1,m}) are sequential independent.

H;
G X
Ho

Figure 13. Local Church-Rosser Property

An explicit proof of the local Church-Rosser Theorem is given in [Ehr79]. It is
based on suitable composition and decomposition properties of pushouts.

In the following we will see that parallel independence of graph transformations
also allows to construct a parallel derivation G = X via a parallel production

p1 + p2.

4.3 Parallel Productions and Parallel Derivations

Given productions p; = (L; bl K; 5% R;) for i = 1,2 the parallel production

p1 + p is given by

p1 +p2 = (L1 + Lo fts Ky + K, "5 Ry + R»)

where L1 + Lo, 1y + l2 etc. is the disjoint union of graphs and graph morphisms
respectively. This corresponds to the coproduct of objects and morphisms in the
category Graphs.

An example for the parallel production move P + move G is shown in Figure
14.

Figure 14. Parallel Production move P + move G

Parallel independence of move P and move G in Figure 12 implies according to
the following Parallelism Theorem a parallel derivation G = X via (p1 + p2,m),
where the match m : L1 + Ly — G is a non-injective graph morphism induced
by my : Ly = G and msy : Ly — G. The nodes 4 and 1 in Figure 14 are identified
with node 1 in Figure 12. In the derived graph X pacman is on node 2 and the
ghost on node 1.

In general, a derivation with a parallel production is called parallel derivation.

4.4 Parallelism Theorem

The following conditions for graph transformations are equivalent;

1. G = H; via (p1,m1) and G = H, via (p2, m2) are parallel independent

2. G = X via (p1 +p2, m) is a parallel derivation, where (p; +p2) is the parallel
production of p; and ps and my : Ly + Ly — G is the match induced by
m:L; - G and ms : Ly — G.

Together with the Local Church-Rosser Theorem we obtain the parallelism dia-
mond shown in Figure 15.

H,
1

/N

p1+p2

_
H>

Figure 15. Parallelism Diamond

G X

If p; and p, are sequentially independent in a derivation sequence G ==

Gs pzips G5 then this sequence is shift equivalent to a derivation sequence
Gy PLtp2 G L3 G5 and we obtain the shift relation shown in Figure 16.

G125 Gy 2R Gy Capipr Gy P82 G 23 Gy

Figure 16. Shift Relation

Shift equivalence on parallel derivations is the closure of the shift relation un-
der parallel and sequential composition. The shift relation is well-founded. The
minimal derivations with respect to shift relation are called canonical deriva-
tions. Canonical derivations are unique representations of shift equivalent par-
allel derivation classes (see [BCMT99] for more details).

5 Graph Grammars, Petri Nets and Concurrent
Semantics

In this section we discuss the relationship between graph grammars and Petri
nets. Both of them are well-known as specification formalisms for concurrent and
distributed systems. First we show how the token game of place-transition nets
can be modeled by double pushouts of discrete labeled graphs. This allows to
relate basic notions of place-transition nets like marking, enabling, firing, steps
and step sequences, to corresponding notions of graph grammars and to transfer
semantical concepts from Petri nets to graph grammars. Since a marking of a net
on one hand and a graph of a graph grammar on the other hand correspond to
the state of a system to be modeled, graph grammars can be seen to generalize
place-transition nets by allowing more structured states. In the second part
of this section we give a short overview of the concurrent semantics of graph
transformations presented in [BCM199] of the Handbook of Graph grammars
volume 3, which is strongly influenced by corresponding semantical constructions
for Petri nets in [Win87]. Finally let us point out that we discuss the modification
of the net structure of Petri nets using graph transformations in the next chapter.

5.1 Correspondence of Notions between Petri Nets and Graph
Grammars

The firing of a transition in a place-transition net can be modeled by a dou-
ble pushout in the category of discrete graphs labeled over the places of the
transitions. Let us consider the transition firing as token game in Figure 17.

The transition ¢ in Figure 17 requires in the pre-domain one token on place A
and two tokens on place B and produces in the post-domain one token on B and
two tokens on place C. This corresponds to the production in the upper row of
Figure 18, where the left hand side consists of three nodes labeled A, B and B

oo Nee

Figure 17. Transition Firing as Token Game

and the right hand sie of three nodes labeled B,C and C. The empty interface
of the production means that no node is preserved by the production, which
corresponds to the token game in place-transition nets. In fact, the transition ¢ in
Figure 17 consumes two tokens and produces one token on place B. Preservation
of tokens in the framework of Petri nets can be modeled by contextual nets, and
transition with context places can be modeled by productions with nonempty
interface.

BCC
é?EH — ™| e e e
L) AAC e 0o
B BC - e ee | ™ ccc
oo o oo o0

Figure 18. Transition Firing as Double Pushout

The marking of the left-hand side net in Figure 17 corresponds to the discrete
graph to the left in the lower row of Figure 18, while the marking after firing of
the transition in Figure 17 corresponds to the discrete graph to the right.

The discrete graph in the middle of Figure 18 is the result of the deleting step
of the double pushout and that on the right in the lower row is the result of the
adding step. This shows that the firing step in Figure 17 corresponds exactly to a
direct derivation in the double-pushout approach. This correspondence of notions
between place/transition nets and graph grammars is shown in Table 1 in more
detail. In fact, enabling of a transition at a marking corresponds to applicability
of a production to a graph, concurrency of transitions corresponds to parallel
independent productions applied with non-overlapping matches, conflicts cor-

respond to parallel dependent direct derivations with overlapping matches, a
parallel transition step of concurrent transitions corresponds to a parallel direct
derivation, and finally a step sequence to a parallel derivation.

|| Petri Nets | Graph Grammars ||
tokens nodes
places node labels
marking discrete, labeled graph
transition enabled at a marking|production applicable to a graph
firing direct derivation
firing sequence derivation
concurrent transitions parallel independent productions
conflict parallel dependence
step parallel direct derivation
step sequence parallel derivation

Table 1. Correspondence of Notions

5.2 Concurrent Semantics of Graph Transformation

For sequential systems it is often sufficient to consider an input/output semantics
and thus the appropriate semantic domain is usually a suitable class of functions
from the input to the output domains. When concurrent or distributed features
are involved, instead, typically more information about the actual computation
of the system has to be recorded in the semantic domain. For instance, one may
want to know which steps of computation are independent (concurrent), which
are causally related and which are the (non-deterministic) choice points. This
information is necessary, for example, if one wants to have a compositional se-
mantics, allowing to reduce the complexity of the analysis of concurrent systems
built form smaller parts, or if one wants to allocate a computation on a dis-
tributed architecture. Roughly speaking, non-determinism can be represented
either by collecting all the possible different computations in a set, or by merg-
ing the different computations in a unique branching structure where the choice
points are explicitly represented. On the other hand, concurrent aspects can be
represented by using a truly concurrent approach, where the casual dependencies
among events are described directly in the semantics using a partially ordered
structure. Alternatively, an interleaving approach can be adopted, where concur-
rency is reduced to non-determinism, in the sense that the concurrent execution
of events is represented as the non-deterministic choice among the possible in-
terleavings of such events.

Let us first have a look to the area of Petri nets, where a well-established theory
has been developed already.

Petri nets have been equipped with rich, formal computation-based semantics,
including both interleaving and truly concurrent models. In many cases such
semantics have been defined by using well-established categorical techniques,
often involving adjunctions between suitable categories of nets and corresponding
categories of models. Let us point out especially the semantics of safe place-
transition nets presented as a chain of adjunctions by Winskel [Win87].

To propose graph transformation systems as a suitable formalism for the spec-
ification of concurrent/distributed systems that generalizes Petri nets, we are
naturally led to the attempt of equipping them with a satisfactory semantic
framework, where the truly concurrent behavior of grammars can be suitably
described and analyzed. The basic result for interleaving and concurrent seman-
tics of graph transformation are the local Church-Rosser Theorem and the Paral-
lelism Theorem presented in the previous section. In the following we present the
main ideas of trace, process and event structure semantics for graph transforma-
tions. For a more detailed overview we refer to the handbook article [BCM™99].

The trace semantics for graph transformations is based on parallel derivation
sequences introduced in the previous section. Derivation traces are defined as
equivalence classes of parallel derivations with respect to the shift equivalence,
which is the closure of the shift relation (see Figure 16) under parallel and se-
quential composition. Abstraction equivalence is a suitable refinement of the iso-
morphism relation on parallel derivations, which allows to obtain a well-defined
concatenation of derivation traces. This leads to a category Tr(G) of derivation
traces of a graph grammar G, which can be considered as the trace semantics of
G.

The process semantics for graph transformations is based on the notion of a
graph process, which is a suitable generalization of a Petri net process. In fact,
the idea of occurrence nets and concatenable net processes has been generalized
to occurrence graph grammars and concatenable graph processes. The mapping
of an occurrence graph grammar O to the original graph grammar G determines
for each derivation of O a corresponding derivation of (G, such that all derivations
of O correspond to the full class of shift-equivalent derivations. This means that
the graph process, defined by the occurrence graph grammar O together with
the mapping from O to G, can be considered as an abstract representation of
the shift-equivalence class. Hence the graph process plays a role similar to the
canonical derivation introduced in the previous section. The process semantics
for graph transformations is defined by the category CP(G) of abstract graphs
as objects and concatenable processes of G as morphisms.

The event structure semantics for graph transformations allows to construct an
event structure for a graph grammar G which - in contrast to trace and process
semantics - allows to reflect the intrinsic non-determinism of a grammar. Event
structures and domains are well-known semantical models not only for Petri nets,
but also for other specification techniques for concurrent and distributed systems.
The domain Dom(G) of a graph grammar is a partially ordered set, where the
elements of Dom(G) are derivation traces starting at the start graph Gg of G,
and we have d; < dy for derivation traces d; : Gs = G and d> : Gs = G, if

there is a derivation trace d : G; = G2 with d o d; = d». Roughly spoken an
event e in the event structure ES(G) of the graph grammar G corresponds to
the application of a basic production p(e) in a derivation trace d(e) : Gs = G.
Moreover, we have a partial order < and a conflict relation § in ES(G), where
roughly spoken e; < e means d(e;) < d(es), and ejfes means that there is no
derivation trace d : Gs = G including both p(e;) and p(ez2). In the first case e;
and es are casually related and in the second case they are in conflict.

In the handbook article [BCMT99], where all these semantics are presented in
detail, it is also shown how these different graph transformation semantics are
related with each other (see 1.-3. below).

1.

2.

The trace semantics Tr(G) and the process semantics CP(G) are equivalent
in the sense that both categories are isomorphic.

For consuming graph grammars G the event structure semantics ES(G) and
the domain semantics Dom(G) are conceptually equivalent in the sense that
one can be recovered from the other. A grammar G is called consuming if
each production of the grammar deletes at least one node or edge. This cor-
respondence is a consequence of a well-known general result concerning the
equivalence of prime event structures and domains, where the configurations
of a prime event structure are the elements of the domain. A configuration of
a prime event structure is a subset of events, which is left-closed and conflict
free. In our case the configurations of ES(G) correspond to the derivation
traces in Dom(G).

As a consequence of results 1 and 2 above we obtain the following intuitive
characterization of events and configurations from ES(G) in terms of pro-
cesses: Configurations correspond to processes, which have as source graph
the start graph of the grammar. Events are one-to-one with a subclass of
such processes having a production which is the maximum w.r.t. the casual
ordering.

In the case of Petri nets Winskel has shown in [Win87] that the category
of safe place-transition nets is related by a chain of adjoint functors to the
categories of domains and prime event structures. Motivated by this chain
of adjunctions Baldan has shown in his dissertation [Bal00] that there is a
chain of functors between the category of graph grammars and prime event
structures, which is based on the trace and event structure semantics Tr(G)
and ES(G) discussed above. In fact, all but one steps in this chain of functors
have been shown already to be adjunctions as in the case of Petri nets.

6 Introduction to Petri Net Transformations

In the second part of this contribution we investigate Petri net transformations.
Note that there is a shift of paradigm. In graph transformation systems graph
productions are used to model the behavior. Obviously, this is not required
for Petri nets as the token game already models the behavior. In the area of
Petri nets the transformations are used to describe changes of the Petri net
structure. So, we can describe the stepwise development of nets, and have a
formal foundation for the evolution of Petri nets. The main advantages of Petri
net transformations are:

— the rule-based approach
— compatibility with structuring and marking graph semantics
— extension to refinement

There already have been a few approaches to describe transformations of Petri
nets formally (e.g. in [Ber86,Ber87,5X92,DA92,vdA97]). The intention has been
mainly on reduction of nets to support verification, and not on the development
process itself.

First we discuss briefly the formal foundation of Petri net transformations as an
instantiation of so called high-level replacement systems. This is a generalization
of the DPO-approach from graphs to arbitrary specification techniques, that
can be instantiated especially to graphs and different classes of Petri nets (see
Figure 19). Subsequently we give an extensive example, stepwise developing the
baggage handling system of an airport. Finally we discuss the relevance of net
transformations as means for the rule-based modification and refinement of nets.

High-Level
Replacement Systems
Abstract
representation
Concrete
representation

R Net Net
Graph Transformation Transformation System Transformation System
Systems PIT Nets AHL Nets

Applications

Figure 19. Generalization and Instantiation

6.1 Formal Foundation based on High-Level Replacement Systems

In this section we sketch the abstract frame work, that comprises the transforma-
tions of graphs in the previous and of Petri nets in the next sections. High-level

replacement systems can be considered as a general description of replacement
systems, where a left-hand side of the rule is replaced by a right-hand side
in the presence of an interface. Historically, rules and transformations of Petri
nets have been introduced as an instantiation of high-level replacement systems
[EHKP91a,EHKP91b,PER95].

These kinds of replacement systems have been introduced in [EHKP91b] as a
categorical generalization of graph transformations in the DPO-approach. High-
level replacement systems are formulated for an arbitrary category Cat with a
distinguished class M of morphisms, called M-morphisms. Figure 20 illustrates
the main idea for some arbitrary specification or structure. The rule given in the
upper line describes that a black triangle is replaced by a long dotted rectangular,
if there is a light grey square below the triangle. The transformation is given by
the bottom line, where the replacement specified by the rule is carried out.

.
7
‘

Figure 20. Abstract Example

High-level replacement systems are a categorical generalization of the algebraic
approach to graph transformation systems with double pushouts. They allow
formulating the same notions as for graph transformation systems, but not only
for graphs but for objects of arbitrary categories. That means, instead of replac-
ing one graph by another one, now one object is replaced by another one. Due
to the categorical formulation of high-level replacement systems the focus is not
on the structure of the objects but on the properties of the category.

To achieve the results known in graph transformation systems, the instanti-
ated category of a high-level replacement system has to satisfy certain HLR-
conditions. In [LS04] an elegant reformulation of some HLR-conditions [Pad93]
is given in terms of adhesive categories.

In [Pad99] we have extended the theory of high-level replacement systems where
rules and transformations are required to preserve some desired properties of the
specification. To do so, rules and transformations are equipped with an additional
morphism that has to preserve or reflect specific properties. At this abstract
level we merely can assume suitable classes of morphisms and then guarantee
that these morphisms lead to property preserving rules and transformations.

In Section 7.6 (and much more detailed in [PU03]) we give a glance how this
approach works for Petri nets.

6.2 Example: Baggage Handling System

In this example we illustrate the rule-based modification of place/transition
nets. Rules describe the replacement of a left-hand side net by a right-hand
side net. The application of the rule yields a transformation where in the
source net the subnet corresponding to the left-hand side is replaced by the
subnet corresponding to the right-hand side. At this level as well as in this
example there are no statements about the properties of the modified nets.
Nevertheless based on the transformation we illustrate here, we already have
developed a theory, called rule-based refinement, where the transformations are
extended to introduce, preserve, or reflect net specific properties. In [PU03]
a comprehensive survey can be found, in Section 7.6 we discuss this theory briefly.

This example concerns the sorting, screening and moving of baggage at an air-
port. The physical basis of the baggage handling system consists of check-in
counter, conveyor belts, sorter, screening devices, a baggage claim carousel, stor-
ages, and loading stations. The conveyor belts are transportation belts, that are
starting and ending at some fixed point (as check-in, sorter, loading station, bag-
gage claim carousel, etc). The baggage handling system comprises three check-in
counters, the primary sorter, the early baggage, the lost baggage as well as the
unclaimed baggage storage, the secondary sorter, two loading stations, the bag-
gage claim sorter with two baggage claim carousels and all the conveyor belts in
between. Mainly, there are the following cases to handle:

1. Check-in: The baggage has to be moved from the check-in counter to the
right loading station of a departing carrier. It has to pass a security check
(screening the baggage). At the check-in the baggage items are placed man-
ually into the transport system.

2. Baggage Claim: At the loading station a carrier is unloaded and the baggage
items are placed manually into the transport system. The baggage has to be
moved from the loading station to the right baggage claim carousel.

3. Transfer: The baggage has to be moved from the loading station of the
arriving carrier to the loading station of the connecting flight carrier. The
baggage is moved to the secondary sorter and subsequently either to the right
loading station for the connecting flight or to the early baggage storage.

4. Storing Baggage: For baggage checked in early and for long waits between
connecting flights there must be a storage, called early baggage storage.
Moreover, misled or lost baggage has to be identified and is then handled
manually. Baggage that is not claimed at the baggage claim carousel has to
be stored as well.

To model the above given baggage handling system we can use low-level or
high-level Petri nets. High-level net allow modeling the data explicitly, but for

the purpose of this paper it is sufficient to use low-level nets. In fact, the basic
principles for net transformations are the same for low-level and high-level nets.
Subsequently we model the baggage handling system with place/transition nets,
which requires some abstraction of the data — for example the baggage tags or
the flight numbers are not modeled. Especially, we have modeled baggage as
tokens, hence it cannot be distinguished. The choice what happens to baggage is
accordingly no longer depended from the data, i.e. the baggage tag, but is done
at random.

The place/transition net in Figure 21 is an abstraction of the above specified bag-
gage handling system. The baggage handling system is an open system; baggage
enters and leaves the system. We have modeled this using transitions without
pre-domain for entering baggage and using transitions without post-domain for
leaving baggage. Therefore we have the empty initial marking.

tl 4

b= crenan ==

Figure 21. Baggage Handling System: Net B0

In the net in Figure 21 neither the conveyor belts nor the screening nor the lost
or unclaimed baggage storage are modeled explicitly. Subsequently we present
a step-by-step development of our first abstraction in Figure 21 that adds the
lacking features. We want to add the representation of the conveyor belts by
places, as well as the explicit modeling of the screening. Extending the net in
this way yields a larger net. So we decompose the net into subnets in order to
continue using the smaller subnets. Subsequently we introduce the subnets for
the lost baggage storage and for the unclaimed baggage storage.

Introducing Conveyor Belts and Screening: The conveyor belt is not yet explic-
itly modeled. The transitions ¢4 to t14 represent conveyor belts. There are three
different possibilities: A simple conveyor belt connecting two devices of the bag-
gage handling system (e.g. between the sorters and the early baggage storage or
the loading station) a conveyor belt connecting several devices (between check-
in and the primary sorter), and a complex conveyor belt including a screening
device with an optional manual check of unsafe baggage (between primary and
secondary sorter). The baggage is considered by the screening device either as
safe or as unsafe. If it is safe, then it is left on the conveyor belt. If it is considered
to be unsafe, it is taken off the conveyor belt, is checked manually, and either it
is taken out of the baggage handling system or it is put back into the subsequent
device (sorter, storing, or loading).

For these three cases there are three rules available for the replacement of the
corresponding transitions by subnets containing an explicit place ConveyorBelt.
In the first case it is modeled by the rule r1 = (L1 <~ K1 — R1) in Figure 22.
This rule states that a transition X is deleted (including the adjacent arcs) and
is replaced by transitions T1 and T2 and the place ConveyorBelt.

L1 X K1 Rl T T2 |
Go—=l-=C~ (2~ (o] =Comeyoriet—o|=r)
Figure 22. Introducing Conveyor Belts (Rule r1)

In the second case we recursively replace transitions X by the already existing
ConveyorBelt in Figure 23.

L2 T1 T2 K2 T1 T2 R2 . T
e IR Gl T BN S R
g @) 1

Figure 23. Recursive Introduction of Conveyor Belts (Rule r2)

Introducing the screening is modeled in Figure 24 adding the new places
ConveyorBelt and ManualCheck for the handling of unsafe baggage. The orig-
inal transition X is deleted, the two new places and the transitions in between
are added. The transition T'5 denotes the removal of the unsafe baggage.

Gdm e @

Figure 24. Introducing Screening Devices (Rule r3)

These rules can be applied several times with different matches. First we inves-
tigate the application of rule 3 with match m in Figure 25 with m(X) = ¢7.
Applying rule 3 with match m we have again the two steps as for the application
of a graph production (see 3.3):

STEP 1 (DELETE): Delete m(L3 —1(K3)) from BO leading to a context net
D (if the gluing condition is satisfied), s.t. B is the gluing of L3 and D along
K3,i.e. B0 = L3 +ks3 D in (1) of Figure 25.

STEP 2 (ADD): Add R3 — r(K3) to D leading to the net B1, s.t. B1 is the
gluing of R3 and D along K3, i.e. Bl = R3 +k3 D in (2) of Figure 25.

Then we obtain the transformation in Figure 25 consisting of two pushouts,
where the context net D is the net BO without the transition ¢7 and the re-
sulting net B1 has additional places ConveyorBelt and ManualCheck with the
corresponding transitions and arcs. In Figure 25 we have indicated the changes
by a light grey ellipse.

Next we apply rule r1 using the matches m1; : L1 — B1 mapping the transition
X to one of those transitions in B1 that represent a conveyor belt and mapping
the places P1 and P2 the adjacent places. So, we have ml;(X) = ¢ for
i € {8,...,,14} leading to the nets B2, ..., B8 that are not given explicitly. At
last we replace the transitions ¢4, t5, and t6 by conveyor belts. We use match

(r1,mls)

mly : L1 — B8 with m14(T) = t; and transform B8 " ="' B9. Subsequently
we can apply rule 72 using the matches m25(T) = t5 and m24(T) = tg.
This results in the following transformation sequence:

BO (r3 m) B1 (rl mlg) B2 (7“1 mlg) B3 (7“1 mlio) B4 (rl mli1) B5 (
B7 (r1 m114) BS (rl mly) B9 (r2 m2s) B10

rl m112)

B6
B11

(rl mli3) (r2 m2g)

Note that the nets typed bold face are illustrated in some Figure, e.g. the net
B11 is depicted in Figure 26.

1
g

g1 @ 9 SO y; £n T4
231232

Transformation B0 (rLm) B1

25.

igure

F

@ A pantono = =)

zl 1 ey

V
V
ConveyorBelt

<3 ConveyorBelt <»—|
= ConveyorBelt =

Figure 26. Net B11: After Introducing all Conveyor Belts

Decomposition of the Net: During stepwise development a net usually reaches
at some point a size, where it becomes to large and has to be decomposed.

We assume the net B11 has become too large, so that some structuring is re-
quired. In Figure 27 the place/transition net B11 is decomposed into two subnets
S1 and S2 and one interface net I, consisting of place SecondarySorter. The
subnets can be glued together using the union construction (see 7.4) and then
yield the original net B11: We have the embedding of I into S1 and S2. The
union describes the gluing of the subnets along the interface, hence we have the
the union S1 +; S2 = B11'. Now we can modify the subnets independently of
each other provided that specific independence conditions are satisfied.

! In this case the interface net consists of one place only, so that the union corresponds
to the usual place fusion of nets. But the general union construction allows having
arbitrary subnets as interfaces.

ConveyorBelt

Figure 27. Decomposition Using Union

Introducing Lost Baggage Storage: If the baggage is misled or the connecting or
the departing carrier are missed, then the baggage is stored in the lost baggage
storage. There it is handled manually, that is it is re-tagged and put back into
the primary sorter. This is expressed at an abstract level in rule 74 in Figure 28.

Figure 28. Introducing Lost Baggage Storage (Rule r4)

The application of rule r4 to subnet S1 using the match m4 : L4 — S1 with
m4(P1) = SecondarySorter and m4(P2) = PrimarySorter yields the net S3.
Applying rule r1 twice, subsequently adds the corresponding conveyor belts and

we have the transformation sequence S1 (ri—m;l) S3 25 S4 =% S5. S5 is de-
picted in Figure 29.

V
V
ConveyorBelt

Figure 29. The Resulting Subnet S5

Introducing Unclaimed Baggage Storage If the baggage is not claimed at the
baggage claim it is collected and stored in the unclaimed baggage storage. We
use two rules In Figure 30 to introduce the place UnclaimedBaggage and the
adjacent transitions recursively.

§L5 §<--§K5 — —>§R5 Unclaimed

L6 Unclaimed K6 Unclaimed R& _>| laimed
| - nclaimed\ - _ ~/Unclaimed
Baggage Baggage /- Baggage -

Figure 30. Introducing Unclaimed Baggage Storage (Rules r5 and r6)

Applying first rule 75 and then five times rule r6 we obtain the following trans-

formation sequence S2 =5 S6 5g) S7, where the resulting subnet S7 is given

in Figure 31.
129

/—I ConveyorBelt
> -+

Figure 31. The Resulting Subnet S7

The Union Theorem and the Parallelism Theorem together now guarantee that
the resulting net B14 in Figure 32 of the union S5 +1 S7 = B14 is the same as

the result of the following transformation sequence B11 =% B12 2% B13 52@
B14 according to the case without the decomposition. This is quite obvious if
the interface net consists of one place only. In case of more complex interface nets
this result can be only achieved if some independence conditions are satisfied.

This condition states in principle that nothing from the interface net may be
deleted.

6.3 Relevance of Petri Net Transformations

The above example illustrates only some of the possibilities and advantages of
net transformations. The usual argument in favor of formal techniques, to have
precise notions and valid results clearly holds for this approach as well.

<— ConveyorBelt <»—|

V
V
ConveyorBelt

V
/
econdar
Sorter
%
V
<—ConveyorBelt

ConveyorBelt — 32

Figure 32. The Resulting Net B14

Moreover, we have already investigated net transformations in high-level Petri
net classes (see Section 7.6) that are even more suitable for system modeling than
the place/transition nets in our example. The impact for system development is
founded in what results from net transformations:

— Stepwise Development of Models

The model of a complex software system may reach a size that is difficult to
handle and may compromise the advantages of the (formal) model severely.
The one main counter measure is breaking down the model into sub-models,
the other is to develop the model top-down. In top-down development the
first model is a very abstract view of the system and step by step more
modeling details and functionality are added. In general however, this results
in a chain of models, that are strongly related by their intuitive meaning,
but not on a formal basis.

Petri net transformations fill this gap by supporting the step-by-step devel-
opment of a model formally. Rules describe the required changes of a model

and their application yields the transformations of the model. Especially the
repeated use of a rule ensures a uniform change of a subnet that appears
as multiple copies in the model (e.g. replacing one transition by the explicit
place ConveyorBelt and its adjacent transitions).

Moreover, the representation of change in a visual way using rules and trans-
formations is very intuitive and does not require a deeper knowledge of the
theory.

Distributed Development of Models

Decomposing a model, that is too large, is an important technique for the
development of complex models. To combine the advantages of a horizontal
structuring with the advantages of step-by-step development techniques for
ensuring the consistency of the composed model are required. Then a dis-
tributed step-by-step development is available, that allows the independent
development of sub-models.

The theory of net transformations comprises horizontal structuring tech-
niques and ensures compatibility between these and the transformations. In
our example we have employed the union construction for the decomposi-
tion, and have subsequently developed the subnets independently of each
other. The theory allows much more complex decompositions, where the in-
dependence of the sub-models is not as obvious as in the given example. So,
the formal foundation for the distributed development of complex models is
given.

Incremental Verification

Pure modification of Petri nets is often not sufficient, since the net has
some desired properties that have to be ensured during further development.
Verification of each intermediate model requires a lot, of effort and hence is
cost intensive. But refinement can be considered as the modification of nets
preserving desired properties. Hence the verification of properties is only
required for the net, where they can be first expressed. In this way properties
are introduced into the development process and are preserved from then on.
Rule-based refinement modifies Petri nets using rules and transformations
so that specific system properties are preserved. For a brief discussion see
Section 7.6.

Foundation for Tool Support

A further advantage is the formal foundation of rule-based refinement and/or
rule-based modification for the implementation of tool support. Due to the
theory of Petri net transformations we have a precise description, how rules
and transformation work on Petri nets. Tool support is for the practical use
the main precondition. The user should get tool support for defining and
applying rules. The tool should assist the choice as well as the execution of
rules and transformations.

Variations of the Development Process

Another area, where transformations are very useful, concerns variations in
the development process. Often a development is not entirely unique, but
variations of the same development process lead to variations in the desired
models and resulting systems. These variations can be expressed by different

rules yielding different transformations, that are used during the step-by-
step development. In our example we can obtain various different baggage
handling systems, depending on the rules we use. We can have a system
where each conveyor belt is equipped with screening device, if we always use
rule r3 instead of rule r1.

7 Concepts of Petri Net Transformations

In this section we give the precise definitions of the notions that we have already
used in our example. For notions and results beyond that we give a brief survey
in Section 7.6 and refer to literature.

7.1 Place/Transition Nets and Net Morphisms

Let us first present a notation of place/transition net that is suitable for trans-
formations is the algebraic approach.

These nets are given in the algebraic style as introduced in [MM90]. A
place/transition net N = (P,T,pre,post) is given by the set of places P, the
set of transitions 7', and two mappings pre, post : T' — P®, the pre-domain and
the post-domain. pre

P9 is the free commutative monoid over P that can also be considered as the
set of finite multisets over P. The pre- (and post-) domain function maps each
transition into the free commutative monoid over the set of places, representing
the places and the arc weight of the arcs in the pre-domain (respectively in
the post-domain). An element w € P® can be presented as a linear sum w =
ZpEP Ap - por as a function w : P -+ N. We can extend the usual operations
and relations as @&, ©, <, and so on.

Based on the algebraic notion of Petri nets [MM90] we use simple homomor-
phisms that are generated over the set of places. These morphisms map places
to places and transitions to transitions. The pre-domain of a transition has to be
preserved, that is even if places may be identified the number of tokens that are
taken, remains the same. This is expressed by the condition preso fr = f;_-? oprey.
A morphism f : N; — N between two place/transition nets Ny =
(Py, Ty, prer,post;) and No = (P, Ts, pres,posts) is given by f = (fp, fr)
with fp : P — P, and fr : Ty — T5 so that pres o fr = ff? o pre; and
posty o fr = fg o post;. The diagram schema for net morphisms is given in
Figure 33.

Figure 33. Net Morphism

Several examples of net morphisms can be found in Figure 25 where the dashed
arrows denote injective net morphisms.

7.2 Rules and Transformations

The category PT consists of place/transition nets as objects and place/transition
net morphisms as morphisms. In order formalize rules and transformations for
nets in the DPO-approach we first state the construction of pushouts in the
category PT of place/transition nets. For any span of two morphisms N;
Ny — N, the pushout can be constructed. The construction is based on the
pushouts for the sets of transitions and sets of places in the category Set of sets
and is similar to the pushout construction for graphs (see 3.4).

Given the morphisms f : No — Ny and g : Ng — N, then the pushout N3 with
the morphisms f' : N2 — N3 and ¢’ : N; — N3 is constructed (see Figure 34)
as follows:

— T3 =T, +1,T> with f} and g% as pushout of fr and gr in Set.
— P3 =P, +p, P, with fp and gp as pushout of fp and gp in Set as well.

— prea(t) = [prei(t1)] ; if gip(t1) =1t
preat? {[PT€2('52)] Cif fh(t) =t
— pos _ Jposti(t1)] ;5 if gp(t) =1t
posta (1) {[POStQ (ta)] ;5 if fr(ta) =1t
No N Ny
N> T> N3

Figure 34. Pushout of Nets

We introduce rules, that correspond to graph productions in the DPO-approach.
Rules describe the replacement of the left-hand side net by the right-hand side
net in the presence of an interface net.

— Aruler = (L LI N R) consists of place/transition nets L, K and R,
called left-hand side, interface and right-hand side net respectively, and two

injective net morphisms K - L and K 2 R.

— Given arule r = (L ¢~ K %2, R) a direct transformation Ny == N3, from
Ny to N is given by two pushout diagrams (1) and (2) in Figure 35.

The morphisms m : L — Ny and n : R — N> are called match and comatch,
respectively. The net C' is called pushout complement or the context net.

k1 ko
L<—K—R

{ o]

N1 ~—(C —— NQ
Figure 35. Net Transformation

The illustration of a transformation can be found for our example in Figure 25,
where the rule rl is applied to the net BO with match m. The first pushout
denotes the gluing of the nets L3 and D along the net K3 resulting in net BO.
The second pushout denotes the gluing of net R3 and net D along K3 resulting
in net B1.

7.3 Gluing Condition and the Construction of the Context Net

Given a rule r and a match m as depicted in Figure 35, then we construct in
a first step the pushout complement provided the gluing condition holds. This
leads to the pushout (1) in Figure 35. In a second step we construct the pushout
of ¢ and ks leading to N» and the pushout (2) in Figure 35.

The gluing condition correspond exactly to the gluing condition in the graph
case (see 3.5). Using the same interpretation as in the graph case, but the
notation from Figure 35 we have the following;:

Gluing Condition for Nets:
BOUNDARY CGLUING
where BOUNDARY and GLUING are subnets of L defined by
— GLUING = k1 (K)

~ DANGLING ={pe Py |3t € Ty —mr(T1) :

(mp(p) € prei(t) or mp(p) € posti(t))}
where the notation p € prei(t) means prei(t) = > cp, Ap - p with A, > 0,
similar for posty,

— IDENTIFICATION ={z € K |y € K : (z # y and m(z) = m(y))},
where z € K means x € P with m = mp or z € T with m = m7p, and

— BOUNDARY = DANGLINGUIDENTIFICATION

Now the context net C' is the pushout complement C in Figure 35 that is con-
structed by:

— Po = (PL\mp(PL)) Ump(kip(Pk))
— Te = (Ty \mr(Tr)) Umr (ki r(Tk))
— prec = preiyr, and postc = post1|TC

Note that the pushout complement C' leads to the pushout (1) in Figure 35 and
that it is unique up to isomorphism.

In our example of the development of the baggage handling system the gluing
condition is satisfied in all cases, since the matches are all injective and places
are not deleted by our rules.

7.4 Union Construction

The union of two Petri nets sharing a common subnet, that may be empty, is
defined by the pushout construction for nets.

The union of place/transition nets Ni, N sharing an interface net I with the
net morphisms f : I — N; and g : [— N> is given by the pushout (1) in Figure

36. Subsequently we use the short notation N = Ny +5 Ny or Ny, N2>%> N.

I—f>N1

gl (1) lg’
NQ?N

Figure 36. Union of Nets

In our example we use the union construction to describe the decomposition in
Figure 27. The interface net I is mapped by morphisms to the subnets S1 and
S2.

7.5 Union Theorem

The Union Theorem states the compatibility of union and net transformations:
Given a union N;+;N> = N and net transformations Ny == M; and Ny == M,
then we have a parallel rule 71 + ro (analogously to a parallel production, see
4.3) and a parallel net transformation N TgQ M. M = M; +7 M, is then the
union of M; and M, with the shared interface I, provided that the given net
transformations preserve the interface 1.

The Union Theorem is illustrated in Figure 37:

I
N17 N2>ﬁ N
r1,T2 (=) ri+re

Ml,M2>IﬁM

Figure 37.Diagram for the Union Theorem

Note that the compatibility requires an independence condition stating that
nothing from the interface net I may be deleted by one of the transformations
of the subnets. This is obviously the case in our example, since the interface
consists of one place only and the rules do not delete any places.

7.6 Further Results

We briefly introduce the main net classes we have studied up to now, and sub-
sequently we present some main results.

— Place/transition nets in the algebraic style have already been introduced in
the previous Section.

— Coloured Petri nets [Jen92,Jen94,Jen97] are widely known and very popu-
lar. Their practical relevance is very high, due to the very successful tool
Design/CPN [JCHHO1].

— Algebraic high-level nets are available in quite a few different notions e.g.
[Vau87,Rei91,PER95]. We use a notion that reflects the paradigm of abstract
data types into signature and algebra. An algebraic high-level net (as in
[PER95)) is given by N = (SPEC, P, T, pre, post, cond, A), where SPEC =
(S,OP,E) is an algebraic specification in the sense of [EM85], P is the set
of places, T is the set of transitions, pre,post : T — (Top(X) x P)® are the
pre- and post-domain mappings, cond : T — P (EQNS(SIG)) are the
transition guards, and A is a SPEC algebra.

Horizontal Structuring Union and fusion are two categorical structuring con-
structions for place/transition nets, that merge two subnets or two different nets
into one.

The Union is introduced in the previous section. Now let us consider fusion:
Given a net F' that occurs in two copies in the net Nj, represented by two

f
morphisms F ——Z N; the fusion construction leads to a net N5, where both
f!

occurrences of F' in N; are merged. If F' consists of places p1, .., pn then each of
the places occurs twice in net Ny, namely as f(p1), ..., f(pn) and f'(p1), -.-, ' (Pn)-
N, is obtained from net N; fusing both occurrences f(p;) and f'(p;) of each place
p; for 1 <i <n.

The Union Theorem is presented in the previous section. The Fusion Theo-
rem [Pad99] is expressed similarly: Given a rule r and a fusion F —< N;
then we obtain the same result whether we derive first Ny == N| and then
construct the fusion ¥ ——Z Nj resulting in Nj or whether we construct the
fusion F ———Z Nj first, resulting in Ny and then perform the transformation
step Ny = NJ. Similar to the Union Theorem a certain independence condition
is required. Both theorems state that Petri nets transformations are compatible
with the corresponding structuring technique under suitable independence con-
ditions. Roughly spoken these conditions guarantee that the interface net I and
respectively the fusion net F' are preserved by all net transformations.

Parallelism In Section 4 the concepts of parallelism have been discussed for
graphs. The main theorems hold for Petri net transformations as well.

The Church-Rosser Theorem states a local confluence in the sense of formal lan-
guages. The required condition of parallel independence means that the matches
of both rules overlap only in parts that are not deleted. Sequential independence
means that those parts created by the first transformation step are not deleted
in the second. The Parallelism Theorem states that sequential or parallel inde-
pendent transformations can be carried out either in arbitrary sequential order
or in parallel. In the context of step-by-step development these theorems are
important as they provide conditions for the independent development of dif-
ferent parts or views of the system. More details for horizontal structuring or
parallelism are given in see [PER95] or [Pad99)].

Refinement The extension of High-level replacement systems to rules and
transformations preserving properties has the following impact on Petri nets:
Rule-based refinement comprises the transformation of Petri nets using rules
while preserving certain net properties. For Petri nets the desired properties
of the net model can be expressed, e.g in terms of Petri nets (as liveness,
boundedness etc.), in terms of logic (e.g. temporal logic, logic of actions etc.)
in terms of relation to other models (e.g. bisimulation, correctness etc.) and so
on. We have investigated the possibilities to preserve liveness of Petri nets and
safety properties in the sense of temporal logic.

Summarizing, we have for place/transition nets, algebraic-high level nets and
Coloured Petri nets the following results for rule-based refinement presented in
table 2. For more details see [PU03].

Notion/Results PT-nets | AHL-nets | CPNs

Rules, Transformations Vv v v

Safety property preserving transformations with
transition-gluing morphisms
place-preserving morphisms

Safety property introducing transformations

MRS
MRS

Liveness preserving transformations

~
~

Liveness introducing transformations

Church Rosser I + II Theorem

Parallelism Theorem

Union

Fusion

Union Theorems I+11

Fusion Theorem

AN AN AN AN AN AN AN A NS

NN AN AN AN
S <

Table 2. Achieved results

8 Conclusion

In the first part of this paper (Sections 2 - 5) we have given a tutorial
introduction to the basic notions of graph grammars and graph transformations
including the relationship to corresponding notions of Petri nets. In the second
part (Section 6 and Section 7) we have shown how to use Petri nets transfor-
mations for the stepwise development of systems and have included a detailed
example of a baggage handling system. The main idea of Petri transformations
is to extend the classical theory of Petri nets by a rule-based technique that
allows studying the changes of the Petri net structure.

In our general overview of graph grammars and transformations in Section 2
we have already pointed out that there is a large variety of different approaches
and application areas. The practical use of graph transformations is supported
by several tools. The algebraic approach to graph transformations (presented in
Sections 3 - 5) is especially supported by the graph transformation environment
AGG (see the homepage of [AGG]). AGG includes an editor for graphs and
graph grammars, a graph transformation engine, and a tool for the analysis of
graph transformations. the AGG system as well as some other tools are available
on a CD which is part of volume 2 of the Handbook of Graph Grammars and

Computing by Graph Transformation [EEKR99]. This volume provides also an
excellent introduction to several application areas for graph transformations.
Concurrency aspects of graph grammars, which are briefly discussed in Section
5, are presented in much more detail in volume 3 of the handbook [BCM*99].
This volume includes also an introduction to high-level replacement systems with
application to algebraic specification and Petri nets including the theoretical
foundations of Petri net transformations [EGP99].

On top the graph transformation system AGG there is the GENGED environ-
ment (see the homepage of [Gen]) that supports the generic description of visual
modeling languages for the generation of graphical editors and the simulation
of the behavior of visual models. Especially, Petri net transformations can be
expressed using GENGED, e.g. for the animation of Petri nets [EBE03,BE03]. In
this framework, the animation view of a system modeled as a Petri net consists
of a domain-specific layout and an animation according to the firing behavior
of the Petri net. This animation view can be coupled to other Petri net tools
[EBEO1] using the Petri Net Kernel [KWO01] a tool infrastructure for editing,
simulating and analyzing Petri nets of different net classes and for integration
of other Petri net tools.

References

[AGG] AGG Homepage. http://tfs.cs.tu-berlin.de/agg.

[Bal00] P. Baldan. Modelling Concurrent Computations: From Conteztual Petrs
Nets to Graph Grammars. PhD thesis, University of Pisa, 2000.

[BCM'99] P. Baldan, A. Corradini, U. Montanari, F. Rossi, H. Ehrig, and M. Léwe.
Concurrent Semantics of Algebraic Graph Transformations. In G. Rozen-
berg, editor, The Handbook of Graph Grammars and Computing by Graph
Transformations, Volume 3: Concurrency, Parallelism and Distribution.
World Scientific, 1999.

[BE03] R. Bardohl and C. Ermel. Scenario Animation for Visual Behavior Mod-
els: A Generic Approach Applied to Petri Nets. In G. Juhas and J. De-
sel, editors, Proc. 10th Workshop on Algorithms and Tools for Petri Nets
(AWPN’08), 2003.

[Ber86] G. Berthelot. Checking properties of nets using transformations. Advances
in Petri Nets 1985, Lecture Notes in Computer Science 222: pages 19-40.
Springer 1986.

[Ber87] G. Berthelot. Transformations and decompositions of nets. In Brauer,
W., Reisig, W., and Rozenberg, G., editors, Petri Nets: Central Models
and Their Properties, Advances in Petri Nets, Lecture Notes in Computer
Science 254, pages 359-376. Springer, 1987.

[DA92] R. David and H. Alla, editors. Petri Nets and Grafcet. Prentice Hall (UK),
1992.

[EBE0O1] C. Ermel, R. Bardohl, and H. Ehrig. Specification and implementation
of animation views for Petri nets. In DFG Research Group Petri Net
Technology, Proc. of 2nd International Colloquium on Petri Net Technology
for Comunication Based Systems, 2001.

[EBE03]

[EEKRO9]

[EGP99]

[EHKP91a]

C. Ermel, R. Bardohl, and H. Ehrig. Generation of animation views for
Petri nets in GENGED. In H. Ehrig, W. Reisig, G. Rozenberg, and H. We-
ber, editors, Advances in Petri Nets: Petri Net Technologies for Modeling
Communication Based Systems, Lecture Notes in Computer Science 2472.
Springer, 2003.

H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg, editors. Handbook
of Graph Grammars and Computing by Graph Transformation, Volume 2:
Applications, Languages and Tools. World Scientific, 1999.

H. Ehrig, M. Gajewsky, and F. Parisi-Presicce. High-level replacement sys-
tems with applications to algebraic apecifications and Petri nets, chapter 6,
pages 341-400. Number 3: Concurrency, Parallelism, and Distribution in
Handbook of Graph Grammars and Computing by Graph Transformations.
World Scientific, 1999.

H. Ehrig, A. Habel, H.-J. Kreowski, and F. Parisi-Presicce. Parallelism and
concurrency in high-level replacement systems. Math. Struct. in Comp.
Science, 1:361-404, 1991.

[EHKP91b] H. Ehrig, A. Habel, H.-J. Kreowski, and F. Parisi-Presicce. Parallelism

[Ehr79]

[EKMRO9]

[EMS85]

[EPST73]

[Gen]
[JCHH91]

[Jen92]

[Jen94]

[Jen97]

[KWO1]

[LS04]

and concurrency in high-level replacement systems. Math. Struct. in Comp.
Science, 1:361-404, 1991.

H. Ehrig. Introduction to the algebraic theory of graph grammars (A
survey). In Graph Grammars and their Application to Computer Science
and Biology, pages 1-69. Lecture Notes in Computer Science 73. Springer,
1979.

H. Ehrig, H.-J. Kreowski, U. Montanari, and G. Rozenberg, editors. Hand-
book of Graph Grammars and Computing by Graph Transformation, Vol-
ume &: Concurrency, Parallelism, and Distribution. World Scientific, 1999.
H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 1: Equa-
tions and Initial Semantics, volume 6 of EATCS Monographs on Theoret-
ical Computer Science. Springer Verlag, Berlin, 1985.

H. Ehrig, M. Pfender, and H.J. Schneider. Graph grammars: an algebraic
approach. In 1/th Annual IEEE Symposium on Switching and Automata
Theory, pages 167-180. IEEE, 1973.

GenGED Homepage. http://tfs.cs.tu-berlin.de/genged.

K. Jensen, S. Christensen, P. Huber, and M. Holla. Design/CPN. A Ref-
erence Manual. Meta Software Cooperation, 125 Cambridge Park Drive,
Cambridge Ma 02140, USA, 1991.

K. Jensen. Coloured Petri nets. Basic Concepts, Analysis Methods and
Practical Use, volume 1: Basic Concepts. Springer Verlag, EATCS Mono-
graphs in Theoretical Computer Science edition, 1992.

K. Jensen. Coloured Petri Nets - Basic Concepts, Analysis Methods and
Practical Use, volume 2: Analysis Methods. Springer Verlag, EATCS
Monographs in Theoretical Computer Science edition, 1994.

K. Jensen. Coloured Petri Nets - Basic Concepts, Analysis Methods and
Practical Use, volume 3: Practical Use. Springer Verlag, EATCS Mono-
graphs in Theoretical Computer Science edition, 1997.

E. Kindler and M. Weber. The Petri net kernel — an infrastructure for
building Petri net tools. Software Tools for Technology Transfer, 3(4):486—
497, 2001.

S. Lack and P. Sobociski. Adhesive categories. In Proc. FOSSACS 04,
2004. to appear.

[MM90]
[Pad93]

[Pad99]

[PER95]

[PUO03]

[Rei91]

[REP93]

[Roz97]

[SX92]

[Vau87]

[vdA97]

[Win87]

J. Meseguer and U. Montanari. Petri Nets are Monoids. Information and
Computation, 88(2):105-155, 1990.

J. Padberg. Survey of high-level replacement systems. Technical Report
93-8, Technical University of Berlin, 1993.

J. Padberg. Categorical approach to horizontal structuring and refine-
ment of high-level replacement systems. Applied Categorical Structures,
7(4):371-403, December 1999.

J. Padberg, H. Ehrig, and L. Ribeiro. Algebraic high-level net transforma-
tion systems. Mathematical Structures in Computer Science, 5:217-256,
1995.

J. Padberg and M. Urbdsek. Rule-based refinement of Petri nets: A survey.
In H. Ehrig, W. Reisig, G. Rozenberg, and H. Weber, editors, Advances
in Petri Nets: Petri Net Technologies for Modeling Communication Based
Systems, Lecture Notes in Computer Science 2472. Springer, 2003.

W. Reisig. Petri Nets and Algebraic Specifications. Theoretical Computer
Science, 80:1-34, 1991.

L. Ribeiro, H. Ehrig, and J. Padberg. Formal development of concurrent
systems using algebraic high-level nets and transformations. In Proc. VII
Stmpdsio Brasileiro de Engenharia de Software, pages 1-16, Tech-report
no. 93-13, TU Berlin, 1993.

G. Rozenberg, editor. Handbook of Graph Grammars and Computing by
Graph Transformations, Volume 1: Foundations. World Scientific, 1997.
Vanio M. Savi and Xiaolan Xie. Liveness and boundedness analysis for petri
nets with event graph modules. In Jensen, K., editor, 13th International
Conference on Application and Theory of Petri Nets 1992, Sheffield, UK,
Lecture Notes in Computer Science 616, pages 328-347. Springer, 1992.

J. Vautherin. Parallel system specification with coloured Petri nets. In
G. Rozenberg, editor, Advances in Petri Nets 87, pages 293-308. Lecture
Notes in Computer Science 266. Springer Verlag, 1987.

W.M.P. van der Aalst. Verification of workflow nets. In P. Azéma and
G. Balbo, editors, Application and Theory of Petri Nets, Lecture Notes in
Computer Science 1248, pages 407-426. Springer, 1997.

G. Winskel. Petri nets, algebras, morphisms, and compositionality. Infor-
mation and Computation, 72:197-238, 1987.

