
Fundamental Theory
for Typed Attributed Graph Transformation

Hartmut Ehrig, Ulrike Prange, and Gabriele Taentzer

Technical University of Berlin, Germany
{ehrig,ullip,gabi}@cs.tu-berlin.de

Abstract. The concept of typed attributed graph transformation is
most significant for modeling and meta modeling in software engineering
and visual languages, but up to now there is no adequate theory for this
important branch of graph transformation. In this paper we give a new
formalization of typed attributed graphs, which allows node and edge at-
tribution. The first main result shows that the corresponding category is
isomorphic to the category of algebras over a specific kind of attributed
graph structure signature. This allows to prove the second main result
showing that the category of typed attributed graphs is an instance of
“adhesive HLR categories”. This new concept combines adhesive cate-
gories introduced by Lack and Sobociński with the well-known approach
of high-level replacement (HLR) systems using a new simplified version
of HLR conditions. As a consequence we obtain a rigorous approach to
typed attributed graph transformation providing as fundamental results
the Local Church-Rosser, Parallelism, Concurrency, Embedding and Ex-
tension Theorem and a Local Confluence Theorem known as Critical
Pair Lemma in the literature.

1 Introduction

The algebraic theory of graph transformation based on labeled graphs and the
double-pushout approach has already a long tradition (see [1]) with various ap-
plications (see [2, 3]). Within the last decade graph transformation has been used
as a modeling technique in software engineering and as a meta-language to spec-
ify and implement visual modeling techniques like the UML. Especially for these
applications it is important to use not only labeled graphs as considered in the
classical approach [1], but also typed and attributed graphs. In fact, there are
already several different concepts for typed and attributed graph transformation
in the literature (see e.g. [4–6]). However, there is no adequate theory for this
important branch of graph transformation up to now. The key idea in [5] is to
model an attributed graph with node attribution as a pair AG = (G, A) of a
graph G and a data type algebra A. In this paper we use this idea to model
attributed graphs with node and edge attribution, where G is now a new kind
of graph, called E-graph, which allows also edges from edges to attribute nodes.
This new kind of attributed graphs combined with the concept of typing leads
to a category AGraphsATG of attributed graphs typed over an attributed type

H. Ehrig et al. (Eds.): ICGT 2004, LNCS 3256, pp. 161–177, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



162 Hartmut Ehrig, Ulrike Prange, and Gabriele Taentzer

graph ATG. This category seems to be an adequate formal model not only for
various applications in software engineering and visual languages, but also for
the internal representation of attributed graphs in our graph transformation tool
AGG [7].

The main purpose of this paper is to provide the basic concepts and results
of graph transformation known in the classical case [1] for this new kind of typed
attributed graphs. The straightforward way would be to extend the classical the-
ory in [1] step by step first to attributed graphs and then to typed attributed
graphs. In this paper we propose the more elegant solution to obtain the theory
of typed attributed graph transformation as an instantiation of the correspond-
ing categorical theory developed in [8]. In [8] we have proposed the new concept
of “adhesive HLR categories and systems”, which combines the concept of “ad-
hesive categories” presented by Lack and Sobociński in [9] with the concept of
high-level replacement systems, short HLR systems, introduced in [10]. In [8] we
have shown that not only the Local Church-Rosser, Parallelism and Concurrency
Theorem - presented already in [10] for HLR systems -, but also several other
results known from the classical theory [1, 9] are valid for adhesive HLR systems
satisfying some additional HLR properties.

For this purpose we have to show that the category AGraphsATG of typed
attributed graphs is an adhesive HLR category in this sense. In Thm. 1 we
show that the category AGraphsATG is isomorphic to a category of algebras
over a suitable signature AGSIG(ATG), which is uniquely defined by the at-
tributed type graph ATG. In fact, it is much easier to verify the categorical
properties required for adhesive HLR categories for the category of algebras
AGSIG(ATG)-Alg and to show the isomorphism between AGSIG(ATG)-
Alg and AGraphsATG, than to show the categorical properties directly for
the category AGraphsATG. In Thm. 2 we show that AGSIG(ATG)-Alg and
hence also AGraphsATG is an adhesive HLR category. In fact, we show this
result for the category AGSIG-Alg, where AGSIG is a more general kind of
attributed graph structure signature in the sense of [4, 11, 12]. Combining the
main results of this paper with those of [8] we are able to show that the fol-
lowing basic results shown in Thm. 3 - 5 are valid for typed attributed graph
transformation:

1. Local Church-Rosser, Parallelism and Concurrency Theorem,
2. Embedding and Extension Theorem,
3. Local Confluence Theorem (Critical Pair Lemma).

Throughout the paper we use a running example from the area of model
transformation to illustrate the main concepts and results. We selected a small
set of model elements, basic for all kinds of object-oriented models. It describes
the abstract syntax, i.e. the structure of method signatures. These structures
are naturally represented by node and edge attributed graphs where node at-
tributes store e.g. names, while edge attributes are useful to keep e.g. the order
of parameters belonging to one method. Attributed graph transformation is used
to specify simple refactorings on this model part such as adding a parameter,



Fundamental Theory for Typed Attributed Graph Transformation 163

exchanging two parameters, etc. Usually such refactorings are not always inde-
pendent of each other. Within this paper we analyse the given refactoring rules
concerning potential conflicts and report them as critical pairs.

Node and edge attributed graphs build the basic structures in the graph
transformation environment AGG [7]. The attribution is done by Java objects
and expressions. We use AGG to implement our running example and to compute
all its critical pairs. In GenGED [13], a visual environment for the definition
of visual languages, the internal structures are AGSIG-algebras for attributed
graph structure signatures AGSIG discussed above.

This paper is organized as follows. In section 2 we introduce node and edge
attributed graphs and typing and present our first main result. Typed attributed
graphs in the framework of adhesive HLR categories are discussed in section 3
together with our second main result. This allows to present the theory of typed
attributed graph transformation in section 4 as an instance of the general theory
in [8]. Finally we discuss related work and future perspectives in section 5.

For lack of space we can only present short proof ideas in this paper and refer
to our technical report [14] for more detail.

2 Node and Edge Attributed Graphs and Typing

In this section we present our new notion of node and edge attributed graphs,
which generalizes the concept of node attributed graphs in [5], where node at-
tributes are modelled by edges from graph nodes to data nodes. The new concept
is based on graphs, called E-graphs, which allows also edges from graph edges to
data nodes in order to model edge attributes. An attributed graph AG = (G, D)
consists of an E-graph G and a data type D, where parts of the data of D are
also vertices in G. This leads to the category AGraphs of attributed graphs and
AGraphsATG of typed attributed graphs over an attributed type graph ATG.
The main result in this section shows that AGraphsATG is isomorphic to a cat-
egory AGSIG(ATG)-Alg of algebras over a suitable signature AGSIG(ATG),
which is in one-to-one correspondence with ATG.

In our notion of E-graphs we distinguish between two kinds of vertices, called
graph and data vertices, and three different kinds of edges, according to the
different roles they play for the representation and implementation of attributed
graphs.

Definition 1 (E-graph). An E-graph G = (V1, V2, E1, E2, E3, (sourcei,
targeti)i=1,2,3) consists of sets

– V1 and V2 called graph resp. data nodes,
– E1, E2, E3 called graph, node attribute and edge attribute edges respectively,

and source and target functions

– source1 : E1 → V1, source2 : E2 → V1, source3 : E3 → E1,
– target1 : E1 → V1, target2 : E2 → V2, target3 : E3 → V2.



164 Hartmut Ehrig, Ulrike Prange, and Gabriele Taentzer

An E-graph morphism f : G1 → G2 is a tuple (fV1 , fV2 , fE1 , fE2 , fE3) with
fVi : G1,Vi → G2,Vi and fEj : G1,Ej → G2,Ej for i = 1, 2, j = 1, 2, 3 such
that f commutes with all source and target functions.
E-graphs combined with E-graph morphisms form the category EGraphs.

The following notions of attributed and typed attributed graphs are in the
spirit of (node) attributed graphs of [5], where graphs are replaced by E-graphs in
order to allow node and edge attribution. A data signature DSIG is an ordinary
algebraic signature (see [15]).

Definition 2 (attributed graph). Consider a data signature DSIG =
(SD, OPD) with attribute value sorts S′

D ⊆ SD. An attributed graph AG =
(G, D) consists of an E-graph G together with a DSIG-algebra D such that
�∪s∈S′

D
Ds = GV2 .

An attributed graph morphism is a pair f = (fG, fA) with an E-graph morphism
fG and an algebra homomorphism fA such that (1) is a pullback for all s ∈ S′

D.
D1,s

G1,V2

fA,s
(1)

D2,s

G2,V2

fG,V2

Attributed graphs and attributed graph morphisms form the category AGraphs.

Remark 1. The pullback property for the graph morphism is required for Thm.
1, otherwise the categories in this theorem would not be isomorphic.

Definition 3 (typed attributed graph). An attributed type graph is an at-
tributed graph ATG = (TG, Z) where Z is the final DSIG-algebra.
A typed attributed graph (AG, t) over ATG consists of an attributed graph AG
together with an attributed graph morphism t : AG → ATG. A typed attributed
graph morphism f : (AG1, t1) → (AG2, t2) is an attributed graph morphism
f : AG1 → AG2 such that t2 ◦ f = t1.
Typed attributed graphs over ATG and typed attributed graph morphisms form
the category AGraphsATG. The class of all attributed type graphs ATG is de-
noted by ATG-Graphs.

Example 1 (typed attributed graphs). Given suitable signatures CHAR,
STRING and NAT , the data signature DSIG is defined by
DSIG = CHAR + STRING + NAT+
sorts: ParameterDirectionKind
opns: in, out, inout, return: → ParameterDirectionKind
and the set of all data sorts used for attribution is S′

D = {String, Nat, Parameter-
DirectionKind}. Fig. 1 shows an attributed type graph ATG = (TG, Z) for
method signatures. It is an attributed graph where each data element is named
after its corresponding sort, because the final DSIG-algebra Z has sorts Zs =
{s} for all s ∈ SD. Note that TG is an E-graph with edge attribute edge “order”
from “parameter” to “Nat”. An attributed graph AG typed over ATG is given
in Fig. 2, where only those algebra elements are shown explicitly which are used



Fundamental Theory for Typed Attributed Graph Transformation 165

Method

Class

Parameter

String

Nat
Parameter
Direction

Kind

parameter

type

cname

mname

noOfPars

pname

kind

order

Fig. 1.

m

par2

cpar3

par1

add

3

1

2

p1

p2

return

in

Nat

Fig. 2.

for attribution. The graph AG is typed over ATG by the attributed graph mor-
phism t : AG→ ATG defined on vertices by t(m) = Method, t(par1) = t(par2)
= t(par3) = Parameter, t(c) = Class, t(1) = t(2) = t(3) = Nat, t(return) = t(in)
= ParameterDirectionKind and t(p1) = t(p2) = t(add) = t(Nat) = String. In
AGG, a typed attributed graph like the one in Fig. 2 is depicted in a more com-
pact notation like the graph in Fig. 3. Each node and edge inscription has two
compartments. The upper compartment contains the type of a graph element,
while the lower one holds its attributes. The attributes are ordered in a list, just
for convenience. Nodes and edges are not explicitly named. While the formal
concept of an attributed graph allows partial attribution in the sense that there
is no edge from a graph node or edge to a data node, this is not possible in
AGG. Thus, parameter par3 has to be named by an empty string. Furthermore,
the formal concept allows several outgoing attribute edges from one graph node
or edge which is also not possible in AGG. ��

The category AGraphsATG introduced above is the basis for our theory of
typed attributed graph transformation in this paper. In order to prove properties
for AGraphsATG, however, it is easier to represent AGraphsATG as a category
AGSIG(ATG)-Alg of classical algebras (see [15]) over a suitable signature
AGSIG(ATG). For this purpose we introduce the notion of general respectively
well-structured attributed graph structure signatures AGSIG where the well-
structured case corresponds to attributed graph signatures in the LKW-approach
[4]. The signature AGSIG(ATG) becomes a special case of a well-structured
AGSIG.



166 Hartmut Ehrig, Ulrike Prange, and Gabriele Taentzer

Fig. 3.

Definition 4 (attributed graph structure signature). A graph structure
signature GSIG = (SG, OPG) is an algebraic signature with unary operations
op : s → s′ in OPG only. An attributed graph structure signature AGSIG =
(GSIG, DSIG) consists of a graph structure signature GSIG and a data sig-
nature DSIG = (SD, OPD) with attribute value sorts S′

D ⊆ SD such that
S′

D = SD ∩ SG and OPD ∩OPG = ∅.
AGSIG is called well-structured if for each op : s→ s′ in OPG we have s /∈ SD.
The category of all AGSIG-algebras and AGSIG-homomorphisms (see [15]) is
denoted by AGSIG-Alg.

Theorem 1 (Characterization of AGraphsATG). For each attributed type
graph ATG there is a well-structured attributed graph structure signature
AGSIG(ATG) such that AGraphsATG is isomorphic to the category
AGSIG(ATG)-Alg of AGSIG(ATG)-algebras:
AGraphsATG

∼= AGSIG(ATG)-Alg.

Construction. Given ATG = (TG, Z) with final DSIG-algebra Z we have

TGV2 =
�∪s∈S′

D
Zs = S′

D and define AGSIG(ATG) = (GSIG = (SG, OPG),

DSIG) with SG = SV

�∪ SE and SV = TGV1

�∪ TGV2 , SE = TGE1

�∪ TGE2

�∪
TGE3 and OPG =

�∪e∈SE OPe with OPe = {srce, tare} defined by

– srce : e→ v(e) for e ∈ TGE1 with v(e) = sourceTG
1 (e) ∈ TGV1 ,

– tare : e→ v′(e) for e ∈ TGE1 with v′(e) = targetTG
1 (e) ∈ TGV1 ,

– srce, tare for e ∈ TGE2 and e ∈ TGE3 defined analogously.

Proof idea. Based on the construction above we are able to construct a functor
F : AGraphsATG → AGSIG(ATG)-Alg and a corresponding inverse functor
F−1. ��



Fundamental Theory for Typed Attributed Graph Transformation 167

3 Typed Attributed Graphs
in the Framework of Adhesive HLR Categories

As pointed out in the introduction we are not going to develop the theory of
typed attributed graph transformation directly. But we will show that it can
be obtained as an instantiation of the theory of adhesive HLR systems, where
this new concept (see [8]) is a combination of adhesive categories and grammars
(see [9]) and HLR systems introduced in [10]. For this purpose we present in
this section the general concept of adhesive HLR categories and we show that
AGSIG-Alg, AGSIG(ATG)-Alg and especially the category AGraphsATG

of typed attributed graphs are adhesive HLR categories for a suitable class M
of morphisms. Moreover our categories satisfy some additional HLR conditions,
which are required in the general theory of adhesive HLR systems (see [8]). This
allows to apply the corresponding results to typed attributed graph transforma-
tion systems, which will be done in the next section.

We start with the new concept of adhesive HLR categories introduced in [8]
in more detail.

Definition 5 (adhesive HLR category). A category C with a morphism
class M is called adhesive HLR category, if

1. M is a class of monomorphisms closed under isomorphisms and closed under
composition (f : A→ B ∈M , g : B → C ∈M ⇒ g ◦ f ∈ M) and decompo-
sition (g ◦ f ∈M , g ∈M ⇒ f ∈M),

2. C has pushouts and pullbacks along M -morphisms, i.e. if one of the given
morphisms is in M , then also the opposite one is in M , and M -morphisms
are closed under pushouts and pullbacks,

3. pushouts in C along M -morphisms are van Kampen (VK) squares, where a
pushout (1) is called VK square, if for any commutative cube (2) with (1)
in the bottom and pullbacks in the back faces we have: the top is pushout ⇔
the front faces are pullbacks.

C’

D’

A’
B’

f’m’

n’g’

A
B

f
m

ca
b

D ng

d

(2)

C

C

A B

fm

D ng

(1)

Important examples of adhesive HLR categories are the category (Sets,
Minj) of sets with class Minj of all injective functions, the category (Graph,
Minj) of graphs with class Minj of injective graph morphisms and different kinds
of labelled and typed graphs (see [8]). Moreover all HLR1 and HLR2 categories
presented in [10] are adhesive HLR categories. In the following we will show
that also our categories AGSIG-Alg, AGSIG(ATG)-Alg and AGraphsATG

presented in the previous section are adhesive HLR categories for the class M of



168 Hartmut Ehrig, Ulrike Prange, and Gabriele Taentzer

all injective morphisms with isomorphic data type part, which is used for typed
attributed graph transformation systems in the next section.

Definition 6 (class M for typed attributed graph transformation). The
distinguished class M is defined by f ∈M if

1. fG is injective, fA is isomorphism for f = (fG, fA) in AGraphsATG and
AG = (G, A),

2. fGSIG is injective, fDSIG is isomorphism for f in AGSIG-Alg or
AGSIG(ATG)-Alg and AGSIG = (GSIG, DSIG).

Remark 2. The corresponding categories (AGraphsATG, M), (AGSIG-Alg,
M) and (AGSIG(ATG)-Alg, M) are adhesive HLR categories (see Thm. 2).
For simplicity we use the same notation M in all three cases. For practical
applications we assume that fA and fDSIG are identities.

This class M of morphisms is on the one hand the adequate class to define
productions of typed attributed graph transformation systems (see Def. 7), on
the other hand it allows to construct pushouts along M -morphisms componen-
twise. This is essential to verify the properties of adhesive HLR categories.

Lemma 1 (properties of pushouts and pullbacks in (AGSIG-Alg, M)).

1. Given m : C → A and f : C → B with m ∈ M then there is a pushout (1)
in AGSIG-Alg with n ∈M .

C

A B

fm

D ng

(1)

Moreover given (1) commutative with m ∈ M then (1) is a pushout in
AGSIG-Alg iff (1) is a componentwise pushout in Sets. If m ∈ M then
also n ∈M .

2. Given g : A → D and n : B → D then there is a pullback (1) in AGSIG-
Alg. Moreover given (1) commutative then (1) is a pullback in AGSIG-Alg
iff (1) is a componentwise pullback in Sets. If n ∈M then also m ∈M .

Proof. (see [14])

Remark 3. Since AGSIG(ATG) is a special case of AGSIG, the lemma is also
true for AGSIG(ATG)-Alg. It is well-known that AGSIG-Alg - as a category
of algebras - has pushouts even if m /∈M , but in general such pushouts cannot
be constructed componentwise.

Theorem 2 (adhesive HLR categories). The category (AGraphsATG, M)
of typed attributed graphs and also (AGSIG-Alg, M) and (AGSIG(ATG)-
Alg, M) are adhesive HLR categories.



Fundamental Theory for Typed Attributed Graph Transformation 169

Proof. It is sufficient to prove the properties for (AGSIG-Alg, M), because
(AGSIG(ATG)-Alg, M) is a special case of (AGSIG-Alg, M) and
(AGraphsATG, M) ∼= AGSIG(ATG)-Alg by Thm. 1.

1. The class M given in Def. 6 is a subclass of monomorphisms, because
monomorphisms in AGSIG-Alg are exactly the injective homomorphisms,
and it is closed under composition and decomposition.

2. (AGSIG-Alg, M) has pushouts and pullbacks along M -morphisms and
M -morphisms are closed under pushouts and pullbacks due to Lem. 1.

3. Pushouts along M -morphisms in AGSIG-Alg are VK squares because
pushouts and pullbacks are constructed componentwise in Sets (see Lem.
1) and for (Sets, Minj) pushouts along monomorphisms are VK squares as
shown in [9].

4 Theory of Typed Attributed Graph Transformation

After the preparations in the previous sections we are now ready to present the
basic notions and results for typed attributed graph transformation systems.
In fact, we obtain all the results presented for adhesive HLR systems in [8] in
our case, because we are able to show the corresponding HLR conditions for
(AGraphsATG, M). This category (AGraphsATG, M) is fixed now for this
section.

Definition 7 (typed attributed graph transformation system). A typed
attributed graph transformation system GTS = (DSIG, ATG, S, P ) based on
(AGraphsATG, M) consists of a data type signature DSIG, an attributed type
graph ATG, a typed attributed graph S, called start graph, and a set P of pro-
ductions, where

1. a production p = (L l← K
r→ R) consists of typed attributed graphs L, K

and R attributed over the term algebra TDSIG(X) with variables X, called
left hand side L, gluing object K and right hand side R respectively, and
morphisms l, r ∈M , i.e. l and r are injective and isomorphisms on the data
type TDSIG(X),

2. a direct transformation G
p,m
=⇒ H via a production p and a morphism

m : L → G, called match, is given by the following diagram, called dou-
ble pushout diagram, where (1) and (2) are pushouts in AGraphsATG,

L K

G D

l
m (1)

R

H

r
(2)

3. a typed attributed graph transformation, short transformation, is a sequence
G0 ⇒ G1 ⇒ ...⇒ Gn of direct transformations, written G0

∗⇒ Gn,
4. the language L(GTS) is defined by L(GTS) = {G | S ∗⇒ G}.



170 Hartmut Ehrig, Ulrike Prange, and Gabriele Taentzer

Remark 4. A typed attributed graph transformation system is an adhesive HLR
system in the sense of [8] based on the adhesive HLR category (AGraphsATG,
M).

Example 2 (typed attributed graph transformation system). In the following, we
start to define our typed attributed graph transformation system
MethodModelling by giving the productions. All graphs occuring are attributed
by term algebra TDSIG(X) with DSIG being the data signature presented in Ex.
1 and X =

⋃
s∈S′

D
Xs, i.e. X = XString ∪ Xint ∪ XParameterDirectionKind with

XString = {m, p, ptype, P1, P2}, XParameterDirectionKind = {k} and Xint =
{n, x, y}. We present the productions in the form of AGG productions where
we have the possibility to define a subset of variables of X as input parameters.
That means a partial match is fixed by the user before the proper matching pro-
cedure starts. Each production is given by its name followed by the left and the
right-hand side as well as a partial mapping from left to right given by numbers.
From this partial mapping the gluing graph K can be deduced being the domain
of the mapping. Parameters are m, p, k, ptype, x and y. We use a graph notation
similarly to Fig. 3.

AGG productions are restricted concerning the attribution of the left-hand
sides. To avoid the computation of most general unifiers of two general terms,
nodes and edges of left-hand sides are allowed to be attributed only by constants
and variables. This restriction is not a real one, since attribute conditions may
be used. A term in the left-hand side is equivalent to a new variable and a new
attribute condition stating the equivalence of the term and this new variable.



Fundamental Theory for Typed Attributed Graph Transformation 171

Productions addMethod and addClass with empty left-hand side and a sin-
gle method respectively class on the right-hand side are not shown. Together
with production addParameter they are necessary to build up method signa-
tures. A new parameter is inserted as last one in the parameter list. Production
checkNewParameter checks if a newly inserted parameter is already in the list.
In this case it is removed. Production exchangeParameter is useful for changing
the order of parameters in the list.

The start graph S is empty, i.e. S = ∅, while data signature DSIG and type
graph T have already been given in Ex. 1. Summarizing, the typed attributed
graph transformation system is given by MethodModelling = (DSIG, ATG,
S, P ) with P = {addMethod, addClass, addParameter, exchangeParameter,
checkNewParameter}. ��

In the following we show that the basic results known in the classical theory
of graph transformation in [1] and in the theory of HLR systems in [10] are also
valid for typed attributed graph transformation systems.

The Local Church-Rosser Theorem states that direct transformations G
p1,m1=⇒

H1 and G
p2,m2=⇒ H2 can be extended by direct transformations H1

p2,m′
2=⇒ X and

H2
p1,m′

1=⇒ X leading to the same X , provided that they are parallel indepen-
dent. Parallel independence means that the matches m1 and m2 overlap only in
common gluing items, i.e. m1(L1) ∩m2(L2) ⊆ m1(l1(K1)) ∩m2(l2(K2)).

The Parallelism Theorem states that in the case of parallel independence
we can apply the parallel production p1 + p2 = (L1 + L2

l1+l2⇐= K1 + K2
r1+r2=⇒

R1 + R2) in one step G
p1+p2,m

=⇒ X from G to X . Vice versa each such direct
parallel derivation can be sequentialized in any order leading to two sequential

independent sequences G
p1,m1=⇒ H1

p2,m′
2=⇒ X and G

p2,m2=⇒ H2
p1,m′

1=⇒ X .

H2

X

H1

G

p1, m1’

p1, m1

p2, m2

p2, m2’
p1 + p2, m

The case of general sequences, which may be sequentially dependend, is han-
dled by the Concurrency Theorem. Roughly spoken, for each sequence G

p1,m1=⇒
H1

p2,m′
2=⇒ X there is a production p1 ∗ p2, called concurrent production, which

allows to construct a direct transformation G
p1∗p2=⇒ X and vice versa, leading,

however, only to one sequentialization.

Theorem 3 (Local Church-Rosser, Parallelism and Concurrency The-
orem). The Local Church-Rosser Theorems I and II, the Parallelism Theorem
and the Concurrency Theorem as stated in [10] are valid for each graph trans-
formation system based on (AGraphsATG, M).

Proof idea. The Local Church-Rosser, Parallelism and Concurrency Theorem
are verified for HLR2 categories in [10] and they are shown for adhesive HLR



172 Hartmut Ehrig, Ulrike Prange, and Gabriele Taentzer

systems in [8], where only the Parallelism Theorem requires in addition the exis-
tence of binary coproducts compatible with M . Compatibility with M means f ,
g ∈ M implies f + g ∈ M . In Thm. 2 we have shown that (AGraphsATG, M)
is an adhesive HLR category. Binary coproducts compatible with M can be con-
structed already in AGSIG-Alg with well-structured AGSIG and transfered
to AGraphsATG by Thm. 1. In (AGSIG-Alg, M) binary coproducts can be
constructed separately for the DSIG-part and componentwise in Sets for all
sorts s ∈ SG\SD, which implies compatibility with M . If AGSIG is not well-
structured we still have binary coproducts in AGSIG-Alg - as in any category
of algebras - but they may not be compatible with M . ��

The next basic result in the classical theory of graph transformation systems
is the Embedding Theorem (see [1]) in the framework of adhesive HLR systems.
The main idea of the Embedding Theorem according to [1] is to show under which
conditions a transformation t : G0

∗⇒ Gn can be extended to a transformation
t′ : G′

0
∗⇒ G′

n for a given “embedding” morphism k0 : G0 → G′
0. In the case

of typed attributed graph transformation we consider the following class M ′ of
“graph part embeddings”: M ′ consists of all morphisms k0 where the E-graph
part of k0 is injective except of data nodes (see Def. 1 - 3). This means, that the
algebra part of k0 is not restricted to be injective.

Similar to the graph case it is also possible in the case of typed attributed
graphs to construct a boundary B and context C leading to a pushout (1) over
k0 in Fig. 4 with b0 ∈ M , i.e. G′

0 is the gluing of g0 and context C along the
boundary B. This boundary-context pushout (1) over k0 turns out to be an
initial pushout over k0 in the sense of [8].

Now the morphism k0 ∈ M ′ is called consistent with respect to the trans-
formation t : G0

∗⇒ Gn, if the boundary B is “preserved” by t leading to a
morphism bn : B → Gn ∈ M in Fig. 4. (For a formal notion of consistency see
[8].)

The following Embedding and Extension Theorem shows that consistency is
necessary and sufficient in order to extend t : G0

∗⇒ Gn for k0 : G0 → G′
0 to

t′ : G′
0

∗⇒ G′
n.

Theorem 4 (Embedding and Extension Theorem). Let GTS be a typed
attributed graph transformation system based on (AGraphsATG, M) and M ′

the class of all graph part embeddings defined above. Given a transformation
t : G0

∗⇒ Gn and a morphism k0 : G0 → G′
0 ∈M ′ with boundary-context pushout

(1) over k0 we have: The transformation t can be extended to a transformation
t′ : G′

0
∗⇒ G′

n with morphism kn : Gn → G′
n ∈M ′ leading to diagram (2), called

extension diagram, and a boundary-context pushout (3) over kn if and only if
the morphism k0 is consistent with respect to t.

Proof idea. This theorem follows from the Embedding and Extension Theorems
in [8] shown for adhesive HLR systems over an adhesive HLR category (C, M).
It requires initial pushouts over M ′-morphisms for some class M ′, which is closed
under pushouts and pullbacks along M -morphisms. By Thm. 2 we know that
(AGraphsATG, M) is an adhesive HLR category. In addition it can be shown



Fundamental Theory for Typed Attributed Graph Transformation 173

G0

G0’

k0

Gn

Gn’

kn(2)

*

*

t

t’

B

C

c

b0

(1)

B

C

bn

(3) c

Fig. 4.

that for each k0 ∈M ′, where M ′ is the class of all graph part embeddings, there
is a boundary-context pushout (1) over k0, which is already an initial pushout
over k0 in the sense of [8]. Moreover it can be shown that M ′ is closed under
pushouts and pullbacks along M -morphisms. ��

The Embedding and Extension Theorems are used in [8] to show the Local
Confluence Theorem, also known as critical pair lemma, in the framework of
adhesive HLR systems, where in addition to initial pushouts also the existence
of an E′-M ′ pair factorization is used.

Definition 8 (E′-M ′ pair factorization). Given a class E′ of morphism pairs
(e1, e2) with the same codomain and M ′ the class of all graph part embeddings
defined above. We say that a typed attributed graph transformation system based
on (AGraphsATG, M) has E′-M ′ pair factorization, if for each pair of matches
f1 : L1 → G, f2 : L2 → G there is a pair e1 : L1 → K, e2 : L2 → K with
(e1, e2) ∈ E′ and a morphism m : K → G with m ∈ M ′ such that m ◦ e1 = f1

and m ◦ e2 = f2.

L2

L1

K
e2

e1
G

m

f2

f1

Remark 5. For simplicity we have fixed M ′ to be the class of all graph part
embeddings, which implies that M ′ is closed under pushouts and pullbacks along
M -morphisms as required for E′-M ′ pair factorization in [8] with general class
M ′.

Example 3. 1. Let E′ be the class of jointly surjective morphisms in
AGraphsATG with same codomain. Given f1 and f2 we obtain an induced
morphism f12 : L1 + L2 → G with coproduct injections i1 : L1 → L1 + L2

and i2 : L2 → L1 + L2. Now let f12 = m ◦ e an epi-mono factorization of
f12 leading to e1 = e ◦ i1 and e2 = e ◦ i2 with (e1, e2) ∈ E′. In this case
m : K → G is injective and the data type part of K is a quotient term
algebra TΣ(X1 + X2)|≡, where TΣ(X1) and TΣ(X2) are the algebras of L1

and L2 respectively. This corresponds to one possible choice of congruence
≡ considered in [5].

2. In order to obtain a minimal number of critical pairs it is essential to consider
also the case, where ≡ is the trivial congruence with TΣ(X) ∼= TΣ(X)|≡. In
fact, a most general unifier construction σn : X → TΣ(X) considered in [5]
leads to a different E′-M ′ pair factorization of f1, f2 with (e1, e2) ∈ E′,



174 Hartmut Ehrig, Ulrike Prange, and Gabriele Taentzer

m ∈M ′, e1 : L1 → K, e2 : L2 → K and m : K → G, where (e1, e2) is jointly
surjective for non-data nodes, the data type part of K is TΣ(X) and m is
injective for non-data nodes, where non-data nodes are all nodes and edges,
which are not data nodes (see Def. 1).

Dependent on the choice of an E′-M ′ pair factorization we are now able to
define critical pairs and strict confluence.

Definition 9 (critical pair and strict confluence). Given an E′-M ′ pair
factorization, a critical pair is a pair of non-parallel independent direct transfor-
mations P1

p1,o1⇐= K
p2,o2=⇒ P2 such that (o1, o2) ∈ E′ for the corresponding matches

o1 and o2. The critical pair is called strictly confluent, if we have

1. Confluence: There are transformations P1
∗⇒ K ′ and P2

∗⇒ K ′.
2. Strictness: Let N be the common subobject of K, which is preserved by the

direct transformations K =⇒ P1 and K =⇒ P2 of the critical pair, then N
is also preserved by P1

∗⇒ K ′ and P2
∗⇒ K ′, such that the restrictions of the

transformatios K ⇒ P1
∗⇒ K ′ and K ⇒ P2

∗⇒ K ′ yield the same morphism
N → K ′. (See [8] for a more formal version of strict confluence.)

Theorem 5 (Local Confluence Theorem - Critical Pair Lemma). Given
a typed attributed graph transformation system GTS based on (AGraphsATG,
M), and an E′-M ′ pair factorization, where M ′ is the class of all graph part
embeddings, then GTS is locally confluent, if all its critical pairs are strictly
confluent.
Local confluence of GTS means that for each pair of direct transformations
H1 ⇐ G⇒ H2 there are transformations H1

∗⇒ X and H2
∗⇒ X.

Proof idea. This theorem follows from the Local Confluence Theorem in [8]
shown for adhesive HLR systems over (C,M). It requires initial pushouts over
M ′-morphisms for a class M ′ “compatible” with M . The proof in [8] is based
on completeness of critical pairs shown by using an M -M ′ pushout pullback de-
composition property. In our case M ′ is the class of all graph part embeddings,
which can be shown to satisfy this property, which implies that M ′ is “compat-
ible” with M . In the proof idea of Thm. 4 we have discussed already how to
verify the remaining properties which are required in the general framework of
[8]. ��
Example 4 (critical pairs). Considering our typed attributed graph transforma-
tion system MethodModelling (see Ex. 2) we now analyse its critical pairs. This
analysis is supported by AGG. Due to the restriction of attributes in the left-
hand side of a production to constants and variables we restrict ourselves to very
simple congruence relations on terms of overlapping graphs. Variables may be
identified with constants or with other variables. All other congruences are the
identities. In the following, the AGG user interface for critical pair analysis is
shown. It presents an overview on all critical pairs in form of a table containing
all possible pairs of MethodModelling at the bottom of the figure. Applying
for example first addParameter, exchangeParameter or checkNewParameter



Fundamental Theory for Typed Attributed Graph Transformation 175

and second checkNewParameter leads to critical pairs. We consider the two
critical pairs of productions addParameter and checkNewParameter closer.
On the top of the figure the left-hand sides of both productions are displayed.
The center shows the two overlapping graphs which lead to critical pairs. Both
overlapping graphs show the conflict on attribute ‘noOfPars’ which is increased
by production addParameter but decreased by checkNewParameter. In the
left graph both classes are identified, i.e. the new parameter would be of the
same type as the the two already existing ones which are equal, while the right
graph shows two classes.

Both critical pairs of productions addParameter and checkNewParameter
are strictly confluent. Applying first addParameter(mname, “n1”, cname, “in”)
and then exchangeParameter(n, n + 1) and checkNewParameter() the re-
sulting graph is isomorphic to applying first checkNewParameter() and then
addParameter(mname, “n1”, cname, “in”). The common subgraph N of the
conflicting transformations is the result graph applying checkParameter to the
overlapping graph.

5 Related Work and Conclusions

A variety of approaches to attributed graph transformation [4–6, 11, 12, 16] has
already been developed where attributed graphs consist of a graph part and a



176 Hartmut Ehrig, Ulrike Prange, and Gabriele Taentzer

data part. These approaches are compared with ours in the following. More-
over, general forms of algebraic structures and their transformation have been
considered in e.g. [17–19].

A simple form of attributed graphs, where only nodes are attributed, is cho-
sen in [16] and [5]. In [16], nodes are directly mapped to data values which
makes relabelling difficult. In [5], nodes are attributed by special edges which
are deleted and newly created in order to change attributes. We have defined
attributed graphs in the spirit of the later notion of node-attributed graphs, but
extended the notion also to edge attribution. In [4, 11], attributed graph struc-
tures are formulated by algebras of a special signature where the graph part and
the data part are separate from each other and only connected by attribution
operations. The graph part comprises so-called attribute carriers which play
the same role as attribution edges. They assign attributes to graph elements
and allow relabelling. I.e. attributed graph signatures can also be formalized
by well-structured AGSIG-algebras. In [4, 11], they are transformed using the
single-pushout approach. In [12] and [6] this attribution concept is extended by
allowing partial algebras. Using e.g. partial attribution operations, no carriers
or edges are needed for attribution. This leads to a slightly more compact no-
tion, but however, causes a more difficult formalization. We are convinced that
attributed graphs as defined in Sec. 2 are a good compromise between the ex-
pressiveness of the attribution concept on one hand and the complexity of the
formalism on the other.

The theory we provide in this paper includes fundamental results for graph
transformation which are now available for typed attributed graph transforma-
tion in the sense of sections 2 and 4. The general strategy to extend the theory
for typed attributed graph transformation is to formulate the corresponding re-
sults in adhesive HLR categories and to verify additional HLR properties for the
category (AGraphsATG, M), if they are required. But the theory presented in
Sec. 4 is also valid in the context of well-structured attributed graph structure
signatures AGSIG, which correspond to attributed graph signatures in [4, 11].
In fact, the HLR conditions required for all the results in [8] are already valid
for the category (AGSIG-Alg, M) with well-structured AGSIG. This means,
that our theory is also true for attributed graph transformation based on the
adhesive HLR category (AGSIG-Alg, M) with general AGSIG for Thm. 3 and
well-structured AGSIG for Thm. 4 and 5.

Future work is needed to obtain corresponding results for extensions of typed
attributed graph transformation by further concepts such as application condi-
tions for productions or type graphs with inheritance.

References

1. Ehrig, H.: Introduction to the Algebraic Theory of Graph Grammars (A Survey).
In: Graph Grammars and their Application to Computer Science and Biology.
Volume 73 of LNCS. Springer (1979) 1–69

2. Ehrig, H., Engels, G., Kreowski, H.J., Rozenberg, G., eds.: Handbook of Graph
Grammars and Computing by Graph Transformation, Volume 2: Applications,
Languages and Tools. World Scientific (1999)



Fundamental Theory for Typed Attributed Graph Transformation 177

3. Ehrig, H., Kreowski, H.J., Montanari, U., Rozenberg, G., eds.: Handbook of Graph
Grammars and Computing by Graph Transformation. Vol 3: Concurrency, Paral-
lelism and Distribution. World Scientific (1999)

4. Löwe, M., Korff, M., Wagner, A.: An Algebraic Framework for the Transformation
of Attributed Graphs. In: Term Graph Rewriting: Theory and Practice. John
Wiley and Sons Ltd. (1993) 185–199

5. Heckel, R., Küster, J., Taentzer, G.: Confluence of Typed Attributed Graph Trans-
formation with Constraints. In: Proc. ICGT 2002. Volume 2505 of LNCS., Springer
(2002) 161–176

6. Berthold, M., Fischer, I., Koch, M.: Attributed Graph Transformation with Partial
Attribution. Technical Report 2000-2 (2000)

7. Ermel, C., Rudolf, M., Taentzer, G.: The AGG-Approach: Language and Tool
Environment. In Ehrig, H., Engels, G., Kreowski, H.J., Rozenberg, G., eds.: Hand-
book of Graph Grammars and Computing by Graph Transformation, Volume 2,
World Scientific (1999) 551–603

8. Ehrig, H., Habel, A., Padberg, J., Prange, U.: Adhesive High-Level Replacement
Categories and Systems. In: Proc. ICGT 2004. LNCS, Springer (2004) (this vol-
ume).

9. Lack, S., Sobociński, P.: Adhesive Categories. In: Proc. FOSSACS 2004. Volume
2987 of LNCS., Springer (2004) 273–288

10. Ehrig, H., Habel, A., Kreowski, H.J., Parisi-Presicce, F.: Parallelism and Con-
currency in High-Level Replacement Systems. Math. Struct. in Comp. Science 1
(1991) 361–404

11. Claßen, I., Löwe, M.: Scheme Evolution in Object Oriented Models: A Graph
Transformation Approach. In: Proc. Workshop on Formal Methods at the ISCE’95,
Seattle (U.S.A.). (1995)

12. Fischer, I., Koch, M., Taentzer, G., Volle, V.: Distributed Graph Transformation
with Application to Visual Design of Distributed Systems. In Ehrig, H., Kreowski,
H.J., Montanari, U., Rozenberg, G., eds.: Handbook of Graph Grammars and
Computing by Graph Transformation, Volume 3, World Scientific (1999) 269–340

13. Bardohl, R.: A Visual Environment for Visual Languages. Science of Computer
Programming (SCP) 44 (2002) 181–203

14. Ehrig, H., Prange, U., Taentzer, G.: Fundamental Theory for Typed Attributed
Graph Transformation: Long Version. Technical Report TU Berlin. (2004)

15. Ehrig, H., Mahr, B.: Fundamentals of Algebraic Specification 1: Equations and
Initial Semantics. Volume 6 of EATCS Monographs on TCS. Springer, Berlin
(1985)

16. Schied, G.: Über Graphgrammatiken, eine Spezifikationsmethode für Program-
miersprachen und verteilte Regelsysteme. Arbeitsber. des Inst. für math. Maschi-
nen und Datenverarbeitung, PhD Thesis, University of Erlangen (1992)

17. Wagner, A.: A Formal Object Specification Technique Using Rule-Based Trans-
formation of Partial Algebras. PhD thesis, TU Berlin (1997)

18. Llabres, M., Rossello, F.: Pushout Complements for Arbitrary Partial Algebras. In
Ehrig, H., Engels, G., Kreowski, H.J., Rozenberg, G., eds.: Theory and Applications
of Graph Transformation. Volume 1764., Springer (2000) 131–144

19. Große-Rhode, M.: Semantic Integration of Heterogeneuos Software Specifications.
EATCS Monographs on Theoretical Computer Science. Springer, Berlin (2004)


	1 Introduction
	2 Node and Edge Attributed Graphs and Typing
	3 Typed Attributed Graphs in the Framework of Adhesive HLR Categories
	4 Theory of Typed Attributed Graph Transformation
	5 Related Work and Conclusions
	References

