
GT-VMT 2004 Preliminary Version

Parallel Graph Transformation for Model Simulation

applied to Timed Transition Petri Nets

J. de Lara a,1, C. Ermel b,2, G. Taentzer b,3, K. Ehrig b,4

a Escuela Politécnica Superior
Ingenieŕıa Informática

Universidad Autónoma de Madrid
Madrid, Spain

b Technische Universität Berlin
Institut für Softwaretechnik und Theoretische Informatik

Berlin, Germany

Abstract

This work discusses the use of parallel graph transformation systems for (multi-
formalism) modeling and simulation and their implementation in the meta-modeling
tool AToM3. As an example, a simulator for Timed Transition Petri Nets (TTPN)
is modeled using parallel graph transformation.

1 Introduction

The modeling of complex systems has to take into account components of
very different nature. These components should be described using different
formalisms, each adequate for the view to be described. The problem is to an-
alyze and/or simulate such heterogeneous models. Multi-formalism modeling
allows software developers to model each component of the system using the
most appropriate formalism and solves the simulation problem by identifying
a single formalism (called semantic formalism) into which each component is
symbolically transferred. Thus, properties of the whole system can be verified
if the semantic formalism allows for appropriate formal analysis and simula-
tion techniques. A good candidate for such a semantic formalism are Petri
nets as they are equipped by a formal semantics and allow for a formal analysis
as well as for the visual simulation of system behavior.

1 Juan.Lara@ii.uam.es,
2 lieske@cs.tu-berlin.de,
3 gabi@cs.tu-berlin.de,
4 karstene@cs.tu-berlin.de

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs



de Lara

As modeling formalisms today are usually based on diagrams or graphs
(e.g. UML diagram types for software engineering or function block diagrams
for designing programmable controllers), our approach uses graph transforma-
tion [15] for both the transformation of different formalisms to the semantic
formalism and the simulation of the transformed model. The different for-
malisms are defined as visual languages by means of meta-modeling. In the
tool environment AToM3 for multi-formalism modeling and meta-modeling
[3], such a meta-model consists of a visual part (class diagrams modeling the
symbols used in the visual language) and textual constraints (well-formedness
rules in OCL) to restrict the set of models to the meaningful ones. AToM3

allows the generation of model editors and simulators for models of the speci-
fied visual language [3], and the transformation of models between formalisms
based on different meta-models and graph transformation rules [4]. In this pa-
per, the focus lies on the simulation of a special variant of Petri nets – Timed
Transition Petri nets (TTPN) – based on parallel graph transformation [14].
The feature of parallel graph transformation has recently been implemented
in AToM3 and allows flexible simulation specifications.

The essence of parallel graph transformation is that (possibly infinite)
sets of rules which have a certain regularity, so-called rule schemes, can be
described by a finite set of rules modeling the elementary actions. For instance,
when modeling the firing of a Petri net transition, the elementary actions
would be the removal of a token from a place in the transition’s predomain
and the addition of a token to a postdomain place. For the description of such
rule schemes the concept of amalgamating rules at subrules is used. Thus, the
firing of Petri net transitions can be described in a general way although it is
not fixed how many input or output places a transition has. This is especially
important for AToM3 because here, simulation grammars are defined based
on a meta-model, i.e. independent of specific models and can be applied to
all valid models (e.g. Petri nets). Thus, the approach of defining Petri net
behavior by parallel graph transformation differs significantly from the usual
way to map Petri nets to graph grammars [2], where a specific net is considered
whose tokens are mapped to discrete nodes labelled by places and where each
transition is mapped to a graph rule.

Other synchronization mechanisms for rule applications are discussed in
works on modeling distributed systems based on graph rewriting like [6] (the
motivation to develop the amalgamation concept in [14]) and the related,
more recent approach of Synchronized Hyperedge Replacement Systems [11]
for system reconfiguration.

There are some related tool-based approaches supporting the meta-model
based definition of visual languages and the graph-grammar based simulation
of visual models, e.g. DiaGen [5] or GenGED [9], but none of them realizes
parallel graph transformation. Another related approach is MetaEnv [1], an
environment to define the semantics for visual models. A model is translated
from an external CASE tool to the semantic domain of high-level timed Petri

2



de Lara

nets using graph grammars. The semantic model can be simulated and trans-
lated into C code. Compared to the AToM3 approach, the semantic model is
fixed in MetaEnv, whereas it is variable in AToM3.

Section 2 reviews the concepts of parallel graph transformation. In Section
3, a simulator for Timed Transition Petri nets is presented as a parallel graph
transformation system. Section 4 sketches the extensions of AToM3 in order to
provide tool support for the definition and application of amalgamated rules.

2 Parallel Graph Transformation

Parallel graph transformation models parallel state transition where a state
is described by a graph which can be changed by several actions executed
in parallel. Since the graph transformation is rule-based without restrictive
execution prescription, it offers the possibility for massively parallel execu-
tion. The synchronization of parallel rule applications is described by com-
mon subrules. In this section, we review the main concepts of parallel graph
transformation [14] and show how the firing of transitions in arbitrary place-
transition nets (P/T nets from now on) can be modelled in a concise way
using parallel graph grammars. This provides the basis for the simulation of
Timed-Transition Petri nets, an extension of P/T nets, discussed in Section 3.

Using graph grammars as modeling technique, objects are represented by
nodes and their interrelations by edges. Actions are usually described by graph
rules and simulated by graph transformation (which is the application of rules
to a given graph, resulting in a new graph modeling the changed system state).

A graph rule r = L ← K → R in the double-pushout (DPO) approach
to graph transformation [15] consists of three attributed graphs L, K and R
and graph morphisms between them (visualized by equal numbers for mapped
graph objects in L and R). L and R are the left and right-hand side graphs
and K is their common interface. As a drawing convention, we omit K. All
objects with equal numbers in L and R are also contained in K and are
preserved when the rule is applied. A rule r can contain one or more negative
application conditions (NACs) denoting situations which must not exist for
the rule to be applicable. Formally this is expressed by attributed graphs
NACi and morphisms ni : NACi ← L. A rule is applicable to a graph G at
a match m : L → G if there is no graph morphism n′

i : NACi → G such
that m = n′

i ◦ ni for all i ∈ I. The application of rule r to graph G leads
to the derivation of a graph H. Formally, a derivation G

r
=⇒ H is a DPO

construction in the category of attributed graphs and graph morphisms.

The simplest type of parallel actions is that of independent actions. If
they operate on different objects they can clearly be executed in parallel. If
they overlap just in reading actions on common objects, the situation does not
change essentially. In graph transformation, this is reflected by a parallel rule
which is a disjoint union of rules. The overlapping part, i.e. the objects which
occur in the match of more than one rule, is handled implicitly by the match

3



de Lara

of the parallel rule. As the application of a parallel rule can model the parallel
execution of independent actions only, it is equivalent to the application of the
original rules in either order.

If actions are not independent of each other, they can still be applied in
parallel if they can be synchronized by subactions. If two actions contain the
deletion or the creation of the same node, this operation can be encapsulated in
a separate action which is a common subaction of the original ones. A common
subaction is modelled by the application of a subrule of all original rules (called
elementary rules). The application of rules synchronized by subrules is then
performed by gluing the elementary rules at their subrules which leads to
the corresponding amalgamated rule. The application of such a rule is called
amalgamated graph transformation. An example of an amalgamated rule is
given in Fig. 1. Here, two elementary rules er1 and er2 have the addition
of a loop to a node in common. This common interface is modelled as a
subrule. The amalgamated rule contains the common action and, additionally,
all actions from the elementary rules that do not overlap. Dashed arrows in
Fig. 1 indicate rule morphisms, the vertical arrows are the embeddings of
the subrule into the corresponding instances of the elementary rules, and the
embeddings of the elementary rules into the amalgamated rule.

Ls

L1 R1

L2 R2

subrule

er1

er2

amalgamated rule

Rs

L
R

1 1

1 1

1 1

1 1

2 3

2

4 4

4
4

3

5

5

Fig. 1. Construction of an amalgamated graph rule

Note that there may be arbitrary many instances of each elementary rule
which are all glued at one subrule. The number of instances depends on the
match of the rule scheme into a specific graph.

Formally, the synchronization possibilities of actions are defined by an
interaction scheme. Note that the formal construction of amalgamated rules
is described for the DPO approach in [14]. For the extension of this formal
basis to attributed graph transformation in the single pushout approach (SPO)
with rules enhanced by negative application conditions compare [10].

Definition 2.1 (Interaction Scheme)
An interaction scheme IS = (E, S, SE) consists of a set E of elementary rules,
a set S of subrules and a set SE of subrule embeddings se : s → e into the
elementary rules, where s ∈ S and e ∈ E.

Subrules with NACs can be embedded only into elementary rules contain-
ing at least the same NACs as the subrule. In addition, each elementary rule
may have other NACs than the subrule. An interaction scheme can also be

4



de Lara

seen as a bipartite graph (IS-graph) whose nodes are labelled by elementary
rules and subrules. Edges are labelled by subrule embeddings.

In addition to the specification how elementary rules should be synchro-
nized, we have to decide where and how often a set of elementary rules should
be applied. The basic way to synchronize complex parallel operations is to
allow that a rule should be applied at all different matches in a given graph.
This expresses massively parallel execution of actions. For the purpose in this
paper we restrict the covering of G (the image of all different matches from
instances of elementary rules in G) to all different elementary matches that
overlap in the match of their common subrule. For other, more complex cov-
ering constructions see [14]. For our restricted covering of G, the IS-graph is
always connected.

A graph H is directly parallel derivable from graph G by an interaction
scheme IS = (E, S, SE) if there is an amalgamated rule r constructed by
gluing instances of elementary rules ei : Lei

→ Rei
∈ E at one of their corre-

sponding subrules s ∈ S as defined by SE, and if all matches mi : Lei
→ G

overlap in their subrule match ms : Ls → G such that G
r

=⇒ H. This
rule amalgamation can also be seen as a bipartite graph Gr whose nodes are
subrules and instances of elementary rules, and whose edges are subrule em-
beddings. Each Gr representing a valid rule amalgamation is typed over the
IS-graph, e.g. there is a homomorphic mapping from Gr into the IS-graph.

Definition 2.2 (Parallel Graph Transformation System)
A parallel graph transformation system PGTS = (G0, I) consists of a start
graph G0 and a set I of interaction schemes. The language L(PGTS) of a
parallel graph transformation system is given by all graphs which are par-
allel derivable from G0 by a finite number of direct parallel derivation steps
applying amalgamated rules constructed from I.

Definition 2.3 (P/T net simulator as PGTS)
We model P/T nets [13] as attributed graphs with two node types (for places
and transitions), two edge types (for arcs from places to transitions and vice
versa) and attributes of type Nat for the number of tokens and the arc weights.
As start graph N of our PGTS, an arbitrary P/T net is allowed. The interac-
tion scheme ISseq (shown as graph on the left top of Fig. 2) describes sequential
firing of arbitrary transitions. The subrule trans glues together instances of
the elementary rules get and put (see rule trans, the instances get 1 and get 2
of rule get and instance put 1 of rule put in Fig. 2).

The P/T net simulator defined as PGTS in Def. 2.3 leads to the con-
struction of valid sequential P/T net firing rules only. This means, for each
transition t ∈ N in a P/T net N , one amalgamated rule L→ R is constructed
by the simulator PGTS where L and R contain the transition and its envi-
ronment. In L, markings of predomain places are represented by variables
denoting numbers larger than the corresponding arc inscription values. In R,
the new markings are computed by subtracting the pre-arc values from the

5



de Lara

predomain markings and by adding the post-arc values to the postdomain
markings.

The subrule trans ensures that all copies of elementary rules overlap in
the same transition node. The elementary rule get removes the number of
tokens from a predomain place corresponding to the arc weight, and the rule
put generates the correct number of tokens on a postdomain place. In each
amalgamated firing rule, there are as many copies of get and put as there
are different matches to N , provided that they overlap in the same transition
node. Thus, the pre- and postdomain of a transition will be completely cov-
ered by the corresponding amalgamated rule. Since the subrule trans (and
hence all elementary rules) delete the transition and reconstruct it, the dan-
gling condition is not satisfied if not all places from the transition’s pre- and
postdomain are covered [14]. Fig. 2 shows the construction of an amalgamated
rule where the transition is matched to the upper transition of the P/T net N .
There are two copies of get for the two places in the transition’s predomain
and one copy of put as there is only one place in the postdomain. Note that
the variables for token numbers and arc weights are instantiated to different
variables in the rule instances.

1 2
trans

get_1

put_1
x1+n1

n1
x1

n1

m y m y+m
get_2

x2+n2 n2 x2
n2

x1+n1 n1

x2+n2 n2
m y

x1
n1

x2 n2
m

y+m

1 21 1

1 11 2

1
1

1
2 2

3 3

2

21 1
1

trans

get put

ISseq

2

2

3

2

3

3

2

3

4

N

Fig. 2. Firing of transitions in P/T nets

Parallel firing of more than one transition can be similarly expressed by a
parallel graph transformation system. The difference is that the elementary
rules do not all have to be glued at a single subrule but can be glued at
different instances of the subrule. Furthermore, we need two subrules (the
transition-gluing one from definition 2.3 and the empty rule) and require a
slightly different covering construction (see [14]).

3 A Simulator for Timed Transition Petri Nets

TTPN [12] are like P/T nets, but transitions are assigned a delay, in such a
way that they have to be enabled for that amount of time in order to fire.
The left of Fig. 3 shows a meta-model for TTPN. Classes Timer, EventQueue
and Event are not used in the modeling phase, but in the simulation. During
simulation, a unique Timer object keeps track of the current simulation time
(current attribute) and the final time (final attribute). Each time a transition

6



de Lara

is enabled, an event is scheduled and is inserted in the (ordered) event queue
(object EventQueue). The event is scheduled to occur at the transition firing
time. The transition keeps a pointer to the event it has generated by means
of relationship fires. Once the transition fires, the event is removed from the
queue and the simulation time is advanced to the time of the event. This
event-driven simulation is a standard technique in discrete event simulation
and avoids incrementing time when there is no system state change [8].

The right of Fig. 3 shows a simple model, being an instance of the previous
meta-model. It is a queueing model, in which tokens arrive at inter-arrival
times of 6, and are served by one of the two parallel servers at rates 7 and 8.
The simulation current (0) and final time (100) are shown in the “wall clock”
icon, in the upper-left corner. The event queue is shown at the bottom, where
the first simulation event is indeed the second one (scheduled at 6), which
receives a pointer from the transition that produced it. The event scheduled
at -1 is kept in order to make the rules for the simulator simpler. The last
event in the queue is scheduled at the simulation final time, in such a way
that the current simulation time can never reach this point.

Arch

time: float

Transition

time: float

Event

weight: int

Timer

current: float
final: float

fin: 100
curr: 0

tokens: int

Place
pl2tr

tr2pl

fires

0..10..1

1

EventQueue

0..1
first

next

0..1

0..1name: string

−1 100

in_queue out_queue

70
busy−1

idle−1

80
busy−2

idle−2

6

6

Fig. 3. Meta-model for TTPN (left). TTPN model of a queueing system (right).

In this section we show the specification of a simulator for TTPN using
parallel graph transformation systems. We use atomic firing (tokens stay in
places until transitions fire), single server semantics (transitions are provided
with just one timer) and enabling memory (i.e. timers of transitions being
disabled due to a transition firing, are reset). The simulator is composed of
two interaction schemes and one regular rule. The first interaction scheme is
shown in Fig. 4. Its purpose is to check whether a transition is enabled (which
is the case if its input places have at least as many tokens as the weight of
the connecting arcs). Then an event is scheduled to occur after the transition
enabling time. The scheme is decomposed in two elementary rules glued by
one subrule. By convention, we omit in an elementary rule conditions and
NACs of the subrule. They are adopted implicitly by each elementary rule.

The enable pre rule can be instantiated once for each predomain place
of the transition to be checked. Applying this rule, the transition must not
have a scheduled event and the place should have an appropriate number of
tokens. The rule also finds the events amongst which the new event will be
placed. The enable post rule is instantiated once for each output place of the
transition being checked. The sync enable subrule gives the common context
for the instantiation of enable pre and enable post: the transition and the

7



de Lara

7

fin: tend
curr: tc

4

time

3

t2t1

5 6
7

fin: tend
curr: tc

4

3

tt1

5

t2tc+time

6
8 10

9

t1

5

t2tc+time

6
8 10

9

fin: tend
curr: tc

weight
tokens

14
17

18

4RHS

time
11

t2t1

fin: tend
curr: tc

weight
tokens time

14
15

16

4

5 6

LHS

7

enable_post

enable_pre

sync_enable

enable_post

"check enabled"
Scheme

Interaction

Conditions
t1 <= tc+time <= t2

LHS RHS

8
9

11

10
t1

5

t2tc+time

6
time

12

enable_pre
NAC

sync_enable

fin: tend
curr: tc

weight
tokens

1
13

12

4RHS

time
11

t2t1

fin: tend
curr: tc

Conditions

weight
tokens time

tokens >= weight

1
2

3

4

5 6

LHS

Fig. 4. Check enabled interaction scheme

events. If some predomain place of the transition does not have enough tokens,
enable pre cannot be instantiated in that place. Analogously to Def. 2.3, the
transition is deleted and reconstructed by the subrule, such that in the case
of not enough tokens on a predomain place the scheme cannot be applied due
to the dangling condition.

Interaction scheme fire is shown in Fig. 5 and models a transition firing and
the time advance together. Elementary rule get is applied to predomain places
of the transition whose associated event is the first real event in the queue.
The first event (with time equal to −1) and the last event (with time equal to
the final simulation time) in the queue are used to simplify the insertion and
deletion of events. The time of the first event is the earliest time at which a
transition can be fired. Additionally, the current simulation time is advanced
to the time of the processed event.

Rule get deletes as many tokens as the weight of the connecting arc and
erases the event. Rule put is similar, but is applied to output places, and thus
generates tokens. Subrule sync fire is used to synchronize put and get by a the
common context. Note again that the dangling condition is not met and the
scheme cannot be applied, if an incoming place does not have enough tokens.
The transition firing time should be less than the final simulation time such
that the amalgamation scheme can be applied.
In a conflict situation (a place in the pre-
domain of two transitions), it is possi-
ble for a transition firing to disable other
transitions. In this case, the scheduled
possible events of the disabled transitions
should be erased. This is modelled by rule
conflict shown on the right.

RHS

weight
tokens time

1
2

3

8
9

4

7

tokens < weight
Conditions

t1

5

t2

6

tc

weight
tokens

1
2

time

t2

6

t1

5
11

3
LHS

Conflict

For the execution, we assign priority 1 to rule conflict, priorities 2 and 3
to interaction schemes check enabled and fire respectively and use the control
structure of AToM3, i.e. rules are evaluated in order according to their priority

8



de Lara

Interaction

fin: tend
curr: t_curr

4

3

time
weight

2

tokens

13

7

(tokens >= weight)
Conditions

fin: tend
curr: t_curr

4

t2−1
11

time

3

8
9

7

10
−1

5

t2

6

tc

fin: tend
curr: tc

4

t2

6

−1

5
11

12

time

tc < tend
Conditions

get put

sync_fire
LHS

8 10
−1

5

t2

6

tc

9

fin: tend
curr: tc

4RHS

12

time
weight

14
13

tokens+weight

8
9

10
−1

5

t2

6

tc

fin: tend
curr: tc

weight
tokens−weight

1
15

4RHS

time

t2

6

−1

5
11

12
fin: tend
curr: t_curr

weight
tokens time

1
2

3

4

7

LHS

LHS

put

get

15
16

15
16

15
16

15 16
15

16
15

16

RHS

5 6

Scheme

"fire"
sync_fire

Fig. 5. Fire interaction scheme

(from lower to higher values). When a rule is applied, the control continues
at the rule with the highest priority.

(3x)

−1

in_queue out_queue

70
busy−1

idle−1

80
busy−2

idle−2

6

fin: 100
curr: 0

out_queue

70

6

busy−1

in_queue out_queue

70
busy−1

idle−1

80
busy−2

idle−2

6

fin: 100
curr: 6

−1 6 12

conflict

check enabled

−1

in_queue out_queue

70
busy−1

idle−1

80
busy−2

idle−2

6

6

fin: 100
curr: 0

in_queue out_queue

70
busy−1

idle−1

80
busy−2

idle−2

6

fin: 100
curr: 6

−1 12

in_queue out_queue

70
busy−1

idle−1

80
busy−2

idle−2

6

fin: 100
curr: 6

−1 −1 6 6 12

in_queue

idle−1

80
busy−2

idle−2

fin: 100
curr: 6

100 100

100100

100 100

check enabled

fire

fire

Fig. 6. Derivation sequence of the queueing example

Fig. 6 shows a derivation sequence for the queue example in Fig. 3. In the
beginning, the current time curr is 0, and the two parallel servers are idle. In
order to schedule an arrival, the interaction scheme check enabled is applied
and time 6 is added to the event queue. The application of interaction scheme
fire advances the simulation time to 6 and puts a token in the in queue place.

9



de Lara

In the second row of Fig. 6, three transitions are enabled and their firing
times are added to the event queue in the right order. In our case, the events
belonging to the zero-time transitions could have been scheduled in reverse
order. Firing the first transition in the event queue leads to a token on place
busy-1. In the third row of Fig. 6, a conflict situation has to be solved. The
upper zero transition is still in the event queue but not enabled anymore.
Therefore, the rule conflict deletes this event from the queue.

4 Parallel Graph Transformation in AToM3

AToM3 allows defining visual languages by means of meta-models. Model
manipulation can be expressed either as Python programs or by means of
attributed graph grammars. AToM3’s graph rewriting processor can be con-
figured to work in the single or double pushout approaches.

For the implementation of parallel graph grammars in AToM3, the graph
rewriting processor had to be modified only slightly. We took advantage of
the meta-modeling capabilities of AToM3 to define a meta-model for amalga-
mation schemes, and to generate a modeling tool for it. This modeling tool
was then incorporated into the AToM3 kernel. Fig. 7 shows AToM3 in the pro-
cess of modeling the interaction scheme fire. A list with the already defined
subrules and elementary rules is displayed in the window on the left, while
the interaction scheme is shown in the background window (this is the tool
obtained by means of meta-modeling). In the front window, the LHS of rule
get is being edited. Some of the visible attributes are labelled as “ANY” to
specify that any value will make a match, while for other attributes a specific
value is given. The numbers associated with the nodes and links represent the
usual morphisms between the rule left and right hand sides. In addition, rules
may have additional conditions (expressed in Python) that must be satisfied
in order for the rule to be applied and actions that are triggered if the rule is
applied.

Once all the interaction schemes are defined, they can be placed into a list
(which may also contain regular rules) and assigned a priority. AToM3 can
then execute this list obeying rule priorities. When considering an interaction
scheme for application, AToM3 internally builds an amalgamated rule (possi-
bly using several instances of the elementary rules as needed for the current
match) and then applies it (if the conditions of all rules are met). Note how,
in the Python expressions for the conditions, the user can access attributes of
nodes and links by using the number that appears either on the left or right
hand sides. As an amalgamated rule can have many instances of an elemen-
tary rule, numbers of nodes and links are internally changed if they are not
part of any morphism from any subrule to the elementary rule. This implies
that the Python expressions for the conditions may have to be changed “on
the fly” once the amalgamated rule is built.

10



de Lara

Fig. 7. Definition of a Parallel Graph Transformation System in AToM3

5 Conclusion

This paper has presented parallel graph grammars as a valuable means for
modeling and simulation. They extend the capabilities of regular graph gram-
mars by allowing parallel execution of synchronized elementary rules. This is
useful for specifying simulators for formalisms in which parallel actions hap-
pen, such as Petri nets and others discrete event simulation formalisms. Par-
allel graph transformation is also useful for formalism transformation where
models are translated between different formalisms. In this context, parallel
graph transformation simplifies the models transformation as they allow em-
bedding newly created elements in variable contexts. Otherwise, one would
have to replicate the transformation rules for each different context. Parallel
graph transformation has been implemented in the AToM3 tool.

In the group at Madrid, parallel and distributed graph grammars are cur-
rently applied for modeling simulation protocols in parallel discrete event sys-
tems [7]. In the future, we will apply the approach to other TTPN semantics,
Petri net variants and discrete event formalisms. The implementation of other
covering constructions is also under consideration.

Acknowledgements

This work has been partially sponsored by the SEGRAVIS network and the
Spanish Ministry of Science and Technology (TIC2002-01948). The authors
also thank the anonymous referees for valuable hints and comments.

11



de Lara

References

[1] Baresi, L., Pezze, M., 2002. A Toolbox for Automating Visual Software
Engineering, Proc. FASE’02, Springer LNCS 2306, pp. 189–202.

[2] Corradini, A., Montanari, U., 1995. Specification of Concurrent Systems: From
Petri Nets to Graph Grammars, Proc. Workshop on Quality of Communication-
Based Systems, Berlin, Germany, Kluwer Academic Publishers.

[3] de Lara, J., Vangheluwe, H., 2002. AToM3: A Tool for Multi-Formalism
Modelling and Meta-Modelling. In Proc. FASE’02, Springer LNCS 2306, pp.
174 - 188. See also the AToM3 home page, http://atom3.cs.mcgill.ca

[4] de Lara, J. and Taentzer, G., 2004. Automated Model Transformation and its
Validation using AToM3 and AGG, Proc. Diagrams 2004, Accepted.

[5] DiaGen Homepage, http://www2-data.informatik.unibw-muenchen.de/DiaGen

[6] Degano, P., Montanari, U., 1987. A Model for Distributed Systems based on
Graph Rewriting. Journal of the ACM, Vol. 34/2, pp. 411–449.

[7] Ferscha, A., 1995. Parallel and Distributed Simulation of Discrete Event
Systems. In A. Y. Zomaya, ed., Parallel and Distributed Computing Handbook,
McGraw Hill, pp. 1003–1041.

[8] Fishman, G. S., 2001. Discrete Event Simulation. Modeling, Programming and
Analysis. Springer Series in Operations Research.

[9] GenGED Homepage, http://tfs.cs.tu-berlin.de/genged

[10] Heckel, R., Müller, J., Taentzer, G. and Wagner, A., 1995. Attributed Graph
Transformations with Controlled Application of Rules. Proc. Coll. on Graph
Transformation and its Application in Computer Science, Mallorca, pp 41–53.

[11] Hirsch, D., 2003. Graph Transformation Models for Software Architecture Styles.
PhD Thesis, University of Buenos Aires.

[12] Ramchandani, C., 1973. Performance Evaluation of Asynchronous Concurrent
Systems by Timed Petri Nets. PhD Thesis, MIT, Cambridge.

[13] Reisig, W., 1985. Petri Nets. Springer, EATCS Monographs on Theoretical
Computer Science, Vol. 4.

[14] Taentzer, G., 1996. Parallel and Distributed Graph Transformation. Formal
Description and Application to Communication-Based Systems. PhD Thesis,
Shaker Verlag.

[15] Taentzer, G., Fischer, I., Koch, M., Volle, V., 1999. Visual Design of
Distributed Systems by Graph Transformation. Handbook of Graph Grammars
and Computing by Graph Transformation, Vol.3., World Scientific. pp 269–340.

12

http://atom3.cs.mcgill.ca
http://atom3.cs.mcgill.ca
http://atom3.cs.mcgill.ca
http://www2-data.informatik.unibw-muenchen.de/DiaGen
http://www2-data.informatik.unibw-muenchen.de/DiaGen
http://www2-data.informatik.unibw-muenchen.de/DiaGen
http://tfs.cs.tu-berlin.de/genged
http://tfs.cs.tu-berlin.de/genged
http://tfs.cs.tu-berlin.de/genged

	Introduction
	Parallel Graph Transformation
	A Simulator for Timed Transition Petri Nets
	Parallel Graph Transformation in AToM3
	Conclusion
	References

