
SETra 2004 Preliminary Version

Detecting Structural Refactoring Conflicts
Using Critical Pair Analysis

Tom Mens 1

Software Engineering Lab
Université de Mons-Hainaut

B-7000 Mons, Belgium

Gabriele Taentzer and Olga Runge 2

Technische Universität Berlin
D-10587 Berlin, Germany

Abstract

Refactorings are program transformations that improve the software structure while
preserving the external behaviour. In spite of this very useful property, refactorings
can still give rise to structural conflicts when parallel evolutions to the same software
are made by different developers. This paper explores this problem of structural
evolution conflicts in a formal way by using graph transformation and critical pair
analysis. Based on experiments carried out in the graph transformation tool AGG,
we show how this formalism can be exploited to detect and resolve refactoring
conflicts.

Key words: refactoring, restructuring, graph transformation,
critical pair analysis, evolution conflicts, parallel changes

1 Introduction

Refactoring is a commonly accepted technique to improve the structure of
object-oriented software [2]. Nevertheless, there are still a number of problems
if we want to apply this technique in a collaborative setting, where different
software developers can make changes to the software in parallel.

To illustrate these problems, consider the scenario of a large software de-
velopment team, where two developers independently decide to refactor the
same software. It is possible that these parallel refactorings are incompatible,

1 Email:tom.mens@umh.ac.be
2 Email:gabi@cs.tu-berlin.de

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs



Mens et al

in the sense that they cannot be combined together. As an example, assume
that a Move Variable refactoring and an Encapsulate Variable refactoring are
applied in parallel to the same variable in the same class. Both refactorings
are clearly in conflict since they cannot be serialised as they both affect the
same variable in different incompatible ways.

It is also possible that two parallel refactorings can only be combined in a
particular order. As an example, assume that a Rename Variable refactoring
and an Encapsulate Variable refactoring are applied in parallel to the same
variable in the same class. One can decide to rename the variable first, and
then encapsulate it, but not the other way round. The reason is that the
encapsulation introduces an auxiliary setter and getter method whose names
rely on the variable name.

To address the problems illustrated above, we propose to take a formal
approach based on graph transformation and critical pair analysis [1,4,5]. We
will perform a feasibility study using the AGG tool. As such, the contribution
of our paper will be twofold:

• to show the feasibility of the technique of critical pair analysis for a new
practical application;

• to support refactoring tool developers with a formal means to analyse the
consistency of refactoring suites, and to allow them to identify unanticipated
dependencies between pairs of refactorings.

2 The AGG tool

We decided to use the tool AGG (see http://tfs.cs.tu-berlin.de/agg) for
our experiments. It is the only graph transformation tool we are aware of that
supports critical pair analysis, a crucial ingredient of our approach towards
the detection of refactoring conflicts.

2.1 Specifying graph transformations

To reason about object-oriented software evolution, we specify object-oriented
programs as graphs, that have to respect the constraints specified by a type
graph. This type graph acts as an object-oriented metamodel. The metamodel
we expressed in AGG is shown in Figure 1. It expresses the basic object-
oriented concepts (such as classes, methods and variables), their attributes
(such as name and visibility), and their relationships (such as inheritance,
containment and typing) with associated multiplicities. We deliberately de-
cided to use this simple metamodel instead of a full-fledged one, because our
goal was to perform a feasibility study.

Representative refactorings are expressed as graph transformations using
this metamodel. A graph transformation t : G−−→

p(m)
H is defined as a pair

consisting of a graph transformation rule p : L→ R and a match m : L→ G.

2



Mens et al

Fig. 1. Type graph representing the object-oriented metamodel.

The rule p specifies how its left-hand side (LHS) L has to be transformed
into its right-hand side (RHS) R. The match m specifies an occurrence of
this LHS in the graph that needs to be transformed. Note that there may be
more than one possible match. As shown in [5], one can easily extend this
definition to come to a notion of typed graph transformations that respect the
type constraints imposed by the type graph.

As a concrete example, the transformation Encapsulate Variable in Fig-
ure 2 can be applied to a class containing a variable of a particular type.
After the transformation, a setter method and getter method are added to
the class, but the rest of the structure is preserved. This is visualised by as-
signing numbers 1 to 5 to nodes and edges in the LHS and RHS. Nodes and
edges that have the same number in the LHS and RHS are preserved by the
transformation. All nodes and edges in the RHS that do not have a number
assigned (such as the setter and getter method) are newly introduced.

Note that the graphs we use are attributed, i.e., the nodes in the graph
may contain attributes whose values may be modified by the transformation.
This is for example the case in Figure 2 with the attribute visibility of
variable node 1, whose value is modified from public to private.

Another useful feature of AGG is the possibility to specify negative applica-
tion conditions (NACs) [3] that capture the preconditions of a transformation.
These NACs can be considered as a kind of forbidden subgraphs. For example,
the NAC No Setter for transformation rule Encapsulate Variable in Figure 2
expresses that the class containing the variable to be refactored must not con-
tain a setter method for this variable, since this method will be added by the
transformation. To express this, we need to specify an attribute condition
which relates the name of the method in the NAC to the corresponding one in
the RHS. The rule Encapsulate Variable contains a second NAC that forbids
the existence of a getter method for the variable to be encapsulated.

3



Mens et al

Fig. 2. The AGG tool in action. In the left pane, all refactorings specified as graph
transformations are listed, together with their NACs. On the right of it, the speci-
fication of the Encapsulate Variable refactoring is given as a graph transformation
rule with a NAC No Setter, a left-hand side, and a right-hand side. The Attribute
Context for the Method attribute name in the bottom panes specifies the additional
relation that its value s in the NAC must be equal to "set"+v in the RHS.

2.2 Critical pair analysis

Critical pair analysis was first introduced in term rewriting, and has been
generalized to graph rewriting later. A critical pair formalises the idea of a
minimal example of a potentially conflicting situation. Given two transforma-
tions t1 : G−−−−→

p1(m1)
H1 and t2 : G−−−−→

p2(m2)
H2, t1 has an asymmetric conflict with

t2 if it can be performed before, but not after t2. If the two transformations
disable each other in any order, they have a symmetric conflict.

The reasons why rule applications can be conflicting are threefold:

(i) One rule application deletes a graph object which is in the match of
another rule application.

(ii) One rule application generates graph objects that give rise to a graph
structure that is prohibited by a NAC of another rule application.

(iii) One rule application changes attributes being in the match of another
rule application.

To find all conflicting rule applications, minimal critical graphs are com-
puted to which rules can be applied in a conflicting way. Basically we consider
all overlapping graphs of the left-hand sides of two rules with the obvious
matches and analyze these rule applications. All conflicting rule applications

4



Mens et al

thus found are called critical pairs. If one of the rules contains NACs, the
overlapping graphs of one LHS with a part of the NAC have to be considered
in addition.

AGG supports the critical pair analysis for typed attributed graph trans-
formations. Given a set of graph transformation rules, it computes a table
which shows the number of critical pairs for each pair of rules. The number
of detected critical pairs for transformation rules can be reduced drastically
if there is a type graph with multiplicity constraints (as in Figure 1). Up-
per bounds of the multiplicity constraints are then used to reduce the set of
critical pairs by throwing out the meaningless ones.

Fig. 3. Graph transformation rule for Move Method.

As a concrete example, let us compute the critical pairs between the graph
transformation rules Encapsulate Variable (of Figure 2) and Move Method
(shown in Figure 3). There is a symmetric conflict between both rules, and
the number of computed critical pairs in both cases is 2. Figure 4 illustrates
this graphically.

Fig. 4. Example of a symmetric conflict between graph transformations Move
Method and Encapsulate Variable

Move Method
(c1,seta,c2)

Encapsulate Variable (c2,a) Encapsulate Variable (c2,a)

Move Method
(c1,seta,c2)

Class
name=c1

Class
name=c2

Method
name=seta

Variable
name=a

contains contains
type

Class
name=c3

Class
name=c1

Class
name=c2

Method
name=seta

Variable
name=a

contains
type

Class
name=c3

Class
name=c1

Class
name=c2

Method
name=seta Variable

name=a

contains

Class
name=c3

Method
name=geta

Method
name=seta

typecontains Parameter

contains

type

5



Mens et al

If we move a method to a class in which we want to encapsulate a variable
afterwards, there is a first critical pair that represents the conflict that the
name of the method that is moved coincides with the name of the setter
method that needs to be introduced by Encapsulate Variable. The second
critical pair, which is very similar, represents a name conflict with the getter
method.

The other way around, if we first apply the Encapsulate Variable trans-
formation, we get a similar situation. Move Method cannot be applied when
the method needs to be moved to the class of the encapsulated variable, and
the method name coincides with either the name of the setter method or the
name of the getter method.

3 Specification of refactorings

To be able to detect conflicts between refactorings applied in parallel by dif-
ferent software developers, we specified some representative refactorings iden-
tified by Fowler [2] as typed attributed graph transformations. The precondi-
tions of the refactorings were directly expressed as negative application con-
ditions on the graph transformations.

• Encapsulate Variable takes a public variable in a class and replaces it by a
private variable with two public accessor methods. One for getting the value
of the variable, and one for setting its value. The graph transformation rule
for this particular refactoring is shown in Figure 2;

• Move Method moves a public method from a class to another class, not
necessarily belonging to the same inheritance hierarchy. The graph trans-
formation rule is shown in Figure 3.

• Move Variable moves a public variable from a class to another class, not
necessarily belonging to the same inheritance hierarchy. The graph trans-
formation rule is very similar to the one for Move Method.

• Pull Up Variable moves a public or protected variable from a class to a
superclass that resides one level up the inheritance hierarchy. The graph
transformation rule is shown in Figure 5.

• Pull Up Method moves a public or protected method from a class to a
superclass that resides one level up the inheritance hierarchy. The graph
transformation rule is similar to the one for Pull Up Variable.

• Create Superclass creates an intermediate abstract superclass for a given
class. The graph transformation rule is shown in Figure 6.

• Rename Method changes the name of a method in a class to a new one
which is unique within this class. The graph transformation rule is shown
in Figure 7.

• Rename Variable changes the name of a variable in a class to a new one
which is unique within this class. The graph transformation rule is similar

6



Mens et al

to the one for Rename Method.

• Rename Class changes the name of a class to a new unique name. The
graph transformation rule is similar to the one for Rename Method.

Fig. 5. Graph transformation rule for Pull Up Variable.

Fig. 6. Graph transformation rule for Create Superclass.

One should note that we deliberately did not implement all details of each
refactoring in our graph transformations, since it was not our intent to build
a full-fledged refactoring tool, but rather to perform a feasibility study that
would show that the most important conflicts between parallel refactorings can
be detected by critical pair analysis. For example, we decided to restrict Create
Superclass, Pull Up Variable and Pull Up Method to a single subclass rather
than a set of subclasses. We also did not express all necessary preconditions
for each refactoring, as this would only make the analysis more difficult and
computation intensive. Although, in theory, these simplifications may lead to
false negatives during conflict detection, in practice, it turned out that all of

7



Mens et al

Fig. 7. Graph transformation rule for Rename Method.

the conflicts we expected to occur were actually detected, as we will show in
the next section.

4 Analysis of refactoring conflicts

We applied the critical pair analysis algorithm of AGG to our selection of 9
representative refactorings. We observed that, for many pairs of refactorings,
duplicate critical pairs were reported for the same conflict. We even found
some bugs in the initial critical pair analysis algorithm. Therefore, we im-
proved the algorithm so that it reports only those critical pairs that actually
correspond to distinct conflicts. The results of this improved algorithm are
shown in Figure 8. All critical pairs can be considered in detail on the AGG
Web page.

Fig. 8. Critical pair analysis of the refactoring transformations.

The obtained results correspond to what we expected. For example, we

8



Mens et al

expected a certain similarity between the conflicts generated by Move Method
and Pull Up Method (resp. Move Variable and Pull Up Variable) since they
both move a method (resp. variable) to another location. We also expected
similar conflicts for Move Variable and Move Method, as well as for Pull Up
Variable and Pull Up Method. Finally, we expected many similarities between
Rename Class, Rename Variable and Rename Method.

What follows is a detailed discussion of the analysis we performed on the
computed critical pairs. A first observation is that parallel applications of the
same rule are always in potential conflict. In other words, the diagonal of the
critical pair table always contains critical pairs. The reason for this is given
below:

(i) Applying Move Variable twice to the same variable means that it should
be moved to two different classes which is obviously a conflict. Also, two
different variables with the same name cannot be moved to the same class
due to the negative application condition. Applying Move Method twice
generates similar conflicts as applying Move Variable twice.

(ii) Pull Up Variable is in conflict with itself because it cannot be used to
pull up two different variables with the same name to the same class due
to the negative application condition. Applying Pull Up Method twice
generates similar conflicts as applying Pull Up Variable twice.

(iii) Applying Encapsulate Variable twice generates a conflict because one
cannot introduce the same accessor methods twice.

(iv) Create Superclass is in conflict with itself, since the generalization rela-
tion between the class for which a new superclass must be created and
its current superclass is deleted. Stated differently, the introduction of
two new superclasses would give rise to a multiple inheritance hierarchy,
which is prohibited by the multiplicities imposed in the type graph of
Figure 1. Another conflict arises if two superclasses with the same name
are inserted.

(v) Applying Rename Class twice generates a conflict, if the name of one
and the same class is changed twice in a different way. Another conflict
occurs, if two different classes are renamed with the same name. Applying
Rename Variable or Rename Method twice generates similar conflicts as
applying Rename Class twice.

A symmetric conflict arises in the following situations:

(i) Move Variable and Pull Up Variable are in conflict if the same variable is
pulled up and moved. Furthermore, pulling up one variable and moving
another with the same name into the same class causes a conflict due to
the negative application conditions of both rules. Move Method versus
Pull Up Method gives rise to a similar symmetric conflict.

(ii) Move Variable versus Encapsulate Variable causes a symmetric conflict.
After moving a variable, it cannot be encapsulated (within the original

9



Mens et al

class) anymore. Conversely, encapsulating a variable it is no longer pub-
lic and cannot moved anymore. Pull Up Variable versus Encapsulate
Variable gives rise to a similar symmetric conflict.

(iii) Move Method versus Encapsulate Variable generates a symmetric conflict
as explained in section 2.2. Pull Up Method versus Encapsulate Variable
gives rise to a similar symmetric conflict, and so does Rename Method
versus Encapsulate Variable.

(iv) Create Superclass is in conflict with Rename Class, if both rules create a
new class with the same name.

(v) Rename Variable and Move Variable resp. Pull Up Variable are in sym-
metric conflict, since the variable to be moved or pulled up is renamed.
Otherwise, the variable to be renamed is moved (pulled up) to an-
other class. The symmetric conflicts between Rename Method and Move
Method resp. Pull Up Method are similar.

We encountered asymmetric conflicts in the following situations:

(i) Create Superclass causes an asymmetric conflict on Pull Up Variable,
since it modifies the generalization relation needed for pulling up the
variable. It causes a similar asymmetric conflict on Pull Up Method.

(ii) Rename Variable causes an asymmetric conflict on Encapsulate Variable,
since it renames the variable to be encapsulated.

It is important to stress here that the number of conflicts that are detected
by the algorithm relies on the chosen metamodel as well as on the specifica-
tion of the refactorings. Since we made some simplifications to both in our
feasibility study, the number of detected critical pairs is likely to increase if
we would apply it to a more realistic refactoring suite.

5 Conflict resolution

Critical pairs describe potential conflicts between different rule applications.
Often it is possible to show that this critical situation is confluent. Intuitively,
this means that the application of one conflicting rule may prohibit the appli-
cation of the other one, but further transformations may be applied to resolve
the conflicting situation. Formally, a critical pair (G → H1, G → H2) is con-
fluent if there are transformations (H1 → X, H2 → X) that lead to the same
result graph X.

In the following, we discuss to which extent the potential conflicts found
by critical pair analysis are confluent and can thus be resolved. We performed
the conflict resolution analysis manually. It is left to future work to automate
this analysis in AGG.

We start with explaining all conflicts due to parallel applications of the
same rule:

(i) Moving a variable first to some class and then to another class leads to a

10



Mens et al

Pull Up
Variable

Pull Up
Variable

Class
name=d

Generalization Generalization

Class
name=c1

Class
name=c2

Variable
name=a

Variable
name=a

contains contains

Class
name=d

Generalization Generalization

Class
name=c1

Class
name=c2

Variable
name=a

Variable
name=a

contains

contains

Class
name=d

Generalization Generalization

Class
name=c1

Class
name=c2

Variable
name=a

Variable
name=a

contains

contains
Class
name=d

Generalization Generalization

Class
name=c1

Class
name=c2

Variable
name=a

contains

Remove
Variable

Remove
Variable

Fig. 9. Resolving parallel evolution conflicts by analysing confluence of critical pairs.

conflict that cannot be solved automatically. One of these moves has to
be given the priority by the developer. Trying to move different variables
with the same name to the same class also results in a critical pair. It can
be solved by renaming one of the variables, i.e., applying rule Rename
Variable to it, and moving the other variable afterwards. Applying Move
Method twice generates similar conflicts as applying Move Variable twice.
Thus, conflict solving is similar.

(ii) If two different variables with the same name (but residing in different
subclasses) need to be pulled up into the same class, this conflict can be
solved by deleting one of the two variables and pulling the other one up.
This solution is visualised in Figure 9. Applying Pull Up Method twice
generates similar conflicts as applying Pull Up Variable twice. Thus,
conflict solving is similar.

(iii) Applying Encapsulate Variable twice for the same variable needs to be
resolved by ignoring one of both rule applications.

(iv) Applying Create Superclass twice leads to conflicts that can be resolved
by ignoring one of both rule applications.

(v) Renaming a class twice leads to a conflict that cannot be solved au-
tomatically. One of these renamings has to be given the priority by the
developer. If two different classes with different names should be renamed
using the same name, this also results in a critical pair. It can be solved
by manually choosing only one of the two classes to be renamed. Apply-
ing Rename Variable or Rename Method twice generates similar conflicts
as applying Rename Class twice. Thus, conflict solving is similar.

Now, let us see how the symmetric conflicts can be resolved:

(i) Pulling up and moving the same variable is confluent, if the variable is

11



Mens et al

moved to a class that has a superclass. In this case, the variable can still
be pulled up after moving. The other way round, the variable can always
be moved after pulling it up.
If the variable is moved to a class without superclass, the critical pair is
not confluent, because the pull up refactoring cannot be performed (due
to absence of the superclass).
A third situation, pulling up and moving two different variables with the
same name into the same class causes a confluent conflict situation. It
can be solved by renaming first one of the variables and performing the
refactoring afterwards.
Move Method versus Pull Up Method generates similar conflicts as Move
Variable and Pull Up Variable. Thus, conflict solving is similar.

(ii) Move Variable versus Encapsulate Variable: Moving first a variable, it
can be encapsulated within its new class, thus this situation is confluent.
Encapsulating the variable first we reach the same state of changes if af-
terwards not only the variable is moved, but also the newly created getter
and setter methods. These refactorings are only possible, if such accessor
methods do not already exist in the new class. Otherwise, additional
renamings have to be performed to make the situation confluent.

(iii) Pull Up Variable versus Encapsulate Variable: If we pull up the variable
first, it can be encapsulated within the superclass. If we encapsulate it
first, not only the variable but also its accessor methods have to be pulled
up (using Pull Up Method). Again, as in the previous case, additional
renamings may have to be performed to make the situation confluent.

(iv) Move Method versus Encapsulate Variable: If encapsulating a variable
results in the creation of a method with the same name as the method to
be moved to the same class, this conflict can be solved by first renaming
the method to be moved and then moving it and encapsulating the vari-
able.
Pull Up Method versus Encapsulate Variable generate a similar conflict
as Move Method versus Encapsulate Variable. Thus, conflict solving is
similar.

(v) Applying Create Superclass and Rename Class leads to conflicts that
cannot be solved automatically. One of these refactorings has to be given
the priority.

(vi) Rename Variable versus Move Variable: Moving a variable first, it has to
be renamed within its new class. Renaming it first, the renamed variable
is moved.
Pull Up Variable causes a similar conflict on Rename Variable. The con-
flicts between Rename Method and Move Method resp. Pull Up Method
are also similar. Thus, conflict solving is similar in all those cases.

Finally, we discuss resolution of the asymmetric conflicts:

12



Mens et al

(i) Applying Create Superclass first Pull Up Variable has to be applied twice
to get the same effect as pulling first up and then creating a superclass
for the subclass. A similar conflict is caused on Pull Up Method. Thus,
conflict solving is similar.

(ii) Rename Variable versus Encapsulate Variable: Renaming a variable first,
the encapsulation has to be done on the renamed variable. The same
effect is obtained by encapsulating first and renaming then not only the
variable, but also its accessor methods.

(iii) Rename Method versus Encapsulate Variable: Encapsulating a variable
first a new method is created. If a method is renamed to the name of this
new method, this causes a conflict that needs to be resolved by ignoring
one of the refactorings, or by performing an additional renaming.

6 Related work

In [5], the formalism of critical pairs was explained and related to the formal
property of confluence of typed attributed graph transformations. In [4], crit-
ical pair analysis is used to detect conflicting requirements in independently
developed use case models. In [1], critical pair analysis has been used to in-
crease the efficiency of parsing visual languages by delaying conflicting rules
as far as possible.

The problem that has been addressed in this paper is a well-known problem
in the context of version management, and is referred to as software merging
[7]. Two other approaches that rely on graph transformation to tackle the
problem of software merging were proposed by Westfechtel [13] and Mens [6].
Like our approach, they attempt to detect structural merge conflicts. The
novel contribution of the current paper, however, is the use of critical pair
analysis to address this problem.

Refactoring is also a very active research domain [9]. Formal approaches
have mainly been used to prove that refactorings preserve the behaviour of the
program. Graph transformations have also been used to express refactorings
[8,12]. To our knowledge, no formal attempt has been made to detect conflicts
between refactorings applied in parallel.

7 Discussion

In this paper, we explored the problem of detecting and resolving structural
conflicts that arise due to parallel evolution. We expressed refactorings as
typed attributed graph transformations with negative application conditions,
we used critical pair analysis to detect evolution conflicts, and confluence
analysis to resolve the conflicts. From a practical point of view, the feasibility
study we performed already provided very useful results. It allowed us to gain
insight in the similarities of, and interactions between, different refactorings.

13



Mens et al

We believe that our approach has a lot of potential, and requires further
exploration. For example, our approach may be very beneficial for refactoring
tool developers. [11,10] proposed to combine the detection of “code smells”
with a refactoring engine that resolves these smells. For each detected smell,
there are typically many different refactorings that can be applied to resolve
them [2], and some of these refactorings may be in conflict. Hence, a critical
pair analysis of the possible choices may help the programmer to decide which
refactoring to apply.

Another interesting application would be to incorporate conflict resolution
strategies (based on confluence analysis) into refactoring tools. Suppose that
a user wants to apply two refactorings sequentially, but the second one is
not applicable due to a critical pair conflict. Rather than simply refusing to
apply the second refactoring, the tool could suggest to perform an automatic
resolution of the conflict that enables to apply the second refactoring.

During our experiments with AGG we encountered a number of limitations,
which required us to improve the critical pair analysis algorithm. In the new
version of AGG that we developed, the preparation of the critical pairs is
already quite user-friendly, but there is still a potential for improvement to
better understand the critical situations.

Another problem we have to deal with is the presence of false positives and
false negatives. In order to reduce the possibility of false negatives, one needs
to provide a more complex metamodel and more realistic refactorings. False
positives arose because our transformation rules did not take the transitive
closure of the specialization hierarchy into account. A straightforward solution
would be to add specific transformation rules that compute the transitive
closure before actually applying the refactoring rules. An alternative solution
would be to use path expressions, but this would be very difficult to implement
in AGG due to inherent limitations in the underlying formal approach.

References

[1] Bottoni, P., G. Taentzer and A. Schürr, Efficient parsing of visual languages
based on critical pair analysis and contextual layered graph transformation, in:
Proc. IEEE Symp. Visual Languages, 2000.

[2] Fowler, M., “Refactoring: Improving the Design of Existing Programs,”
Addison-Wesley, 1999.

[3] Habel, A., R. Heckel and G. Taentzer, Graph Grammars with Negative
Application Conditions, Special issue of Fundamenta Informaticae 26 (1996).

[4] Hausmann, J. H., R. Heckel and G. Taentzer, Detection of conflicting functional
requirements in a use case-driven approach, in: Proc. Int’l Conf. Software
Engineering (2002).

[5] Heckel, R., J. M. Küster and G. Taentzer, Confluence of typed attributed graph
transformation systems, 2002.

14



Mens et al

[6] Mens, T., Conditional graph rewriting as a domain-independent formalism for
software evolution, in: Proc. Int’l Conf. Agtive 1999: Applications of Graph
Transformations with Industrial Relevance, Lecture Notes in Computer Science
1779 (2000), pp. 127–143.

[7] Mens, T., A state-of-the-art survey on software merging, Transactions on
Software Engineering 28 (2002), pp. 449–462.

[8] Mens, T., S. Demeyer and D. Janssens, Formalising behaviour preserving
program transformations, in: Graph Transformation, Lecture Notes in Computer
Science 2505 (2002), pp. 286–301, proc. 1st Int’l Conf. Graph Transformation
2002, Barcelona, Spain.

[9] Mens, T. and T. Tourwé, A survey of software refactoring, Transactions on
Software Engineering 30 (2004), pp. 126–139.

[10] Tourwé, T. and T. Mens, Identifying refactoring opportunities using logic meta
programming, in: Proc. 7th European Conf. Software Maintenance and Re-
engineering (CSMR 2003) (2003), pp. 91–100.

[11] van Emden, E. and L. Moonen, Java quality assurance by detecting code smells,
in: Proc. 9th Working Conf. Reverse Engineering (2002), pp. 97–107.

[12] Van Gorp, P., H. Stenten, T. Mens and S. Demeyer, Towards automating source-
consistent UML refactorings, in: P. Stevens, J. Whittle and G. Booch, editors,
UML 2003 - The Unified Modeling Language, Lecture Notes in Computer
Science 2863 (2003), pp. 144–158.

[13] Westfechtel, B., Structure-oriented merging of revisions of software documents,
in: Proc. Int’l Workshop on Software Configuration Management (1991), pp.
68–79.

15


	Introduction
	The AGG tool
	Specifying graph transformations
	Critical pair analysis

	Specification of refactorings
	Analysis of refactoring conflicts
	Conflict resolution
	Related work
	Discussion
	References

