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This paper introduces safety properties in the temporal logic sense (as defined in (Manna and Pnueli, 1995))
to Petri net modules. Petri net modules (Padberg, 2001; Padberg, 2002) have been achieved by a transfer
of algebraic specification modules to Petri nets. They consist of three nets; the interface nets import and
export, and the body of the module. The import net states the prerequisites the modules assumes. The
body net represents the internal functionality. The export net gives an abstraction of the body that can
be used by the environment. The interfaces ��� and ��� are related to the body ��� via morphisms.
These modules conform with the basic concepts of components and component-based systems of Continuous
Software Engineering (CSE) (Weber, 1999).
We make precise what it means that a Petri net module has specific safety properties. We differentiate
between explicit and implicit properties. Explicit safety properties are stated additionally to the export net.
Implicit are those properties that hold in the export net without being stated explicitly.The main advantage
of our approach are module operations to compose larger modules from basic ones. We can show that the
composition of modules preserves safety properties:
Given two modules with implicit or explicit safety properties then the composition of these modules is again
a module with implicit or explicit safety properties.
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1. Introduction
Changing environments - commercial, technical or social - demand software systems that can be adapted
to those changes with reasonable effort. Component-based systems have been proposed as an adequate
support for that task. Today there is no doubt on the importance of component-based systems. There
are various specification for the description of component-based software architectures. These approaches
allow modeling components and composing them into architectures. However, they provide limited scope
for formal analysis and reasoning. But the complexity of most software systems requires formal techniques
for analysis and reasoning on local component properties as well as on global system properties.
The main motivation for Petri net modules is the modeling of component-based systems. Software com-
ponents are an useful and widely accepted abstraction mechanism. Components are deployed during the
entire software life cycle, from analysis to maintenance. The component concept as suggested in (Müller
and Weber, 1998; Weber, 1999) for Continuous Software Engineering (CSE) is the basic concept for our
approach.

Petri Net Modules and Component-Based Systems Petri net modules seem to be an adequate speci-
fication technique for describing component-based architectures as we have illustrated in our case study
(Padberg and Buder, 2001). The 1-to-1 correspondence of Petri net modules to component concepts in the
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sense of (Müller and Weber, 1998; Weber, 1999) allows the specification of the components’ behavior and
its abstraction in the interfaces. As the underlying paradigms are essentially the same Petri net modules
can directly be used to model the operational view (in the sense of operational behavior) of a component.
The interfaces of Petri net modules are Petri nets, and not only nodes of a net. Hence the export allows
presenting an abstraction of the modules behavior. And the import allows requiring a specific behavior of
the modules to be imported. The import specifies what must be satisfied by the export interface of an im-
ported module. But it does not specify specific modules to be imported. Hence every module is formally
completely unrelated to other modules. So it can be easily exchanged by another module as long as the
export specifications are compatible. The actual relations between the modules are established using the
module operations (Padberg, 2001; Padberg, 2002).

Properties of Modules Verification of components and component-based systems has the same difficul-
ties as any large system with infinite states. Temporal logic is an approach to verify infinite systems and/or
to avoid the state-space explosion. Instead of checking the state space deductive proofs are used to verify
the desired property. Various behavior properties have been characterized in terms of temporal logic.
We introduce Petri net modules with safety properties as a first steps towards reasoning on local component
properties to infer global system properties. In this context the notion of safety is of central importance.
Intuitively, a safety property in the sense of (Manna and Pnueli, 1995) means that “nothing bad” can happen
in the system, and is expressed by a temporal logic formula. In this paper we use the invariant formula ��
to express simple safety properties. We present modules that state safety properties implicitly or explicitly
in the export interface. The first main result is then that these modules guarantee those safety properties
for their body as well. The main issue is then how the properties of a module relate to the properties of
the whole system. We have to ensure that these properties are not violated during the construction of the
system. That construction is achieved using module operations. So the module operations have to preserve
the safety properties. The second main result states that the composition of modules does preserve safety
properties.

Related Work Structuring concepts for Petri nets can be quite coarsely distinguished into those employing
hierarchical concepts and those employing connector mechanisms. Using hierarchical concepts for structur-
ing Petri nets the system is described by an abstract net while special functionalities are encapsulated into
subnets and called like procedures by merging transitions or places and exchange of tokens. Examples of
this approach can be found in (Jensen, 1992; Buchholz, 1994; He, 1996; Fehling, 1993). Connector mecha-
nisms between modules of Petri nets describe the communication, coordination or cooperation via signals by
a relation between input and output. The exchange of tokens or only read-operation of modules is described
by special features like read arcs, inhibitor arcs and others (e.g. in (Christinsen and Hansen, 1994; Sibertin-
Blanc, 1994; Desel et al., 2000; Deiters and Gruhn, 1994)). In other approaches places and transitions of
modules are merged by well-defined operations (e.g. (Kindler, 1995; Battiston et al., 1991b; Battiston et
al., 1991a; Broy and Streicher, 1992)).
Using temporal logic for verifying properties of Petri nets e. g. (Chandy and Misra, 1988; Brauer et al.,
1991; Bradfield and Stirling, 1990; Bradfield, 1992; Chandy and Misra, 1988; Stirling, 1992; Reisig, 1998)
has a long and fruitful tradition Compositional reasoning (or compositional verification) has been pursued
in various ways. But in contrast to our approach those components are given only as a net with specific
nodes as interfaces for connecting them. In (Kindler, 2002) this basic component approach is chosen to
employ DAWN – (Distributed Algorithms Working Notation) a technique for verifying network algorithms
– to verify component-based systems.
Other behavioral specifications of components have been used besides Petri Nets. E.g., State Machine
based approaches (such as (Nierstrasz, 1995; Alur et al., 1999)) and process calculi oriented notations. For
example DARWIN (Magee et al., 1995) has an operational semantics using the 	-calculus and WRIGHT
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(Allen et al., 1998) uses CSP. These employ the behavioral specifications for the semantics and not so much
as a specification technique in its on rights.
An behavioral extension (constrained based) of CORBA IDLs is given in (Krämer, 1998).

Outline of this Paper The remainder of this paper is organized as follows. In Section 2. we give short
review of the notions of Petri net module and composition. Although these notions are given formally
the paper is understandable without deeper knowledge of the formal background. We provide the basic
definitions and give extensive explanations. Supplementary definitions and lemmata and proofs can be found
in the Appendix. In Section 3. we introduce temporal logic formulae over places over a place/transition net.
These formulae represent safety properties of the modeled system. We discuss what it means that a module
has properties and then distinguish between implicit and explicit representation of safety properties. The
first main result concerns Petri net modules, that present safety property via the export and guarantee that
these properties hold in the body net of the module as well. The second main result states that these safety
properties presented via the export are preserved under the composition of modules. Hence, we have a
compositional approach to reasoning over modules. In Section 4. we conclude with a short summary, an
evaluation of this work, and the discussion of future work.

2. Review of Petri Net Modules
We now give a short introduction to our approach and explain the notion of Petri net modules and the module
operations.
First we give a short intuition of the underlying basics. Here we use the algebraic notion of Petri nets as
introduced in (Meseguer and Montanari, 1990). Hence a Petri net is given by the set of transitions and
the set of places and the pre- and post domain function. The pre- (and post-) domain function maps each
transition into the free commutative monoid over the set of places, representing the places and the arc weight
of the arcs in the pre-domain (respectively in the post-domain). The free commutative monoid over � can
be considered as the set of finite multisets over � . So an element 
 � �� can be presented as a linear sum

 �

�
��� �� � � and we can extend the usual operations and relations as �, �, �, and so on. Moreover,

we need to state how often is a basic element with in an element of the free commutative monoid given. We
define this for an element � � � and a word 
 � �� with 
�� � �� � ��. Subnets  � � ��� of a
given net  with  � �  can be easily defined by subsets of places and transitions, where the pre- and
post-domain of transitions may be extended. ��� denotes the set of all subnets.
All these notions are stated precisely in the Appendix.

Definition 1 (Place/Transition Nets) A place/transition net is given by  � ��� �� ���� �������� with �
the set of places, � the set of transitions, ���� ���� � � � �� the pre- and post-domain of transitions.
�� � �� describes the initial marking. �

Based on the algebraic notion of Petri nets (Meseguer and Montanari, 1990) we use simple homomorphisms
that are generated over the set of places. These morphisms map places to places and transitions to transitions.
Morphisms are the basic entity in category theory; they can present the internal structure of objects and
relate the objects. So they are the basis for the structural properties a category may have and can be used
successfully to define various structuring techniques.
Morphisms are essential for the notion of modules and the definition of module operations. Two Petri net
morphisms � � ��� � ��� and � � ��� � ��� connect the interfaces to the body.
The import morphism � is a plain morphism and describes how and where the resources in the import
interface are used in the body. This morphisms maps each place and transition in the import interface to its
counterpart in the body. The initial marking of the source net needs to be place-wise smaller than the initial
marking of the target net. Plain morphisms are presented by an arrow �.
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Definition 2 (Plain Morphisms) A plain morphism � � � � � is given by � � ��� � �� � with �� �
�� � �� and �� � �� � �� so that ���� Æ �� � ��� Æ ���� and post analogously.
Moreover, for the initial marking we have for all � � ��: ��� ���

��� ���
���� ��� �

The export morphism � is a substitution morphism and describes how the functionality provided by the
export interface is realized in the body. This is done by mapping each part of the export interface that rep-
resents a certain functionality to the the part of the body by which the functionality is realized. Substitution
morphisms map places to places as well. But they can map a single transition to a whole subnet. Hence they
substitute a transition by a net. These morphisms are more complicated and do not yield nice categorical
properties. But they capture a very broad idea of refinement and hence are adequate for the relation between
the export net and the body net. The initial marking has to satisfy the same condition as for plain morphisms.
Subsequently substitution morphisms are presented by an undulate arrow�.

Definition 3 (Substitution Morphism) A substitution morphism � � � � � is given by � � ��� � �� �
with �� � �� � �� and �� � �� � ���� with �� ��� ��  �

� � � such that �
� � �� �

� � �
�
� � ���

�
�� ����

�
��

� �� �
��� � � �

� and

� �� ��
�� � � �

�

Moreover, for the initial marking we have for all � � ��: ��� ���
���� ���

���� ���

The composition of substitution morphisms � � � � � and � � � � � is given by:
� Æ � �� ��� Æ �� � �� Æ �� � where �� Æ �� � �� � ���� is defined by �� Æ �� ��� ��

�
��� �

�

�
� .

Since all �
� � � this construction is well defined. �

Next we review our notion of Petri net modules. We use this name as this notion of module can easily be
transferred to any variant of Petri nets. in this paper we introduce modules of place/transition nets in order
to keep the notion simple.

Definition 4 (Petri Net Module) A Petri net module ��� � ������������� is given by three
place/transition nets that are related by morphisms; the plain morphism � � ��� � ���, and the
substitution morphism � � ��� � ��� as depicted adjacently.

���

�

����
��
��

���
� �� ���

Fig. 1. Petri Net Module
�

Example 5 (Simple Module ���) The focus of this paper is the formal foundation for compositional
reasoning in Petri net modules. Hence the examples are used for clarifying and illustrating the presented
notions and results. They are designed to be small and clear. So we have cut out any (more or less artificial)
application to be modeled. The example module in Figure 2 does not present any meaningful application.
Figure 2 illustrates a very simple net module. The import describes a single transition and the plain mor-
phism ��� � ��� is an inclusion. The export of the module presents cyclic runs. The morphism
��� � ��� abstracts from the more complex behavior of the body. The places � and � in ��� are
mapped to � and � in ���. Transition � is mapped to the subnet including the places �� �� � and the transi-
tions 
� � in ���. Transition � is mapped to transition �. Hence, the export is an abstraction of the body.
The complex structure of the cycle is hidden. But this module also shows a problem: Looking at the export
it seems to be obvious that a token can be on place � or (exclusively) on place �.
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EXP

a by

z

����
��
��

a b

dc

BOD x

v

u

w
dc

IMP ��

Fig. 2. Example of a Simple Module

Examining the body net ��� it is obvious that after firing of transition � the tokens are neither on place
� nor on place �. Hence, the export may be a misleading abstraction. To prevent this we introduce subse-
quently modules with safety properties. Such modules guarantee that the safety properties presented via the
export interface are satified as well in the body of the module. �

The composition of modules is one of the module operations defined in (Padberg, 2001; Padberg, 2002).
From the practical point of view it is the most important one. The composition describes the import
of a module into another module. The diagram for the construction of the compositiom is given in Fig-
ure 3. This module operation requires two modules ���� � ������ ����� �����, and ���� �
������ ����� �����. Moreover a morphism maps the import interface ���� of the importing module
���� to the export interface���� of the imported module����. This morphism � � ���� � ����

matches the functionality requested by the importing module with the functionality provided by the imported
module. The resulting module���� ������	����� has the import interface of the imported mod-
ule ����, the export interface of the importing module ���� and a constructed body ����. This is the
body of the importing module where the functionality specified in the import interface is substituted with
the “implementation” provided in the body of the imported module.
The result of this composition is then ���� � ������ ����� �����, where the body ���� is con-
structed by gluing together the body of the importing module ���� and the body of th imported module
����.

����

��

�� ��
��
��

����

�
����
��
��

�� ��

(1)

����

��

�

��
��
��
��
��
��
��
��
��

����

��

����
��
��

����
�� �� ����

��

� �� ����

Fig. 3. Composition Diagram

����

�� ��
��
��

����
�� ����

Fig. 4. Resulting Module

So, the composed net in ���� has at least as many nodes (either places or transitions) as the minimum
of ���� and ���� and at most as many as ���� and ���� together. The morphisms specify which
nodes of ���� and ���� are identified, namely those the have the same source node in ����.
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In categorical terms this construction is a pushout. In Figure 3 the square (1) presents such pushout.

3. Safety Properties in Petri Net ModulesNext, we formalize safety properties in order to formulate our theorems concerning their preservation. We
recall formulas over markings and their translations via morphisms. An axiomatic expression is ��, denoting
that � � � tokens are on place �. We then can build logic formulae over such axioms, e.g. �� �
 ��
formalizes the statement that 4 tokens on place � imply 2 tokens on place �. Safety properties describe
invariants of the net behavior. Hence we use the henceforth operator � to express that a formula shall hold
for all reachable markings. The formula �� � � in the export in Figure 5 states that one token is always
either on place � on place �.

Definition 6 (Formulas, Translations) �� is a static formula for � � � and � � � , static formulas are
built up using the logical operators � and . Let  be a static formula over  . Then � is an invariant
formula.
The validity of formulas is given w. r. t. the marking of a net. Let� � �� be an arbitrary marking of then
the formula �� holds in  under � written as � ��	 �� iff �� � � . For � ��	  � iff �� ��	  ��
and � ��	  � �  � iff �� ��	  �� � �� ��	  ��. The invariant formula � holds in  under � iff
 holds in all states reachable from � : � ��	 � iff �� � � ��� � � � ��	  . We also write  �� � 
instead of �� ��	 � .
The translation of formulas �� over � along a morphism � � ��� � �� � � � � � to formulas over �

is given for atoms by �� ���� � ��� ���. The translation of formulas is given recursively by ��� � �
��� �, and �� � � �  �� � �� � �� � �� � ��, and �� �� � � ���� �

�

We now have to ensure specific conditions that guarantee morphisms preserving safety properties. Intuitively
the next definition requires for substitution morphism to be place preserving: Any transition of the target net
that has a place of the source net in its pre- or post-domain needs to have a source transition in the source
net, so that the pre-domain and post-domain of the transition is preserved. In other words this definition
ensures that neither arcs may be deleted nor “new” arcs to ”old” places are allowed. Hence we have chosen
the term place preserving.

Definition 7 (Place Preserving Substitution Morphism) A substitution morphism � � � � � is place
preserving if for all �� � �� with ����������� � ������������ �� ! we have: There is some �� � �� s.t.
�� � � ��

� , and ��� ���������� � ����������� , and ��� ����������� � ������������ .
�

Clearly, to preserve safety properties the marking on the mapped places needs to stay the same. Places that
are not in the image of the morphism may be marked arbitrarily.

Definition 8 (Marking Strict Substitution Morphism) A substitution morphism � � � � � is called
marking strict if �� is injective, and ��� ���

� � ���
����

. �

We now can state that a substitution morphism that is place preserving and marking strict preserves safety
properties up to the renaming �� induced by the morphism. This is the first main result we present in this
paper. This is the basis to define modules that present safety properties via the export.

Theorem 9 (Safety Property Preserving Morphism) A substitution morphism � � � � � that is place
preserving and marking strict then the following holds:

� �� � implies � �� ��� � �
Hence, such a morphism is called safety property preserving (spp) morphism. �
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The proof is analogous to the proof of Fact 4.16 in (Gajewsky et al., 1999). Although the underlying
morphism is different we can use the same argument, since the conditions we use in Definition 7 correspond
to Fact 4.13 in (Gajewsky et al., 1999).
This allows defining Petri net modules that preserve safety properties from the export net to the body net. As
we desire a treatment of properties that is independent of the body net, we can use safety property preserving
morphisms to relate the export net to the body net. If we require � � ��� � ��� to be safety property
preserving, then any safety property holding in ��� will be preserved.

Definition 10 (Modules with Implicit Safety Properties) A module ��� � �������������
where � � ��� � ��� is safety property preserving is a module with implicit safety properties. �

Using the result of Theorem 9 we can now conclude that those safety properties � holding in the export net
��� must also hold in ���. The safety properties ���� � in ��� are translated along the morphism
� � ��� � ���.

Corollary 11 (Implicit Safety Properties) Given a module ��� � ������������� with implicit
safety properties then for any safety property holding in the export net ��� �� � , the translated safety
property holds in the body ��� �� ���� �. �

Nevertheless we can distinguish specific safety properties in the export in order to have an explicit represen-
tation of safety properties. We extend the export net with a set of safety properties � over the places of net
��� .

Definition 12 (Modules with Explicit Safety Properties) A module ��� � ����� �������� ����
where � is a set of safety formulas holding in ��� and � � ��� � ��� is a modules with explicit
safety properties. �

Corollary 13 (Explicit Safety Properties) Given a module ��� � ����� �������� ���� with ex-
plicit safety properties then for any safety property � � �, the translated safety property holds in the body
��� �� ���� �. �

We now have to ask what happens to safety properties when we compose modules. The main intention of
this work is to simplify compositional reasoning by preserving safety properties throughout the construction
of modules. First we give an example of a composition of modules with safety properties. Thereafter
we present our second main result. Theorem 15 states that the composition of modules preserves safety
properties as well.

Example 14 (Composition of Modules) Again we give here an example that merely illustrates the notions
and results of this paper but does not present any meaningful application. The example of a composition is
illustrated in Figure 5.
There is the module ���� � ������ ����� ����� with explicit safety properties. The safety prop-
erty �� � � is stated explicitly in the export of module ����. It states the fact that the token is either on
place � or on place �. This can be seen immediately. In fact, the property could be formulated even stronger
using an “exclusive or”.
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EXP1

a b

a bv

����
��
��

BOD1

a b

dc

a bv

dc
IMP1 ��

�� ��
��
��

EXP2
c d

�� ��
��
��

c d

BOD2

e f
��

��
��
��
��
��
��
��
��

c de f

BOD3

a b

a bv

e
IMP2

��

Fig. 5. Example for Composition

The morphism ���� � ���� is safety property preserving as it is injective on the places, pre-
serves the marking and no “new” transitions are adjacent to “old” places. The module ���� �
������ ����� ����� is a module with implicit safety properties.
The resulting module���	 �����	���� � ������ ������ �������� ���	� is constructed
subsequently.
The new body ���	 of the resulting modules is the net ����, where the transition between the places "
and � is replaced by the net between the places " and � in the net ����. So, ���	 can be considered as
the gluing of ���� and ���� along the net ����. This exactly what the pushout construction of the
composition diagram in Figure 3 describes formally. The resulting module ���	 �����	���� �
������ ������ ��� � ���� ���	� is a module with explicit safety properties because the morphism
����� ���� is safety property preserving.

�
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Theorem 15 (Safety Property Preserving Composition) Given two modules ���� and ���� both
with safety properties, let the composition morphism � � ���� � ���� be safety property preserving,
then the resulting module ���� 	����� is a module with safety properties as well.
If the module ���� � ������ ��������� ����� is a module with explicit safety properties, then
the resulting module ���� 	� ���� � ������ ��������� ����� is a module with explicit safety
properties as well. �

Proof:
The construction of the composition is based mainly on the pushout (see (1) in Figure 3). The undulated ar-
rows are safety property preserving substitution morphisms. Since pushouts are stable under safety property
preserving morphisms (see Lemma 23 in the Appendix) we can conclude that ���� � ���� is safety
property preserving. Hence, ���� 	����� is a module with safety properties.
The export of the resulting module is the export of the importing module ����, so ����	����� �
������ ��������� ����� is a module with explicit safety properties.

�

4. Conclusion
The work we have presented aims in the long run at a formal basis in terms of Petri nets for an architec-
ture description language (ADL). Up to now we have notions for Petri net modules, module operations and
evolution. In our view ADLs should involve a possibility of separation of concerns. Some ADLs provide
process calculi oriented notations for their semantic foundation. But the operational view is not given ex-
plicitly. ADLs should allow modeling components from specific viewpoints. Especially the operational
view is important, e.g. for specifying protocols as one of the main communication means between compo-
nents. Most ADLs use merely one specification technique. An exception are those attempts to extend UML
towards an ADL. This results in the neglect of the operational view of components.
In this paper we have presented a step towards an ADL with Petri nets as the formal foundation. We
have combined notions of temporal logic, namely safety properties to Petri net modules. So the starting
point for compositional reasoning is given. We have introduced Petri net modules with safety properties.
These modules ensure that safety properties that are represented by the export are satified in the body of the
modules well.

Evaluation of Results The development of the case study has clearly shown that the new concept of Petri
net modules (Padberg, 2001; Padberg, 2002) is applicable for structuring large and complex net models. The
results presented here are a starting point for the compositional reasoning over Petri net modules. Safety
properties are one major criterion for ensuring correctness of a model. Hence, this is valuable extension.
Nevertheless this approach is yet far from being an ADL to be used in practice. In the long run one of
the main steps towards a practical application is the extension to high-level nets as the modeling power of
place/transition nets is limited. There are various high-level net variant as available. From the theoretical
point of view algebraic high-level nets have a lot of nice properties and some of the required notions have
been already developed. On the other hand there are high-level net variants with very good tool support.
Those tools with an open structure and nice semantic interfaces allow the coupling with other tools and
could be the basis for the possible implementation in CASE tools. Especially PEP (Best, 1997) has those
nice features and moreover allows the validation of temporal logic formulas. Pushout as a special case of
colimits can be efficiently computed by a tool as shown in (Wolz, 1997).

Future Work The next goals in our work being closely related to the results presented here are the fol-
lowing:

� Further Properties:
Progress properties (Manna and Pnueli, 1995) or liveness in the sense of Petri nets are important
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properties to be investigated when validating a model. Again we have to treat the problem that the
export should give a valid abstraction of the body. An abstraction should allow to use the properties of
the export for reasoning about the whole module. In that way the black box paradigm can be followed
and the model still can be validated.

� Import-Export Relation of Properties:
An essential issue of evolution of component-based systems is the relation between the import and the
export of a component (for a more detailed discussion see (Große-Rhode et al., 2000)). The import-
export relation in interfaces in the context of interoperability is mainly concerned with the relation of
the import of one module ond the export of another one. This is discussed for example as the concept
of parameterised contracts in (Reussner, 2001). Here we want to focus on the relation between the
import and the export of the same component. This relation describes the internal dependencies that
are usually hidden in components and make the exchange of components awkward. We want to state
these dependencies explicitly for Petri net modules, for example as am implication between properties
required in the import and properties guaranteed in the export.
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A Technicalities

In this appendix we give for the sake of completeness all the definitions, lemmata and proofs required for
the two main results. These notions are not neccessary for the understanding of the paper. They are only
required for following the central and new proof. So we do not give additional comments.

Definition 16 (Commutative Free Monoids) Given a set � then the free commuative monoid ���� !���
is constructed freely according to the following equations for �� #� 
 � �� :

1. 
 � ! � 
 neutrality
2. 
 � # � # � 
 commutativity
3. 
 � �# � �� � �
 � #�� � associativity

Elements 
 � �� can be given by finite linear sums: 
 �
�

��� �� � � with �� � � . Hence, the usual
operations can be extended from natural numbers to linear sums. We use:


 � 
� addition

 � 
� substraction

 � 
� comparison

�

Definition 17 (Restriction of a Linear Sum) For 
 �
�

��� �� � � we define the restriction to � � � :

�� � �� � � And for � � � � we define: 
�� � �

�
��� � �� � � For a mapping � � �� � �� we use as a

abbreviation:
���� � � 
�� �

Definition 18 (Pre-Set, Post-Set) The pre-set of a net element is given by �� � ����������� �� !� or �� �
������������ �� !�, and analogously for the post-set. �

Journal of Integrated Design and Process Science ???? 2004, Vol. ??, No. ?, 12



Definition 19 (Subnets)  � �  if and only if � � � � and � � � � as well as for pre- and postdomain
������� � �������� � for all � � � � , ���� analogously.
The set of all subnets of  is given by ��� �� �� � �. �

Definition 20 (Net of a Transition) Given a transition � � � for some net , then $����� the net surround-
ing � is given by : $����� �� �� �� � �� ����� ������ with

� � � � �� � ��,
� � � � ���, and

� ���� � � � � � �� with ������� � �������, analogously ����� �

Definition 21 (PO-Compatibility Condition (Padberg, 2001)) Given a plain morphism � � � � �

and a substitution morphism � � � � � the PO-compatibility condition is satisfied if: For all ��� ��� � ��
we have �� ���� � �� ��

�
�� implies �� ����

�� �� ��
�
��. �

Lemma 22 (Pushouts (Padberg, 2001)) Given a plain morphism � � � � � and a substitution mor-
phism � � � � � so that the PO-compatibility condition is satisfied, then we have the pushout ��� � �� ���

�
� ��




����
��
��

���

�


�

�� ��
��
��

�
� �

�� �

� �� ���� ��� ����� �������
�
� � is given by

� �� � �� 
�� �� is pushout in ���,

� �� �� ��� � �� ����� � ��, hence we have: �� � �� implies �� � ��
�� �� � �� and,

� ���� �

�
��� ���������� � �� � ��
� �� ���������� � �� � ��

����� is defined analogously.

� The initial marking ��
� is defined by ��

� �
�

����
��

���. And ��
��� is given by:

��
��� �

������
�����

� ��
����

����
� ; if � � ��

����� and � �� ��� ����

���
����

����
� ; if � � ������ and � �� �����

����� ��
����

����
�� ���

����
����

��

; if � � ������ � ��
�����

where obviously define �������� ���� � ������� ��� � �.
The morphisms are given by �� � ���

�� � �� � and �� � ���� � �
�

� �. ��
� and ��� are defined by the pushout ��

� �� and �
�

� are given below :
� �� � �� � ���� with

� �� ��� � �� �� � %�����$������
So � is plain.

�
�

� � �� � ���� with

�
�

� ��� �

�
� �� ��� Æ �� ���� � � � �� ����
���� � %�����$������ � �&��

�
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Lemma 23 (Pushouts are Stable under SPP-Morphims) Given a substitution morphism � � � � �,
that is safety propery preserving and given a pushout ��� as in Lemma 22. Then we have:
� is safety property preserving implies �� is safety property preserving.

�

Proof:
We have to show �� is safety property preserving, provided � is safety property preserving:

1. �� is place preserving. Let ! �� ������� � �� for some �� � ��� ����. Then there are two cases as

� � ��
�� � � ��.

(a) � � ��:
Since �� �� ��� � �� ����� � �� we conclude � '� �� ����. Due to the definiton of �

�

� � �� � ��
we have �

�

� ��� � ���� � %�����$������. Due to the definition of $����� we conclude:
������� � ���� ��������� and �������� � ���� ����������.
And hence: ��������
�

�
� ���� ��������� and ���������
�

�
� ���� ����������.

(b) �� � ��:
This implies some �� � �� and some �� � �� with � �� ���� � �� � ��� ����.
Due to the pushout properties of �� there is some �� � �� with �� ���� � �� and �� ���� � ��.
As �� is place-preserving we know there is some �� � �� with � � � ��� so that

��������
� � ��� ����������, and
���������
� � ��� �����������.

By definition of �
�

� with �
�

� ��� ����� � � �� Æ �� ���� there is �� ���� � �� with � � � �� ����
� .

We now conclude:

��������
�

�
� ��

������������
�

�
� ��

�����������
� �

� ��
������ ���������� � ���

����� ���������� � ���
��������� �����

and the same for :

���������
�

�
� ��

�������������
�

�
� ��

������������
� �

� ��
������ ����������� � ���

����� ����������� � ���
���������� �����

2. �� is marking strict:
��� is injective, as �� is injective and pushouts in ��� preserve injections.
Moreover, we need to show ��

��
�

�

� ���
����

� �. We only need to investigate �� � ��� ����.
We then have two cases:

(a) ��
��
�

�

� ���
����

� � for �� � �� � � �� ����,

(b) and for �� � ��� ���� � � �� ���� we have:
��

��
�

�

� ����� ��
����

����
�� ���

����
����

�� � ���
����

� �

due to the following estimation:

���
����

���� ����
� � ���

� Æ ��� ���
����

�

� � ��
� Æ ��� ���

����
�

� � ��
����

���
�

�
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