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Abstract

In order to model the behaviour of open concurrent systems by means of Petri nets,
we introduceopen Petri netsa generalization of the ordinary model where some places,
designated aspen represent an interface of the system towards the environment. Besides
generalizing the token game to reflect this extension, we define a truly concurrent semantics
for open nets by extending the Goltz-Reisig process semantics of Petri nets.

We introduce a composition operation over open nets, characterized as a pushout in the
corresponding category, suitable to model both interaction through open places and synchro-
nization of transitions. The deterministic process semantics is shown to be compositional
with respect to such composition operation. If a Agtresults as the composition of two
netsZ; andZ,, having a common subngg, then any two deterministic processe<Zpfand
Z, which “agree” on the common part, can be “amalgamated” to produce a deterministic
process ofZz. Vice versa, any deterministic process &f can be decomposed into pro-
cesses of the component nets. The amalgamation and decomposition operations are shown
to be inverse to each other, leading to a bijective correspondence between the deterministic
processes df3 and pair of deterministic processesffandZ, which agree on the common
subnetZy. Technically, our result is similar to the amalgamation theorem for data-types in
the framework of algebraic specification. A possible application field of the proposed con-
structions and results is the modeling of interorganizational workflows, recently studied in
the literature. This is illustrated by a running example.

1 Introduction

Among the various models of concurrent and distributed systems, Petri nets [Rei85] are cer-
tainly not the most expressive or the best-behaved. However, due to their intuitive graphical

representation, Petri nets are widely used both in theoretical and applied research to specify
and visualize the behaviour of systems. Especially when explaining the concurrent behaviour
of a net to non-experts, one important feature of Petri nets is the possibility to describe their

execution within the same visual notation, i.e., in terms of processes [GR83].

*Research partially supported by the EC TMR Network GETGRATS (General Theory of Graph Transformation
Systems), by the ESPRIT Working Group APPLIGRAPH (Applications of Graph Transformation), and by the MURST
project TOSCA (Teoria della Concorrenza, Linguaggi di Ordine Superiore e Strutture di Tipi).
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Figure 1: Sample net modeling an interorganizational workflow.

However, when modelingeactive systemse., concurrent systems with interacting subsys-
tems, Petri nets force us to take a global perspective. In fact, ordinary Petri nets are not adequate
to modelopensystems which can interact with their environment or, in a different view, which
are only partially specified. This contradicts the common practice, e.g., in software engineering,
where a large system is usually built out of smaller components.

Let us explain this problem in more detail by means of a typical application of Petri nets, the
specification of workflows. Avorkflowdescribes a business process in terms of tasks and shared
resources. Such descriptions are needed, for example, when interoperability of the workflows
of different organizations is an issue, which is frequently the case, e.g., when applications of
different enterprises shall be integrated over the Interneofkflow net[vdA98] is a Petri
net satisfying some structural constraints, like the existence of one initial and one final place,
and a correspondingoundness conditioirom each marking reachable from the initial one
(one token on the initial place) we can reach the final marking (one token on the final place).
An interorganizational workflovivdA99] is modeled as a set of such workflow nets connected
through additional places for asynchronous communication and synchronization requirements
on transitions.

For instance, Fig. 1 shows an interorganizational workflow consisting of two local workflow
netsTraveler andAgency related through communication plaaas, ack, bill, payment andticket
and a synchronization requirement between themygerve transitions, modeled by a dashed
line. The example describes the booking of a flight by a traveler in cooperation with a travel
agency. After some initial negotiations (which is not modeled), both sides synchronize in the
reservation of a flight. Then, the traveler may eitheknowledge or cancel and re-enter the
initial state. In both cases an asynchronous notification (e.g., a fax), modeled by thesplaces
andcan, respectively, is sent to the travel agency. Next the local workflow of the traveler forks
into two concurrent threads, the booking of a hotel and the payment of the bill. The trip can
start when both tasks are completed and the ticket has been provided by the travel agency.

The overall netin Fig. 1 describes the system from a global perspective. Hence, the classical
notion of behaviour (described, e.g., in terms of processes) is completely adequate. However,
for a local subnet in isolation (lik&raveler) which will only exhibit a meaningful behaviour
when interacting with other subnets, this semantics is not appropriate because it does not take
into account the possible interactions.

In order to overcome these limitations of ordinary Petri nets, we extend the basic model
introducingopen netsAn open net is a P/T Petri net with a distinguished set of places which are
intended to represent the interface of the net towards the external world. Some similarities exist



with other approaches to net composition, like Bedri box calculu§BDH92, KEB94, KB99],

the Petri nets with interfacdNPS95, PW98] and th®etri net componentKin97], which

will be discussed in the conclusions. As a consequence of the (hidden, implicit) interaction
between the net and the environment, some tokens can “freely” appear in or disappear from
the open places. Besides generalizing the token game to reflect this changes, we provide a truly
concurrent semantics by extending the ordinary (determiniptizgess semantiq&R83] to

open nets.

The embedding of an open net in a context is formally described by a morphism in a suitable
category of open nets. Intuitively, in the target net new transitions can be attached to open places
and, moreover, the interface towards the environment can be reduced by “closing” open places.
Therefore, open net morphisms do not preserve but reflect the behaviour, i.e., any computation
of the target (larger) net can be projected back to a computation of the source (smaller) net.

A composition operatiofis introduced over open nets. Two open n&tsandZ, can be
composed by specifying a common subAgtwhich embeds both iZ; andZ,. Then the two
nets can be glued along the common part. This is permitted only if the prescribed composition
is consistent with the interfaces, i.e., only if the placeZgfand Z, which are used when
connecting the two nets are actually open. The composition operation is characterized as a
pushout in the category of open nets, where the conditions for the existence of the pushout
nicely fit with the mentioned condition over interfaces.

Based on these concepts, the representation of the system of Fig. 1 in terms of two inter-
acting open nets is given by the top part of Fig. 2, which comprises the two component nets
Traveler andAgency, and the neCommon which embeds into both components by means of
open net morphisms. Places with incoming/outgoing dangling arcs are open. Observe that the
common subneCommon of the component3raveler and Agency closely corresponds to the
dashed items of Fig. 1, which represent the ‘glue” between the two components. The net result-
ing from the composition ofraveler andAgency over the shared subne€bmmon is shown in
the bottom part of Fig. 2.

Obviously, one would like to be able to establish a clear relationship between the behaviours
of the component nets (in the example, the fedseler andAgency) and the behaviour of the
composition (in the example, the netobal). We will show that indeed, the behaviour of the
latter can be constructed “compositionally” out of the behaviours of the former, in the sense that
two deterministic processes which “agree” on the shared part, can be synchronized to produce a
deterministic process over the composed net. Vice varsajeterministic process of the global
net can be decomposed into deterministic processes of the component nets, which, in turn, can
be synchronized to give the original process again. The top part of Fig. 3 shows two processes
of the netsTraveler andAgency, the corresponding common projections over @e@hmon and
the process oflobal arising from their synchronization.

The synchronization of processes, based on the composition of their underlying nets, resem-
bles theamalgamatiorof data-types in the framework of algebraic specifications, and therefore
we will speak ofamalgamation of processek analogy with the amalgamation theorem for
algebraic specifications [EM85], the main result of this paper shows that the amalgamation and
decomposition constructions mentioned above are inverse to each other, establishing a bijective
correspondence between the pairs of processes of two nets which agree on a common subnet
and the processes of the net resulting from their composition.

The rest of the paper is organized as follows. Section 2 introduces the open Petri net model
and the corresponding category. Section 3 extends the notion of process from ordinary to open
nets and defines the operation of behaviour projection. Section 4 introduces the composition
operation for open nets, based on a pushout in the category of open nets. Section 5 presents
the compositionality result of the process semantics of open nets. Finally, Section 6 discusses
some related work in the literature and outlines possible directions of future investigation. An
extended abstract of this paper has been published as [BCEHO01].



payment :
ticket _Z

|bookH0teI| IpayBiIl

bill

payment

O
ticket

: : 5 O :
T AU : TR | I :

ticket

Traveler Agency

O
O
O
payment

Figure 2: Interorganizational workflow as composition of open fietgler andAgency.



: canceled| :

: canceled|

Global process

Figure 3: Amalgamation of processes for the riedseler anAgency.



2 Open nets

An open nets an ordinary P/T Petri net with a distinguished set of places which are intended to
represent the interface of the net towards the external world (environment). As a consequence of
the (hidden, implicit) interaction between the net and the environment, some tokens can freely
appear in and disappear from the open places. Concretely, an open place can be @itgr an
or anoutputplace (or both), meaning that the environment can put or remove tokens from that
place.

Given a sefX we will denote byX® the free commutative monoid generatedXand by
2% its powerset. Furthermore given a functibonX — Y we will denote byh® : X® — Y@ its
monoidal extension, while the same symhol2* — 2¥ denotes the extension bfto sets.

DEFINITION 1 (P/T RETRI NET) AP/T Petri nets a tuple N= (S, T,0,1) where S is the set of
places, T is the set of transitions (witm$ = 0) ando,1: T — S are the functions assigning
to each transition its pre- and post-set.

In the following we will denote by*(-) and(-)* the monoidal extensions of the functiomsind
T to functions fromT ® to S*. Furthermore, given a placec S, the pre- and post-set sfare
defined by*s={te T |set*}ands’ = {te T |se °t}.

DEFINITION 2 (PETRI NET CATEGORY) Let Ny and Ny be Petri nets. APetri net morphism
f : No — Nj is a pair of total functions = (fr, fs) with f; : To —» T and fs: S — S, such
that for all to € To, * fr(to) = fsP(*to) and fr(to)* = fs®(to*) (see the diagram below).

0o
To SO®
To
fT \L \L fsm
0o
T SfB

To
The category of P/T Petri nets and Petri net morphisms is denotétiby

Petri net morphisms are closed under composition. This immediately follows by observing that
given fo: No — Ny andfy : Ny — Ny, we have(fs, o fg))® = s, o fg,®.

CategonNet is a lluf subcategory of the categdPgtri of [MM90]. The latter has the same
objects, but more general morphisms which can map a place into a multiset of places.

We are now ready to introduce the notion of open net.

DEFINITION 3 (OPEN NET) Anopen neis a pair Z= (Nz,0Oz), where

e Nz =(S,Tz,07,17) is an ordinary P/T Petri net and

e Oz =(03,0,) € 2% x 2% are the input and output open places of the net.

Observe that the se®} andO; are not necessarily disjoint, hence a place can be both an input
and an output open place at the same time.

The notion of enabledness for a transition (or multiset of transitions) of an open net is
the usual one, but, besides the changes produced to the state by the firing of the “internal
transitions of the net, one considers also the interaction with the environment, modelled by a
kind of invisible actions producing/consuming tokens in the input/output places of the net. The
actions of the environment which produce and consume tokens in an opers placdenoted
by +s and—g, respectively.



DEFINITION 4 (FIRING) Let Z be an open net. Sequential movean be (i) the firing of a
transition, i.e., md °t [t) mat®, with me S%, t € Tz; (ii) the creation of a token by the
environment, i.e., ni+s) M@ s, with s€ OF, me S®; (iii) the deletion of a token by the
environment, i.e., @ s[—s) m, with me &%, se O5.

A parallel moveis of the form

mae *Am- [A) ma A & mt,
with me 2, Ae 122, m* € (05)%, m™ € (07)°.

Alternatively, the token game of an open net can be described as the behaviour of an ordi-
nary net, called thelosureof Z and denoted by. The netZ is obtained by adding transitions
connected to open places which can freely produce/remove tokens from input/output places,
i.e.,Z=(T',S,0,v) where

° T’:TzU{‘Fs‘SE OZ}U{_S‘SEOZ};
e 0'(+s) = 0 andt'(+s) = sforanyse O ;
e 0'(—s) =sandt’(—s) =0 foranyse Oy;

andd’, T coincide withoz, Tz on the other transitions.

Example.The open nets for the local workflowgaveler andAgency of Fig. 1 are shown in the
middle part of Fig. 2. Ingoing and outgoing arcs without source or target designate the input
and output places, respectively. Observe that the synchronization tramsééove is common

to both nets. Furthermore the communication places dike become open places.

DEFINITION 5 (OPEN NET MORPHISN Anopen net morphisnfi : Z1 — Z; is a Petri net mor-
phism f: Nz, = Nz, such that, if we define

in(f)={se S| *fs(s)— fr(*s) Z0} and out(f)={se S| fs(s)* - fr(s*) # 0}
then
() fs*(0f)uin(f)cof and (i) f5™(Oz)Uout(f) COf.
The morphism f is called ampen net embeddin§both components+f and fs are injective.

In the sequel, given an open net morphisra (fs, f1) : Z3 — Z», to lighten the notation, we
will omit the subscripts ' and “T” in its place and transition components, writirigs) for
fs(s) andf(t) for fy(t).

A morphismf : Z; — Z, can be thought of as an “insertion” of nét into a larger nefy,
which extendsZ;. In other wordsZ, can be thought of as an instantiationZf, where part
of the unknown environment gets more specified. Conditions (i) and (ii) first require that open
places are reflected and hence that places which are “interng{"éannot be promoted to open
places inZ,. Furthermore, the context in which is inserted can interact with; only through
the open places. To understand how this is formalized, observe that for eacts pldoéf),
its imagef (s) is in the post-set of a transition outside the imag@®fHence we can think that
in Z» new transitions are attachedg@and can produce tokens in such place. This is the reason
why condition (i) also asks any placeii( f) to be an input open place @f;. Condition (ii) is
analogous for output places.

The above intuition better fits with open net embeddings, and indeed most of the construc-
tions in the paper will be defined for this subclass of open net morphisms. However, for tech-
nical reasons (e.g., to characterize the composition of open nets as a pushout) the more general
notion of morphism is useful.

Example. As an example of open net morphism, consider the embedding dfaweter into
netGlobal of Fig. 4 (extracted from Fig. 2). Observe that the constraints characterizing open
nets morphisms have an intuitive graphical interpretation:
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Figure 4: The open net embedding of Medveler into netGlobal.

e the connections of transitions to their pre-set and post-set have to be preserved. New
connections cannot be added;

¢ in the larger net, a new arc may be attached to a place only if the corresponding place of
the subnet has a dangling arc in the same direction. Dangling arcs may be removed, but
cannot be added in the larger net. For instance, without the outgoing dangling arc from
placecan in netTraveler, i.e., if placecan were not output open, the mapping in Fig. 4
would have not been a legal open net morphism.

Next we show that open net morphisms are closed under composition.

PROPOSITION6 Open net morphisms are closed under composition.

Proof .Let f1 : Z3 — Z, andfs : Z, — Z3 be open net morphisms. Thépo f; is a morphism
in Net. As for condition (i) of Definition 5, first observe that

in(fa0 f1) Cin(f1) U f(in(f2)) (1)
In fact,

in(foo0 fy) =
={se S| *fo(fi(s)) — f2(f1("s)) # O}
={se S| *fo(fi(s)) — f2(*fa(s)) # O} U{s€ S | f2(*fr(s)) — f2(f1("*s)) # O}
C{se S| fils) €in(f2)}U{se S| fa( *fu(s) - fa(*s)) # O}
= (in(f2)) U{se St | *fi(s) - fu(*s) # 0}
= f(in(f2)) Uin(f1)

Therefore,
in(fpo f1)

Cin(fr) U fY(in(f2) [by using (1)]
cofufog) [since, by def. of morphisnin(f1) C Of andin(f;) C OF]
cof [since, by def. of morphism,; (0F) € Of]

8



Figure 5: Open net morphisms do not preserve the behaviour.

Furthermore(f, 0 f1)~3(0F) = f;1(f,1(0F)) € f71(0F) € OF, sincef, and f, are mor-
phisms. Thus, summing up,

(fa0 fl)‘l(Og) Uin(fyo f1) C O_l'—
Condition (ii), over output open places, can be proved in a totally analogous way. O

By the previous proposition we can consider a category of open nets.

DEFINITION 7 (OPEN NETS CATEGORY We will denote byONet the category of open nets
and open net morphisms.

We said that open net morphisms are designed to capture the idea of “insertion” of a net
into a larger one. Hence it is natural to expect that they “reflect” the behaviour in the sense that
givenf : Zg — 73, the behaviour oZ; can be projected along the morphism to the behaviour of
Zy (this fact will be formalized later, in Construction 13). Instead, differently from most of the
morphisms considered over Petri nets, open net morphisms cannot be thought of as simulations
since theydo not preservéhe behaviour. For instance, consider the openfgendZ; in Fig. 5
and the obvious open net morphism between them. Then the firing sequiepgedt) 0 in Zy
is not mapped to a firing sequencedn

There is an obvious forgetful functor from the category of open nets to the category of
ordinary nets.

DEFINITION 8 We denote by : ONet — Net the forgetful functor defined b¥(Z) = Nz for
any opennet Z anfi(f : Zo — Z1) = f : Nz, — Nz, for any open net morphism f.

Since functorF acts on arrows as identity, with abuse of notation, given an open net morphism
f:Zo— Z; we will often write f : F(Z;1) — F(Z») instead ofF (f) : F(Z1) — F(Zn).

3 Deterministic processes of open nets

Similarly to what happens for ordinary nets, a process of an open net, providing a truly concur-
rent description of a (possibly nondeterministic) computation of the net, is an open net itself,
satisfying suitable acyclicity and conflict freeness requirements, together with a mapping to the
original net.

The open net underlying a process is an open occurrence net, namely an dpeunclethat
Nk is an ordinary occurrence net and satisfying some additional conditions over open places.
The open places iK are intended to represent tokens which are produced/consumed by the
environment in the considered computation. Consequently, every input open place is required to
have an empty pre-set, i.e., to be minimal with respect to the causal order. In fact, an input open
place in the post-set of some transition would correspond to a kind of generalized backward
conflict: a token on this place could be generated in two different ways, i.e., by the firing of an
“internal” transition or by the environment, and this would prevent one to interpret the place as
a token occurrence.



Figure 6: A (nondeterministic) open occurrence net.

Observe that, instead, an output open place can be in the pre-set of a transition, as it happens
for placesin the open occurrence net of Fig. 6. The idea is that the token occurrence represented
by places can be consumed either by the environment or by transition

Recall that for an ordinary nét = (ST, 0, 1) thecausal relation< is defined as the least
transitive relation oveBU T such thak <k yif y € x*, for x,y € SUT. Theconflict relation#y
is defined as the least symmetric relation 08&rT such that i) if *t N °t’ # 0 andt #t’ then
t#nt’ (immediate conflict) and ii) ifk#y < N z thenx#yz (inheritance w.r.t. causality).

DEFINITION 9 (OPEN OCCURRENCE NEX Anopen occurrence né an open net K such that

1. Nk is an ordinary occurrence net, namely irxXhere are no backward conflicts, i.e., for
any tt’' € Tg, if t #t' then £ Nt’* = 0, the causal relatior<k is a finitary strict partial
order and the conflict relatio#k is irreflexive;

2. each input open place is minimal w.ktk, i.e.,Vs€ Of. *s=0.

We are now ready to introduce the notion of process for open nets.

DEFINITION 10 (OPEN NET PROCES} A processof an open net Z is a mapping: K — Z
where K is an open occurrence net amdNk — Nz is a Petri net morphism, such that

ms(Of) COf  and ms(Og) C O5.

Observe that the mapping from the occurrencekht the the original neZ is not, in general,

an open net morphism. In fact, the process mapping, differently from open net morphisms, must
be a simulation, i.e., it must preserve the behaviour. Furthermore, the image of an open place
in K must be an open place # since tokens can be produced (consumed) by the environment
only in input (output) open places @t

In the following, when the meaning is clear from the context, we will sometimes identify a
procesgt: K — Z with the corresponding morphism: F(K) — F(Z) in the categonNet.

As usual, a process will be called deterministic if it represents a uniquely determined con-
current computation. First, an open occurrence net is deterministic if the underlying ordinary
occurrence net is deterministic, i.e., each place is in the pre-set of at most one transition. Fur-
thermore, the output open places must be maximal with respect to the causal order, i.e., an
output open place cannot be in the pre-set of any transition. In fact, as already observed, an out-
put open placewhich is in the pre-set of a transititmepresents a token occurrence which can
be consumed either by the environment or by transitidnprocess will be called deterministic
if the underlying open occurrence net is deterministic.

10
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DEFINITION 11 (DETERMINISTIC OCCURRENCE NET AND PROCEJSAN open occurrence
net K is calleddeterministiaf

1. the underlying ordinary occurrence nekNs deterministic, i.e¥se€ &. |s*| < 1;
2. each output open place is maximal, i¥sc O, . s* = 0.

A procesgt: K — Z of an open net Z ideterministidf K is deterministic.

Example. A deterministic process for the open riedveler is shown in Fig. 7 on the left. The
morphism back to the original nataveler is implicitly represented by the labeling. Observe
that the requirement that each input place is minimal and each output place is maximal w.r.t. to
the causal order of the process has a natural graphical interpretation: the absence of backward
and forward conflicts extends to dangling arcs, i.e., in total, each place may have at most one
ingoing and one outgoing arc.

Next we introduce a category of processes, where objects are processes and arrows are pairs
of open net morphisms.

DEFINITION 12 (CATEGORY OF PROCESSESWe denote b¥Proc the category where objects
are processes and, given two procesggsKo — Zo andy : Ky — Z1, an arrowy : Ty — Ty
is a pair of open net morphismpg = (Y7 : Zog — Z1, Pk : Ko — Kj) such that the following
diagram (indeed the underlying diagram/iet) commutes

Ko Al Ky
prtond]
T M
Z e Z1

3.1 Projecting processes along embeddings

Let f : Zg — Z; be an open net morphism. As mentioned before, it is natural to expect that each
computation inZ; can be “projected” t&g, by considering only the part of the computation of
the larger net which is visible in the smaller net. The above intuition is formalized, in the case
of an open net embedding: Zo — Z;1, by showing how a process @f can be projected along

f giving a process of.

11



CONSTRUCTION13 (PROJECTION OF A PROCESSLet f : Zg — Z; be an open net embedding
and letm : K1 — Z; be a process af;. A projection ofry along f is a pair (1o, ) where
Th : Ko — Zp is a process 0Fgp andy : Ty — 14 is an arrow inProc, constructed as follows.
Consider the pullback af; andf in Net, thus obtaining the net morphisntg andi .

Neo 7€ N,

o \L"Tl

1
Nzy —— Nz,

Then Ko is obtained by takingNk, with the smallest sets of open places which make
Wk : Nk, = Nk, an open net morphism, namely

Of, =Wk (Of,)Uin(Wk) and Oy =k (O, ) Uout(yx).
andllJ = <qJK: f>

The next proposition shows that the notion of projection is well-defined, and restricts to deter-
ministic processes.

PROPOSITION14 The processt : Ko — Zp, as introduced in Construction 13, is well defined.
Furthermore, the projection of a deterministic process is still a deterministic process.

Proof .First observe thafg is an open occurrence net. Sinces injective, alsapk is injective,
and thusN, is isomorphic to the subnet &k, in the codomain ofpk, which is clearly an
ordinary occurrence net. Furthermore, we must show that each open input place is minimal. Let
s€ OIO. Then we have two possibilities:

i) Wk(s) € O_Izl'
Observe that*s = Y, 1( *Wk (s)). SinceK; is an open occurrence netik (s) = 0 and thus
*s=0.

ii) sein(YPk).
In this case® Yk (s) — Wk (*s) # 0. Recalling thaK; is an occurrence net and thifsbk (s)| < 1,
we conclude thapk (*s) = 0. Hence, as desireds= 0.

Now, observe thatt is clearly a morphism ifNet. Hence to conclude thatp is a well
defined process it only remains to show that it also satisfies

m(Of,) €03, and TH(O,) C O

Let us show, for instance, the first inclusion. ConsislerOJK“o. Since, by constructior®;; =
qJ,Zl(OJKfl) Uin(yk ) we distinguish two possibilities:

1)se PeH(0g,)
We havef (To(s)) = Tu (W (s)) € Tu(Og, ) and, by definition of processi (O, ) € OF, . Hence
() € f*l(OZ) C O}o, sincef is an open net morphism.

2)sein(Yk)

In this case,* Wk (s) — Wk (*s) # 0. SinceK; is an occurrence net, this means that there exists
t e *Wk(s) andyk(*s) =0, i.e., *s= 0. Now observe thaiy (t) € *(Pk () = *f(TH(9)).
Moreover, since the square in Construction 13 is a pullbagh) ¢ f(*1H(s)). Infact, if u(t) €
f(*To(s)) then there would bé&' in Nk, such thatf (mp(t')) = m(t), hencet’ € *s and thus

Yk (t') € *Yk(s), which should be empty. Summing mp(t) belongs to® f (Th(s)) — f(*T(S)),
which thereby is non-empty. Hentg(s) € in(f).

12



Let us prove the second part, assume thatK; — Z; is a deterministic process df. As
in the general case, the e, is isomorphic to the subnet dfg, in the codomain ofpk, and
thus it is an ordinary deterministic occurrence net. We already knovVv1$1&tO§0. *s=0,
andmp(O,) € 07, To(Ok,) € Oz,. Thus we only need to show thds € O, . s* = 0. Let
s € Oi,. To prove thats® = 0 just distinguish the case ¥)e w;l(o;l) and 2)s € out(Pk).
Then proceed exactly as in points (1) and (2) above, by substitutifigiid out(-) for + and
in(+), respectively. m|

The processy of Zp is uniquely determined up to isomorphism. Observe that fixing a rep-
resentative in the isomorphism classmfstill we can have different choices fark (obtained
one from the other by composing with an automorphism dlgy).

Example. The embedding ofraveler into Global in Fig. 4 induces a projection of open net
processes in the opposite direction. For instance, the right part of Fig. 7 shows a process of
Global. Its projection along the embedding Dhveler into Global is shown on the left part of

the same figure. Notice how transitiatknowledged, which consumes a token in plaaek, is
replaced in the projection by a dangling output arc: an internal action in the larger net becomes
an interaction with the environment in the smaller one.

REMARK 15 The construction of categoBraoc strictly resembles the construction of an ar-
row category. Denote b\ : Proc — ONet the projection functor which maps each process
1: K — Zto Z and each process arrdypz, Yk ) to Yz. Then, given an embeddirfg: Zo — Z3
and a process; : K1 — Z1, a projection ofry along f, as defined above, is a cartesian arrow
for my andf.

If we restrict our attention to open net embeddings, thus obtaining the subcateghiees
andProc*, then the corresponding functdi* is a fibration with total categoriroc* and base
categoryONet*. Furthermore, the fibratioh™* is split. In fact, the injectivity of the arrows in
ONet* provides a choice of the pullbacks which are used for projections. Look at the diagram in
Construction 13. Wheih is injective, alsajk is injective and thus we have a canonical choice
(Ko, Wk, TG) for the construction, i.e.

e occurrence net K
Nk is the subnet ok, identified as the image af; the open places df; are the
open places i1 which belong tK; and the “interface places”, namely the placeKjn
whose precondition is outsid€), i.e.

Oy, = (O, NS U{s € S¢ : *sN (Tiy — Tiey) # 0}
andO,, is defined in similar way.
0
e arrowsyy andTi:
Yy the inclusion ofKj into K1 and T, is uniquely determined by the requirement of

commutativity.

The cleavage(f,m) = (1, (f, Wk )) defined in this way is splitting.

4 Composing open nets

In this section we introduce a basic mechanism for composing open nets which will be charac-
terized as a pushout construction in the category of open nets. Intuitively, two opetyresid

Z, are composed by specifying a common subfigtand then by joining the two nets along

Zo. Consider, for instance, the open nets for the local workfldksgeler and Agency in the
middle of Fig. 2. The two nets share the subbethmon depicted in the top of the same figure,
which represents the “glue” between the two components. Th&lnbél resulting from the
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Figure 8: Categor{DNet does not have all pushouts.

composition ofTraveler and Agency over the shared subnébmmon is shown in the bottom
part of Fig. 2. This composition is only defined if the embeddings of the components into the
resulting net satisfy the constraints of open net morphisms. For example, if we remove the ingo-
ing dangling arc of the pladicket in the netTraveler, the embedding a€ommon into Traveler
would still represent a legal open net morphism. However, in this case the embeddiag of
eler into Global would become illegal because of the new arc frieaueTicket (see condition
(i) of Definition 5).

Formally, given two netZ; andZ; and a sparfy : Zp — Z; and fy : Zy — Z,, the compo-
sition operation constructs the corresponding pusho@Ntet. CategoryONet does not have
all pushouts, while categoiyet does. We will see that this corresponds to the intuition that the
composition operation can be performedNet and then lifted tcONet, but only when it re-
spects the interfaces specified by the various components, e.g., a new transition can be attached
to a place only if such place is open. For instance it is possible to verify that there is no pushout
for the arrows in Fig. 8, since intuitively the construction should merge all the places ramed
attaching transitiom to a place irZ; which is not (output) open.

We start by recalling a characterization of pushouts in catejety

f f . .
PROPOSITION16 (PUSHOUT INNet) Let Ny <= Ng -5 N be a span irNet. Then its pushout

always exists, and can be defined aisglﬂ N3 b N2, where the sets of places and transitions of
N3 are computed as the pushout3at of the corresponding components:

S=5+5S and B=Ti+1, T2,

with source and target functions defined by: for al T3, if t = () witht € Tyand i€ {1,2}
then*t = o;®(°t) and t* = ;¥ (4;*).

Next we formalize the condition which ensures the composability of a spaiNii.
DEFINITION 17 (COMPOSABLE SPAN Let Z; <f—1 Zo 3 Z, be a span of open net morphisms.
We say that fand f are composabléf

1. foin(f1)) C OF, and f(out(f1)) C OZ;

2. fi(in(f2)) C OZ and fi(out(fz)) C Oz, .

In words, f; and f; are composable if the places which are used as interfacég pmely the
placesn(f1) andout(f1), are mapped by, to input and output open places4sa, and also the
symmetric condition holds. If, and only if, this condition is satisfied the pushotit @ind f,
can be computed iNet and then lifted tdDNet.

14
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Z / \ Z
g ewm
Figure 9: Pushout i©ONet.

PROPOSITION18 (PUSHOUTS INONet) Let 73 <f—1 Zo f—2> Z, be a span inONet (see the dia-
gramin Fig. 9). Compute the pushout of the corresponding diagram in the catidgbobtain-
ing the net N, and the morphisme; anda», and then take as open places, fog X+, —},

0%, ={ss€ Ss|ay*(s3) CO% Aay'(ss) C O}
Then(a1,Z3,07) is the pushout i©ONet of f; and % if and only if f; and £, are composable.

Proof . (if part) Let us show that, whefi; and f, are composable, thefy s Z3 & Zois a
pushout inONet.
We first prove thati; anda; are open net morphisms. The proof is carried out explicitly
only for ay, since the case af;, is completely analogous. First notice that

in(0(1) = fl(in(fz)).

In fact, lets; € in(a1). Hence there exist a transitione *a1(sy) — a1(*sy). Since the square

in Fig. 9 is a pushout ifNet, there exists; € S, such thatn1(s1) = a2(sp) and alsd; € *s,
such thato,(tp) =tz andt, ¢ f2(To). By using again the properties of pushouts, we deduce
the existence ofp € S such thatfi(sg) = s1 and f2(sp) = 2. Now, to € *fa(so) — f2(To) C

* f2(s0) — f2(*s0). Hencesp € in( f2) and thusfy(sg) = s1 € f1(in(f2)). This proves thah(a) C
f1(in(f2)). The converse inclusion can be proved by reverting the proof steps.

Now, a1 is clearly a morphism iNet by construction. Furthermore, it satisfies also the
conditiona;*(03,) Uin(az) € OF, anda;j *(Oz,) Uout(as) C O, . For instance, the condition
over input places is proved by noticing tha}’l(ogfs) C OZ by construction, andn(a1) =
f1(in(f2)) C OZ by condition (2) of composability (Definition 17). Thus; is an open net
morphism.

Moreover, for any pair of open net morphisnfly, : Z3 — Z4 and : Zo — Z4, such that

B1o f1 = Boo fo, sinceNz, 4 Nz, bl Nz, is a pushout inNet, there exists a unique arrow
h:Zz — Z4 in Net such that the diagram below commutes.

We only need to prove théitis an open net morphism, by showing that it satisfies the condition

over open places of Definition 5. Let us prove, for instance, ftid{ O} ) Uin(h) C OF. We
divide the proof in two parts:

- h’l(OI) C Og
Letss € h™1(0}), i.e.,s3 € Ssandh(ss) € O . Lets € o; *(s) for somei € {1,2}. By hoa =
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Bi we haveBi(s) = h(ss) € Of . Thus, sincg; is an open net morphisrs, € O;". In other words,
art(ss) € Of anda*(ss) € OF . Hence, by definition 003, s3 € OF.

-in(h) € OF

Letss € in(h), namely*h(ss) — h(*s3) # 0. Observe that i3 = a;(s) for somei € {1,2}, then
we have that

0# *h(s3) — h(*s3)

= *h(ai(s)) —h(*ai(s))

= *Bi(s) —h(*ai(s))

C *Bi(s) —h(ai(*s)) [since *ai(s) 2 ai(*s)]
= *Bi(s) —Bi("*s)

Therefores € in(B;), and thus, sincp; is an open net morphisrs, € O;F. Hencess € a; 1(O).
Summing up, we deduce thag *(s3) € Of anda,(ss) C O5. Hence, by definition 003,
s3€ 0f.

(only if part) To prove composability of 1 andf; is also necessary for ensuring that the pushout
computed inNet is lifted to a pushout irONet, suppose, for instance, that there exstse
fa(in(f1)) ands; ¢ O{. Hence there isg € in(f1) such that, = fa(s).

Suppose, by contradiction, that the described construction gives a pLBhg%nZ;:, & Z;
in ONet. Hence the places; = f1(sg) ands, = f2(sp) have a common imags = a1(s;) =
02(s2). Sincesy € in(f1), there existdy € *fi(sp) — f1( °sp). Thussz = ai(s1) € as(tr)°.
Moreover, from the fact thas, ¢ O, by definition of open net morphism, we haseg in(az).
Hence there exist € *s such thatos(tz) = ai(t1). Therefore there isg € To such that
f1(to) = t1 and f,(tg) = to. But this contradicts the fact that€ * f1(so) — f1(*%o)- O

It is worth stressing that the pushout @Net might exists also wheri; and f; are not
composable. This is the case for the diagram in Fig. 10.(a), which is a pushOMNét al-
though the underlying diagram et is not a pushout. Indeed,; and f, arenot composable
since, for instancefz(out(f1)) = f2({so}) = {2} € O5 . In this case the construction described
in Proposition 18 does not work: it leads to the diagram in Fig. 10.(b), where the mappings
aj : Z — Zz are not open net morphisms, since, for instasice out(a1), buts; ¢ O; .

One could be tempted to assume a different notion of composable span, i.e., tofdefine
andf; composable whenever their pushout exist®Met. However, according to our intuition,
morphismsf; andf; define a kind of “composition plan”, which specifies that the image&yof
in Z3 andZ,; must be fused. The effect of the composition operation should be local, in the sense
that nothing more than the images#fshould be affected by the fusion. This fact is formalized
by requiring that the pushout i@Net is obtained by lifting the pushout iNet. Observe that,
instead, in the pushout depicted in Fig. 10.(a), also transitipasdt,, which are not in the
common subnefy, get fused.

5 Amalgamating deter ministic processes

Let fy : Zg — Z3 andf, : Zyp — Z, be a composable span of open net embeddings and consider
the corresponding composition, i.e., the pushouDiet, as depicted in Fig. 9. We would like

to establish a clear relationship among the behaviours of the involved nets. Roughly speak-
ing, we would like that the behaviour @f; could be constructed “compositionally” out of the
behaviours o¥Z; andZ,.

In this section we show how this can be done for deterministic processes. Given two de-
terministic processes; of Z; andty of Z; which “agree” onZg, we construct a deterministic
processt of Z3 by “amalgamating’it; andrp. Vice versa, each deterministic processof Z3
can be projected over two deterministic processeandty, of Z; andZy, respectively, which
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Figure 10: (a) A pushout i©@Net of two non-composable arrows. (b) The pushout of the same
arrows inNet.

can be amalgamated to produkg again. Hence, all and only the deterministic processes of

Z3 can be obtained by amalgamating the deterministic processes of the compbnantiZ,.

This is formalized by showing that, working up to isomorphism, the amalgamation and decom-
position operations are inverse to each other. This leads to a bijective correspondence between
the processes df3 and pair of processes of the componezitsand Z, which agree on the
common subnef.

5.1 Pushout of deterministic occurrence open nets

As a first step towards the amalgamation of processes we identify a suitable condition which
ensures that the pushout of deterministic occurrence open nets exists and produces a net in
the same class. This condition will be used later to formalize the intuitive idea of processes of
different nets which “agree” on a common part.

First, given a spary & Ko A K> we introduce the notion of causality relation induced
by K1 andK; overKg. When the two nets are composed the corresponding causality relations
get “fused”. Hence, to avoid the creation of cyclic causal dependencies in the resulting net, the
induced causality will be required to be a strict partial order.

DEFINITION 19 (INDUCED CAUSALITY AND CONSISTENT SPAN Let K3 <f—1 Ko f—2> Ko be a
span inONet, where K (i € {0,1,2}) are occurrence open nets. The relation of causatity»
induced over I§ by K; and Ko, through fi and £ is the least transitive relation such that for
any , Yo in Ko, if f1(Xo) <1 f1(yo) or fa(xo) <2 f2(yo) then % <12 Yo.

We say that the span onsistentwritten f; 1 fp, if f; and £ are composable and the
induced causality 1 > is a finitary strict partial order.

We next show that the composition operatiof©Net, when applied to a consistent span of
deterministic occurrence nets, produces a deterministic occurrence net. We first need a prelim-
inary result.

17



LEMMA 20 Let Ky <f—1 Ko f—2> K2 be a composable span @Net, where K (i € {0,1,2}) are
deterministic occurrence open nets. th?% Ks bicd K> be the pushout.

/\
\/

For any x, Yo in Ko, if we let x = a1(f1(Xo)) = a2(fa(x0)) and y5 = a1(f1(yo)) = a2(f2(yo)),
then

Xo<12Yo iff X3<zys.
Proof . Below we will freely use the fact that open net morphisms, and thus, in particular

a1 anday, preserve the causality relation, in the sense that i; y; in K; (i € {1,2}) then
ai (%) <3 ai(¥i).

(=) Suppose thatg <12 Yo. There are two possible cases:
- The causal dependence is directly induced by a causal dependeRgednKjy, namely
fi(Xo) <i fi(yo) for somei € {1,2}. Sincea; preserve causalityy;(fi(xo)) <3 di(fi(yo)),
namelyxs <3 ys.
- Otherwise, the causal dependence is generated by the transitive closure, namely 2zbere is
such thatxp <12 zp <12 Yo. Hence, an inductive reasoning allows us to concludethats
0i(fi(z0)) <3ys and thusxz <3 ya.

(<) Let <; denote the immediate causalityiy, i.e.,x <; yif X <;j y and there is na such
thatx <j z<;y. It is easy to see that for amg, ys in Ks,

X3 <3ys iff therearei € {1,2}, x;,Vi in K; such thats = ai(x), y3 = ai(Vi), Xi <i Vi

Assume thaks <3 ys. Then there is &3 chainxg = x3 <3 X5 <3... <3 Xj =ys. LetC =
{x3,...,X3}. By the remark above, i€ is included inai(SUT) for somei € {1,2}, then
fi(xo) <i fi(Yo), and thus¢p <12 Yo. More generally, sinc&s is obtained as pushout &f and
K, the chainC can be divided intd+ 1 segmentss, .. xgl, xgz x3 ,-..Y3, such that
each segment is included in (S U T;) for somei € {1,2} and any “border” eIemer)t3J isin
a1 (S UT)N uz(SZUTz) By general properties of pushouts, for ajnye can flndxJ € SHU Ty,
such thaty; (f; (xo)) = x3J fori e {1,2}.

Therefore, by the remark about immediate preceden&gjrsurely, for anyj there is some
i € {1,2}, such that . _

fi() <i fi(x™) )
and, similarly, i (xo) <i, fi(x$) andf;(x5) <i, fi(yo) for suitableix, iy € {1,2}. But recalling the
definition of induced causality, we deduce tigt<1 xé <12 X(Z) <12 x('§ <12 Yo, and thus
Xo <1,2 Yo- O

PROPOSITION21 Let Kg & Ko i K2 be a composable span @Net, where K (i € {0,1,2})
are deterministic occurrence open nets, and Igtglik Ks bicd K2 be the pushout i©ONet.

f1 Ko f2
K1 / \ Kz

ap v Ka g

Then f 1 f2 if and only if the pushout objectqs a deterministic occurrence open net.
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Proof . (=) We know thatK3 is a well defined open net. To prove th&g is a deterministic
open occurrence net we start showing that the underlyin§ipgts a deterministic occurrence
net.

(1.a)causality< s is a strict partial order.

Assume, by contradiction, thats is not irreflexive. Hence we can find a cycle of immediate
causality inKs, i.e., X3 <3X§ <3... <3 X} <33, an letC = {x3,...,x3}. The cycleC cannot
be included im (S UT;) for somei € {1,2}, otherwise<; would be cyclic inK;. Hence there
exists an itenxz € CNa1(STUTL) Naz(SUT,). Considenxg in Ko such thao; (fi(xp)) = xs.
Sincexs <3 X3, by Lemma 20, we havey <12 xg contradicting the hypothesis that the span is
consistent.

(1.b) causality< s is finitary.

The proof can be done as in the point before, by exploiting the finitariness of causdfity in
andKjy, and Lemma 20. Assuming the existence of a infinite descending chain of K3 we
deduce thak 1, has an infinite descending chainh, contradicting the assumption that the
span is consistent and thus » is finitary.

(1.c)K3 does not have forward conflicts

Suppose, by contradiction, that there exists a p&ce Sz such thafss*| > 1. Letts,t]; € s3*
such thattz # t5. Then surelyts € a1(T1) — a2(T2) andty € ax(Tz) — ai(Ty), otherwise we
would have a forward conflict in one &f; or K». Thereforess € a1(S1) N02(S). Lets; € §
such thato1(s1) = s3. Thens; € out(a1). But, sinces;® # 0 this contradicts the assumption
thatK; is a deterministic open net.

(1.d)Kz does not have backward conflicts

Assume, by contradiction, that there is a backward confliét4ni.e. there arés,t € Tz with
a common place in their post-s&f € t3* Nt;*. Considers; € S; such thatiy(s;) = sz. Since
K2 andK3 do not have backward conflicts, necessatilg a1(T1) — az(T2). Thens; € in(ay),
and thus, since; is an open net morphisrg; € 01“. But this contradicts the fact thit is an
open occurrence net, sinsge t;°.

To conclude it remains to show the validity of the conditions over open places:

(2.a)Vs€ O3.8" =0
Same proof as point (1.c)

(2.b)Vse OF. *s=0.
Same proof as point (1.d)

(«=) LetKy & Ko A K2 be a composable span@Net, whereK; (i € {0, 1, 2}) are deterministic
occurrence open nets and assume that the pushpig an open deterministic net. We must
show that induced causality 1 > is a finitary strict partial order. Lefz = ay0 fy = a0 fo.

To conclude just recall that 3 is a finitary strict partial order and then use the fact that, by
Lemma 20xq <1,2 Yo iff f3(X0) <3 f3(Yo). O

5.2 Amalgamating deter ministic processes

As mentioned before two deterministic processgof Z; and T, of Z; can be amalgamated

only when they agree on the common sulbigtan idea which is formalized by resorting to the
notion of consistent span of deterministic occurrence open nets. In the rest of this section we
will refer to a fixed pushout diagram i@Net, as represented in Fig. 9, whefeand f, are a
composable span ajpen net embeddings
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Figure 11: Figures for Lemma 23.

DEFINITION 22 (AGREEMENT OF DETERMINISTIC PROCESSBSWe say that two determinis-
tic processest : K1 — Z; andmy : Ko — Z, agreeon 2, if there are projectiongmp, ') along

1 2
fi of 1 for i € {1,2} such thatp} 1 Wz (i.e., the span K &K Ko ¥ Ky is consistent). In this case
(T, Y1) and (1o, W?) are calledagreement projectiorfer Ty and .

Before introducing the notion of amalgamation we need to recall a simple technical result.

LEmMMA 23 1) Consider the diagram iBet depicted in Fig 11.(a). If the diagram is a pushout
and f is injective, then the diagram is also a pullback.

2) Consider a commuting diagram in a categdy as depicted in Fig 11.(b). If the internal
square, marked byB, and the external one are pullbacks, then other internal square is a
pullback as well.

DEFINITION 24 (AMALGAMATION OF PROCESSES Let i : Ki — Z (i € {0,1,2,3}) be de-
terministic processes and Igti, ) and (1o, P?) be agreement projections af; and T
along f; and % (see Fig. 12.(a)). We say thag is an amalgamatiorof 13 and 1, written
TR =Tl +y1 42 TR, if there exist projectiongmy, ¢') and (n2,<p2> of T3 over Z and %, respec-
tively, such that the upper square is a pushoubDidet.

We next give a more constructive characterization of process amalgamation, which also
proves that the result is unique up to isomorphism.

PROPOSITION25 (AMALGAMATION CONSTRUCTION) Lett; : K1 — Z; andT : Ko — Z; be
deterministic processes that agree ag @nd let(1, $*) and (T, $?) be corresponding agree-
ment projections. Then tlenalgamationt; Fyry2 Tl is a processt : K3 — Z3, where the net

K3 is obtained as the pushout®Net of Pk : Ko — Ky andyz : Ko — Kz and the process map-
ping T3 : K3 — Z3 is uniquely determined by the universal property of the underlying pushout
diagram inNet (see Fig. 12.(a)). Hencey + 1 42 Tk is unique up to isomorphism.

Proof . We first show thatrz, defined as above, is a well-defined procesZ ©fSince by
hypothesispk 1 @2, we know by Proposition 21, thats is a deterministic occurrence open
net.

Furthermore7ts is an arrow inNet. To conclude thatts is a deterministic open net process
we prove thatig(Of, ) C OF, andms(O,) € OZ,.

To this aim, we first observe that in the diagram of Fig. 12, the square with veKicdss,
73,7, is apullback. Let us show, for instance, that the place component of the morphisms form a
pullback. Actually, it suffices to show that givene€ Sz, ands; € Sk, such thatiy(s1) = 1i(s;),
there exists; € S, such thatp (s)) = ;. In fact, by commutativity of the diagram this implies
thatay(m(s))) = ai(s1), and thus, by injectivity obi1, m(s;) = s1. Furthermore, uniqueness
of s, follows from the injectivity ofgg . Hence, let us considei € Sz, ands; € S¢, such that
a1(s1) = Ta(Sy) = ss. If S5 = @ (sy) for somes] € &,, then we conclude. Otherwise, since
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Figure 12: Amalgamation of open net processes.

the upper square is a pushout, necessafjly ¢ (s,) for somes, € S,. Theno(Tk(s,)) =
s3 = a1(s1). Since the squargy, Z1, Z», Z3 is a pushout, this implies that there exisgsn Zp
such thatf1(so) = s1 and f2(s) = T(S,). But, since the squarg,, Ky, Ko, Zo is a pullback,
there must be), € S¢, such thatp2 (s,) = S,. Hence, if we taks| = i (<), we havepg (X)) =

Pk (Wk () = Gk (Wi (30)) = Gk (S3) = 5, as desired.

Now, takes, € OJK“3 and consideri(s;). We distinguish the following (non exclusive) cases:

- T3(s;) = ai(sy) for somes; € &, .

Since, as observed above, the squéreKs, Z3, Z; is a pullback, there is] € S, such that
@ (S)) = s3 andmy(s;) = s1. From the first equality, sincgg is an open net morphism, we
deduce thas| € OE' and thus, by the second equality, singeis a processs; € OZ'

- TB(S5) = 02(sp) for somes; € S,
As above, we can concludg € OZ-

Summing up the two cases, we have togt!(ms(ss)) C OZ and o, }(15(s3)) C OZ-
Therefore, by construction of the pushout@Net (see Proposition 18jt3(s3) € O}s. Thus
3(Ok,) C OF,. The other inclusion, i.eri3(Oy,) C Oz, can be shown in a completely sym-
metric way.

The last thing to observe is thét;, @) is a projection ofi alonga; , fori € {1,2}. But
this fact immediately follows from the above observations, since the sqar&s, Z3, Z; are
pullbacks inNet. Furthermore®; = |, *(0F) Uin(gl). In fact, ¢} is an open net morphism
and thuscp{[l(og) Uin(g) C OF. To prove the other inclusion, for instance, whes 1,
lets; € Of,. If gi(s1) € O, we have thas; € (pﬁ_l(ofgs). Otherwise, by recalling how the
open places of the pushout object are defined (see Proposition 18), we deduce that there exists
S € &, such thatg? () = @k (s1) ands, ¢ OE- Since the upper square is a pushout, there
must besy € S, such thanp%(so) =5 andeﬁ(so) =s. Sincelp& is an open net morphism,
this implies thakp € OJK“O. Sinces, ¢ OIZ andry is a projection oft,, we have thasy € in(qJﬁ).
Therefore, since the upper square is a pushoens; € in(@ ), as desired. O

The amalgamation construction can be given a more elegant (although less constructive)
characterization. In fact, process (and the corresponding process morphispheindg?) can
be obtained by taking the pushoutRnoc of the arrowsp?® : p — T4 andy? : T — To.

The next result shows how each deterministic process of a composed net can be constructed
as the amalgamation of deterministic processes of the components.
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PROPOSITION26 (DECOMPOSITION OF PROCESSHSLetTt3: K3 — Z3 be a deterministic pro-
cess of Zand, forie {1,2}, let (15, @) be projections oft; alonga;. Then processi can be
recovered as a suitable amalgamationmfand .

Proof . Let (5, @) be projections oftz alonga; for i € {1,2}. Take any projectiofiro, Y*) of
1y along f1. The non-dotted part of the diagram below summarizes the situation:

. }w%
Then projection(Tio, Y?) of T, along f; is obtained by definingZ as the arrow determined

by the universal property of the pullback with vertid€s, Z3, Z, andK;. To show that the
projection is well-defined, first observe two facts

Nez—Z

(A)

3

Nz 2z
/ >< E
A

1) the square with verticdsy, Zg, Z2, Kz is indeed a pullback iiet.

In fact, by construction, the diagram commutes. Furthermore, in catédgirthe square with
verticesKo, Kz, Z3, Zp is a pullback (since it can be viewed as the composition of two pullbacks
Ko, K1, Z1, Zg andKy, Kz, Z1, Z3). However the same square is composed oltHpK,, Zo, Zp
andKj, Ks, Z3, Zo. Hence, by Lemma 23, also the squKig Zo, Zo, K> is a pullback inNet.

2) the upper square with vertic&s, K1, Kz, K> is a pushout irNet.
In fact, the vertical faces of the cube are pullbacks and the lower face is a pushout, hence, by
the 3-cube lemma [CEL96], we can conclude that the upper square is a pushout.

Let us prove thatmo, Y?) is a well-defined projection af along f,, by showing that

Of, = W2 "H(OF,) Uin(U2) andOy, = U ~(O,) Uout(4).

We restrict our attention to the first equality (the second one is proved by a symmetric reason-
ing), and we show the two inclusions separately.

(C) Let o € Of . Since(mo, ') is a projection ofr, thenso € q&ﬂo@ Uin(Wg). We
distinguish two cases

- Letso €Yt _1(021) i.e., Wk (so ) € O, . Then, sincgmy, @') is a projection, againpi (so) €
% (O+ in(@)- If @k (Wi (%0)) € OF, then, observing thapg (W (So)) = @k (Wi (s0)) and
recalling thatqqz< is an open net morphism, we conclude thig(so) € Ox,, and thussp €

wﬁ_l(ozz). If instead W (so) € in(@k) then *@k (WE (So0)) — @ (*Wk (s0)) # 0. SinceK is an
occurrence open net anjgk () is input open we have thatpk (s) = 0. Thus, since the upper
square is a pushouti? (sp) — Wz (*so) # 0. Hencesp € in(Yg).

- Let 5o € in(Yg). Thus there exists; € *Wi (so) — Wi ( *so). Since the upper square is a
pushout (t1) € *¢& (WX (So)) — Gk (*WZ (<o) henceyig (so) € in(qR) C OF,, sincegg is an
open net morphism. Heneg € wﬁfl(ozz). Observe that, in particular, we have shown that
W (in(Wk)) € OK,-

(D) Letsg € wﬁ‘l(ozz) Uin(WZ). We distinguish two cases
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- Let so € Wi 71( ), 1., WE (s0) € Of,. Since(my, ¢?) is a projection ofrz, we have that
ye@ (O%,) Uin(9g). If @& (WR (s0)) € O, then, sinceg is an open net morphism

UJK( ) € O, and thuss € O If insteadyg (o) € in(¢g) then* ¢ (Wi (s0)) — @k ("W (s0)) #
0. Since the upper square is a pushout, this implies thag (so) — Wik ( *s0) # 0 and thus
so € in(Wk).

-Letsy € in(qJK) Then* qJK( ) — W& (*s0) # 0. Since the upper square is a pushout, we have
that * @k (W (s0)) — @k ( *Wk (s0)) # 0. Sincegy is an open net morphisnii (So) € O, and
thussy € OIO

To conclude the proof, we need only to show thgt T WZ. We observe that the upper
square, which is known to be a pushoulet, is also a pushout i®@Net. To this aim we prove
that, forx e {+, -1},

OF, = {3 € Sk, | 0k '(s8) CO5 A @ (s5) C O}

Let us consider the condition on input places<+). Letss € OJKfs. Then, ifg(ss) C OE for
i € {1,2}, since is an open net morphism. For the converse inclusion, assume that

Gk () COf and @& (ss) COf, 3)

Since the upper square is a pushoWtlat, there iss; € S (for somei € {1,2}) such thatp(s) =
s3. Assume, without loss of generality, that there exgste S; such thatpg (s;) = ss. Hence,

by (3),s1 € O, . Sincery is a projection ofiz, Of = q{l(o;s) Uin(@g). If s1 € (ﬂl[l(OJr
then we conclude. Otherwise sf € in(@k) then there exists € *@ (s1) — cnﬁ('sl). Since the
upper square is a pushouthiet, there ares; in Kz andt; € *s; such thatg () = @ (s1) = Ss

and ¢ (tz) = ts. Sinces; € qf( ), by (3) we have thas; € O, WhICh contradicts the
assumption thak is an occurrence net sincs, # 0.

The condition over output places£ —) is dealt with in a symmetric way, by exploiting the
fact that the occurrence nig is deterministic. This allows us to conclude tiigt t W2 since
this is a necessary condition to ensure that the pushout, compubéet end lifted toONet
gives a deterministic occurrence open net (see Proposition 21). |

The amalgamation and decomposition results for open net processes are summarized in
a theorem which establishes a bijective correspondence between the procedsemndZ,
which agree orZy and the processes @§. To formulate this result we need some preliminary
observations.

Notice that an isomorphisrh: Zg — Z; in ONet is an isomorphisnf : F(Z;) — F(Z,) in
Net such thatf (O} ) = Of andf(Op) = O; . LetZ be an open net. Two deterministic processes
of Z, m: K — Z and’ : K' — Z, are calledsomorphicwritten Tt~ 17, if they are isomorphic
in Proc, i.e., if there exists an isomorphisp: K — K’ in ONet such that (inNet) it holds
Top = 7. In this case we will say that : T— 17 is a process isomorphism (to mean that
(p,idz) is a process isomorphism). Lat: K — Z be a process. We denote fiy the set of
processes df isomorphic tam, i.e.,[1] = {17 : K' = Z | ' ~ 11}. Then the set of (isomorphism
classes of) processesois denoted bypProc(2), i.e.,

DProc(Z) = {[r] | m: K — Z is a deterministic proce}s

Given a spaiz; <f—1 Zo g Z, in ONgt, the isomorphism classes of deterministic processé&s of
andZ; which agree o1Z, denoted byDProc(Z; & Zy f Z5), is the set

1 2
{[y gt %] | W, Y? agreement projections far, T along fy, f2},
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; ; ; : tooy? ¢ & ;
where isomorphism of process spans is deflnedrbyt T — Th) ~ (T < Ty — T,) if there
are process isomorphisms: @ — ¢ such that the following diagram commutes

K/

wE Wk
1 Ko K2
% K, % K

2

K1 0
NV Y.
Zal f, 2 f,

Z

Observe that this implies that, € [o] andm; and thatit, agree orTt,.

THEOREM 27 (AMALGAMATION THEOREM) LetZy,Z3,7Z5,Z3 be asin Fig. 9 and assume that
the square is a pushout of two composable open net embeddingsdff,. Then there are
composition and decomposition functions:

Comp : DProc(Zy < Zo 3 7,) — DProc(Zs)
and
Dec : DProc(Zs) — DProc(Zy 4% o 3 7,)
establishing a bijective correspondence betwB@&noc(Z3) andDProc(Z; &L Zo 5 Z5).

Proof Sketch.Let us definedComp : DProc(Z1 &L Zy i Zy) — DProc(Z3) by

1 2
Comp([re & 10 % 1)) = [18],
wheretg = T4 +1 42 Tk is the amalgamation aft; and Tt (see Definition 24). Furthermore

Dec : DProc(Zs) — DProc(Zy 4% Zo 2 Z,) is defined by

2

Dec([rg)) = [m ﬂ T % ],

1 2
wherery ¢ L1%) v, T is the decomposition afs as defined in Proposition 26. Then it is possible
to prove thalComp andDec are well-defined and inverse to each other. |

Example. The amalgamation theorem is exemplified in Fig. 3. Two processes for the compo-
nent netslraveler andAgency which agree on the shared sub@emmon, i.e., such that their
projections oveCommon coincide, can be amalgamated to produce a process for the composed
netGlobal. Vice versa, each process of the G#tbal can be reconstructed as amalgamation of
compatible processes of the component nets.

6 Conclusionsand related work

In this paper we have introducegben netsan extension of ordinary Petri nets which allows

to specify open concurrent systems, interacting with an external environment. Open nets are
endowed with a composition operation, suitable to model both interaction through open places
and synchronization of transitions. The generalization to open nets of the Goltz-Reisig process
semantics has been shown to be compositional with respect to the composition operation over
open nets: if two netg&; andZ, are composed, producing a &y, then the processes @ can

be obtained as amalgamations of processeg @ndZ,, and vice versa, any process&f can

be decomposed into processes of the component nets. The amalgamation and decomposition
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operations are shown to be inverse to each other, leading to a bijective correspondence between
the processes af; and pair of processes @f andZ, which agree on the common subgt

As mentioned in the introduction, the last result appears to be related to the amalgama-
tion theorem for data-types in the framework of algebraic specifications [EM85]. There an
amalgamation construction allows one to “combine” any two algeRAraand A, of algebraic
specificationSPEG andSPEG having a common subspecificati®®EG, if and only if the
restrictions ofA; andA; to SPEG coincide. The amalgamation construction produces a unique
algebralA; of specificatiorBPEG, union ofSPEG andSPEG. The fact that the amalgamation
of algebras is a pushout construction in the Grothendick’s category of generalized algebras, sug-
gests the possibility of having a similar characterization for process amalgamation using fibred
categories (see also Remark 15).

Open nets have been partly inspired by the notioropén graph transformation sys-
tem[Hec98], an extension of graph transformation for specifying reactive systems. In fact,
P/T Petri nets can be seen as a special case of graph transformation systems [Cor96] and this
correspondence extends to open nets and open graph transformation systems. However, a com-
positionality result corresponding to Theorem 27 is still lacking in this more general setting.

In the field of Petri nets, several other approaches to net composition have been proposed
in the literature. Most of them can be classified as algebraic approaches. A first family, which
dates back to the papers [NPW81, Win87a], considers a category of Petri nets where morphisms
arise by viewing a Petri net as the signature of a multisorted algebra, the sorts being the places.
Then an unfolding semantics is defined, which is characterized as a categorical right adjoint.
This fact ensures its compositionality with respect to operations on nets defined in terms of
categorical limits (e.g., net synchronization [Win87b]). The algebraic view is pushed forward
in another seminal paper [MM90], where a Petri net is still seen as a signature, and its compu-
tational model (the category of deterministic processes in the sense of Best-Devillers [BD87])
is characterized as the free algebra (up to suitable axioms) over such a signature. Being ob-
tained as a free construction, which in categorical terms provides a left adjoint, in this case the
semantics is compositional with respect to operations defined in terms of colimits. However, in
both cases, differently from what happens in our approach, there is no distinction between open
and internal places. Basically, every place of aMetan be implicitly seen as open because it
can be used for connectiigito other nets. On the other hand, the semantics (e.g., the notions
of process in [GR83] or [MM90]) does not take into account explicitly the interaction with the
environment.

A second, more recent class of approaches to Petri net composition aims at defining a “cal-
culus of nets”, where a set of process algebra-like operators allows to build complex nets
starting from a suitable set of basic net components. For instance, in the Petri Box calcu-
lus [BDH92, KEB94, KB99] a special class of nets, calddin boxeg(safe and clean nets),
provides the basic components. Plain boxes are then combined by means of operations which
can all be seen as an instance of refinement over suitable nets. More precisely, the authors iden-
tify a special family of nets, calledperator boxesOnce a set of operator boxes is fixed, the
composition is realized by refining such operator boxes with plain boxes, an operation which
produces a net still identifiable with a plain box. The calculus is given a compositional seman-
tics (both interleaving and concurrent). Although based on some common ideas, like the use of
interface places, this approach is quite different from ours, since it mainly relies on refinement
and it focuses on a special class of nets and on the possibility of defining a kind of process
algebra over such nets, where plain boxes are constants and operator boxes are the operators of
the algebra.

Another relevant approach in the second family, closer to ours, is presented in the pa-
pers [NPS95, PW98], which introduce an algebra of (labeled) Petri nets with interfaces. An
interface consists of a set of public places and transitions, where a net can be extended and
combined with other nets by means of composition operators. E.g., it is possible to add new
transitions and places, to connect existing transitions and places by new arcs, to hide items in
the net, etc. These operators can be used as basic constructors to build terms corresponding to
nets with an interface. The representation of a Petri net via a term of the algebra of combinators
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resembles the encoding of Petri nets into Milner action calculi [Mil96]. pbmset semantics

of nets with interfaces, defined by using a notion of universal context for a net, is shown to be
compositional with respect to the net combinators [PW98]. Despite some technical differences
and the different focus, which in these papers is more on the syntactical aspects of the Petri
net algebra, Petri nets with interface appear to have several analogies with open nets, and their
relationship surely deserves a deeper investigation.

Finally we recall two approaches Retri net componentge., Petri nets with distinguished
interface places. Kindler [Kin97] introduces Petri net components with input and output places,
which can be combined by means of an operation which connects the input places of a com-
ponent to the output places of the other, and vice versa. A partial order semantics is introduced
for components and it is proved to be compositional. Components can be viewed as particular
open nets and, similarly, the composition operation for components can be seen as an instance
of the composition operation for open nets. A very interesting idea in [Kin97], which we intend
to explore also for open nets, is the introduction of a temporal logic, interpreted over processes,
which can be used for reasoning in a modular way over distributed systems.

Basten [Bas98] considers components of Petri nets with interface places, called pins, of
unspecified orientation, where nets can be fused together. A compositional operational seman-
tics of Petri net components is described within a process algebra specifically designed for this
purpose. This allows the verification of net components against requirements by means of equa-
tional reasoning. Moreover, the algebraic presentation of the operational semantics is used to
formalize a notion of behavior inheritance between components.

The notions of projection and of amalgamation of processes can be extended to general
(possibly nondeterministic) processes. We are currently working on the generalization of the
amalgamation theorem to nondeterministic processes, which could represent a first step to-
wards an unfolding semantics for open nets, in the style of Winskel [NPW81, Win87a], still
compositional with respect to our composition operation.

It would be also interesting to extend the constructions and results in this paper to open
high level netswhich have been already studied on a conceptual level in [PJHE98]. Part of the
technical background is already available — for instance it has been shown in [PER95] how
to construct pushouts of algebraic high level nets — but a suitable formalization of high level
processes is still missing.
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