
High-Level Replacement Units and their Termination
Properties1

Paolo Bottonia, Kathrin Hoffmanna,b, Francesco Parisi Presiccea,c,
Gabriele Taentzerb

aUniversity of Rome “La Sapienza - Italy, bTechnical University
Berlin - Germany, cGeorge Mason University - USA

Abstract

Visual rewriting techniques, in particular graph transformations, are
increasingly used to model transformations of systems specified through
diagrammatic sentences. Several rewriting models have been proposed,
differing in the expressivity of the types of rules and in the complexity of
the rewriting mechanism; yet, for many of them, basic results concerning
the formal properties of these models are still missing. In this paper, we
give a contribution towards solving the termination problem for rewriting
systems with external control mechanisms. In particular, we obtain results
of more general validity by extending the concept of transformation unit to
high-level replacement systems, a generalization of graph transformation
systems. For high-level replacement units, we state and prove several
abstract properties based on termination criteria. Then, we instantiate
the high-level replacement systems by attributed graph transformation
systems and present concrete termination criteria. We explore some types
of rules and replacement units for which the criterion can be established.
These are used to show the termination of some replacement units needed
to express model transformations formalizing refactoring.

Keywords. Visual transformations, transformation units, high level re-
placement, termination, refactoring.

1 Introduction

Visual rewriting techniques are increasingly used to model transformations of
systems specified through diagrammatic sentences. Researchers are moving
from the specification of static aspects of languages (defined through parsing
processes) to the modeling of their dynamics. Graph transformations, in partic-
ular, are a widespread formalism with applications to parsing, model animation
or transformation. Moreover, a whole new wealth of problems, such as software
or model evolution [23, 20, 4, 18], arises from the diffusion of UML as a tool for
the specification of both software and general systems.

When specifying such transformations, it is hardly the case that a single,
unstructured diagram rewriting system is used to define complex transforma-
tions. A typical problem is to steer the progress of the transformation towards
some well-defined configuration of the diagram, i.e. state of the system. This

1Work partially supported by the EU TMN SeGraVis

may involve the definition of some sequence of rule applications, as well as the
prevention of repeated application of the same rule to the same match, or of
cyclic repetitions of the same sequence of applications.

In general, guaranteeing such properties of the rewriting process is equiva-
lent to proving its termination, an undecidable problem in its uniform version
[21], but which can be studied for individual rewriting systems, following the
classical approach – as introduced by Dershowitz and Manna in [8] – of proving
termination by constructing a monotone measure function on some multiset,
and showing that the value of such a function decreases at each application.
Further termination criteria use polynomial orderings, recursive path orderings,
etc. [7].

Concretely used approaches, however, exploit some form of control on rule
application. Two major control forms are layering and rule expressions. With
layering, particularly used in parsing [2, 6], rules are partially ordered according
to their content, so that some elements can be produced or removed only at
specific stages of the rewriting process. Rule expressions exploit constructs
such as iteration and branching to constrain the admissible sequences of rule
application [22, 17, 3, 18]. Under these restrictions, the problem is also reduced
by having to prove the termination of only those processes which are allowed
by the layering condition or by rule expressions.

Different forms of rules can be used even under these control forms, for ex-
ample to admit negative application conditions, or path expressions by which
unlimited context can be taken into account in a rule. These extensions to the
basic form of a rule make the problem of determining properties of a rewriting
process more complicated. A trade-off must therefore be found between the
overall expressiveness of the rewriting system to be used for model transforma-
tion and the possibility of assessing properties of the process. In this paper we
introduce the notion of high-level replacement units, as an extension of tran-
sition units [17], applied to a more abstract version of graph transformation
systems, namely high-level replacement systems [12]. In this way, we can also
incorporate into a simple rule form some controls traditionally expressed by
negative application conditions. Such a transformation approach is practical,
yet simple enough for formal reasoning. In particular, we obtain an abstract
property that a function has to satisfy in order to be used as a termination
criterion for such units.
Paper organization. Section 2 introduces related work, while Section 3 adapts
the concept of transformation units to define high-level replacement units. In
Section 4, the use of high-level replacement units in model transformation is il-
lustrated by an example in which replacement units are used to specify transfor-
mations of UML models consequent to software refactoring. Section 5 discusses
an abstract termination criterion for high-level replacement systems which is
used to show a number of termination results. Section 6 presents concurrent
productions and shows a corresponding termination result. In Section 7, we
discuss some concrete termination criteria. In Section 8 some hints towards
the application of our approach to special types of rules are given. Finally,
conclusions are given in Section 9.

2 Related work

Transformation units have been introduced by Kreowski and Kuske in [17] and
extensively used for several types of visual transformations since. Küster et al.
have considered the role of transformation units in defining transformations of
UML models [18]. In particular, they have studied the problem of termination
and confluence. Recognising, as demonstrated by Plump in [21], that termina-
tion of graph rewriting is undecidable in general, they provide some intuitive
consideration on the causes for termination or non-termination of transforma-
tion units iterating as long as possible the use of some given rules. However,
they do not present results on the iteration of sequences of rules, for which we
provide some termination criteria here. Termination criteria for graph transfor-
mation have already been considered by Aßmann [1], who sticks to a concrete
set of criteria and has not developed a general approach to termination based
on criteria, as we do in this paper.

The combined use of negative application conditions, set nodes, and control
expressions for the management of visual transformation processes has been
proposed in several occasions. In [6], layering conditions were applied to ensure
termination of parsing processes. The general problem of proving termination
of a given transformation unit is equivalent to introducing some form of local
layering, so that the conditions on elimination or insertion of elements in the
diagram proceed in accordance with the decrease or increase of the adopted
monotone function. The termination conditions given in [6] have been taken up
in [9] and formalized for graph transformation systems. Moreover, that work
contains an additional set of termination conditions taking negative application
conditions on non-deleting rules into account.

3 An algebraic setting for termination

High-Level Replacement Systems [12, 11] are a generalisation of the graph trans-
formation approach and fit into the general approach at the basis of the def-
inition of transformation units [17]. The resulting notion is called high-level
replacement unit. Its semantics is given by the set of all possible derivation se-
quences. Thereafter, high-level replacement units are instantiated by attributed
graph transformation.

3.1 High-Level Replacement Units

Let CAT be category with a distinguished morphism class M , such that CAT
has pushouts and pullbacks along M -morphisms, i.e. if one of the given mor-
phisms is in M , then also the opposite one is in M , and M -morphisms are
closed under pushouts and pullbacks (the notation (CAT, M) will also be used
to indicate CAT).

Definition 1 (rule) A rule p : L
l← I

r→ R is given by two morphisms l and r
of M . Let L(p) be the left-hand side and R(p) the right-hand side of rule p.

A transformation unit controls the rule application by a set of control con-
ditions specified by expressions over rule names.

Definition 2 (control expressions) The class C of control expressions over
Names (representing a set of rule names) is recursively defined by

• Names ⊆ C,
• C1;C2 ∈ C, if C1, C2 ∈ C,
• C1 | C2 ∈ C, if C1, C2 ∈ C,
• asLongAsPossible C end ∈ C, if C ∈ C.
The intended meaning of the operator ; is the application of the expression

C1 followed by the application of the expression C2. The operator ; is left
associative, i.e. C1;C2; C3 = (C1; C2); C3. The operator choice (|) allows the
application of either the expression C1 or C2. This operator is both left and
right associative, so that C1 | C2 | C3 = (C1 | C2) | C3 = C1 | (C2 | C3).
Finally, the intended meaning of the operator asLongAsPossible C end is
the (sequential) application of the expression C as long as its application is
possible.

Definition 3 (high-level replacement unit) A high-level replacement unit
RU = (P, nm, C) in a category CAT , or just replacement unit, consists of a
finite set P of rules, a bijective function nm : P → Names, and a control
expression C ∈ C over Names.

High-level replacement units are transformation units in the sense of [17],
where we substitute objects in a generic category CAT for graphs in a class.
Hence, we have a transformation approach consisting of: 1) the class of objects
in CAT ; 2) the class of rules in this category; 3) an operator of rule application,
specified by the definition of direct derivation as given in Definition 4; 4) a
class of control expressions as given in Definition 2; and 5) a class of class
expressions, each coinciding with the class of objects in CAT itself, meaning
that every object in CAT is an acceptable final object. Hence, a replacement
unit is a transformation unit with objects of CAT as initial and terminal graphs.
Moreover, the set of imported units for a high-level replacement unit is always
empty. In contrast to transformation units, whose semantics is given by the
collection of graphs resulting from the application of the unit to an initial graph,
the semantics of high-level replacement units is defined by derivation sets.

Definition 4 (match and direct derivation) Given an object G and a rule
p : L

l← I
r→ R, a match of p to G is a morphism m : L → G. A direct

derivation d from G to H by p and match m, d : G ⇒p,m H, is given by a
double pushout (see Figure 1). Let start and end be two projections from direct
derivations to objects such that start(d) = G and end(d) = H. A derivation
id : G ⇒pid,m G, is called identical. Given a set P of rules, Der(P) = {G ⇒p,m

H|G,H ∈ Obj(CAT) ∧p ∈ P} is the set of all direct derivations with rule set
P .

L

(1)m

²²

I

(2)

loo r //

²²

R

²²
G Dg

oo
h

// H

Figure 1: The double pushout approach

In the following, we will also employ the notations G ⇒p H or G ⇒ H,
when we are not interested in the specific match or rule for the derivation.

Definition 5 (derivation sequence) Given a set P of rules, a derivation se-
quence on P is defined by a function s : N → Der(P) with start(s(i + 1)) =
end(s(i)) for i ≥ 0. The length of a derivation sequence s is n if s(i) is the
identity derivation for all i > n, and end(s(n)) is called the derivation result.
The concatenation s ◦ t of two derivation sequences s – of length m – and t –
such that start(t(0)) = end(s(m)) – is the derivation sequence u with u(i) = s(i)
for 0 ≤ i ≤ m and u(m + i) = t(i− 1) for 0 < i.

If t has length n, then the concatenation is finite and u(m+ i) = t(i− 1) for
0 < i ≤ n.

Definition 6 (derivation subsequence) A derivation sequence d1 is a sub-
sequence of the derivation sequence d2 (d1 ¹ d2), if there exists a derivation
sequence d3 such that d1 ◦ d3 = d2.

It is obvious that the relation ¹ is a partial order.

Definition 7 (derivation sets) A derivation set der consists of a number of
derivations. If all derivations in der start at object G, it is also called derG.
The concatenation of two derivation sets der1 and der2 is given by der1 ◦der2 =
{d1 ◦ d2|d1 ∈ der1, d2 ∈ der2}. The product dern is defined by dern−1 ◦ der for
n ∈ N . der0 is the derivation of length 0, indicated by λ, leaving G unaltered.
λ is the neutral element of the concatenation operation. The star product der∗

is defined by
⋃

i≥0 deri.

Definition 8 (derived rule) Given a derivation sequence d of length 1, d(1)
is the direct derivation d : G ⇒p,m H as defined in Def. 4, and its derived rule

is pd : G
g← D

h→ H. Given two finite derivation sequences d1 : G ⇒∗ H and
d2 : H ⇒∗ K with their derived rules pd1 : G

g← D1
h1→ H and pd2 : H

h2← D2
k→

K, the derived rule of d = d1 ◦ d2 exists and is defined by pd : G
g◦c1← D

k◦c2→ K
where c1 and c2 are the pullback of h1 and h2 respectively, if they exist.

Definition 9 (semantics of control expression) Given an object G and a
replacement unit RU = (P, nm,C), the semantics of RU applied to G is the set
der(C)G of all possible derivation sequences starting at G and applying rules of
P according to C.

1. C = nm(p): der(C)G = {d ∈ Der({p})|start(d) = G},
2. C = C1;C2: der(C)G =

⋃
d1∈der(C1)G

d1 ◦ der(C2)H , if H = end(d1)

3. C = C1 | C2: der(C)G = der(C1)G ∪ der(C2)G,

4. C =asLongAsPossible C ′ end: der(C)G = {d ∈ der(C ′)∗G | d is maxi-
mal in der(C ′)∗G wrt. ¹}

Coherently with this semantics, a replacement unit of type nm(p) fails if
p is not applicable, C1;C2 fails if either C1 or C2 fails, C1 | C2 fails if both
C1 and C2 fail, and asLongAsPossible C ′end fails in one of the following
cases: 1) C ′ fails and it is not of the form nm(p); C ′′; 2) C ′ is of this latter
form and C ′′ fails; 3) C ′ is of one of the forms nm(p) or E1 | E2 and it fails
at the first iteration. The rationale for this definition of failure in the case of
iteration is that C ′ is expected to be executable, so that it has to be performed
at least once, while if the expression to be iterated is a sequence, it must be
executed completely, so that at each iteration, if the first rule in the sequence
is executed without failure, the rest of the sequence must be executed as well.
Due to the transactional nature of the units, failure restores the situation prior
to its attempted application.

3.2 Instantiation by attributed graph transformation

In the following, we recall attributed graph structures as defined in [14], where
the category of attributed graphs and morphisms with a distinguished class
M of morphisms has been shown to be an adhesive HLR-category. Thus, the
assumptions for (CAT, M), as stated in the beginning of Section 3.1 are fullfilled.
Furthermore, we know that the Church-Rosser, Parallelism, and Concurrency
Theorems hold (see [14]).

Definition 10 (category of attributed graph structure signatures) A
graph structure signature GSIG = (SG, OPG) is an algebraic signature with
unary operations op : s → s′ in OPG only. An attributed graph structure sig-
nature ASSIG = (GSIG,DSIG) consists of a graph structure signature GSIG
and a data signature DSIG = (SD, OPD) with attribute value sorts S′D ⊆ SD

such that S′D = SD ∩SG and OPD ∩OPG = ∅. ASSIG is called well-structured
if for each op : s → s′ in OPG we have s /∈ SD. The category of all ASSIG-
algebras and ASSIG-homomorphisms f = (fGSIG, fDSIG) ∈ M is denoted by
ASSIG-Alg. The distinguished class M for ASSIG-Alg is defined by f ∈ M
if fGSIG is injective.

Remark: Given an SD-indexed set of variables X = (Xs)s∈SD , all rule objects
are attributed by the term algebra TDSIG(X).

Proposition 1 (local C-R, parallelism and concurrency) (from [14]). The
Local Church - Rosser theorems I and II, the Parallelism theorem, and the Con-
currency theorem as stated in [12] are valid for each graph transformation system
based on ASSIG-Alg.

4 Examples from Model Refactoring

In this section we present an example of refactoring from [15], and specify the
transformations that the model of a system software must go through to be
maintained consistent with the modifications in the code. Elsewhere ([5]) we
have illustrated how to coordinate transformations occurring in the code – rep-
resented at the level of its abstract syntax – with those occurring in the model,
represented by graphs, typed according to the UML metamodel.

In [5], we studied how modifications of the code could affect different com-
ponents of the model, typically class and sequence/collaboration diagrams, and
we modelled the necessary coordination of the transformations of such repre-
sentations through transition units defined on hierarchical distributed graph
transformations. However, we are now interested in this example only to illus-
trate the termination problem of replacement units. As distribution does not
add causes for non-termination (actually, it may reduce them), we discuss here
a refactoring involving only modifications in class diagrams.

PullUpVariable(class; attr) moves the variable named attr from sub-
classes of class to class. This is used when a variable of the same name with
the same type is used throughout all the subclasses of a given class. Previous
renaming of such variables may have occurred in order to create the conditions
for the application of this refactoring. It is important to note that a require-
ment for this refactoring, as it guarantees behavior preservation, is that all the
subclasses of class own a copy of this variable. Hence, this refactoring must be
performed through the repeated application of a rule which moves the variable
from a subclass to its superclass, checking that this occurs for all the (direct)
subclasses of the class to which the variable has been moved.

In order to keep the theory simple, we exploit two small adaptations of the
metamodel for class diagrams. The first is that each Class node n is associ-
ated with a node of type ClassDescriptor, possessing an attribute sons which
keeps a constantly updated list of the direct subclasses of n. Without such
coding of the subclass relation, we would need an additional process to check
that the pulling process has been conducted for all subclasses. We also adopt
a small variation on the metamodel contained in the version 2.0 of UML, in
which package nodes are defined to maintain a composition relation with all the
classes (actually all the types) present in the package. Here, we replace arcs
with attribute values, so that the package node maintains an attribute content
storing a list of the classes in it. Hence, the creation and deletion of a class
in a package involves the update of the content attribute. This way, we can
check that a class is not already present in the package by querying the value
of content, and without having to recur to a negative application condition.

The rule for class creation results as in Figure 2. Apart from the check on
the value of content in the package node, there are no other preconditions.

Declaring that a class is a subclass of another, or removing the generalisa-
tion relation between two classes, produces the effects described by the rules
of Figures 3 and 4, respectively. In all the rules discussed in this section, the
values of the parameters of the rule, to be matched on attributes of the concrete

instances, are indicated by showing their names in italic, while variables present
in the rule, and subject to a unification process with values of attributes in the
matching subgraph, are written with a capitalized initial. In this version of
the rules we do not check for the absence of inheritance cycles or of multiple
inheritance. The first condition would need a NAC involving a path expres-
sion. The second condition could be checked by a NAC presenting another
specialization-generalization path leading into a different class.

createClass(String class)

: Class

name = class sons=

:ClassDescriptor

1 : Package

content = X

1 : Package

content = X {class}

class X

Figure 2: The rule to create a class, associated with the node recording all its
subclasses.

specialization

1: Class

name = parent
1: Class

name = parent

insertGeneralization(String parent, String child)

2:ClassDescriptor

sons=X

2:ClassDescriptor

sons=X {child}

:Generalization

3:Class

name=child

3:Class

name=child

generalization

Figure 3: The rule to insert a generalization relation between two classes.

removeGeneralization(String parent, String child)

1: Class

name = parent

2:ClassDescriptor

sons=X \{child}

3:Class

name=child

1: Class

name = parent

2:ClassDescriptor

sons=X

:Generalization

specialization

3:Class

name=child

generalization

Figure 4: The rule to remove a generalization relation.

The elimination of a class is accompanied by the destruction of its associate
ClassDescriptor node and the update of package node, as shown in Figure

5. With the DPO approach, class elimination is possible only when it has
been stripped of all owned features and relations, including generalization and
specialization, with other classes.

removeClass(String class)

name = class :ClassDescriptor

1 : Package

content = X
1 : Package

content = X\{class}

: Class

Figure 5: The rule to remove a class.

The replacement unit which performs the pulling up of the variable starts
with a rule, called startCheck, which marks the class to which the variable must
be pulled up by associating with it an Auxiliary node, whose auxSet attribute
will contain all the names of the class from which the pulled up variable has
been removed (see Figure 6).

startCheck(String class)

1: Class

name = class

1: Class

name = class auxSet=

:Auxiliary

Figure 6: The rule to attach an Auxiliary node to the class that the variable
must be pulled up to.

The rule startRefactoring, presented in Figure 7, extracts the variable
from one of the subclasses of class. The name of the subclass is added to the
auxSet attribute of the Auxiliary node. Note that at least one such subclass
must exist, otherwise the whole replacement unit will fail.

The rule completeRefactoring, shown in Figure 8 is then applied as long
as possible, i.e. until there are subclasses of class owning a variable of the
same name and type as the one first moved. For each subclass to which the
rule is applied, the name of the class is added to the auxSet attribute of the
Auxiliary node.

Finally, the rule doFinalCheck (see Figure 9) controls that all the subclasses
of class have been considered and that from each of them the variables has been
pulled up, by comparing the values of the two attributes, sons and auxSet for
the nodes of type ClassDescriptor and Auxiliary, respectively, associated
with class. The failure of this rule indicates that some subclass did not possess

startRefactoring(String class, String attr)

4 : Variable

name=attr
1:Class

2: Class

name = class

feature

owner

3:Generalization

specialization

generalization

4: Variable

name=attr

1:Class

2: Class

name = class feature

owner

3:Generalization

specialization

generalization

5:Auxiliary

auxSet=X

5:Auxiliary

auxSetX {Subcl}

name=Subcl

Figure 7: The rule to pull the variable attr from a non deterministically chosen
subclass of class.

: Variable

name=attr

2: Class

name = class

feature

owner

completeRefactoring(String class, String attr)

3:Generalization

specialization

generalization

4 : Variable

name=attrfeature

owner

5 : Type

1:Class

name=Subcl

6:Auxiliary

auxSet=X

6:Auxiliary

auxSet=X {Subcl}

2: Class

name = class

3:Generalization

specialization

generalization

4 : Variable

name=attrfeature

owner

5 : Type

1:Class

name=Subcl

Figure 8: The rule to pull the variable attr from any subclass possessing a copy
of the variable to be pulled up.

the variable, and makes the whole replacement unit fail. If this occurs, due to
the transactional behavior of units, the situation prior to the attempted unit
is restored. Hence, either because rule doFinalCheck removes the Auxiliary
node, or because of restoration after failure, no such node exists once the process
is completed.

Hence, the complete replacement unit is expressed as:

pullUpVariable(String class, String attr) =

1: Class

name = class

doFinalCheck(String class)

2:ClassDescriptor

sons=X

:Auxiliary

auxSet=X

1: Class

name = class

2:ClassDescriptor

sons=X

Figure 9: The final rule to check success of the pull up transformation.

startCheck(class);
startRefactoring(class, attr);
asLongAsPossible completeRefactoring(class, attr) end;
doFinalCheck(class)

5 Termination of Replacement Units

Termination of replacement units is not always guaranteed. If an expression
asLongAsPossible contains a rule that can be applied indefinitely to the result
graphs, the replacement unit does not terminate. Next, we give conditions for
the termination of replacement units.

5.1 A General Termination Criterion for High-Level Re-
placement Units

Let G be the class of all objects in a category CAT and P be the set of all the
rules on G. In the following, we discuss the notion of termination criterion, by
assigning a natural number to each object of CAT .

Definition 11 (termination criterion) A function F : G → N from objects
to natural numbers is a termination criterion for (CAT,M) if for any two ar-
bitrary morphisms a : C → A and b : C → B in M , the value F (A+C B) of the
pushout object A+C B of a and b is given by F (A+C B) = F (A)+F (B)−F (C).
Given a rule p with morphisms in M , a termination criterion F for CAT is a
termination criterion for p if F (L(p)) > F (R(p)).

The reason for removing the value of F in C from the sum is that it contains
the elements common to both A and B, which would otherwise be considered
twice. Even if in Definition 11 we have considered p to be a rule in the double
pushout approach (DPO), we refer only to its left-hand and right-hand sides.
Hence, the same definition could, under the appropriate definition of the class

M , be used also for the single pushout approach (SPO). We develop here the
theory only for the DPO approach.

Proposition 2 (termination of direct derivations) If F is a termination
criterion for rule p, then it is also a termination criterion for all the derived
rules pd of all d : G ⇒p H.

Proof 1 Since F is a termination criterion for the rule p : L
l← I

r→ R we
have F (L) > F (R). For each direct derivation G ⇒p H given by a double
pushout as in Figure 1 we need F (G) > F (H). From F (L) > F (R), we have
F (L) + F (D) − F (I) > F (R) + F (D) − F (I), i.e. F (L +I D) > F (R +I D),
i.e. F (G) > F (H). Hence, F is a termination criterion for the derived rule
pd : G

g← D
h→ H.

Termination criteria for specific instances of derived rules can be used as
termination criteria for a rule, as shown by the following theorem.

Proposition 3 (termination of direct derivations - 2) If F is a termina-
tion criterion for one derived rule pd of d : G ⇒p H, then it is a termination
criterion for rule p.

Proof 2 Let p be the rule p : L
l← I

r→ R. If F is a termination criterion for
the derived rule pd : G

g← D
h→ H then it must hold that F (L)+F (D)−F (I) =

F (L +I D) = F (G) > F (H) = F (R +I D) = F (R) + F (D) − F (I). Hence
F (L) > F (R) and F is a termination criterion for p.

Definition 12 (terminating expressions) Given a replacement unit in CAT
RU = (P, nm, C) and a control expression E over Names, F is a termination
criterion for E if it is a termination criterion for CAT and

1. if E = nm(p) ∈ Names, then F (L(p)) > F (R(p));

2. if E = E1; E2, then, for each derived rule pd of d ∈ der(E), F (L(pd)) >
F (R(pd));

3. if E = E1 | E2, then, for each derived rule pdi of di ∈ der(Ei), i = 1, 2,
F (L(pdi)) > F (R(pdi));

4. if E = asLongAsPossible E′ end, then, for each derived rule pd of
d ∈ der(E′), F (L(pd)) > F (R(pd)).

Proposition 4 (termination of sequentially composed derivations) If F
is a termination criterion for E1 and E2, then it is also a termination criterion
for E = E1;E2.

Proof 3 If F is a termination criterion for the derived rule pd1 of the derivation
d1 : G ⇒ H ∈ der(E1)G and for the derived rule pd2 of the derivation d2 : H ⇒
K ∈ der(E2)H , then F (G) > F (H) and F (H) > F (K). Hence F is also a
termination criterion for the derived rules pd of all derivations d ∈ der(E)G.

Note that the converse is not true, as there may be termination criteria for
the composition that are not termination criteria for one of the components.
Hence, the existence of different termination criteria for the two components,
does not guarantee the existence of a single termination criterion for their com-
position. As an example, consider the following two rules where CAT is the
category of multisets: p1 : a

l1← a
r1→ a and p2 : a

l2← ∅ r2→ b. Here no termination
criterion exists for p1, but any termination criterion for p2 is also a termination
criterion for E = p1; p2.

Proposition 5 (termination of choices) If F is a termination criterion for
E1 and E2, then it is also a termination criterion for E = E1 | E2.

Proof 4 If F is a termination criterion for the derived rule pd1 of the derivation
d1 : G ⇒ H1 ∈ der(E1)G and for the derived rule pd2 of the derivation d2 : G ⇒
H2 ∈ der(E2)H , then F (G) > F (H1) and F (G) > F (H2). Hence F is also a
termination criterion for the derived rules pdi of all derivations di ∈ der(Ei)G,
for i = 1, 2.

Proposition 6 (termination of as long as possible loops) If F is a ter-
mination criterion for E′, it is also a termination criterion for E = asLon-
gAsPossible E′ end.

Proof 5 If F is a termination criterion for each derived rule pd′ of derivations
d′ : G ⇒ H ∈ der(E′)G, then F (L(pd′)) > F (R(pd′)). Applying E′ as long as
possible, we get a derivation sequence s : N → der(E′) with F (start(s(i))) >
F (start(s(i+1))) for i ≥ 0. Since N has no infinite descending sequence, there
must exist m ∈ N such that for j > m, F (start(s(j))) = F (start(s(j + 1)))
= F (end(s(j))) so that s(j) is the identity derivation, i.e. all derivations in
der(E) terminate.

Theorem 1 (terminating derivations) All derivation sequences over rules
in P ∈ P are terminating if there is a termination criterion F which holds for
all p ∈ P .

Proof 6 Given any derivation sequence s : N → Der(P), due to Proposition
2, we know that F (start(s(i))) > F (start(s(i + 1))) for i ≥ 0. Thus, there
must be an m ∈ N such that for j > m, s(j) is the identity derivation, i.e. all
derivations in der(E) are terminating.

The result of Theorem 1 is adapted to replacement units where control con-
ditions are used, in the following corollary.

Corollary 1 (termination of replacement units I) Given a replacement
unit RU = (P, nm, C), all derivations in der(C) terminate, if there is a ter-
mination criterion F which holds for all p ∈ P .

The following theorem shows that the termination criterion need not be
unique over a whole control expression.

Theorem 2 (Termination of replacement units II) A replacement unit
RU = (P, nm, C) terminates if for each subexpression of C of the form as-
LongAsPossible C ′ end there is a termination criterion F .

Proof 7 The proof is by induction on the structure of the expression C:

1. Base step:
C is a rule name. In this case, since each single rule application termi-
nates, RU is terminating.

2. inductive step:

• C = C1; C2

By induction hypothesis, both C1 and C2 define sets of only finite
derivation sequences der(C1) and der(C2); hence also der(C1; C2)
contains only finite derivations.

• C = C1 | C2

By induction hypothesis, both C1 and C2 define sets of only finite
derivation sequences der(C1) and der(C2); hence also der(C1 | C2)
contains only finite derivations, as it contains the union of two finite
derivation sequences.

• C = asLongAsPossible C ′ end
By induction hypothesis, C ′ has a termination criterion F which,
by Proposition 6, is also a termination criterion for C. Hence RU
terminates.

Hence, Theorem 2 states that a replacement unit is terminating if, for each
asLongAsPossible-subexpression of C, there is a suitable termination crite-
rion. The important aspect of this is that these criteria may differ from subex-
pression to subexpression.

6 Special termination criteria for sequential com-
positions

It is interesting to observe that some tricky situations may occur. Consider
for example the following two rules for a multiset rewriting system, a case of
high-level replacement system where CAT is the category of multisets: p1 : a

l1←
∅ r1→ b and p2 : b

l2← ∅ r2→ a. If we now consider the replacement unit asLongAs-
Possible (asLongAsPossible p1 end; asLongAsPossible p2 end) end, we
can easily see that this is not terminating, even though the two individual loops
are. This is due to the fact that there is no possible termination criterion for
the subexpression asLongAsPossible p1 end; asLongAsPossible p2 end, as
every rule derived from it reduces either to the identity rule or to a rule which
creates a finite number of additional a elements. Indeed, each instance of a will
be rewritten to an instance of b and then each instance of b will turn into an a

again. If the initial object G contained some bs, these will also be turned into
as after the first iteration over p2.

On the other hand, we want to investigate under which conditions an arbi-
trary sequence of rules can satisfy a termination criterion. To this end, we want
to explore criteria for a sequential expression of the type p1; p2; . . . ; pk.

First we review the concept of sequentially dependent derivation sequences
as defined in [12] and reformulated in [13] in the context of adhesive HLR-
categories [19]. In the following, we assume that our HLR-systems are adhesive2.
The dependency of two productions p1 : L1

l1← I1
r1→ R1 and p2 : L2

l2← I2
r2→ R2

is given by an object K and morphisms K → R1 and K → L2. The intention
of a concurrent production is to combine the effects of p1 and p2 in a single
production.

Definition 13 (K-concurrent production [12]) Let p1 : L1
l1← I1

r1→ R1

and p2 : L2
l2← I2

r2→ R2 be productions and K be an object together with
morphisms K → R1 and K → L2.

• The pair (k1 : K → R1, k2 : K → L2), or short (k1, k2), is called a de-
pendency relation for (p1, p2) if the pushout object H∗ of K → R1 and
K → L2 exists and if there are unique (up to isomorphism) pushout com-
plements of I1 → R1 → H∗ and I2 → L2 → H∗ .

• Given a dependency relation (k1, k2) the K-concurrent production p1∗(k1,k2)

p2 of p1 and p2 is given by the following construction (see Fig. 10):

1. Let H∗ be the pushout object in diagram (1).

2. Let I∗1 and I∗2 be the pushout complements in diagrams (2) and (2’)re-
spectively.

3. Let L∗ and R∗ be the pushout object in diagram (3) and (3’) respec-
tively.

4. Let I∗ be the pullback object in diagram (4) with I∗ → L∗ = I∗ →
I∗1 → L∗ and I∗ → R∗ = I∗ → I∗2 → R∗.

Next we investigate some special cases of dependency relations.

Proposition 7 (Parallelism) Let ∅ be the initial object in CAT . For K = ∅
we have p1 ∗(∅,∅) p2

∼= p1 +p2, i.e. the (∅, ∅)-concurrent production is isomorphic
to the parallel production (see Figure 11). The derivation sequence G ⇒p1,m1

H ⇒p2,m2 X is sequentially independent if and only if it is K-dependent for
K = ∅, i.e. if the application of the first rule does not create matches for the
second rule.

Proof 8 See [12].

2This assumption is not very restrictive, as most of the HLR conditions in [11] are valid in
adhesive categories.

K

}}{{
{{

{{
{{

!!CC
CC

CC
CC

(1)L1

²²
(3)

I1
oo //

²²
(2)

R1

!!B
BB

BB
BB

B L2

~~||
||

||
||

(2′)

I2
oo //

²²
(3′)

R2

²²
L∗ I∗1oo // H∗ I∗2oo // R∗

I∗

bbEEEEEEEEEEEEEEEEEE

<<yyyyyyyyyyyyyyyyyy

ffMMMMMMMMMMMMMMMMMMMMMMMMM

88qqqqqqqqqqqqqqqqqqqqqqqqq

(4)

= =

Figure 10: K-concurrent production

∅

zzvvvvvvvvvv

$$HHHHHHHHHH

(1)L1

²²
(3)

I1
oo //

²²
(2)

R1

$$HHHHHHHHH L2

zzvvvvvvvvv
(2′)

I2
oo //

²²
(3′)

R2

²²
L1 + L2 I1 + L2

oo // R1 + L2 R1 + I2
oo // R1 + R2

I1 + I2

eeJJJJJJJJJJJJJJJJJJJJJ

99tttttttttttttttttttt

iiRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

55llllllllllllllllllllllllllllll

(4)

= =

Figure 11: Parallelism as special case of K-concurrency

Proposition 8 (termination of sequentially composed derivations) Let
F be a termination criterion for a category (CAT, M), P a set of rules with ob-
jects and morphisms in (CAT, M), and C = p1; p2 a control expression, with
p1, p2 ∈ P . Then C terminates if F (L(p1))+F (L(p2)) > F (R(p1))+F (R(p2)).

Proof 9 Let C = p1; p2 with p1 : L1
l1← I1

r1→ R1 and p2 : L2
l2← I2

r2→ R2.
Furthermore let (k1 : K → R1, k2 : K → L2) a dependency relation for (p1, p2)
and p = p1 ∗(k1,k2) p2 the (k1, k2)-concurrent production (see Def. 13). Then we
need to show

F (L(p)) > F (R(p)) ⇔ F (L(p1)) + F (L(p2)) > F (R(p1)) + F (R(p2))

which is performed in the following steps:

F (L(p)) > F (R(p))
⇔ F (L∗) > F (R∗)
⇔ F (L1 +I1 I∗1) > F (R2 +I2 I∗2)
⇔ F (L1) + F (I∗1)− F (I1) > F (R2) + F (I∗2)− F (I2)
⇔ F (L1) + F (I∗1)− F (I1) + F (L2) + F (R1) >

F (R2) + F (I∗2)− F (I2) + F (L2) + F (R1)
⇔ F (L1) + F (R1 +I1 I∗1) + F (L2) > F (R2) + F (L2 +I2 I∗2) + F (R1)
⇔ F (L1) + F (H∗) + F (L2) > F (R2) + F (H∗) + F (R1)
⇔ F (L1) + F (L2) > F (R2) + F (R1)
⇔ F (L(p1)) + F (L(p2)) > F (R(p1)) + F (R(p2))

The proof mainly makes use of the construction of the (k1, k2)-concurrent pro-
duction p1 ∗(k1,k2) p2 in Def. 13 and the termination criterion in Def. 11.

The associativity of the ; operator suggests the possibility of expanding the
construction to obtain a single rule from a sequence of rules. The following
Proposition specifies a termination criterion for such a sequence.

Proposition 9 (Sequential composition) Let F be a termination criterion
for a category (CAT, M), P a set of rules with objects and morphisms in
(CAT,M), and C = p1; p2; . . . ; pn a control expression, with pi ∈ P for i =
1, .., n. Then C terminates if

∑n
i=1 F (L(pi)) >

∑n
i=1 F (R(pi)).

Proof 10 The proof proceeds by induction on the length n of the sequence and
exploits the associativity of the sequential composition. We only need to consider
the case for n ≥ 3, since case n = 1 reduces to C = p1 which terminates for
F (L(p1)) > F (R(p1)), and case n = 2 has been proved in Proposition 8. Let us
assume that the theorem holds for each sequence of length n and prove that it
holds for a sequence of length n+1 for which

∑n+1
i=1 F (L(pi)) >

∑n+1
i=1 F (R(pi)).

Due to the (left) associativity of operator ;, we have p1; p2; . . .; pn+1 = (p1;
p2); . . .; pn+1 and we can apply the pushout construction in Def. 13, to rules
p1 and p2 to obtain a rule p∗ = p1 ∗(k1,k2) p2 so that C = p∗; . . . ; pn+1.

The construction in Figure 10 produces a rule p∗ : L∗ l← I∗ r→ R∗. From
the four equalities given by the pushout constructions (2), (2′), (3) and (3′):

1. F (L(p∗)) = F (L(p1)) + F (I∗1) − F (I1)

2. F (H∗) = F (R(p1)) + F (I∗1) − F (I1)

3. F (H∗)) = F (L(p2)) + F (I∗2) − F (I2)

4. F (R(p∗)) = F (R(p2)) + F (I∗2) − F (I2)

one obtains F (L(p∗)) = F (L(p1)) + F (H∗) − F (R(p1)) and F (R(p∗)) =
F (R(p2)) + F (H∗) − F (L(p2)). Therefore, F (L(p∗)) +

∑n+1
i=3 F (L(pi)) =

F (L(p1)) + F (H∗) − F (R(p1)) +
∑n+1

i=3 F (L(pi)) > F (R(p2)) + F (H∗) −
F (L(p2)) +

∑n+1
i=3 F (R(pi)) = F (R(p∗)) +

∑n+1
i=3 F (R(pi)).

R1

~~||
||

||
||

ÃÃB
BB

BB
BB

B

(1)L1

²²
(3)

I1
oo //

²²
(2)

R1

ÃÃA
AA

AA
AA

A L2

~~}}
}}

}}
}}

(2′)

I2
oo //

²²
(3′)

R2

²²
L∗ I∗1oo // L2 I2

oo // R2

I∗

bbEEEEEEEEEEEEEEEEEE

<<zzzzzzzzzzzzzzzzzz

ffMMMMMMMMMMMMMMMMMMMMMMMMM

88qqqqqqqqqqqqqqqqqqqqqqqqq

(4)

= =

Figure 12: K = R1 as special case of K-concurrency

Hence, we have a sequence of length n satisfying the criterion, and from the
induction hypothesis the whole sequence satisfies the criterion.

In Proof 10 above, one sees that the cases depicted in Figures 11, 12, and
13 are all special cases of the most general situation treated in the proof. In
particular one has:

• for L2 ∩ R1 = ∅ (see Figure 11), F (L(p∗)) = F (L(p1)) + F (L(p2)) and
F (R(p∗)) = F (R(p1)) + F (R(p2));

• for R1 ⊂ L2 (see Figure 12), F (L(p∗)) = F (L(p1))+F (L(p2))−F (R(p1)),
while F (R(p∗)) = F (L(p2));

• for L2 ⊂ R1 (see Figure 13), F (L(p∗)) = F (L(p1)) and F (R(p∗)) =
F (R(p2)) + F (R(p1))− F (L(p2)).

where we use the symbol ⊂ to indicate the existence of an injective, non surjec-
tive mapping of G1 into G2 and the symbol ∩ to indicate the pullback for G1

and G2.

7 Concrete termination criteria for Attributed
Graph Transformation

We show now how some functions which naturally arise from counting elements
in a graph can be used to establish criteria for termination.

Definition 14 (Concrete termination criteria) Let n : G → N be a func-
tion returning the number of nodes in G, i.e. n(G) = |GN |, and e : G → N a
function computing the number of edges in G, i.e. e(G) = |GE |, for each graph
G in the category ASSIG-Alg. If s is a sort in SG, the function ts : G → N
yields, for each graph A in ASSIG-Alg, the number of elements in ASG

s .

L2

~~||
||

||
||

ÃÃB
BB

BB
BB

B

(1)L1

²²
(3)

I1
oo //

²²
(2)

R1

ÃÃB
BB

BB
BB

B L2

~~||
||

||
||

(2′)

I2
oo //

²²
(3′)

R2

²²
L1 I1

oo // R1 I2
oo // R2

I∗

bbEEEEEEEEEEEEEEEEEE

<<yyyyyyyyyyyyyyyyyy

ffMMMMMMMMMMMMMMMMMMMMMMMMM

88qqqqqqqqqqqqqqqqqqqqqqqqq

(4)

= =

Figure 13: K = L2 as special case of K-concurrency

We show that n, e, and ts can be used as termination criteria within the
category ASSIG-Alg.

Proposition 10 The functions n, e, and ts, for each s ∈ SG, are termination
criteria for category ASSIG-Alg as defined in Definition 11.

Proof 11 We can prove that the functions n, e, and ts satisfy the termination
criterion for the pushout construction on two morphisms a : C → A and b :
C → B where a ∈ M and b is arbitrary, so that a fortiori it holds when b ∈ M ,
which is what is required by Definition 11. Since the graph part of a is injective,
the pushout construction glues graphs A and B only at elements of the graph C,
by taking, for nodes and edges separately, the disjoint union of B and the part
of A not in the image of C under a i.e. D = B] (A − a(C)). Thus n(D) =
n(A +C B) = n(A) + n(B) − n(C), e(D) = e(A +C B) = e(A) + e(B) − e(C),
and ts(D) = ts(A +C B) = ts(A) + ts(B)− ts(C) for each s ∈ SGS.

Now, to show that the replacement unit of Section 4 is terminating, we only
have to check the termination of completeRefactoring for any possible choice of
class and attr, as this is the only rule to be iterated. At each application of this
rule, a node of type Variable is removed (together with the edges connecting
it to nodes of type Class and Type). Hence, both functions n and e above can
be used as termination criteria to prove termination of this sub-unit.

8 Discussion of further termination criteria

In this Section we point at some directions for the extension of the presented
approach to special cases. In particular, we deal with Contextual Layered Graph
Grammars and rules with negative application conditions (NACs).

8.1 Contextual Layered Graph Grammars

Contextual layered graph grammars (CLGGs) have been used in parsing, as
they provide a natural way to steer the parsing process, thereby reducing its
non-determinism and its complexity. A contextual layered graph grammar is a
construct CLGG = (S, T , P , cl, dl, rl), where S is a labelled graph, called the
initial graph, T is a set of node and edge types of labels and P is a set of rules.
The layering functions cl, dl, and rl assign a creation and a deletion layer to
elements of T and a unique layer to each rule p ∈ P , respectively.

In [6], the following concrete termination criterion for CLGGs was discussed.

Definition 15 (Termination criteria for CLGG) A contextual layered graph
grammar CLGG = (S, T, P, cl, dl, rl) terminates if for all p ∈ P : if rl(p) = k,
then

• p deletes at least one node or edge.

• p deletes only nodes and edges of a type t with dl(t) ≤ k, and

• p creates only nodes and edges of a type t with cl(t) > k.

The layering condition above guarantees the termination of the process, by
producing a parsing derivation, or proving that the sentence cannot be parsed.
The existence of the layering function rl allows the partitioning of the set P
into a collection of sets {P1, . . . , Pk}. Rules in a set Pi can be used only after
rules from the set Pi−1 have been used and are no longer applicable. Moreover,
after using a rule from Pj , j ≥ i, no rule from Pi−1 can be applied any longer.

The effect of a contextual layered graph grammar can be achieved via a con-
trol expression. In particular, given a CLGG such that P = {P1, . . . , Pk}, with
each layer Pi containing the set of rules {pi,1, . . . , pi,ni}, this terminates if and
only if the control expression C = asLongAsPossible (p1,1 | . . . | p1,n1) end;
. . . ; asLongAsPossible (pk,1 | . . . | pk,nk

) end terminates. To prove termina-
tion of the control expression, we need to accommodate labelled rewriting rules
in the framework of high-level replacement systems, so that a suitable function
F can be defined which takes into account the layer to which a label begins.

This should provide a generalisation to the approach in [9], which ensures
termination of a CLGG by separately considering layers with and without dele-
tion and defining concrete termination criteria for the two cases.

8.2 Negative Applicative Conditions

NACs for graph transformation have been introduced in [16] and have proven
useful when applying graph transformation to practical problems. Rules with
NACs can be formalized as shown in Figure 14. Here, the morphism n is an
injective total morphism, so that the rule is applicable only if match m cannot
be extended to a match m′ such that n ◦ m′ = m. Several objects Ni, and
the associated morphisms ni, can be associated with one L, indicating that no
extension of m should exist for any i.

N

m′
ÃÃ@

@@
@@

@@
L

noo

(1)m

²²

I

(2)

loo r //

²²

R

²²
G Dg

oo
h

// H

Figure 14: A DPO rule with negative application condition

While there is no particular restriction on the form of NACs, we claim that
the criterion illustrated in this paper can be extended to prove termination
of rules with NACs characterized by having I = L, and N = R. As in this
case no element of L is deleted and the same rule could be applied again, the
NAC checks that the effects for that match have already been produced, thus
forbidding the repeated application of the same rule on the same match again.
By exploiting the recent incorporation of NACs into the high-level replacement
framework [10], we can extend the termination criterion for rules with NACs of
this type so that F (L) > F (R)−F (N), in order to consider the reduction in the
number of possible matches subsequent to the application of a rule. This can
also be the basis for a more general treatment of replacement units involving
rules with NACs.

9 Conclusions

Termination is an important issue for model transformations. Specifying them
by graph transformation in the double pushout approach has the advantage that
they are precisely defined and can be formally analyzed.

In this paper, we discuss the termination of transformations and propose a
general termination criterion for high-level replacement systems, a generaliza-
tion of graph transformation systems. Since model transformations can become
complex, we consider not only the application of single rules, but also replace-
ment units where rule applications are restricted according to an additional
control flow. For the description of the control flow we allow application of sin-
gle rules, sequential composition of rule expressions, choice between two rules,
and iterations applying an expression as long as possible. This paper contains
a number of results concerning termination of replacement units.

We plan to extend the presented results in several ways, such as studying
additional operators for control expressions, e.g. if-then-else expressions, prior-
ities, etc. Moreover, we plan to study wider criteria to establish termination
of sequential compositions of rules, also taking into account different orderings,
as studied in [7], and to extend the types of NACs for which we can prove
termination.

Finally, as more and more types of rewriting systems get incorporated into
the high-level replacement framework, concrete termination criteria must be
identified, which might also lead to a more general definition of the requests for
a termination criterion.

Acknowledgments We thank the anonymous referees for several useful obser-
vations on a previous version of this paper.

References

[1] U. Assmann. Graph rewrite systems for program optimization. ACM TOPLAS,
22(4):583–637, 2000.

[2] R. Bardohl, G. Taentzer, M. Minas, and A. Schürr. Application of Graph Trans-
formation to Visual Languages. In H. Ehrig, G. Engels, H.-J. Kreowski, and
G. Rozenberg, editors, Handbook of Graph Grammars and Computing by Graph
Transformation, Volume 2: Applications, Languages and Tools, pages 105–181.
World Scientific, 1999.

[3] P. Bottoni, M. Koch, F. Parisi Presicce, and G. Taentzer. Automatic consis-
tency checking and visualization of OCL constraints. In UML 2000 - The Unified
Modeling Language, pages 294–308. Springer, 2000.

[4] P. Bottoni, F. Parisi-Presicce, and G.Taentzer. Specifying Integrated Refactoring
with Distributed Graph Transformation. In Applications of Graph Transforma-
tions with Industrial Relevance, volume 3062 of LNCS, pages 220–235. Springer,
2004.

[5] P. Bottoni, P. Parisi-Presicce, and G. Taentzer. Specifying Coherent Refactoring
of Software Artefacts with Distributed Graph Transformations. In P. v. Bom-
mel, editor, Transformation of Knowledge, Information, and Data: Theory and
Applications, pages 95–125. Idea Group Publishing, 2004.

[6] P. Bottoni, G. Taentzer, and A. Schürr. Efficient parsing of visual languages
based on critical pair analysis (and contextual layered graph transformation). In
IEEE Symposium Visual Languages, pages 59–61. IEEE Press, 2000.

[7] N. Dershowitz. Termination of rewriting. Journal of Symbolic Computation, 3(1&
2):69–115, 1987. Corrigendum: 4,3 (Dec. 1987), 409-410.

[8] N. Dershowitz and Z. Manna. Proving termination with multiset orderings. Com-
mun. ACM, 22(8):465–476, 1979.

[9] H. Ehrig, K. Ehrig, J. de Lara, G. Taentzer, D. Varró, and S. Varró-Gyapay. Ter-
mination criteria for model transformation. In Proc. Fundamental Approaches to
Software Engineering (FASE 2005), volume 3442 of LNCS, pages 49–63. Springer
Verlag, 2005.

[10] H. Ehrig, K. Ehrig, A. Habel, and K.-H. Pennemann. Constraints and application
conditions: From graphs to high-level structures. In F. Parisi-Presicce, P. Bot-
toni, and G. Engels, editors, Proc. 2nd Int. Conference on Graph Transformation
(ICGT’04), volume 3256 of LNCS, pages 287–303. Springer, 2004.

[11] H. Ehrig, M. Gajewsky, and F. Parisi-Presicce. High-Level Replacement Sys-
tems applied to Algebraic Specifications and Petri Nets. In Handbook of Graph
Grammars and Computing by Graph Transformation. Volume 3: Concurrency,
Parallelism and Distribution, pages 341–400. World Scientific, 2000.

[12] H. Ehrig, A. Habel, H.-J. Kreowski, and F. Parisi-Presicce. Parallelism and con-
currency in high-level replacement systems. Math. Struct. in Comp. Science,
1:361–404, 1991.

[13] H. Ehrig, A. Habel, J. Padberg, and U. Prange. Adhesive high-level replacement
categories and systems. In F. Parisi-Presicce, P. Bottoni, and G. Engels, editors,
Proc. 2nd Int. Conference on Graph Transformation (ICGT’04), volume 3256 of
LNCS 3256, pages 144–160. Springer, 2004.

[14] H. Ehrig, U. Prange, and G. Taentzer. Fundamental theory for typed attributed
graph transformation. In F. Parisi-Presicce, P. Bottoni, and G. Engels, editors,
Proc. 2nd Int. Conference on Graph Transformation (ICGT’04), Rome, Italy,
volume 3256 of LNCS, pages 161–177. Springer, 2004.

[15] M. Fowler, K. Beck, W. Opdyke, and D. Roberts. Refactoring: Improving the
Design of Existing Code. Addison-Wesley, 1999.

[16] A. Habel, R. Heckel, and G. Taentzer. Graph Grammars with Negative Applica-
tion Conditions. Fundamenta Informaticae, 26(3,4):287–313, 1996.

[17] H.-J. Kreowski and S. Kuske. Graph transformation units with interleaving se-
mantics. Formal Aspects of Computing, 11:690–723, 1999.

[18] J. M. Küster, R. Heckel, and G. Engels. Defining and Validating Transformations
of UML Models. In Proc. HCC 2003, pages 145–152. IEEE Computer Society,
2003.

[19] S. Lack and P. Sobocinski. Adhesive categories. In I. Walukiewicz, editor, FOS-
SACS 2004, volume 2987 of LNCS, pages 273–288. Springer, 2004.

[20] T. Mens, S. Demeyer, and D. Janssens. Formalising Behaviour Preserving Pro-
gram Transformations. In A. Corradini, H. Ehrig, H.-J. Kreowski, and G. Rozen-
berg, editors, Proc. of ICGT’02, volume 2505 of LNCS, pages 286–301. Springer,
2002.

[21] D. Plump. Termination of graph rewriting is undecidable. Fundamenta Informat-
icae, 33(2):201–209, 1998.

[22] A. Schürr, A. Winter, and A. Zündorf. The PROGRES-approach: Language and
environment. In H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg, editors,
Handbook of Graph Grammars and Computing by Graph Transformation, Volume
2: Applications, Languages and Tools, pages 487–550. World Scientific, 1999.

[23] G. Sunyé, D. Pollet, Y. Le Traon, and J.-M. Jézéquel. Refactoring UML models.
In M. Gogolla and C. Kobryn, editors, UML 2001 - The Unified Modeling Lan-
guage. Modeling Languages, Concepts, and Tools. 4th International Conference,
pages 134–148. Springer, 2001.

