
FESCA 2005 Preliminary Version

Object-Oriented Connector-Component
Architectures

H. Ehrig, B. Braatz, M. Klein 1

Institut für Softwaretechnik und Theoretische Informatik,
Technische Universität Berlin, Germany

F. Orejas, S. Pérez, E. Pino 2

Departament de Llenguatges i Sistemes Informàtics,
Universitat Politècnica de Catalunya, Barcelona, Spain

Abstract

This paper presents an important extension of our contribution to FESCA ’04, which
presented a generic framework for connector architectures. These architectures
were defined by components, consisting of a body specification and a set of export
interfaces, and connectors, consisting of a body specification and a set of import
interfaces plus connecting transformations in both cases. A major restriction of this
framework was given by the assumption of non-overlapping connector interfaces.

In order to make the generic framework for connector architectures more appli-
cable, it is enriched by the possibility of handling overlapping connector interfaces.
Fortunately, it is possible to extend the main results presented at FESCA ’04 also to
the new framework. Moreover, it is shown that the new framework can be applied
to UML class diagrams, state machines and sequence diagrams as heterogeneous
specification techniques. The resulting connector framework, including a concept
for the composition of components and architectural reduction for UML specifica-
tions, is illustrated by a case study concerning the meta data management in Topic
Maps.

Key words: Modules and Interfaces, Components and
Connectors, Object-Orientation

1 Introduction

The importance of architecture descriptions has become most obvious over the
last decade (see e. g. [15,16,7,8,6]). Various formalisms have been proposed to

1 Email: [ehrig,bbraatz,klein]@cs.tu-berlin.de
2 Email: [orejas,sperezl,pino]@lsi.upc.es

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Ehrig, Orejas, and others

deal with the complexity of large software systems. The idea of dividing
computation and coordination in software programs and in the corresponding
specifications, mainly motivated by Allen and Garlan in [1], found a wide
acceptance in today’s software engineering and research (see e. g. [17]). In
most of these approaches, the division is realized by the use of components
as computation units and connectors as coordination units. In our recent
paper [4] we presented a generic approach based on [3] to handle this kind of
architectures, including a notion of component composition and a semantics
that calculated a single component for each architecture. Moreover, we have
studied instantiations to formal specification techniques like Petri Nets and
CSP. In our approach a component consists of a body and a set of export
interfaces, and connections between export and body. A connector consists of
a body and a set of disjoint import interfaces. These connections are generic
to allow a great variety of instantiations.

This paper has two main aims. The first one is to extend the generic
framework by allowing overlapping connector interfaces. The second aim is to
apply the new generic framework to object-oriented specification techniques
in the sense of UML(see [14]).

In order to reach the first aim, we have to relax the requirements for
the parallel extension property, which is used to calculate the composition of
components along connectors. The difference with respect to the framework
in [4] is that we require a parallel extension of transformations, if all given
transformations are compatible with all given embeddings instead of requiring
complete independence of the embeddings.

The second aim includes an instantiation of the generic concepts to UML
diagrams, where we consider class diagrams, state machines and sequence di-
agrams in this paper. This requires to define transformations, embeddings,
extension and parallel extension for these types of UML diagrams. Compati-
bility of transformations and embeddings means that all overlapping parts are
commonly refined by the given transformations.

The paper is organized as follows. In Section 2 we start with a small
case study for an object-oriented component architecture. This is an explicit
example of the advanced generic architecture framework presented in Sec-
tion 3. Based on that, we define the semantics of connector architectures in
Section 4. The main result in Section 4 shows existence and uniqueness of
architecture semantics, which is based on compatibility of component com-
position in Section 3, within the extended framework allowing overlapping
connector interfaces. Section 5 then presents the instantiation of the generic
framework to UML diagrams, which is the concrete framework for our case
study in Section 2. In Section 6 we conclude with a brief discussion of related
work and an outlook to future research.

2

Ehrig, Orejas, and others

2 Case Study: Meta data Management in Topic Maps

In this section we will model a small case study concerning the management of
meta data using an object-oriented connector-component architecture based
on UML. The corresponding architecture framework for UML is an instantia-
tion of the generic framework for architectures presented in Sections 3 and 4.
This instantiation will be described in more detail in Section 5.

In our case study we consider an example system for the management of
meta data in Topic Maps [9], which is an ISO standard for the ‘Semantic Web’.
The main notions of Topic Maps are topics and associations between them.
For example we want to describe the meta data of music media files. Topics in
this area include medium, track, and artist, which are related by associations
like the release of a medium by an artist, the containment of a track on a
medium, or the production of a track by some performer and composer.

The system shall be able to exchange the data of arbitrary Topic Maps via
the HTTP protocol (see [12]). This way it shall be possible to share the data
on one hand in a server based fashion, where a powerful web server processes
the queries of lots of clients, and on the other hand in a peer-to-peer fashion,
where clients exchange data directly. As exchange format the standardized
XML transfer syntax [10] for Topic Maps shall be applied.

The music meta data shall also be used to manage media like MP3 files.
The system shall be able to change the ID3 meta data (see [13]) of existing
MP3 files according to the meta data in the Topic Map and move the file into
a media file hierarchy with canonicalized names.

The domain of this example can easily be enhanced to capture other media
and their meta data. For example the bibliographic data concerning scientific
publications could be modeled this way and used to organize a collection of
bookmarks and electronic versions of these publications.

Architecture of the Example

The requirements are specified in an architecture consisting of compo-
nents and connectors as shown in Figure 1, where we use the package stereo-
types <<component>> and <<connector>> and the dependency stereotype
<<transform>> to identify the notions of the generic architecture framework.
The <<architecture>> packages in this abstract view correspond to the ar-
chitecture graphs of our generic framework in Section 3. The components
are Ontology, Server, and Manager representing the three main areas of re-
quirements. They are connected via the connectors SrvSrc between Server and
the data model in Ontology and ManOnt between Manager and the domain
ontology in Ontology.

We will use the additional package stereotypes <<componentBody>>,
<<componentExport>>, <<connectorBody>> and <<connectorImport>>

and the dependency stereotype <<embed>> to describe the substructure of
components and connectors according to the generic framework. A component

3

Ehrig, Orejas, and others

<<component>>
Ontology

<<transform>><<transform>> <<transform>><<transform>>

<<component>>

<<connector>> <<connector>>
SrvSrc ManOnt

<<component>>
Server

MetadataSystem
<<architecture>>

Manager

Fig. 1. Architecture of the example

ExpDataModel ExpMusicOntology

<<component>>
Ontology

<<componentExport>><<componentExport>>

<<access>>

BodOntology
<<componentBody>> <<transform>> <<transform>>

DataModel MusicOntology

Fig. 2. Component Ontology

0..*

0..1
resource

subjectIdentifiers

DataModel

notation: String = "URI"
reference: String

Locator

TopicMapObject

TopicMap

getByIdentifier(uri: String): Topic

0..*
associations topics

0..*
type
0..1

parent
1

parent
1

TopicAssociation

serialize(): String

roles
1..* 0..*

playedRoles
0..* 0..*

type
0..1

type
playingTopic

0..1
occurrences

1
parent

0..1

topicNames

Occurrence

value: String

TopicName

value: String

AssociationRole

context
post:

TopicMap::getByIdentifier(uri: String): Topic
result.subjectIdentifiers−>exists(reference=uri)

Fig. 3. Data model of the system

consists of several export packages with transform dependencies to a body
package and a connector consists of several import packages with inclusion
dependencies to a body package.

Ontology Component

The Ontology component consists of the packages DataModel and MusicOn-

tology and corresponding export packages for both of them. The structure of
the component is depicted in Figure 2. The DataModel package shown in Fig-
ure 3 specifies a simplified version of the Topic Maps data model described in
[11] by a UML class diagram. Additionally two methods are declared which

4

Ehrig, Orejas, and others

Medium

nameUTF8: String

Artist

nameASCII: String
nameUTF8: String

File

getURI(): String

1

getName(): String
getPerformer(): String
getComposer(): String
getAlbum(): String

addMP3File(file: File)

nameASCII: String
nameUTF8: String

Track

getFilename(): String
getPath(): String

0..1
medium

Containment

performer
1

Production

MusicOntology

composer
0..1

releaser
Release

TopicName

value: String

Topic
topicNames
0..*

nameASCII: String

context
inv: self.topicNames−>exists(value = nameUTF8)

self.topicNames−>exists(value = nameASCII)

Track

context
inv: self.topicNames−>exists(value = nameUTF8)

self.topicNames−>exists(value = nameASCII)

Medium

context
inv: self.topicNames−>exists(value = nameUTF8)

self.topicNames−>exists(value = nameASCII)

Artist

context
post: self.occurrences−>exists(resource.reference = file.getURI())

context
post:

Track::getPath(): String
result= if self.medium−>notEmpty() then

self.medium.releaser.nameASCII + "/" + self.medium.nameASCII

self.performer.nameASCII
else

context
post:

Track::getFilename(): String
result=self.nameASCII

context
post:

Track::getAlbum(): String
result=self.medium.nameUTF8

context
post:

Track::getComposer(): String
result=self.composer.nameUTF8

context
post:

Track::getPerformer(): String
result=self.performer.nameUTF8

context

Track:.addMP3File(file: File)

Track::getName(): String
result=self.nameUTF8post:

Fig. 4. Ontology of the system

will be used by the Server component below. The first method getByIdentifier

of TopicMap takes a URI as parameter and returns a topic containing the
given URI as identifier if it exists. This is specified by the OCL constraint
for the method. The second method serialize of Topic shall return an XTM
serialization [10] of the topic. A requirement not specified in the UML model
is the intention that the serialization includes the topic with all non-local
occurrences, all topic names, and all associations, where the topic plays an
association role. The data model is completely exported in the ExpDataModel

export package in Figure 2 in order to be accessible for applications. The
domain ontology itself is specified by the class diagram of the MusicOntology

package in Figure 4. Topics are specialized by the classes Track, Medium, and
Artist, which are related by the associations Containment, Release, and Produc-

tion. There are attributes for selected names in UTF8 and ASCII encoding
in the topic classes, which are required to be included in the topic names
of the data model by OCL constraints in the notes attached to the classes
in Figure 4. The Track class additionally declares some methods to access
the names of it’s associates directly and add MP3 files as occurrences to the
track. The effects of these methods are again specified by OCL constraints in
the notes of the class diagram. Only the class Track and the used File class
are exported in ExpMusicOntology in Figure 2, so that applications can access
the data through the methods of Track.

5

Ehrig, Orejas, and others

ExpDataModel
<<componentExport>><<componentExport>>

ExpServer

<<connector>>
SrvSrc

<<connectorBody>>

1

getByURI(uri: String): Resource

serialize(): String

DataServer DataSource

Resource

source

sd

srv:DataServer

getByURI(uri)

serialize()

content = serialize

res:
Resource

source:
DataSource

res = getByURI

<<connectorImport>>
<<embed>>

BodSrvSrc

<<connectorImport>>
<<embed>>

ImpSourceImpServer

<<transform>>
conSrv

<<transform>>
conSrc

Fig. 5. Connector SrvSrc

Server-Source Connector

To connect the Ontology component with an HTTP server to provide the
topic map data to clients we use a generic connector SrvSrc modeling the con-
nection from some data server to it’s underlying data source. This connector
is given in Figure 5. The data server retrieves the resource for a given URI
from the data source and afterwards serializes it. This sequence is specified
by the sequence diagram of the package. The import ImpServer is identical to
the connector body, because a data server component will need all entities de-
scribed in the connector. On the other hand the interface ImpSource contains
only the classes DataSource and Resource, since a data source component does
not need to know about the server. There is a connection conSrc, which is a
<<transform>> dependency, between ImpSource and ExpDataModel renaming
the class DataSource with the method getByURI to the class TopicMap with
method getByIdentifier and the class Resource to Topic (the method serialize

is not renamed). The renamed model is included in ExpDataModel. The con-
nection conSrv to the export of the Server component will be described in the
next paragraph.

Server Component

The server component in Figure 6 shall be used to satisfy the ImpServer

import of the connector in the previous paragraph. One of the requirements
of the generic architecture framework in Section 3 is that overlapping parts
of imports are identically transformed. So we have to perform the renamings
of conSrc also in conSrv. Moreover we restrict the sequence to only use the
serialize method if a topic was found by getByIdentifier. These transformations
yield the export of the Server component in Figure 7. This export is further
transformed to the model of the internal HTTP server and it’s protocol in the

6

Ehrig, Orejas, and others

<<transform>>

HTTPServer

<<componentExport>>
ExpServer

<<componentBody>>
BodServer

<<component>>
Server

Fig. 6. Component Server

serialize(): String

Topic

Server
topicMap

1

getByIdentifier(uri: String): Topic

TopicMap

sd

topic = getByIdentifier

content = serialize

serialize()

getByIdentifier(uri)

topicMap:
TopicMap

topic:
Topic

srv:Server

[topic<>null]opt

ExpServer
<<componentExport>>

Fig. 7. Export package ExpServer

Response
resp:

Response
resp:

response(resp)

serialize(): String

Topic

HTTPServer

uri: String

Request(uri: String)

response(resp: Response)

sd

Request

Client

statusCode: Integer
entityBody: String

Response(status: Integer, body: String)

Response

Server
topicMap

1

cli:Client

getByIdentifier(uri: String): Topic

TopicMap

request(req: Request)

request(req)

topic = getByIdentifier

Response(200,content)

content = serialize

serialize()

Response(404,"Not Found!")

resp = Response

getByIdentifier(req.uri)

topicMap:
TopicMap

topic:
Topic

srv:Server

[topic<>null]

[topic=null]

alt

Fig. 8. HTTP server requirements

HTTPServer package in Figure 8. This server receives HTTP requests and tries
to find a topic which has the requested URI as one of it’s subject identifiers.
It responds with an HTTP response with the serialization of the found topic
or a response with status “404 – Not Found” if no topic was found. With this
protocol it is possible to ask a server for possible information about a subject
identified by some URI. In a peer-to-peer network this could be used to share
information about topics among clients knowing topics for the same subject

7

Ehrig, Orejas, and others

Manager

insertFile(topic: FileTopic, file: File)

File

Tag

metadata: String

exportTo(file: File)

getMetadata(): String

FileTopic

addFile(file: File)

<<componentExport>>
ExpManager

<<transform>>
conMan

ExpMusicOntology
<<componentExport>>

<<transform>>
conOnt

Start

Created Tag

Got Topic Metadata

Exported Metadata

Added File

<<connector>>
ManOnt

<<connectorBody>>
BodManOnt

<<connectorImport>>
<<embed>>

ImpManager
<<connectorImport>>

<<embed>>

ImpOntology

sm insertFile(topic: FileTopic, file: File)

getFrom(topic: FileTopic)

post:
context getFrom(topic: FileTopic)

metadata=topic.getMetadata()

/tag: Tag=new(Tag)

/tag.getFrom(topic)

/tag.exportTo(file)

/track.addFile(file)

Fig. 9. Connector ManOnt

identifier.

Manager-Ontology Connector

In order to connect the ontology to some resource manager, e. g. the MP3
file manager in the next paragraph, we define the connector ManOnt shown
in Figure 9. The connector abstractly describes the relation between some
manager and a topic being able to describe files, i. e. files can be added as
occurrences to the topic and their meta data can be exported as strings. The
manager is now required to have a method insertFile which alters some meta
data tag inside the file to reflect the data in the topic and then adds the
file as occurrence to the topic. This is specified by the state machine in
Figure 9. The import ImpOntology just contains FileTopic and File, because
these have to be provided by the ontology. This import can be connected via
the connection conOnt to the export ExpMusicOntology by choosing Track as
FileTopic and refining the getMetadata method to special methods for different
kinds of meta data. The import ImpManager contains the whole body of the
connector, because managers will access and transform all of it’s contents.
This import is connected via conMan to the export of the Manager component
described in the next paragraph.

8

Ehrig, Orejas, and others

FileManager

<<transform>>

<<componentExport>>

<<component>>
Manager

<<componentBody>>
BodManager

ExpManager

Fig. 10. Component Manager

File

getURI(): String

ID3Tag

title: String
performer: String
composer: String
album: String

importFrom(file: File)
exportTo(file: File)

<<componentExport>>
ExpManager

sm insertMP3(track: Track, file: File)

Created Tag

Start

Got Topic Metadata

Exported Metadata

Added File

getName(): String
getPerformer(): String
getComposer(): String
getAlbum(): String
getPath(): String
getFilename(): String

Track

addMP3File(file: File)

Manager

insertMP3(track: Track, file: File)

post:
context getFrom(track: Track)

title=track.getName()

composer=track.getComposer()
performer=track.getPerformer()

/tag.exportTo(file)

album=track.getAlbum()

/tag: ID3Tag=new(ID3Tag)

/track.addMP3File(file)

getFrom(track: Track)/tag.getFrom(track)

Fig. 11. Export package ExpManager

Manager Component

Figure 10 shows the structure of the component Manager. To instantiate
the ImpManager package of the ManOnt connector it is transformed via the
connection conMan resulting in the package in Figure 11. Because FileTopic

is transformed to Track in ExpMusicOntology this is also done in ExpManager.
To reflect this change also for the Tag class it is transformed to ID3Tag which
represents the meta data in ID3 tags of MP3 files. The export is then further
transformed to the FileManager package in BodManager shown in Figure 12.
In this body the requirement of a canonicalized hierarchy of media files is
additionally considered by adding a Directory class and a move method for
files and enriching the state machine for insertFile.

Detailed Architecture of the Example

With these components we obtain the detailed architecture of the system
shown in Figure 13. This detailed architecture corresponds to the architecture

9

Ehrig, Orejas, and others

Manager

insertMP3(track: Track, file: File)

getFilename(): String

Track

addMP3File(file: File)

root
1

mkpath(path: String): Directory

Directory

FileManager

ID3Tag

title: String
performer: String
composer: String
album: String

importFrom(file: File)
exportTo(file: File)

move(dest: Directory, name: String)

File

getURI(): String

sm insertMP3(track: Track, file: File)

Created Tag

Start

Got Topic Metadata

Exported Metadata

Created Directory

Moved File

Added File

getName(): String
getPerformer(): String
getComposer(): String
getAlbum(): String
getPath(): String

context getFrom(track: Track)
title=track.getName()
performer=track.getPerformer()
composer=track.getComposer()

/tag.exportTo(file)

album=track.getAlbum()/track.addMP3File(file)

/file.move(dir, track.getFilename())

/dir: Directory=root.mkpath(track.getPath())

getFrom(track: Track)

/tag.getFrom(track)

post:

/tag: ID3Tag=new(ID3Tag)

Fig. 12. File management requirements

MusicOntology

<<connectorImport>>
ImpServer

<<connectorImport>>
ImpSource

<<connectorBody>>
BodComDat

<<connectorBody>>
BodManOnt

<<connectorImport>>
ImpManagerImpOntology

<<connectorImport>>

<<connector>>
ManOnt

conSrv
<<transform>>

conSrc conMan
<<transform>>
conOnt

<<transform>>

ExpDataModel

<<component>>
Ontology

<<componentExport>>

DataModel

BodOntology
<<componentBody>>

HTTPServer

<<component>>
Manager

<<componentBody>>
BodManager

ExpMusicOntology
<<componentExport>> <<componentExport>><<componentExport>>

ExpServer

<<componentBody>>
BodServer

<<component>>
Server

SrvSrc
<<connector>>

ExpManager

FileManager

MetadataSystem
<<architecture>>

<<transform>>

Fig. 13. Detailed architecture of the example

diagram as defined in the generic architecture framework in Section 3.

In order to define the semantics of the architecture in Figure 13 the archi-
tecture framework demands in Section 4 the ability to flatten such architec-
tures. This is done by applying all transformations simultaneously to get one
global body and then forget the connectors and connected exports which is
justified by Theorem 3.11. The instantiation of this requirement to UML will

10

Ehrig, Orejas, and others

HTTPServer DataModel MusicOntology

<<component>>

BodExample
<<componentBody>>

FileManager

MetadataSystem

Fig. 14. Architecture semantics of the example

be discussed in Section 5. Applying this complete reduction to the example
architecture yields the component in Figure 14, where the body is given by
the packages DataModel in Figure 3, MusicOntology in Figure 4, HTTPServer

in Figure 8, and FileManager in Figure 12 and the dependencies between them
induced by the usage of classes in the connector bodies. Note that in this
case we have no export packages left in the resulting component, because all
exports have been used by the connectors already.

Such complete reductions of architectures to single components will be
defined as the semantics of architectures in Section 4. But first the generic
architecture framework itself is formally introduced in the next section.

3 The Generic Architecture Framework

In this section we present a generic framework for connector architectures,
which is based on the ideas of our framework presented at FESCA ’04 in [4].
The new version in this paper, however, is more flexible, because it allows
overlapping connector interfaces in contrast to non-overlapping ones in [4].
The present framework is generic with respect to several parameters. We use
a class of specifications (or models, respectively) and classes of corresponding
transformations and embeddings between specifications (or models) that can
be instantiated to concrete specification (modeling) techniques. We only re-
quire the following properties, which have to be ensured by the used concrete
specification (modeling) technique, when the framework is instantiated.

• Transformations are closed under composition, i. e. given two transforma-
tions t : SP ⇒ SP ′ and t ′: SP ′ ⇒ SP ′′, then there exists a composed trans-
formation t ′ ◦ t : SP ⇒ SP ′′.

• There is a special identity transformation which is neutral with respect to
the composition of transformations. This means for each specification SP
we have a transformation idSP with t ◦ idSP = t = idSP ′ ◦ t for each trans-
formation t : SP ⇒ SP ′.

• Embeddings of specifications have to be closed under composition. Given
two embeddings e1 : SP1 → SP2 and e2 : SP2 → SP3 , then we require a com-
posed embedding e2 ◦ e1 : SP1 → SP3 .

• Analog to the transformations we require identical embeddings idSP with
e ◦ idSP = e = idSP ′ ◦ e.

11

Ehrig, Orejas, and others

SP

t

��

e //

(1)

SP1

t1
��

SP ′
e′

// SP ′
1

SP

f

��

e //

(2)

SP1

f1

��

SP ′
e′

// SP ′
1

Fig. 15. Extension diagrams

SPj

tj
��

ej //

(3)

SP

t

��
SP ′

j e′

j

// SP ′

SPj

fj

��

ej //

(4j)

SP

f

��
SP ′

j e′

j

// SP ′

Fig. 16. Parallel Extension Diagrams

• Finally, we have to require that embeddings are a special case of transfor-
mations, such that the identities are compatible.

For these generic notions of transformations and embeddings we require the
following extension and parallel extension property.

Definition 3.1 (Extension Property) Given an embedding e: SP → SP1

and a transformation t : SP ⇒ SP ′ as depicted in Figure 15, such that e is
consistent with respect to t. Then there is a canonical extension diagram (1)
with embedding e′ and transformation t1. In the special case of t being also
an embedding f , we have consistency and a unique mutual extension diagram
(2), where f1 extends f via e and e′ extends e via f and (2) commutes.

Note that in diagram (1) we do not require equality of the transforma-
tions e′ ◦ t and t1 ◦ e, but only equality of the corresponding domain SP and
co-domain SP ′

1 . The above mentioned consistency between embeddings and
transformations is generic in the general framework and can be instantiated
differently for each instantiation. In order to handle multiple interfaces we
will also need the following parallel extension property.

Definition 3.2 (Parallel Extension Property) Given families of transfor-
mations tj : SPj ⇒ SP ′

j and embeddings ej : SPj → SP for indices j in some
finite index set J as shown in Figure 16, such that the family of embeddings
(ej)j∈J is consistent with respect to the family of transformations (tj)j∈J ,
then there is a canonical parallel extension diagram (3) with embeddings e′j
and transformation t, such that:

(i) Parallel extension diagrams are closed under vertical composition.

(ii) If all tj are embeddings fj, then we have consistency, the result t is an
embedding f and (4j) commutes for all j ∈ J . If additionally for some
k ∈ J all other tj with j ∈ J \ {k} are identities, then (4k) is a mutual
extension diagram.

12

Ehrig, Orejas, and others

Ij
bj //

conj

��

B

Ejk(j)

ejk(j)

��

j∈J

Ejk
ejk +3 Bi k∈Kj\{k(j)}

CON
conj1

v~ uu
uu

uu
uu

u

uu
uu

uu
uu

u
conjn

 (
JJ

JJ
JJ

JJ
J

JJ
JJ

JJ
JJ

J

COMP j1 · · · COMP jn

Fig. 17. Connector Diagram and Connector Graph

Again, the notion of consistency for a family of embeddings w.r.t. a family
of transformations is generic and can be instantiated differently for different
specification or modeling techniques. Now we are able to define generic com-
ponents and connectors.

Definition 3.3 (Component) A component COMP = (B, (ek)k∈K) is given
by the body B and a family of export interfaces Ek with export transforma-
tions ek: Ek ⇒ B for k ∈ K.

Definition 3.4 (Connector) A connector CON = (B, (bj)j∈J) is given by
the body B and a family of import interfaces Ij with body embeddings bj: Ij →
B for j ∈ J .

Next, we define formally how a connector connects different components.

Definition 3.5 (Connector Diagram and Graph) Given a connector
CON = (B, (bj)j∈J) of arity n = |J | and for each j ∈ J a component
COMPj = (Bj, (ejk)k∈Kj

) with a connector transformation conj: Ij ⇒ Ejk(j)

with k(j) ∈ K(j), such that (bj)j∈J is consistent with respect to (ejk(j) ◦
conj)j∈J , then we obtain the connector diagram in Figure 17 and the connec-
tor graph in Figure 17, where the following conditions have to hold:

• A connector diagram consists of n import interface nodes Ij of n + 1 body
nodes Bj and B, and of

∑
j∈J |Kj| export interface nodes Ejk, even if some

of the specifications may be equal, e.g. B1 = B2.

• Circular connections as in (2) of Figure 18 are forbidden, unless we dupli-
cate the body as in (1) of Figure 18. Otherwise the semantics of such a
circular architecture is not defined, as it would cause the identification of
the export interfaces E1k(1) and E1k(2) of component COMP1 or other kinds
of unwanted side effects.

• Note that the interfaces bj: Ij → B for the connector are not required to be
disjoint, but they are allowed to overlap.

Next, we carry the concept of overlapping connector interfaces forward to
whole architectures of components and connectors. Similarly to connectors we
obtain an architecture diagram and an architecture graph. The first describes
the architecture at the level of specifications and the second as a graph, where
nodes are connectors or components.

13

Ehrig, Orejas, and others

I1
b1 //

con1

��

B I2
b2oo

con2

��

E1k(1)

�'
GG

GG
GG

GG

GG
GG

GG
GG

(1) E2k(2)

w� ww
ww

ww
ww

ww
ww

ww
ww

E1k
+3 B1 = B2

k∈K1\{k(1),k(2)}

I1
b1 //

con1

��

B I2b2
oo

con2

��

E1k(1)

��

(2) E2k(2)

��
E1k

+3 B1 = B2 B1 = B2 E2k
ks

k∈K1\{k(1)} k∈K2\{k(2)}

Fig. 18. Non-circular and circular connector diagrams

Definition 3.6 (Architecture diagram) An architecture diagram DA of
arity (k, l) is a diagram built up from the l connector diagrams, the k com-
ponent diagrams, and the connection transformations satisfying the following
conditions

(i) Connector Condition: Each import interface I of a connector is connected
by an arrow, labeled with a connection transformation con : I ⇒ E, to
exactly one export interface E of one component.

(ii) Component Condition: Each export interface E of a component is con-
nected at most to one import interface I of a connector by an arrow from
I to E, labeled with a connection transformation con : I ⇒ E.

(iii) Non-circularity: The architecture diagram DA is connected and non-
circular aside from the arrows’ direction.

In order to depict whole architectures clearer we introduce the notion of
architecture graphs abstracting from the direct interface connections and only
revealing, which components are connected by which connectors.

Definition 3.7 (Architecture graph) An architecture graph GA for an ar-
chitecture diagram DA is obtained by shrinking each connector diagram in
DA to the corresponding connector graph. Hence, it consists of nodes labeled
by the connectors and components and arrows in between labeled with the
corresponding connection transformations.

Definition 3.8 (Architecture) An architecture A of arity (k, l) consists of k

components and l connectors, an architecture diagram DA and an architecture
graph GA.

Definition 3.9 (Component Composition) The composition by a connec-
tor with index set J is defined as follows: Given the corresponding connector
diagram (see Figure 17) we construct the parallel extension diagram (1) in
Figure 19. The result of the composition of the components (COMP j)j∈J by
the connector CON with the connection transformations (con j)j∈J is again a
component COMP = (B ′, (e′jk: Ejk ⇒ B′)(j,k)∈J⊗K) with J ⊗K = { (j, k) | j ∈
J, k ∈ Kj \ {k(j)} } and e′jk := b′j ◦ ejk for all (j, k) ∈ J ⊗ K. In this case
we say that e′jk are extensions of ejk (See Figure 19). In case of binary

14

Ehrig, Orejas, and others

j∈J Ij

conj

��

bj // B

k∈Kj\{k(j)} Ejk(j)

ejk(j)

��
Ejk ejk

+3 Bj

Ij

tj=ejk(j)◦conj

��

bj // B

t

��

(1)

Bj

b′

j // B′
(j,k)∈J⊗K

Ejk
e′

jk

+3 B′

Fig. 19. Composition

CON
conj

u} rrrrrrrrrr

rrrrrrrrrr
conjc

%-RRRRRRRRRRRRR

RRRRRRRRRRRRR

j∈J\{jc}

CON ′

con′

kc

qy lllllllllllll

lllllllllllll
con′

k

"*
LLLLLLLLLL

LLLLLLLLLL

k∈K\{kc}

COMPj . . . COMPjc
= COMP ′

kc
. . . COMP ′

k

Fig. 20. General connectors and components

components and binary connectors we use the following nice infix notation
COMP = COMP1 +CON COMP2 . Otherwise we use the notation

COMP = CON ((COMPj)j∈J , (conj)j∈J) .

The next theorem states that the result of two overlapping compositions
via two connectors is independent of the order the single compositions are
calculated.

Theorem 3.10 (Compatibility of Component Composition) Given
an architecture A with arbitrary components and two connectors with the ar-
chitecture graph GA in Figure 20, then we have the equality of the following
three expressions:

(E1) CON ((COMPj)j∈J\{jc},CON ′((COMP ′
k)k∈K))

(E2) CON ′(CON (COMPj∈J), (COMP ′
k)k∈K\{kc})

(E3) CON + CON ′((COMPj)j∈J , (COMPk)k∈K)

where (E1) and (E2) are different sequential compositions and (E3) is a par-
allel composition of the components via the two connectors.

In the following we consider the special case of binary connectors and
components with two export interfaces each. The proof of this special case
shows how to use the extension and the parallel extension property and can
be extended without problems to the general case of Theorem 3.10 which is
needed in the proof of Theorem 4.5.

Theorem 3.11 (Associativity of Binary Component Composition)
Given an architecture A with binary components and binary connectors with
the architecture graph GA in Figure 21, then we have the following associativity

15

Ehrig, Orejas, and others

CON1

t| qqqqq
qqqqq

"*
MMMMM

MMMMM
CON3

t| qqqqq
qqqqq

"*
MMMMM

MMMMM

COMP1 COMP2 COMP3

Fig. 21. Binary connectors and components (GA)

I11
b11 //

con11

��

B1 I12
b12oo

con12

��

I21
b21 //

con21

��

B2 I22
b22oo

con22

��
E2

e23

��

E3

e34
�"

>>
>>

>>
>

>>
>>

>>
>

E4

e44
|� �

��
��

��

��
��

��
�

E5

e55

��

E1 e13
+3 B3 B4 B5 E6e65

ks

Fig. 22. Architecture diagram DA

law:

(E1) (COMP1 +CON1
COMP2) +CON2

COMP3 =

(E2) COMP1 +CON1
(COMP2 +CON2

COMP3) =

(E3) COMP1 +CON1
COMP2 +CON2

COMP3 ,

where the last expression corresponds to a parallel composition explained below.

Proof. Let us consider the architecture diagram DA in Figure 22 correspond-
ing to the architecture graph GA given above. We first present the paral-
lel composition corresponding to the result of expression (E3). Note, that
the embeddings (b11, b12) are consistent with respect to the transformations
(e23 ◦ con11 , e34 ◦ con12) according to the definition of connector diagrams
(see Definition 3.5), which allows to construct the parallel extension diagram
in the left part of Figure 23 with transformation t1: B1 ⇒ B′

1 and embeddings
b0: B3 → B′

1 and b′1: B4 → B′
1. For similar reasons we obtain the parallel ex-

tension diagram in the right part of Figure 23 with transformation t2: B2 ⇒ B′
2

and embeddings b′2: B4 → B5 and b5: B5 → B′
2. From the embeddings b′1 and

b′2 we construct the mutual extension diagram (1) in Figure 23, where we do
not need an additional consistency condition by the extension property (see
Definition 3.1). The composition (COMP1 +CON1

COMP2) +CON2
COMP3 in

expression (E1) corresponds to the diagram in Figure 24, where the result of

COMP1 +CON1
COMP2 is given by (B′

1, E1 ⇒ B3
b0→ B′

1, E4 ⇒ B4
b′

1→ B′
1) by

Definition 3.9. Now we consider in Figure 24 the same parallel extension dia-
gram (2,3) as above in Figure 23 and a new one by (4,5) according to part (ii) of
the parallel extension property (see Definition 3.2). Using part (i) the vertical
composition property implies that (2+4, 3+5) is a parallel extension diagram
leading to the bottom line in Figure 24 as result of expression (E1). But (4,5)
is a special case of a parallel extension diagram with identity, such that, ac-
cording to (ii) of Definition 3.2, (4) becomes a mutual extension diagram of

16

Ehrig, Orejas, and others

I11
//

con11

��

B1

t1

��

I12
oo

con12

��

I21
//

con21

��
(2)

B2

t2

��

(3)

I22
oo

con22

��

E2

��

E3

�"
==

==
==

=

==
==

==
=

E4

|� �
��

��
��

��
��

��
�

E5

��

E1
e13 +3 B3

b0 // B′
1

b′

3
&&MMMMMMMMMMMMM B4

b′

1oo
b′

2 //

(1)

B′
2

b′

4
xxqqqqqqqqqqqqq

B5
b5oo E6

e65ks

B′
4

Fig. 23. Parallel composition

I21
//

con21

��
(2)

B2

t2

��

(3)

I22
oo

con22

��
E4

��

E5

��

B4
b′

2 //

b′

1

��

(4)

B′
2

b4
��

(5)

B5
b5oo

id5

��

E6
e65ks

E1
e13 +3 B3

b0 // B′
1 b3

// B+
2 B5b′

5

oo E6
e65ks

Fig. 24. Stepwise composition

b′1 by b′2 and hence equal to (1) above. This implies B ′
4 = B+

2 , b′3 = b3, b
′
4 = b4

and b4 ◦ b5 = b′5 by (5). This implies that the result of expression (E1), given

by (B′
4, E1

e13=⇒ B3
b0→ B′

1

b′

3→ B′
4, E6

e65=⇒ B5
b5→ B′

2

b′

4→ B′
4), and of expression

(E3), given by the bottom line of the diagram in Figure 24, are equal. The
dual argument shows that the result of expressions (E2) and (E3) are equal,
where diagram (1) has to be considered as extension of b′2 by b′1. But this is
appropriate, because we have assumed in the general framework that (1) is a
mutual extension diagram. 2

4 Semantics of Architectures

In this section we define the semantics of architectures. In fact, we show
that we can construct a well-defined single component as semantics, which
corresponds to the composition of all components using all connectors of the
given architecture. More precisely, for an architecture there are reduction rules
that visualize step by step the composition of components via connectors.
Both reduction rules are productions p = (L ← K → R) in the sense of
the algebraic approach to graph transformation, more precisely the Double
Pushout approach (see [2]). In fact, a derivation step in this approach is given
by two pushout diagrams (1) and (2) in Figure 25, written G⇒ H via (p, m),
where m : L → G is a graph morphism that represents the match of L in

17

Ehrig, Orejas, and others

L

m

��
(1)

K

��

oo //

(2)

R

��
G Doo // H

Fig. 25. G⇒ H

CON D :

Ij
bj //

conj

��

B

Ejk(j)

ejk(j)

��

j∈J

Ejk
ejk +3 Bi k∈Kj\{k(j)} Ejk Ejk

e′

jk +3 B′

lDoo^^^^^ rD //

Fig. 26. Diagram reduction rule

CON G :

CON
con1

v~ uu
uu

uu
uu

u

uu
uu

uu
uu

u
conn

 (
II

II
II

II
I

II
II

II
II

I

COMP 1 · · · COMPn COMP 1 · · · COMPn COMP

lGoo____ rG //____

Fig. 27. Graph reduction rule

G. Intuitively, we remove (L − K) from G in step 1 leading to the context
graph D in (1). And then we add (R − K) leading to the result H in (2).
The pushout property of (1) and (2) means intuitively that G is the gluing
of D and L along K in (1), and H is the gluing of D and R along K in (2),
respectively.

Definition 4.1 (Diagram Reduction Rule) Given an architecture A with
the architecture diagram DA there is for each connector CON the diagram
reduction rule COND , as depicted in Figure 26, where B′ and e′jk = b′j ◦ ejk is
defined by the composition:

COMP =CON ((COMPj)j∈J , (conj)j∈J)

= (B′, (e′jk: Ejk ⇒ B′)(j,k)∈J⊗K)

Definition 4.2 (Graph Reduction Rule) Given an architecture A with
the architecture graph GA. The corresponding graph reduction rule CON G is
shown in Figure 27, where COMP1, . . . ,COMPn are mapped to COMP .

A reduction step CON D: DA ⇒ DA′ and CON G: GA ⇒ GA′, respectively,
is given by a derivation step in the Double Pushout approach to graph trans-
formations at the level of architecture diagrams or architecture graphs, re-
spectively. For both derivation steps we have inclusions for the matches. Note

18

Ehrig, Orejas, and others

that although rG is neither injective nor label-preserving, the labels of GA′

for the reduction rule CON G: GA ⇒ GA′ are well-defined by GA and COMP ,
nevertheless.

Definition 4.3 (Architecture Reduction Rule) An architecture reduction
rule for a given architecture A is a tuple CON = (COND ,CONG) given by a
diagram reduction rule COND for the architecture diagram DA and a corre-
sponding graph reduction rule CONG for the architecture graph GA.

We can show by an Architecture Reduction Lemma that an architecture
reduction rule CON = (COND ,CONG) reduces an architecture A to a well-
defined smaller architecture A′ with DA′ and GA′ as defined above. The appli-

cation of CON is denoted by A
CON
=⇒ A′. A′ is smaller than A in the following

sense: If A is of arity (k, l) we can show that A′ is of arity (k − n + 1, l − 1),
if CON has arity n.

Given an architecture A consisting of k components and l connectors and a
corresponding architecture reduction rule CON = (COND ,CONG) we obtain
reductions COND : DA ⇒ DA′, CONG : GA ⇒ GA′ and CON : A⇒ A′, where
A′ is a new architecture with k−n+1 components, l−1 connectors, architecture
diagram DA′ and architecture graph GA′.

The corresponding proof will be presented in [5]. Now we can give the se-
mantics of an architecture as the result of as many reduction rules as possible.

Definition 4.4 (Architecture semantics) The semantics of an architec-
ture A is any component COMP obtained by a sequence of architecture re-
duction steps from A to COMP ,

A⇒∗ COMP .

The main result given in Theorem 4.5 shows that this semantics always
exists and is unique.

Theorem 4.5 (Exist. and Uniqueness of Architecture Semantics)
For each architecture A there is a unique component COMP which is the se-
mantics of A. COMP is obtained by any reduction sequence, where connectors
of A are reduced in arbitrary order:

A⇒∗ COMP

Proof Idea. This theorem uses the fact that the presented reduction rules
satisfy the Church-Rosser property, i. e. the result of a sequence of reduction
steps is independent from the order of the steps. This can be shown using
a well known local Church-Rosser property for independent graph transfor-
mations (see [2]), which are independent reduction steps in our case. For the
case of dependent reduction steps we need Theorem 3.10. The result of the
reduction sequence is well-defined and unique, since the maximal number of
necessary reduction steps is given by the number of connectors and the order
of calculation is not relevant. 2

19

Ehrig, Orejas, and others

The full proof of this theorem will be given in the report [5].

5 Instantiation to UML Models

In this section we will show, how the abstract connector framework can be ap-
plied to UML diagrams. In this paper, we regard only the concrete graphical
representation of UML diagrams on a more or less intuitive level. This implies
that also our instantiation can be given only on an intuitive level. In later
stages of our research we want to deal with the corresponding meta-model in-
stances as formal abstract syntax, which would enable us to give a much more
detailed definition of connector architectures for UML diagrams. Moreover,
we could respect the syntactical dependencies between different diagrams, e. g.
the case that a state machine refers to a certain method defined in the class
diagram, which are documented in the UML meta-model instances.

5.1 Transformations and Embeddings of UML Diagrams

We will consider (restricted versions) of the following diagram types: class
diagrams, state machines and sequence diagrams. For a definition of these
diagrams we refer to UML (see [14]).

We allow to attach state machines to classes only. This implies that each
state machine SM refers to a corresponding class diagram cd(SM) defining
the methods that can be used to label transitions. A sequence diagram SD is
also attached to some class diagram cd(SD) defining the classes for all object
nodes and the methods used by the message edges. In the first step of the
instantiation we will define transformations and embeddings for each of our
techniques. In the case study in Section 2 these two notions of connections
between UML specifications are referred to as package dependency relations
stereotyped by <<transform>> and <<embed>>, respectively.

• A transformation of class diagrams tCD : CD ⇒ CD ′ is given by a mapping
of each class cd ∈ CD to a class cd ′ ∈ CD ′, where the image cd ′ has to offer
at least the functionality of cd up to consistent signature renaming. This
means for example, that an attribute number : Nat of CD may be translated
to an attribute number : Int , if all other occurrences of number : Nat in the
class diagram CD are translated to number : Int . Of course, the images
of the classes are allowed to have additional functionality with respect to
their preimage. All connections between classes have to be transformed to
corresponding connections of the same type, e. g. associations have to be
mapped to associations. Again we allow a renaming of the inscriptions of
the connections.

• A transformation of a state machine tSM : SM ⇒ SM ′ requires a transfor-
mation of the related class diagram first. This transformation is used to
translate the labels of the transitions of the state machine. For each state
st ∈ SM we require an image st ′ ∈ SM ′, which may be renamed. This con-

20

Ehrig, Orejas, and others

dition is also required for the state transitions, whose labels have to be
transformed in accordance with the transformation of the related class di-
agram. We allow that the target state machine SM ′ adds new states and
transitions, but we require that all accepted traces of SM are also accepted
by the ’enriched’ state machine SM ′, after they have been translated ac-
cording to the class diagram transformation.

• In the case of sequence diagrams, we consider transformations of sets of
diagrams (where each of them represent a possible scenario) instead of single
ones. Transformations tSD : SD ⇒ SD ′ are defined in three steps. First, as
in the previous case, a transformation of the related class diagram is needed
to translate the labels of the interactions in the diagram. The second step
is to replace lifelines by disjoint sets of lifelines (including the given lifeline)
and interactions (l, m, l′) (where l and l′ are lifelines and m is a message
sent from l to l′) by sets of diagrams involving only the lifelines included in
the refinements of l and l′. Finally, each diagram in SD must be included
in a diagram in SD ′.

The idea is that when refining a sequence diagram, we may refine lifelines
and interactions. In particular, the refinement of a lifeline may involve other
lifelines which are considered hidden at a higher level of abstraction. On
the other hand, a simple interaction may be replaced by a more complex
interaction represented by a set of diagrams.

Now we define embeddings of class diagrams, state machines and sequence
diagrams. For sake of simplicity embeddings are inclusions in this paper, which
do not allow any renamings. Thus, we are enabled to define the following
extension constructions as unions of sets. In both cases, embeddings and
transformations, the target diagram is allowed to have additional elements.

Figure 28 shows a transformation of a state machine SM and the related
class diagram cd(SM) = CD . The transformation of the methods in the sam-
ple class, which is not shown explicitly in the figure, renames the methods a():
to c(): and b(): to d():. Since there are no designated final states, the state
machine SM accepts (ab)∗, (ab)∗a. This is translated along the transforma-
tion to (cd)∗, (cd)∗c, which is a part of the accepted traces of SM ′. Thus, this
sample transformation fulfills our requirements for diagram transformations
stated above.

5.2 Extension of Diagram Transformations

In the next step of the instantiation we have to verify the extension prop-
erty (see Definition 3.1), i. e. to define the extension of transformations along
embeddings.

• For class diagrams consider Figure 29, where three class diagrams CD , CD ′

and CD1 are given, connected by a transformation tCD : CD ⇒ CD ′ and

an embedding e: CD → CD1 . The transformation arrows CD
tCD=⇒ CD ′ and

21

Ehrig, Orejas, and others

<<transform>>

S2S1

a

b

S2S1

c

d

c

sm SM

sm SM’

Model A

a():
b():

Class A

Model B

c():
d():

Class B

Fig. 28. Sample Transformation of State Machine and Class Diagram

CD

tCD

��

e // CD1

tCD,1

��

CD ′
e′

// CD ′
1

Fig. 29. Extension of Class Diagram Transformations

CD1

tCD,1

=⇒ CD ′
1 in Figure 29 represent a UML dependency relation of the

corresponding packages which is stereotyped as <<transform>>.
The extension of tCD along e as depicted in Figure 29 is now constructed

as follows: We define CD ′
1 by adding CD1 without CD, written CD1 \ CD ,

to the result CD ′ of the transformation tCD . Note that CD1 \ CD is con-
structed by removing all classes and class relations from CD1 that are also
part of CD and thus, embedded by e. This may cause ill formed class rela-
tions since their targets might have been removed. The well-formedness is
restored in CD ′

1 , since the loose ends of the class relations are connected to
the tCD images of the deleted classes.

We obtain the extension tCD ,1 , because the elements of CD1 are either
directly included to CD ′

1 or their renamed versions are taken from CD ′.
By taking the renaming of the latter elements and the identical embedding
of the former we can construct a renaming transformation. Moreover, we
obtain the embedding e ′: CD ′ → CD ′

1 , since CD ′ is a part of CD ′
1 .

Note that the construction as described above does only work, if we do
not have any name clashes between CD1 \ CD and CD ′. We could drop this
constraint by defining the construction of CD ′

1 by a pushout construction,
which avoids name clashes by suitable renaming.

• The extension of state machine transformations works analogous. Given
three state machines SM , SM ′, and SM1 connected by a transformation

22

Ehrig, Orejas, and others

<<embed>>

<<embed>>

S2S1

a

b

S2S1

c

d

c

sm SM

sm SM’

S2S1

a

b

sm SM1

sm SM1’

S2S1

c

e

e

e()
succ(x: nat): nat

Model A

Model B

Model A1

Model B1

a():
b():

Class A

c():

Class B

d():
add(x,y: nat): nat

a():

Class A

c():
d():

Class B

b():

c

d

e()
succ(x: nat): nat
add(x,y: nat): nat

<<transform>><<transform>>

Fig. 30. Sample Extension of State Machine and Class Diagram

tSM : SM ⇒ SM ′ and an embedding s: SM → SM1 . Since we required re-
lated class diagrams for the state machines we can calculate the corre-
sponding class diagram extension. Then we add SM1 \ SM to SM ′. This
construction ensures that SM ′

1 accepts all valid traces of SM1 , because no
transitions are deleted.

• In the case of sets of sequence diagrams, we consider that a set SD is
embedded in SD ′ if every diagram in SD is included in some diagram in SD ′.
Now, if SD is embedded in SD1 and tSD : SD ⇒ SD ′ is a transformation, we
define the extension tSD ,1 : SD ⇒ SD ′

1 as follows. First, we replace all the
labels in SD1 by the corresponding labels according to the transformation
of the associated class diagrams. Then we replace all the lifelines in SD1 by
their corresponding refinement according to tSD (if a lifeline is not in SD we
assume that it’s refinement is the lifeline itself). Finally, we replace all the
interactions by their corresponding refinements according to tSD (again, if
an interaction is not in SD we assume that it’s refinement is the diagram
consisting just of that interaction). It may be proven that this construction
ensures that there is a transformation from SD to SD ′

1 and an embedding
from SD1 to SD ′

1 .

Figure 30 shows the extension of a state machine transformation and the
corresponding class diagram transformation. Intuitively, the transformation
SM =⇒ SM′, which renames the transition labels a to c and b to d and adds
a new transition labeled with c, and it’s corresponding class diagram trans-
formation are applied to the state machine SM1. This means, the diagram
elements embedded from the state machine SM1 and it’s corresponding class
diagram, are replaced by their images w. r .t. the transformation SM =⇒ SM′.
The remaining elements in the state machine SM1 and the related class dia-
gram are copied unchanged. Finally, all new elements of SM′, e. g. the method

23

Ehrig, Orejas, and others

CDj

tCD,j

��

ej // CD

tCD

��
CD ′

j e′

j

// CD ′

Fig. 31. Parallel Extension of Class Diagrams

add, are added.

In the final step of the instantiation we have to verify the parallel extension
property (see Definition 3.2), i. e. to define the parallel extension of transforma-
tions. Let class diagrams CD and CDj with transformations tCD ,j : CDj ⇒ CD ′

j

and embeddings ej : CDj → CD for j ∈ J be given. For the consistency of the
families (ei)i∈I of embeddings and (ti)i∈I of transformations, we require that
(ei)i∈I is compatible with (ti)i∈I , which means that all overlappings in CD
with respect to (ej)j∈J are commonly transformed by (ti)i∈I , i. e. if an ele-
ment c ∈ CDj1 ∩ CDj2 is in the intersection of two class diagrams, it’s image
with respect to both transformations, tCD ,j1 and tCD ,j2 , has to be the same in
CD ′

j1
∩ CD ′

j2
.

The result CD ′ of the parallel transformation tCD is constructed as follows.
First, we join all CD ′

j for j ∈ J to a single class diagram. In the next step we
add CD \

⋃

j∈J

CDj to the previous result.

The parallel transformation tCD is then defined as follows. If an element
c is an image of any cj ∈ CDj then select the image of cj with respect to the
transformation tj. This selection is well defined since we required common
transformations of the overlappings. Otherwise, i. e. there is no cj ∈ CDj with
ej(cj) = c, c remains unchanged by the constructed parallel transformation
tCD . The embeddings e′j for j ∈ J are directly induced by the construction of
CD ′.

In order to avoid name clashes in CD ′ we require that CD \
⋃

j∈J

CDj is

disjoint to
⋃

j∈J

CD ′
j . As discussed above, this could be avoided by constructing

CD ′ by a suitable colimit construction.

The parallel extension property of state machines and sequence diagrams
is verified in a similar way.

Summarizing we obtain the following result.

Fact 5.1 (Architecture Framework for UML Models) Restricted
class diagrams, state machines and sequence diagrams as considered above to-
gether with the corresponding notions of transformations and embeddings are
satisfying the extension property (Definition 3.1) and the parallel extension
property (Definition 3.2) of the generic architecture framework in Section 3.

Proof Idea. The construction of extension and parallel extension diagrams
has been discussed already above. It remains to show the properties. First of
all, all embeddings preserve the type of the diagram elements and they do not

24

Ehrig, Orejas, and others

change any inscriptions. Hence, they are special cases of the defined transfor-
mations. Embeddings and transformation are closed under composition and
the extension diagram of two embeddings e : SP → SP1 and f : SP → SP ′

(with SP1 ∩ SP ′ = SP for the simplified construction) is given by the union
SP ′

1 = SP1 ∪ SP ′ and embeddings e ′ : SP ′ → SP ′
1 and f ′′ : SP1 → SP ′

1 , which
leads to a mutual extension diagram. The construction of parallel extension
diagrams above implies that they are closed under vertical composition. More-
over, if all transformations ti are embeddings, then also t is an embedding and
if in addition all t2, . . . , tn are identities, then 31 in Figure 15 is a mutual
extension diagram, because embeddings are diagram inclusions and do not
merge any elements (and they do not change any inscriptions in our simplified
version). 2

This allows to apply the generic architecture framework to UML models,
leading to the concept of components, connectors and architecture diagrams
and graphs, architectures, component composition and semantics of architec-
tures as presented in Sections 3 and 4 for UML models. Especially, we obtain
the main results “Compatibility of Component Composition”(Theorem 3.10)
and “Existence and Uniqueness of Architecture Semantics”(Theorem 4.5) for
the UML models considered above.

6 Conclusion

In this paper we have presented object-oriented connector-component archi-
tectures of a subset of UML diagrams. More precisely, we have extended our
generic framework for connector architectures presented at FESCA ’04 (see
[4]) to the case of overlapping connector interfaces which allows to apply it to
class diagrams, state machines and sequence diagrams with suitable restric-
tions. In the extended general framework we are able to show as main result
compatibility of component composition as well as existence and uniqueness
of architecture semantics. The third main result shows that this framework
can be instantiated to UML diagrams as discussed above using suitable no-
tions of transformations and embeddings. This allows to apply the generic
results to these UML diagrams in general and to an object-oriented connector-
component architecture for a meta data management system as a case study
in this paper.

The component concept of the UML 2.0, as well as most programming
language oriented component approaches, is orthogonal to our approach in
the following sense. In contrast to our approach, UML 2.0 components as pre-
sented in [14] are intended to describe the distribution of executable program
pieces. Our approach is concerned with the structuring of the specification of
system requirements and system design. Thus, each of our components might
be realized by a set of these software components. Though it might be pos-
sible to understand UML 2.0 components as a special case of our approach.
The further examination of this relation would yield a formal foundation for

25

Ehrig, Orejas, and others

several parts and application scenarios of the UML 2.0 component notion.

The approach in this paper is based on an intuitive graphical representa-
tion of UML diagrams. In future work we want to deal with the corresponding
meta-model instances as formal abstract syntax, which would allow a much
more detailed discussion of the instantiation, and we will also consider more
general notions of transformations and embeddings. Moreover, it is possible
to consider other UML techniques. Especially with respect to the example in
Section 2 it seems sensible to include UML profiles to the components. Ontolo-
gies could then be modeled as class hierarchies with respect to an ontology
profile. On the other hand profiles could also be used for platform specific
implementation models.

In view of system evolution, as for example in the sense of [18], it seems
promising to extend the presented framework by means to transform or refine,
respectively, not only specifications but whole components and connectors,
and thus also by transformations and refinements of component architectures.
Refinements of components and connectors can be necessary for different rea-
sons. For example, if a company adds any requirements to their product spec-
ification in the middle of the specification process, the developers might have
to adapt component interfaces to meet the new requirements. But component
refinements should preserve the mutual dependencies with related connectors
and concerned components. Such architecture refinement concepts could also
be used to formalize the steps between different stages in a defined software
development process. With respect to the example in Section 2 this could
mean to refine the given architecture by an implementation in Java or .NET.

Acknowledgement

This work is partially supported by the TMR network SEGRAVIS and the
Spanish project MAVERISH (TIC2001-2476-C03-01) and by the CIRIT Grup
de Recerca Consolidat 2001SGR 00254.
We would like to thank the anonymous referees for their valuable comments
and suggestions for improvements of this paper.

References

[1] Allen, R. and D. Garlan, A Formal Basis for Architectural Connection, ACM
Transactions on Software Engineering and Methodology (1997).

[2] Ehrig, H., Introduction to the Algebraic Theory of Graph Grammars (A Survey),
in: V. Claus, H. Ehrig and G. Rozenberg, editors, Graph Grammars and their
Application to Computer Science and Biology, Lecture Notes in Computer
Science 73 (1979), pp. 1–69.

[3] Ehrig, H., F. Orejas, B. Braatz, M. Klein and M. Piirainen, A Generic
Component Concept for System Modeling, in: R.-D. Kutsche and H. Weber,

26

Ehrig, Orejas, and others

editors, Fundamental Approaches to Software Engineering (FASE ’02), Lecture
Notes in Computer Science 2306 (2002), pp. 33–48.

[4] Ehrig, H., J. Padberg, B. Braatz, M. Klein, F. Orejas, S. Perez and E. Pino,
A Generic Framework for Connector Architectures based on Components
and Transformations, in: Formal Foundations of Embedded Software and
Component-Based Software Architecture (FESCA ’04), Electronic Notes in
Theoretical Computer Science 108 (2004), pp. 53–67.

[5] Ehrig, H., J. Padberg, B. Braatz, M. Klein, F. Orejas, S. Perez and
E. Pino, A Generic Framework for Connector-Component Architectures,
Forschungsbericht, Fakultät IV – Elektrotechnik und Informatik, TU Berlin
(2005), to appear.

[6] Garlan, D., R. Monroe and D. Wile, Acme: An Architecture Description
Interchange Language, in: Proc. of CASCON ’97, 1997, pp. 169–183.

[7] Griffel,
F., “Componentware – Konzepte und Techniken eines Softwareparadigmas,”
dpunkt Verlag, 1998.

[8] Hofmeister, C., R. Nord and D. Soni, “Describing Software Architecture in
UML,” Kluwer Academic Publishers, 1999 pp. 145–159.

[9] International Organization for Standardization, “Topic Maps,” Second edition
(2002), ISO/IEC 13250, ISO/IEC JTC 1/SC34 N0322 available from
http://www.y12.doe.gov/sgml/sc34/document/0322.htm, last accessed on
February 11, 2005.

[10] International Organization for Standardization, “The XML Topic Maps
Syntax (XTM 1.1),” (2003), ISO/IEC 13250-3, ISO/IEC JTC1/SC34 N0398
available from http://www.y12.doe.gov/sgml/sc34/document/0398.htm,
last accessed on February 11, 2005.

[11] International Organization for Standardization, “Topic Maps – Data Model,”
(2003), ISO/IEC 13250-2, ISO/IEC JTC1/SC34 N0443 available from
http://www.y12.doe.gov/sgml/sc34/document/0443.htm, last accessed on
February 11, 2005.

[12] Internet Engineering Task Force, “Hypertext Transfer Protocol – HTTP/1.1,”
(1999), available from http://www.ietf.org/rfc/rfc2616.txt, last accessed
on February 11, 2005.

[13] Nilsson, M., “ID3 tag version 2.4.0,” id3.org (2000), available from
http://www.id3.org/develop.html, last accessed on February 11, 2005.

[14] Object Management Group, “Unified Modeling Language – Version 2.0 (UML
2.0),” (2004), available from http://www.omg.org/, last accessed on February
11, 2005.

[15] Shaw, M., R. Deline, D. V. Klein, T. L. Ross, D. M. Young and G. Zelesnik,
Abstractions for Software Architecture and Tools to Support Them, IEEE
Transactions on Software Engineering 21 (1995), pp. 314–315.

27

http://www.y12.doe.gov/sgml/sc34/document/0322.htm
http://www.y12.doe.gov/sgml/sc34/document/0398.htm
http://www.y12.doe.gov/sgml/sc34/document/0443.htm
http://www.ietf.org/rfc/rfc2616.txt
http://www.id3.org/develop.html
http://www.omg.org/

Ehrig, Orejas, and others

[16] Shaw, M. and D. Garlan, “Software Architecture - Perspectives on an Emerging
Discipline,” Prentice Hall, 1996.

[17] Wermelinger, M. and J. L. Fiadeiro, Connectors for Mobile Programs, IEEE
Transactions on Software Engineering 24 (1998), pp. 331–341.

[18] Wermelinger, M. and J. L. Fiadeiro, A graph transformation approach to
software architecture reconfiguration, Science of Computer Programming 44

(2002), pp. 133–155.

28

	Introduction
	Case Study: Meta data Management in Topic Maps
	The Generic Architecture Framework
	Semantics of Architectures
	Instantiation to UML Models
	Transformations and Embeddings of UML Diagrams
	Extension of Diagram Transformations

	Conclusion
	Acknowledgement
	References

