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Abstract

In this paper we give an overview of formal concepts for model transformations
between visual languages based on typed attributed graph transformation. We start
with a basic concept where visual languages are defined by attributed type graphs
only and model transformations by basic typed attributed graph transformation
systems. We continue with different kinds of extensions of the basic concepts taking
into account application conditions, constraints, generating graph grammars and
operational semantics. The main aim is to discuss formal correctness criteria for
model transformations including syntactical correctness, functional behavior and
semantical correctness.
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1 Introduction

With the Model-Driven Architecture (MDA) [OMGb] the Object Management
Group (OMG) has defined a standard for software development based on
modeling and automated mapping of models to implementations. For defin-
ing models and metamodels the OMG has established the well known stan-
dards Meta-Object Facility (MOF) [OMGa] and Unified Modeling Language
[UML] which provide a solid basis for model transformation in the meta-
model approach on the one hand. On the other hand graph transformations
[Roz97,EEKR99,EKMR99] provide a solid basis for model transformation.
The well defined mathematical background allows clear definitions of syntax
and semantics of visual languages as well as analysis techniques such as ter-
mination criteria or critical pair analysis for model transformation.
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Different model transformation approaches are published in the literature
such as ATOM3 [dLT04], GreAt [AKK+05], and VIATRA [VVP02] and im-
plemented in commercial MDA tools such as ArcStyler [Arc], and XDE [Rat].

In this paper we discuss in which way the formal definition of visual lan-
guages and model transformation can be supported by typed attributed graph
transformation in the sense of [HKT02,EPT04,EEPT05]. Since our main fo-
cus is on model transformation, which should be based on the abstract syntax
of the source and target languages, we only consider the abstract syntax level
of visual languages in this paper.

The main ideas are the following: Describing a model transformation by
typed attributed graph transformation, the source and target models have to
be given as typed attributed graphs. This is not a restriction, since the un-
derlying structure of any model, especially visual models, is described best by
typed attributed graphs, due to their multi-dimensional extension. Perform-
ing model transformation by typed attributed graph transformation means to
take the underlying structure of a model as typed attributed graph, and to
transform it according to certain transformation productions. The result is
a typed attributed graph which shows the underlying structure of the target
model.

A model transformation based on graph transformation can be defined by
an attributed graph transformation system GTS = (ATG, Prod) consisting of
an attributed type graph ATG and a set of transformation productions Prod.
The abstract syntax graphs of the source models can be specified by all (or
a subset of) instance graphs over a type graph ATGS. Correspondingly, the
abstract syntax graphs of the target models are specified by all (or a subset
of) instance graphs over an attributed type graph ATGT . Both type graphs
ATGS and ATGT have to be subgraphs of the attributed type graph ATG (see
Figure 1). Starting the model transformation with instance graph AGS typed
over ATGS, it is also typed over ATG. During the model transformation
process the intermediate graphs are typed over ATG. Please note that this
type graph may contain not only ATGS and ATGT , but also additional types,
relations and attributes which are needed for the transformation process only.
The result graph AGT is automatically typed over ATG. If it is also typed
over ATGT , it fulfills one main requirement to be syntactically correct. Data
types are preserved during the transformation process.

ATGS
� � incS // ATG ATGT

? _incToo

AGS

typeAGS

OO

pi +3

::uuuuuuuuuuuuuuuuuuu
... pj +3 AGi

typeAGi

OO

pk +3 ... pl +3 AGT

typeAGT

OOddIIIIIIIIIIIIIIIIIII

Fig. 1. Typing in the Model Transformation Process

The main ideas to define model transformations for visual languages sketched
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above are defined in more detail as basic concept in section 3. This basic con-
cept is illustrated by a small case study in section 2.

In particular, it is described which kind of correctness requirements are
useful and how they can be formulated in our approach on a formal basis.
In section 3 we analyse this for the basic concept discussed above. Since the
basic concept has only limited expressive power we give an overview of several
extensions in section 4. Expecially we discuss the use of productions with
application conditions, metamodels with different kinds of constraints, gen-
erating graph grammars as well as operational semantics for the source and
target languages. Moreover we analyse the consequences concerning correct-
ness of model transformations, where according to [Tae05] correctness includes
syntactical correctness, functional behavior and semantical correctness. Cor-
rectness criteria have already been surveyed by Varró and Pataricza in [VP03].

In the conclusion we summarize how far formal concepts for model transfor-
mation are supported by the theory of typed attributed graph transformation
already and which problems are left for future research.
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2 Model Transformation Case Study

In order to illustrate our basic concept to be introduced in section 3 we briefly
review a model transformation from UML 2.0 statecharts to Petri nets pre-
sented in [EEdL+05,EEPT05,Gya04].

Source modelling language: Simple version of statecharts

StateMachine

String

Conf Step Event

State

Cond

Transition Action
stname

Boolean

isInit

from

to

trigger

String

ename
smname sm2conf

sm2step

conf2state

cond2state

trans2act

act2event

trans2cond

step2trans

begin

end

Fig. 2. Statechart Type Graph as E-graph

The type graph TS of statecharts is shown in Fig. 2. In fact TS is an
E-graph (see [EEPT05]) where the graph nodes are represented by rectangles
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and the data nodes by rounded rectangles, graph edges by solid arrows with
inscription, node attribute edges by dashed arrows with inscription. In this
example there are no edge attributes. The data type signature DSIG =
Sig(string) +Sig(boolean) is given by the signatures of strings and booleans,
where only the sorts ‘String’ and ‘Boolean’ are shown in Fig. 2. The type
graph TS together with the final DSIG-algebra Z defines the attributed type
graph ATGS = (TS, Z). TS can be considered as an extract of the metamodel
of UML 2.0 statecharts. In fact, this metamodel is a proper restriction of
the standard UML metamodel that explicitly introduces several notions of
statecharts that are only implicitly present in the standard (such as state
configurations, etc.). We consider a network of statemachines StateMachine.
A single statemachine captures the behaviour of any object of a specific class
by flattening the state hierarchy into state configurations Conf and grouping
parallel transitions into Steps.

Please note, that the statechart type graph in Fig. 2 allows graphs which
are non-valid statecharts. For example a Step could be connected with two
StateMachines via the edge sm2step. For this reason a generating syntax
grammar could be used to define precisely the source modelling language (see
[EEPT05]).

Target modelling language: Petri nets

In fact, there are several variants of Petri nets in the literature. We consider
place/transition nets with arc weight one and at most one token on each place,
with the type graph TT shown in Fig. 3.

String

Boolean PostArc

Place Trans

PreArc

plname

token

presrc

posttgt postsrc

pretgt

Fig. 3. Petri net type graph as E-graph

Reference metamodel

In order to interrelate the source and target modeling languages, we use ref-
erence metamodels [VVP02]. For instance, a reference node of type RefState
(in Fig. 4) relates a source State to a target Place.

In the notation of Fig. 4 the left and right hand sides correspond to Fig. 2
and 3 respectively, where data nodes and node attributes are listed in a box
below the corresponding graph node, e.g. the node attribute ‘name’ and
‘isInit’ of ‘State’ with target ‘String’ resp. ‘Boolean’ in Fig. 2 is given by the
attributes ‘name: String’ and ‘isInit: Boolean’ of ‘State’ in Fig. 4.
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Fig. 4. Type Graph: Statecharts ⇒ Petri nets

Example Statechart: Producer-Consumer-System

As an example we will apply our model transformation to a Producer-Consumer-
System. Fig. 5 shows the concrete syntax of the Producer-Consumer-System
statechart in the upper part and the concrete syntax of the transformed
Producer-Consumer-System Petri net in the lower part. The abstract syn-
tax graph of the Producer-Consumer-System statechart is shown in Fig. 6
and Fig. 7 shows the abstract syntax of the transformed Producer-Consumer-
System Petri net. Note, that Fig. 7 is typed over the Petri net type graph in
Fig. 3 and Fig. 6 over the statechart type graph in Fig. 2.

Model transformation from statecharts to Petri nets

The model transformation from statecharts into Petri nets is given by 3 lay-
ers of transformation productions where Fig. 8 shows one production of each
layer. We use productions in the double pushout (DPO) approach for typed
attributed graphs in the sense of [EPT04,EEPT05] extended by negative ap-
plication conditions (NACs) in the sense of [EEHP04]. In Fig. 8 we only show
the left hand side (LHS), right hand side (RHS) and NAC (if not empty) of
each rule while the interface graph is given by the intersection of LHS and
RHS where common items have the same numbering. In order to get a target
graph typed over the Petri net metamodel the graph of the source statecharts
and the reference nodes and edges are deleted after model transformation.

The model transformation is done in the following 3 steps. In our example
starting with Fig. 6 we obtain Fig. 7 as final result.

• Each statechart state is modeled with a respective place in the target Petri
net model where a token in such a place denotes that the corresponding
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Fig. 5. Example statechart: Producer-Consumer-System Concrete Syntax Graph
(Upper Part) and Concrete Syntax Graph of the Transformed Petri Net (Lower
Part)

Fig. 6. Abstract Syntax Graph of Producer-Consumer-System Statechart

state is active initially (see production InitState2Place). A separate place is
generated for each valid event. The negative application condition (NAC)
makes sure that we can apply this rule for each state only once, because
InitState2Place is applicable to a state only if the state is not yet connected
to RefState by an edge with type r1.

• Each statechart step is projected into a Petri net transition. Naturally, the
Petri net should simulate how to exit and enter the corresponding states in
the statechart, therefore input and output arcs of the transition should be
generated accordingly (see StepFrom2PreArc). Furthermore, firing a tran-
sition should consume the token of the trigger event, and should generate
tokens to (the places related to) the target (receiver) event according to the
actions.
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Fig. 7. Abstract Syntax Graph of the Transformed Producer-Consumer-System
Petri Net
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Fig. 8. Typical Transformation Productions from Layers 0, 1, 2

• Finally, we clear up the joint model by removing all model elements from the
source and the reference metamodel by another set of graph transformation
productions. For instance, production DeleteStep deletes a Step with a
corresponding RefStep. After applying all deleting productions we obtain
Fig. 7.

3 Basic Concepts of Visual Languages and Model Trans-
formations

In this section we present our basic concept how to define visual languages and
model transformations using typed attributed graph transformations. This
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basic concept was sketched already in the introduction and is presented now
in more detail. Especially we discuss the formal requirements for correctness
of model transformation.

3.1 Visual Languages

In the basic concept studied in this section a metamodel MM consists only
of an attributed type graph ATG, i.e. MM = ATG,
and the visual language V L is defined by all attributed graphs AG typed over
ATG, written V L = AGraphsATG. Note, that this is a very basic description
of a visual language and a more elaborated one will follow in section 4.

According to [HKT02] an attributed graph AG = (G, D) consists of a
graph G and a data type algebra D of a given data type signature DSIG =
(S, OP ) with the sets of sort symbols S and operation symbols OP . This
allows to consider graphs with node attribution. In [EPT04] this concept is
extended to allow also edge attribution, where G is not a classical graph, but
an E-graph with edge attribute edges from graph edges to data nodes. An
attributed type graph ATG = (TG, Z) is an attributed graph, where TG is
the graph part and Z is the final DSIG-algebra with Zs = {s} for each sort
s ∈ S.

Examples of attributed type graphs ATG = (TG, Z) are given in Fig. 2 - 4
in section 2, where only the graph part TG is shown. An attributed graph AG
typed over ATG is given by AG together with an attributed graph morphism
type : AG → ATG, called type morphism. Examples of typed attributed
graphs are given in Fig. 6 - 7 in section 2.

In section 5 we will consider more general cases to define visual languages
corresponding to the metamodeling and the graph grammar approach respec-
tively. In both cases, however, the definition is based on an attributed type
graph ATG.

3.2 Model Transformation

The basic idea to define model transformations MT : V LS → V LT based
on graph transformation has been discussed already in the introduction (see
Fig. 1). According to 4.1 we assume to have visual languages
V LS = AGraphsATGS

and V LT = AGraphsATGT
based on ATGS and

ATGT with the same data type signature DSIG. For model transformation
we construct a new attributed type graph ATG together with data type pre-
serving inclusions incS : ATGS → ATG and incT : ATGT → ATG. An
example for ATG, insS and incT is given in Fig. 4 in section 2, where ATG
includes not only ATGS and ATGT , but also additional types and relations,
which are needed for the model transformation. A model transformation
MT : V LS → V LT from V LS to V LT based on GTS is defined by

MT = (V LS, V LT , ATG, GTS)
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where we have in addition to V LS, V LT and the attributed type graph ATG
an attributed graph transformation system GTS = (ATG, Prod) typed over
ATG with productions Prod as defined in [EPT04,EEPT05]. In general Prod
will be given in several layers Prodn (0 ≤ n ≤ k0), where the productions
in each layer Prodn are applied as long as possible, before going over to layer
Prodn+1 or finishing in the case n = k0. This leads to a layered model trans-
formation sequence MS ⇒∗ MT via GTS where the source model MS and the
target model MT are given by attributed graph AGS and AGT respectively, i.e.
MS = AGS and MT = AGT . In general the goal is to start with AGS ∈ V LS

and to require that the model transformation sequence AGS ⇒∗ AGT via GTS
leads to a unique AGT ∈ V LT . In this case we would have MT (AGS) = AGT

which suggests that MT : V LS → V LT has functional behavior. In general,
however, we cannot be sure to achieve this goal unless we make sure that
suitable correctness conditions are satisfied, which will be discussed below.

An example for a model transformation MT is given in section 2, where the
type graph inclusions are shown in Fig. 4 and typical examples of productions
Prod0, Prod1 and Prod2 in Fig. 8. Note that most of these productions
have negative application conditions, which are discussed in section 4.1 as an
extension of the basic concepts.

3.3 Correctness Requirements

In the introduction we have pointed out already that in general we have the
following three kinds of correctness requirements:

Syntactical Correctness, Functional Behavior and Semantical Correctness.

3.3.1 Syntactical Correctness in the Basic Concept

In our basic concept studied in this section syntactical correctness of the model
transformation MT : V LS → V LT based on GTS means that for each AGS ∈
V LS there is a model transformation sequence AGS ⇒∗ AGT via GTS with
AGT ∈ V LT , i.e. AGT is typed over ATGT .

Up to now, however, there are no general results or techniques to assure
syntactical correctness, unless we have already ATGT = ATG or we enforce
AGT ∈ V LT by taking the restriction of the resulting graph to ATGT . This,
however, may not be appropriate from the semantical point of view. Otherwise
a necessary condition for syntactical correctness in the case of ATGT 6⊆ ATG
is that for each label in ATG \ATGT there is a deleting production, provided
that all labels in ATG are used in the generating productions. This condition
is satisfied for the case study in section 2. If it is possible to show syntactical
correctness of MT seperately for each layer – with distinguished intermediate
type graphs – this would certainly imply syntactical correctness of MT by
composition.
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3.3.2 Functional Behavior

Functional behavior of the model transformation MT : V LS → V LT based
on GTS means that we have local confluence and termination of GTS which
implies that MT defines a function from V LS to V LT . Local confluence can
be shown by the Local Church-Rosser Theorem for parallel independent direct
transformations. Critical pair analysis allows to analyse all parallel dependen-
cies and we obtain local confluence if we have strict confluence of all critical
pairs. This result is called Local Confluence Theorem, also known as Critical
Pair Lemma, and has been shown for typed attributed graph transformation
in [EPT04]. However, up to now this result is only known for productions
without negative application conditions (NACs). Hence presently this result
is not applicable to our case study, where most of the productions have NACs.

As mentioned in section 2 a generating syntax grammar has been provided
in [EEPT05] which allows to conclude that the model transformation in our
case study is locally confluent, provided that the model transformation source
language is restricted to statecharts generated by the syntax grammar.

Termination critera for layered graph transformations have been shown
in [EEdL+05,EEPT05] (see also [KHE03]) for layered labeled and typed at-
tributed graph transformation systems and verified for our case study already
in these papers. Altogether our case study – restricted to the generating syn-
tax grammar for statecharts as given in [EEPT05] – has functional behavior.

3.3.3 Semantical Correctness in Basic Case

In the basic case we have no explicit behavior for the source and target lan-
guages V LS and V LT . This means that there is no explicit way to show that
the model transformation MT is behavior preserving and hence semantically
correct. In our case study we also have no explicit behavior for models of
the source and target language. Hence we are only able to check semantical
compatibility of the given state chart and the transformed Petri net in Fig. 5
on an intuitive basis, or to extend the source and/or the target language by
operational semantics (see section 4.4).

If only the target language has a formal semantics we can define a formal
semantics for the source language via the model transformation. The case
that both languages have an operational semantics is studied in section 4.4.

4 Overview of Extended Formal Concepts

In this section we discuss several formal extensions of the basic concepts for
visual languages and model transformations. We present each extension sepa-
rately and discuss specific consequences concerning correctness of model trans-
formations. For most of the application domains of model transformations it
makes sense to consider several of these extensions simultaneously.
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4.1 Model Transformation based on Graph Transformation Systems with Ap-
plication Conditions

In section 3 we have assumed for the basic concept of model transformations
MT : V LS → V LT that MT is defined by a typed attributed graph trans-
formation system GTS using productions without application conditions, be-
cause main parts of the theory in [EPT04,EEPT05] are only avaliable for this
basic case. In our case study in section 2 , however, we have already used
and explained negative application conditions (NACs). In fact, NACs are the
most common kind of application conditions, but not the most general ones. In
[EEHP04,EEPT05] we have defined more general kinds of positive and nega-
tive application conditions. One of the main result shows that for each graph
constraint constr there is an equivalent application condition appl(constr).
This means that for each direct transformation G ⇒ H via (p, m), where the
match m satisfies the application condition appl(constr) the resulting graph
H satisfies the graph constraint constr.

This extension has no direct consequences for syntactical correctness in the
basic concept, but it is important when we consider visual languages V LS and
V LT defined by type graphs and constraints (see 4.2). Concerning functional
behavior this extension supports to show termination, because the termination
criteria in [EEdL+05,EEPT05] assume for the nondeletion layers that we have
productions with NACs. Concerning local confluence, however, this extension
causes problems, because the local confluence theorem in [EEHP04,EEPT05]
has to be extended to productions with application conditions. Even for NACs
this seems to be a nontrivial task. The consequences of this extension for
semantical correctness have to be discussed in connection with extension 4.4.

4.2 Visual Languages based on Metamodels with Constraints

In the basic concept we have assumed that the visual languages V LS and
V LT of the model transformation MT : V LS → V LT are completely defined
by attributed type graphs ATGS and ATGT respectively. In the metamodel
approach for visual languages, however, the metamodels are defined by class
diagrams CDS and CDT respectively. These metamodels correspond roughly
to our type graphs ATGS and ATGT .

The models defining V LS and V LT in the metamodel approach, however,
are defined not only by the class diagrams, but they are restricted by suit-
able OCL constraints. This motivates to extend our concept of metamodels
for visual languages V L also by constraints, i.e. MM(ATG, Constr), where
Constr is a suitable set of constraints. In the theory of typed attributed
graph transformations there exists already the concept of graph constraints
(see [HW95,EEHP04,EEPT05]) which especially allow to express multiplicity
constraints in class diagrams (see [RT05]). An atomic (positive) constraint
PC(a) consists of a morphism a : P → C, and a general graph constraint is
a Boolean formula over atomic graph constraints. A graph G satisfies PC(a)
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if for every injective graph morphism p : P → G there is an injective graph
morphism q : C → G s.t. q ◦ a = p. In addition to graph constraints we
can consider data type constraints given by equations or first order formulas
over the data type signature DSIG of ATGS and ATGT . An attributed graph
AG = (G, D) satisfies a data type constraint data-constr, if the DSIG-algebra
D satisfies data-constr (see [EM85] for the case of equations). On the one hand
data type constraints can be used as global invariants for all attributed graphs
AG in the language and on the other hand as application conditions for rules.
In this case the rule can only be applied to an attributed graph AG, if AG
satisfies the data type constraint of the rule. In such a data type constraint
we could require that certain attributes of AG satisfy specific conditions.

Although some kinds of OCL constraints are expressible by graph and data
type constraints already, there is no straight forward way to express general
OCL constraints using these constraints only. For this reason we propose
to define in addition to graph and data type constraints in analogy to OCL
constraints of UML 2.0 a new kind of constraints for typed attributed graphs,
called graph-OCL constraints. In [EE05] we present first ideas how to define
syntax and satisfaction for such constraints. Using these ideas a metamodel
MM = (ATG, Constr) may include three kinds of constraints Constr =
(Constr1, Constr2, Constr3), where Constr1, Constr2, and Constr3 are sets
of graph, data type, and graph-OCL constraints respectively. Presently it is
open which kind of constraints to use for specific visual languages.

In the extended version a visual language V L with metamodel MM =
(ATG, Constr) consists of all attributed graphs typed over ATG, which sat-
isfy all the constraints in Constr. This extension has important consequences
for the syntactical correctness of a model transformation MT : V LS → V LT ,
because we have to require for each AGS ∈ V LS not only the existence of
a model transformation AGS ⇒∗ AGT via GTS where AGT is typed over
ATGT , but also that AGT satisfies the constraints ConstrT of the metamodel
MMT (ATGT , ConstrT ) for the target language V LT . Since AGS ∈ V LS

satisfies the constraints ConstrS of the source language we have to show
for syntactical correctness of MT that the corresponding transformation se-
quences AGS ⇒∗ AGT are compatible with ConstrS and ConstrT . For
graph constraints there are already some techniques to assure satisfaction
by transforming graph constraints into corresponding application conditions
(see [HW95,EEHP04,EEPT05]). It is open how to use this in the context of
model transformations. For data type constraints as global invariants there
is no problem in the basic case, where the inclusions incS : ATGS → ATG
and incT : ATGT → ATG are data type preserving. For rule constraints and
for global constraints in the case of data type sensitive extensions (see 4.5.3)
well-known techniques for algebraic specifications in [EM85] can support the
verification process. How to handle graph-OCL constraints in this context,
however, is completely open and is certainly an interesting research topic in
connection with graph-OCL constraints. For functional behavior and seman-
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tical correctness this extension has no direct consequences as long as the graph
transformation system of the model transformation is not changed.

4.3 Visual Languages based on Generating Graph Grammars

Another alternative to define visual languages are graph grammar approaches
like DiaGen [MV95] or GenGED [Bar98], where the visual language V L
is given by all graphs which can be generated by the corresponding graph
grammar. As extension of the basic case in section 3.1 we consider now the case
that a visual language V L is generated by a typed attributed graph grammar
GG = (ATG, Prod, AG0), where Prod is a set of productions and AG0 an
attributed start graph, both typed over ATG (see [HKT02,EPT04,EEPT05]).
This means that the visual language V L is given by

V L = {AG|AG0 ⇒∗ AG via Prod} ⊆ AGraphsATG

For the model transformation MT : V LS → V LT considered in section 3
we assume now the extension that V LS and V LT are generated by typed
attributed graph grammars GGS = (ATGS, P rodS, AG0S) and
GGT = (ATGT , P rodT , AG0T ) respectively.

This extension of the basic concepts has the following consequences for syn-
tactical correctness of MT : V LS → V LT with MT = (V LS, V LT , ATG, GTS)
based on GTS = (ATG, Prod):

First of all we start the model transformation not with any graph AGS ∈
V LS, but with the start graph AG0S. To solve the Initialization Problem
means to construct for AG0S ∈ V LS a transformation sequence AG0S ⇒∗

AGT via GTS such that there is also a generating transformation sequence
AG0T ⇒∗ AGT via GGT which implies AGT ∈ V LT . For every other AGS ∈
V LS we have by definition of V LS a generating transformation sequence
AG0S ⇒∗ AGS via GGS. In order to show syntactical correctness also for
AGS we propose to solve the following Mixed Confluence Problem:

Given AG1S ⇒∗ AG1T via GTS with AG1S ∈ V LS and AG1T ∈ V LT

and a direct transformation AG1S ⇒ AG2S via GGS we have to construct
transformation sequences AG2S ⇒∗ AG2T via GTS and AG1T ⇒∗ AG2T via
GGT leading to the following Mixed Confluence Diagram:

AG1S
via GTS ∗+3

via GGS

��

AG1T

via GGT

∗��
AG2S

via GTS ∗+3 AG2T

Let us recall that the model transformation MT : V LS → V LT based on
GTS is syntactically correct, if for each AGS ∈ V LS there is a transforma-
tion sequence AGS ⇒∗ AGT via GTS with AGT ∈ V LT . This leads to the

13



Ehrig

following result.

Fact 4.1 (Syntactical Correctness of Model Transformation) Given vi-
sual languages V LS and V LT generated by graph grammars GGS and GGT

respectively then a model transformation MT : V LS → V LT based on GTS is
syntactically correct, if the Initialization and the Mixed Confluence Problem
can be solved.

Proof. Given AGS ∈ V LS we have by definition of V LS a generating transfor-
mation sequence AG0S ⇒∗ AGS via GGS. Solving the Initialization Problem
leads to a transformation sequence AG0T ⇒∗ AG′

T via GGT with AG′
T ∈ V LT .

Since also the Mixed Confluence Problem can be solved: We have for each di-
rect transformation AG1S ⇒ AG2S via GGS of the transformation sequence
AG0S ⇒∗ AGS via GGS a single Mixed Confluence Diagram leading by com-
position to the following composed Mixed Confluence Diagram:

AG0S
via GTS ∗ +3

via GGS

∗��

AG′
T

via GGT

∗��
AGS

via GTS ∗ +3 AGT

Finally AG′
T ∈ V LT and AG′

T ⇒∗ AGT via GGT implies AGT ∈ V LT s.t.
the bottom sequence AGS ⇒∗ AGT via GTS implies syntactical correctness.2

Of course, it remains to find suitable techniques to solve the Initialization
and the Mixed Confluence Problem. For the second problem it may be possible
to use the techniques of critical pair analysis to show local confluence for typed
attributed graph transformation systems (see [HKT02,EPT04,EEPT05]).

4.4 Visual Languages with Operational Semantics

Up to now we have only considered visual languages from the syntactical point
of view. Now we extend the basic concept of visual languages V L taking into
account an operational semantics for V L. According to [Tae05] this means
that we assume to have a simulation specification. In our context – where V L
is typed over AGT – it makes sense to define the simulation specification by a
typed attributed graph transformation system GTS(V L) = (ATG, ProdSim)
with same ATG, where ProdSim are the productions for the simulation of V L.
The operational semantics of V L in this case is given by

Sim(V L) = {AG ⇒∗ AG′|AG, AG′ ∈ V L & AG ⇒∗ AG′ via GTS(V L)}
where each AG ⇒∗ AG′ in Sim(V L) can be considered as a simulation sce-
nario of V L (see [Tae05]). For the model transformation MT : V LS →
V LT considered in section 4 we assume now the extension that we have
V LS and V LT with operational semantics based on typed attributed graph
transformation systems GTS(V LS) = (ATGS, P rodS) and GTS(V LT ) =
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(ATGT , P rodT ) respectively.

This extension of the basic concept has of course consequences for the se-
mantical correctness of MT : V LS → V LT . More precisely this extension al-
lows first of all to define semantical correctness on a formal basis in the follow-
ing way: The model transformation MT : V LS → V LT based on GTS with
operational semantics of V LS and V LT based on GTS(V LS) and GTS(V LT )
respectively is called semantically correct, if for each transformation sequence
AG1S ⇒∗ AG1T via GTS with AG1S ∈ V LS and AG1T ∈ V LT and each
simulation step AG1S ⇒ AG2S via GTS(V LS) there is a transformation se-
quence AG2S ⇒∗ AG2T via GTS and a simulation sequence AG1T ⇒∗ AG2T

via GTS(V LT ) leading to the following Mixed Confluence Diagram:

AG1S
via GTS ∗+3

via GTS(V LS)

��

AG1T

via GTS(V LT )

∗��
AG2S

via GTS ∗+3 AG2T

It is interesting to note that the Mixed Confluence Diagram for semantical
correctness above is formally very similar to the Mixed Confluence Diagram for
syntactical correctness in section 4.3 . In fact, only the graph grammars GGS

and GGT are replaced by the graph transformation system GTS(V LS) and
GTS(V LT ) respectively. This means that formal techniques to be developed
which are suitable to solve the Mixed Confluence Problem can be applied to
show syntactical as well as semantical correctness.

Finally let us note that it may be suitable for some kind of application
to relax the condition for semantical correctness. It may be the case that
not each single simulation step AG1S ⇒ AG2S via GTS(V LS) is semanti-
cally meaningful, but only suitable simulation sequences AG1S ⇒∗ AG2S via
GTS(V LS). In this case we would have to replace the single step in the Mixed
Confluence Diagram by those sequences AG1S ⇒∗ AG2S via GTS(V LS) which
are semantically meaningful.

4.5 Other Formal Extensions

In addition to the extension of the basic concept discussed above let us briefly
mention some other formal extensions. In these cases, however, it will be even
more difficult to analyse the consequences for correctness of corresponding
model transformations.

4.5.1 Attributed Type Graphs with Inheritance

The attributed type graphs ATGS, ATGT and ATG used in the basic con-
cept are replaced by attributed type graphs with inheritance as introduced in
[BEE+05]. This is motivated by the concept of class inheritance in the object-
oriented paradigm in general and in particular by the concept of inheritance
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in the UML metamodel [UML] and allows much more efficient representation
of typed attributed graph transformation systems and grammars and hence
of syntax and semantics of visual languages and model transformations.

4.5.2 View-based Approach for Visual Languages

In the basic concept of section 3.1 we have assumed that the metamodel of a
visual language V L consists only of one attributed type graph ATG. Similar
to the case of UML we consider now different views of V L which are defined
by suitable restrictions of the metamodel. More precisely we discuss now a
view-based approach for a visual language V L, where V L is represented by
different views V1, ..., Vn, and each view Vi is represented by an attributed type
graph ATGi ⊆ ATG (i = 1, .., n). If V LS and V LT are both replaced by
different views it would make sense to represent also a model transformation
MT : V LS → V LT by different views, i.e. model transformations MTi :
V LSi → V LTi. In this case well-known problems concerning consistency of
views for visual languages would imply also consistency problems for the views
MTi of the model transformation MT .

4.5.3 Data Type Sensitive Type Graph Extension

Instead of data type preserving type graph inclusions incS : AGTS → AGT
and incT : AGTT → AGT considered in the basic concept, we allow data
type sensitive type graph inclusions. This means that we also allow different
data type signatures DSIGS, DSIG, and DSIGT with inclusions DSIGS ⊆
DSIG and DSIGT ⊆ DSIG. From the practical point of view this seems
reasonable, because in general the data types of different visual languages V LS

and V LT will also be different. From the theoretical point of view, however,
this extension will cause some problems because the current theory of typed
attributed graph transformation systems in [EPT04,EEPT05] is essentially
based on a class M of attributed graph morphisms which are injective and
data type preserving.

5 Conclusion

The concept of typed attributed graph transformation is a powerful technique
to model not only visual languages, but also to define model transformations
between visual languages. This includes not only the formal definition of these
concepts, but also correctness of model transformations which is certainly
an important research topic. Concerning correctness we distinguish between
syntactical correctness, functional behavior and semantical correctness.

According to the basic concept of visual languages and model transfor-
mations presented in this paper visual languages are defined by metamodels
consisting of attributed type graphs only and model transformations by typed
attributed graph transformation systems. In a case study (see section 2) we
show how to define such a model transformation from a simple version of state
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charts to Petri nets.

The theory of typed attributed graph transformation known up to now (see
[HKT02,EPT04,EEPT05]) supports to show functional behavior for model
transformations according to the basic concept discussed above. In fact, the
local confluence theorem based on critical pairs and the termination criteria
in [EEdL+05] allow to verify confluence and termination of the corresponding
typed attributed graph transformation system.

The basic concept, however, allows only to model simple cases of visual
languages and model transformation. For this reason we have discussed several
extensions of the basic concept including application conditions, constraints,
generating graph grammars and operational semantics. Especially we propose
different kinds of constraints including not only graph and data type con-
straints, which have been studied in the literature
[HW95,EEHP04,EEPT05,EM85], but also in analogy to OCL constraints of
UML a new kind of constraints for typed attributed graphs, called graph-
OCL constraints (see [EE05]). We claim that an approach of visual languages
and model transformations based on attributed type graphs and all these
constraints has the potential to become at least as powerful as most of the
metamodeling approaches known in the literature [dLT04,AKK+05,VVP02].

In this paper we give an overview in which way the different extensions of
the basic concept influence the correctness criteria for model transformations.
The current theory of typed attributed graph transformations is not yet ready
to support the verification of most of these correctness criteria in the extended
concepts. But at least it is a very good basis and provides clear indications
for future research concerning these issues.
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S. Varró-Gyapay. Termination criteria for model transformation. In
M. Wermelinger and T. Margaria-Steffen, editors, Proc. Fundamental
Approaches to Software Engineering (FASE), volume 2984 of Lecture
Notes in Computer Science, pages 214–228. Springer Verlag, 2005.

[EEHP04] H. Ehrig, K. Ehrig, A. Habel, and K.-H. Pennemann. Constraints
and Application Conditions: From Graphs to High-Level Structures.
In H. Ehrig, G. Engels, F. Parisi-Presicce, and G. Rozenberg, editors,
Proceedings of ICGT 2004, volume 3256 of LNCS, pages 287–303.
Springer, 2004.

[EEKR99] H. Ehrig, G. Engels, H.-J. Kreowski, and
G. Rozenberg, editors. Handbook of Graph Grammars and Computing
by Graph Transformation, Vol 2: Applications, Languages and Tools.
World Scientific, 1999.

[EEPT05] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of
Algebraic Graph Transformation. EATCS Monographs in TCS, Springer
to appear, 2005.

[EKMR99] H. Ehrig, H.-J. Kreowski, U. Montanari, and G. Rozenberg,
editors. Handbook of Graph Grammars and Computing by Graph
Transformation, Vol 3: Concurrency, Parallelism and Distribution.
World Scientific, 1999.

[EM85] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 1:
Equations and Initial Semantics. EATCS Monographs in TCS. Springer,
1985.

[EPT04] H. Ehrig, U. Prange, and G. Taentzer. Fundamental Theory for Typed
Attributed Graph Transformation. In H. Ehrig, G. Engels, F. Parisi-
Presicce, and G. Rozenberg, editors, Proceedings of ICGT 2004, volume
3256 of LNCS, pages 161–177. Springer, 2004.

[Gya04] Szilvia Gyapay. Model transformation from general resource models to
petri nets using graph transformation. In Technical Report 2004/19.
Technical University Berlin, 2004.
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