
GraMoT 2005 Preliminary Version

Towards Model Transformation in Generated
Eclipse Editor Plug-Ins

Karsten Ehrig 1, Claudia Ermel 2, Stefan Hänsgen 3

Institut für Softwaretechnik und Theoretische Informatik
Technische Universität Berlin

Germany

Abstract

With the growing importance of model-driven development, the ability of trans-
forming models into well-defined semantic domains becomes a key to automated
code generation or verification in the software development process.

In this paper, we describe a high-level concept for specifying model transforma-
tions by means of typed, attributed graph transformation at the level of formal
visual language specifications for the source and the target language. At the im-
plementation level, a graph-transformation based generator of visual editor Eclipse
plug-ins from formal visual language specifications has been developed. On the
basis of this generator we discuss concepts for an implementation of the presented
model transformation concepts and for an integration with the generated Eclipse
plug-ins.

We explain the concepts for model transformation and their implementation along
a concrete model transformation from activity diagrams to Petri nets.

Key words: model transformation, Eclipse, editor plug-in, code
generation, graph transformation

1 Introduction

Although visual languages (VLs) are becoming increasingly popular, there are
controversial opinions about which notation would be best for describing them.
For textual languages, using grammars for the syntax is widely accepted, but
visual languages have two major competing approaches. One involves graph
grammars [1], which extend grammar concepts from textual languages to di-
agrams. The other approach, called metamodeling, is based on MOF [12]

1 Email: karstene@cs.tu-berlin.de
2 Email: lieske@cs.tu-berlin.de
3 Email: haensgen@cs.tu-berlin.de

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs



Ehrig, Ermel, Hänsgen

and calls for using UML class diagrams to model a visual language’s abstract
syntax. While class diagrams appear to be more intuitive than graph gram-
mars, they are also less expressive. Therefore, metamodeling also uses context
conditions written in the Object Constraint Language (OCL) [13] that help
to overcome the weaker expressive power. The advantage of metamodeling
is that UML users, who probably have basic UML knowledge, don’t need to
learn a new external notation to be able to deal with syntax definitions. But,
however intuitive the metamodeling technique is, using it to define UML is still
limited to describing abstract syntax; the problems of diagram representations
(concrete syntax) and of defining a formal semantics remain.

Model transformations are required, for example, to perform verification or
consistency checks on the translated model [9], to simulate the model behav-
ior, or to define code generation from visual models. Automatically executable
model transformations specified by means of graph transformation rules [9]
have proven to be an adequate approach for the case that the source and the
target language are both visual languages. The graphical notation of transfor-
mation rules supports an intuitive understanding and the rule-based nature
allows the flexibility to exchange and modify rules when the requirements for
the mappings change. Especially for model transformations of UML behav-
ioral diagrams (e.g. state diagrams) to Petri nets, there exist approaches based
on graph transformation [11,16] with the aim of model validation or verifica-
tion. Model transformation based on graph transformation allows to check
functional properties formally, e.g. to show that the model transformation
process terminates [2], and that the computed target model is unique [8].

Recently, a new tool environment, called Tiger [15] (Transformation-
based generation of modeling environments), has been developed at the Tech-
nical University of Berlin [3,4]. Tiger combines the advantages of precise
visual language (VL) specification techniques (offered by the underlying graph
transformation engine AGG [14]) with sophisticated graphical editor devel-
opment features (offered by the Eclipse Graphical Editor Framework (GEF)
[7]. Graph transformation is used at the abstract syntax level. Tiger extends
the AGG engine by a concrete visual syntax definition for flexible means for
visual model representation. From the definition of the visual language, the
Tiger Generator generates Java [10] source code. The generated Java code
implements an Eclipse visual editor plug-in which makes use of a variety of
GEF’s predefined editor functionalities. Hence, the generated editor plug-in
appears in a timely fashion. Moreover, the generated editor code may easily
be extended by further functionalities.

The aim of the work presented in this paper is to integrate model trans-
formation with visual editors generated by Tiger. This integration realizes
transformations of diagrams edited using a generated Eclipse visual editor
plug-in for the source language to diagrams which may be visualized, further
edited and manipulated using a generated Eclipse visual editor plug-in for
the target language.

2



Ehrig, Ermel, Hänsgen

The preconditions for this process are the definition of visual language
specifications for the source and the target language by typed, attributed
graph grammars, and the definition of the mapping between the two languages
by a typed, attributed graph transformation system based on a union of the
source and target VL specifications. On this basis, the generation of the
visual editors and the execution of the model transformation can be performed
automatically.

The paper is organized as follows: Section 2 gives a conceptual overview
how to realize model transformation based on visual language specifications
between Tiger-generated Eclipse editor plug-ins. An example is presented
in detail in Section 3 showing the source and target visual language specifica-
tions for UML activity diagrams and Petri nets, as well as the transformation
rules for the model transformation. Section 4 concludes with an outlook on
future development directions of Tiger.

2 Model Transformation between Editor Plug-ins

In this section we present a concept for model transformation by graph trans-
formation rules which transform diagrams based on different VL specifications
for which Eclipse editor plug-ins have been generated using the Tiger gen-
erator [3,4].

For the application of graph transformation techniques to visual language
modeling, typed attributed graph transformation systems [6,5] have proven to
be an adequate formalism. A VL is modeled by an attributed type graph
ATGV L which captures the definition of the underlying visual alphabet, i.e.
the symbols and relations which are available. Sentences or diagrams of the VL
are given by attributed graphs typed over the type graph. In order to further
restrict the visual sentences to valid visual models, a syntax graph grammar
GG is defined, consisting of a set of language-generating graph transformation
rules describing editing operations which lead to the construction of valid
visual models. A complete VL specification V Lspec = (ATGV L, GG) is given
by a VL alphabet ATGV L together with a syntax grammar GG.

2.1 VL Alphabets in Tiger

For the Tiger editor generator, a VL alphabet has to contain not only the
definition of the VL’s abstract syntax, but also a specification of the intended
layout which controls the generation of the visual editor. Hence, the abstract
nodes, edges and attributes of an abstract syntax type graph are enhanced by
concrete nodes, edges and attributes defining the shape and connection figures
for the concrete layout of the abstract object. Fig. 1 shows (a part of) the
Tiger meta type graph that all VL alphabet type graphs have to be typed
over. At the abstract syntax level (the upper part of Fig. 1), each VL alphabet
consists of NodeSymbolTypes (e.g. activities in activity diagrams), EdgeSym-

3



Ehrig, Ermel, Hänsgen

bolTypes (e.g. next-relations in activity diagrams) and LinkTypes (the connec-
tion of EdgeSymbolTypes to NodeSymbolTypes). Moreover, NodeSymbolTypes
may be attributed by AttributeTypes (e.g. names of simple activities).

NodeSymbolType EdgeSymbolTypeLinkTypeAttributeType

ShapeFigureTextFigure LinkLayout Connection

ConnectionConstraintLayoutConstraint

layout layout layout layout

end begin

first first secondfirst first
second

abstract
syntax

concrete
syntax

Fig. 1. Meta Type Graph for VL Alphabets in Tiger

At the concrete syntax level (the lower part of Fig. 1), the graphical layout
for a node symbol of a certain NodeSymbolType is given by a ShapeFigure.
Up to now, the shape of NodeSymbols can be a simple form, e.g. a rectan-
gle, circle, ellipse or a closed polygon. Shape figure properties such as stroke
and fill colors are given by additional attributes (not shown in Fig. 1). The
standard layout for a textual attribute of type AttributeType is given by a
TextFigure (with attributes font, fontColor, ..). The graphical relations be-
tween TextFigures and ShapeFigures are expressed by LayoutConstraints, such
as below(TextFigure, ShapeFigure). Figures can be connected by Connections
(i.e. lines or polylines) which represent the concrete graphical layout for the
EdgeSymbolTypes. The graphical representation of a link (e.g. a colored ar-
row head) is modeled by a LinkLayout object. Graphical relations between
a Figure and a Connection can be modeled as ConnectionConstraints, such
as atCenter(TextFigure, Connection). Based on a VL alphabet, Tiger uses
the default Eclipse-GEF graph layout manager to compute the layout of
the symbols and links in the generated editor. Editing operations modeled
by abstract syntax rules are performed in Tiger-generated Eclipse editor
plug-ins by AGG operating on the abstract syntax of the VL diagrams. The
concrete layout is computed after each operation on the basis of the generated
GEF layout features.

In this sense all diagram instances edited in the generated editors, are
represented at the abstract syntax level by an instance graph typed over the
abstract type graph of the corresponding VL alphabet. A model transforma-
tion between diagrams typed over different VL alphabets has to relate the
corresponding abstract syntax elements of both languages.

2.2 Model Transformation by Graph Transformation

In Tiger generated Eclipse editor plug-ins, the source and target languages
are given by VL specifications. We describe a model transformation by graph
transformation rules. The abstract syntax graph of a source model is trans-
formed by applying transformation rules resulting in the abstract syntax graph
of the target model. According to the VL specification of the target language,

4



Ehrig, Ermel, Hänsgen

the concrete syntax for the target model is computed after the transfomation
by the generated editor for the target language.

A model transformation based on graph transformation is defined by an
attributed graph transformation system GTS = (ATG, P ) consisting of a
attributed type graph ATG and a set of transformation rules (or productions)
P . The abstract syntax graphs of the source models can be specified by all
(or a subset of) instance graphs over a type graph ATGS. Correspondingly,
the abstract syntax graphs of the target models are specified by all (or a
subset of) instance graphs over a type graph ATGT . Both type graphs ATGS

and ATGT have to be subgraphs of type graph ATG (see Figure 2). The
model transformation starts with instance graph AGS typed over ATGS. As
ATGS is a subgraph of ATG, AGS is also typed over ATG. During the
model transformation process the intermediate graphs are all typed over ATG.
Please note that this type graph may contain not only ATGS and ATGT , but
also additional types and relations which are needed for the transformation
process. The result graph AGT is typed over ATG. If it is also typed over
ATGT , it fulfills one main requirement to be syntactically correct. Data types
are preserved during the transformation process.

ATGS
� � incS // ATG ATGT

? _incToo

AGS

typeAGS

OO

pi +3

::uuuuuuuuuuuuuuuuuuu
... pj +3 AGi

typeAGi

OO

pk +3 ... pl +3 AGT

typeAGT

OOddIIIIIIIIIIIIIIIIIII

Fig. 2. Typing in the Model Transformation Process

2.3 Transforming Diagrams from the Source into the Target Language

Our aim is to describe a concept for transforming diagrams of the source editor
plug-in to diagrams of the target editor plug-in. We assume that the source
and target editor plug-ins are generated by Tiger from source and target VL
specifications. Fig. 3 shows an overview of the model transformation process.

Graph Transformation
Engine AGG

Model

Rules
Transformation

Source
Graph

import

concrete syntax

Target
Graph

export

extend to

Target
Diagram

load
Editor
Target

Plug−In

save
Editor
Plug−In

Source Source
Diagram

abstract syntax
restrict to

Fig. 3. Model Transformation Overview

5



Ehrig, Ermel, Hänsgen

Starting with the source diagram we restrict the diagram to its abstract
syntax and hence to the source graph in AGG. In AGG we have to provide
a graph transformation system GTS = (ATG, P ) consisting of a type graph
ATG which includes the abstract source and target alphabets as described
above, and a set of model transformation rules P . The source diagram is
imported from the Tiger editor as start graph of the existing graph transfor-
mation system in AGG. The model transformation rules transform the source
graph into the target graph typed over the target language.

The target graph is loaded into the target VL editor plug-in. Most infor-
mation for the concrete layout is given already by the target VL specification.
Yet, some model-dependent layout attributes may be missing, such as posi-
tions of diagram symbols in the editor panel. These attributes have to be set
by default values or computed by a suitable layout algorithm of the target VL
editor.

3 Example: From Activity Diagrams to Petri Nets

In this section we present an example for a model transformation between
UML Activity Diagrams given as the source language of the generated Activity
Diagram Editor and Petri Nets given as the target language of the generated
Petri Net Editor.

3.1 Source and Target Languages

The source language alphabet for activity diagrams contains two kinds of sym-
bol types, activities and next-relations. Activities are typed over NodeSym-
bolType, and next-relations are typed over EdgeSymbolType according to the
meta type graph for VL alphabets in Tiger (see Fig. 1). Next-relations begin
and end at activities (these begin and end relations are typed over LinkType
in the meta type graph). Activities can be of different kinds, i.e. simple
activities, start and end nodes as well as decision nodes. Simple activities
are usually inscribed by some text. Moreover, next-relations may have in-
scriptions which are used to formulate conditions. The activity kind, the text
and the conditions for decisions are given as attributes of the corresponding
symbol types. Fig. 4 shows the sample source activity diagram for the model
transformation, edited in the generated activity diagram editor plug-in. The
abstract syntax graph of this diagram is typed over the type graph of the
activity diagram language, shown in the left-hand side of Fig. 6.

The target language alphabet for Petri nets contains NodeSymbolTypes
Place and Transition for the Petri net nodes, EdgeSymbolTypes ArcPT for Petri
net arcs from a place to a transition and ArcTP for arcs from a transition to a
place, and LinkTypes arcPTsource, arcPTtarget, arcTPsource and arcTPtarget for
linking the edge symbols to the node symbols. AttributeTypes are the names
of places and transitions, their positions and the token number on a place.

6



Ehrig, Ermel, Hänsgen

Fig. 4. Model Transformation Source Activity Diagram Editor Plug-In

Fig. 5 shows the target Petri net (corresponding to the activity diagram in
Fig. 4), edited in the generated Petri net editor plug-in. The abstract syntax
graph of this net is typed over the type graph of the Petri net language, shown
in the right-hand side of Fig. 6.

3.2 Model Transformation

Petri net places model passive system parts (e.g., buffers and files), whereas
transitions describe process activities. Thus, our model transformation maps
activities to transitions and next-relations to places in between. The places can
hold at most one token each, thus the token just shows how far the process has
reached. Petri nets of this special kind are called condition-event nets. Note
that decision activities are translated to two transitions, one for each possible
decision branch. To each of these transitions, another place is assigned, the
marking of which models the evaluation of the corresponding guard to “true”.

The model transformation type graph ATG (the complete graph shown in
Fig. 6) is defined by the union of the source and target language alphabets
plus two reference nodes, the adjacent arcs of which connect the corresponding
symbol types of both alphabets, i.e. activities to transitions and next-relations
to places.

Fig. 7 shows the start graph for the model transformation, i.e. the abstract
syntax graph of the activity diagram in Fig. 4.

The model transformation rules are defined by a graph transformation sys-
tem typed over ATG. Starting with the start graph in Fig. 7, the consecutive

7



Ehrig, Ermel, Hänsgen

Fig. 5. Model Transformation Target Petri Net Editor Plug-in

Fig. 6. Model Transformation Type Graph ATG

application of the model transformation rules results in the abstract syntax
graph of the target diagram. Please note that the following screenshots of
the model transformation rules either contain three graphs each (a negative
application condition NAC, the left-hand side LHS and the right-hand side
RHS of the rule), or only two graphs (LHS and RHS), if there is no NAC, or
if the NAC equals the right-hand side of the rule.

Fig. 8 contains all rules needed to generate places and transitions, and to
build up the references between activities and transitions on the one hand, and
between next relations and places on the other hand. Start and end activities
are translated to places preceding and following the corresponding transition.
Activities with kind=“decision-begin” are translated to two transitions. Ad-
ditionally, two places are added to the pre-domain of the decision enter point

8



Ehrig, Ermel, Hänsgen

Fig. 7. Model Transformation Start Graph

transitions, the marking of which model the evaluation of the guard to true.

Fig. 9 shows the rules to insert arcs between transitions and places. We
distinguish the handling of decision activities from others. If an activity is not
a decision, a next-relation beginning at this activity is translated to a place
in the post-domain of the transition corresponding to the activity by rule
createArcTP. Analogously, using rule createArcPT, a next-relation ending at
an activity is translated to a place in the pre-domain of the corresponding
transition. Both rules have the attribute condition kind6=decide-begin and
kind 6=decide-end.

Fig. 10 depicts the rules which handle the insertion of arcs between places
and transitions corresponding to decision activities. Rule decide-begin deals
with the branching structure at the beginning of a decision (the decision enter
point), and rule decide-end deals with the merging structure at the end of a
decision (the decision exit point). The transition names of the two transitions
corresponding to the decision enter point, which are initially set to empty, are
now overwritten by the guard, i.e. the inscription of the corresponding next
relations.

Negative application conditions (NACs) are equal to the right hand side
(RHS) of the rules in Fig. 9 and 10. Rule “decide-begin” has an additional
“NAC2” with the attribute condition j = i which ensures that the transition
is only be connected once.

Four further rules (not depicted) are necessary to delete all source and
reference items, resulting in a target graph typed over the target language.

The model transformation rules are structured in three different layers for
controlled rule application. Starting with layer = 0, rules of the current layer
are applied as long as possible. After termination of all rules in the current
layer the transformation continues with the next layer (layer = layer + 1).
The rules in Fig. 8 for the creation of places and transitions are assigned to

9



Ehrig, Ermel, Hänsgen

Fig. 8. Model Transformation Rules Inserting Places and Transitions

Fig. 9. Model Transformation Rules Inserting Arcs (NAC=RHS)

10



Ehrig, Ermel, Hänsgen

Fig. 10. Model Transformation Rules for Decisions (NAC=RHS)

layer 0. Rules inserting arcs between places and transitions (depicted in Fig. 9)
have the layer number 1, and rules transforming a decision (Fig. 10) get the
layer number 2. The deletion rules have to be applied at last, and thus belong
to layer 3.

3.3 Consistency Analysis

The model transformation example fulfills the termination criteria for layered
graph transformation systems shown in [2]. In addition, critical pair analysis
was done for the model transformation example with the AGG system [14].
Although critical pair analysis could not been fully completed due to perfor-
mance reasons, no critical pairs were found up to now. According to the theory
in [5] the model transformation is locally confluent if there are no critical pairs
left. Together with termination of the model transformation this would imply
that the model transformation is also confluent and has functional behavior.

4 Conclusion

In this paper we have shown how to extend the Tiger generator of Eclipse-
GEF based editor plug-ins in order to support model transformation from a
diagram of the source editor plug-in into a diagram of the target editor plug-in.

In general we benefit from the design of the generated editor plug-ins where
the abstract syntax of each edited diagram is represented as a graph in AGG
[14]. Such an underlying syntax graph of the source language is transformed
using model transformation rules in AGG into an abstract syntax graph typed
over the target language. In AGG, all available consistency checks can be
applied to the model transformation rules like critical pair analysis and ter-

11



Ehrig, Ermel, Hänsgen

mination checking.

The resulting abstract syntax graph of the target language is extended by
the target editor plug-in by the corresponding concrete syntax, because most
of the necessary layout informations given by the target VL specification is
already hard-coded in the editor plug-in Java code. Only default values for
the concrete layout positions of the symbols in the target editor plug-in have
to be provided by a layout algorithm. In our example, a layout algorithm for
Petri nets might be given by a default graph layouter manager.

As abstract syntax graphs during model transformation tend to be quite
complex and may contain a large number of nodes and edges, it is difficult
to check the correctness of the model transformation rules using the resulting
abstract target graph in AGG. Here, the visualization of the target graph in
a suitable concrete layout in the generated Tiger editor plug-in has proven
to be very helpful for the validation of the model transformation rules.

It remains to analyze more complex case studies for model transformation
in Tiger, to get results about the scalability of our approach concerning the
performance, the efficiency and the expressive power, and to compare the re-
sults to related tool-based model transformation approaches. Future work is
also planned to extend the Tiger environment not only for model transfor-
mation but also to support simulation of behavioral diagrams based on graph
transformation in generated simulation environments. A model transforma-
tion can be very useful for validation of a source model by simulation if a
simulator for diagrams of the target language has already been generated.

References

[1] R. Bardohl, G. Taentzer, M. Minas, and A. Schürr. Application of Graph
Transformation to Visual Languages. In H. Ehrig, G. Engels, H.-J. Kreowski,
and G. Rozenberg, editors, Handbook of Graph Grammars and Computing by
Graph Transformation, Volume 2: Applications, Languages and Tools. World
Scientific, 1999.

[2] H. Ehrig, K. Ehrig, J. de Lara, G. Taentzer, D. Varró, and S. Varró-
Gyapay. Termination criteria for model transformation. In M. Wermelinger
and T. Margaria-Steffen, editors, Proc. Fundamental Approaches to Software
Engineering (FASE), LNCS 2984, pages 214–228. Springer, 2005.

[3] K. Ehrig, C. Ermel, S. Hänsgen, and G. Taentzer. Towards Graph
Transformation based Generation of Visual Editors using Eclipse. In M. Minas,
editor, Visual Languages and Formal Methods, volume 127 of Electronic Notes
in Theoretical Computer Science, pages 127–143. Elsevier, 2004.

[4] K. Ehrig, C. Ermel, S. Hänsgen, and G. Taentzer. Generation of visual
editors as eclipse plug-ins. In Proc. 20th IEEE/ACM International Conference
on Automated Software Engineering, Long Beach, California, USA, 2005. to
appear.

12



Ehrig, Ermel, Hänsgen

[5] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of Algebraic
Graph Transformation. EATCS Monographs in TCS, Springer to appear, 2005.

[6] H. Ehrig, U. Prange, and G. Taentzer. Fundamental theory for typed attributed
graph transformation. In F. Parisi-Presicce, P. Bottoni, and G. Engels, editors,
Proc. 2nd Int. Conference on Graph Transformation (ICGT’04), Rome, Italy.
LNCS 3256. Springer, 2004.

[7] Eclipse Consortium. Eclipse Graphical Editing Framework (GEF) – Version
2.1.3, 2004. http://www.eclipse.org/gef.

[8] R. Heckel, J. Küster, and G. Taentzer. Confluence of Typed Attributed
Graph Transformation with Constraints. In A. Corradini, H. Ehrig, H.-J.
Kreowski, and Rozenberg. G., editors, Proc. of 1st Int. Conference on Graph
Transformation. LNCS 2505. Springer, 2002.

[9] R. Heckel, J. Küster, and G. Taentzer. Towards Automatic Translation of
UML Models into Semantic Domains . In H.-J. Kreowski, editor, Proc. of
APPLIGRAPH Workshop on Applied Graph Transformation (AGT 2002),
pages 11 – 22, 2002.

[10] Sun Microsystems. Java – Version 1.5, 2004. http://java.sun.com.

[11] , J. de Lara, and H. Vangheluwe. Computer Aided Multi-Paradigm Modelling
to Process Petri-Nets and Statecharts. In Proc. 1st Int. Conf. on Graph
Transformation (ICGT 2002), LNCS 2505, pages 239 – 253. Springer, 2002.

[12] Object Management Group. Meta-Object Facility (MOF), Version 1.4, 2005.
http://www.omg.org/technology/documents/formal/mof.htm.

[13] Object Management Group. UML 2.0 OCL Specification, 2003. http://www.
omg.org/docs/ptc/03-10-14.pdf.

[14] G. Taentzer. AGG: A Graph Transformation Environment for Modeling
and Validation of Software. In J. Pfaltz, M. Nagl, and B. Boehlen, editors,
Application of Graph Transformations with Industrial Relevance (AGTIVE’03),
LNCS 3062, pages 446 – 456. Springer, 2004.

[15] Tiger Project, Technische Universität Berlin, 2005. http://www.tfs.cs.
tu-berlin.de/~tigerprj.

[16] Varró D., Varró G. and Pataricza A. Designing the Automatic Transformation
of Visual Languages. Journal Science of Computer Programming, Vol. 44(2),
pages 205–227. Elsevier, 2002.

13

http://www.eclipse.org/gef
http://java.sun.com
http://www.omg.org/technology/documents/formal/mof.htm
http://www.omg.org/docs/ptc/03-10-14.pdf
http://www.omg.org/docs/ptc/03-10-14.pdf
http://www.tfs.cs.tu-berlin.de/~tigerprj
http://www.tfs.cs.tu-berlin.de/~tigerprj

	Introduction
	Model Transformation between Editor Plug-ins
	VL Alphabets in Tiger
	Model Transformation by Graph Transformation
	Transforming Diagrams from the Source into the Target Language

	Example: From Activity Diagrams to Petri Nets
	Source and Target Languages
	Model Transformation
	Consistency Analysis

	Conclusion
	References

