
Generation of Visual Editors as Eclipse Plug-Ins∗ †

Karsten Ehrig, Claudia Ermel, Stefan Hänsgen, and Gabriele Taentzer,
Technische Universität Berlin, Germany

Email: {karstene,lieske,haensgen,gabi}@cs.tu-berlin.de

ABSTRACT
Visual Languages (VLs) play an important role in software
system development. Especially when looking at well-defined
domains, a broad variety of domain specific visual languages
are used for the development of new applications. These
languages are typically developed specifically for a certain
domain in a way that domain concepts occur as primitives
in the language alphabet. Visual modeling environments
are needed to support rapid development of domain-specific
solutions.

In this contribution we present a general approach for
defining visual languages and for generating language-specific
tool environments. The visual language definition is again
given in a visual manner and precise enough to completely
generate the visual environment. The underlying technol-
ogy is Eclipse with its plug-in capabilities on the one hand,
and formal graph transformation techniques on the other
hand. More precisely, we present an Eclipse plug-in gener-
ating Java code for visual modeling plug-ins which can be
directly executed in the Eclipse Runtime-Workbench.

1. INTRODUCTION
In software system development, often application-specific

visual notations are used for which a tool environment con-
sisting of visual editors, simulators, etc. is needed. Existing
approaches for generating the desired tool environments rely
on meta-modeling concepts, grammars, or some kind of log-
ics. In the following, we concentrate on generators based
on graph transformation like DiaGen [18], AToM3 [15] and
GenGED [1], which allow the precise description of visual
modeling languages and the generation of visual environ-
ments. Furthermore, we consider the development environ-
ment Eclipse [3] which offers rich support for graphical edi-

∗This work is partially supported by the European Research
Training Network Segravis.
†

c©ACM, (2005). This is the author’s version of the work. It is posted here by
permission of ACM for your personal use. Not for redistribution. The definitive
version was published in the Proceedings of the 20th IEEE/ACM International
Conference on Automated Software Engineering (ASE’05).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASE’05, November 7–11, 2005, Long Beach, California, USA.
Copyright 2005 ACM 1-58113-993-4/05/0011 ...$5.00.

tor development on a model-view-controller basis in form of
a number of plug-ins (e.g. EMF [6], Draw2D and the Graph-
ical Editor Framework GEF [4]). A visual editor based on
GEF has to be hand-coded, as no high-level description of
visual representations is offered to support a complete edi-
tor generation. The aim of this paper is to bring together
graph transformation-based tool generation with the Eclipse
technology.

Graph-transformation based editor generators have the
benefit of providing a solid, precise visual language (VL)
specification. The static part of such a formal VL specifi-
cation, i.e. the VL alphabet, is given by a type graph (the
abstract syntax of the VL) plus the necessary layout spec-
ification. Using graph transformation, an editor operation
is modeled in a rule-based way by just specifying the pre-
and post-conditions of such an operation. The application
of such syntax rules to the syntax graph of a diagram is
performed by the graph transformation engine AGG [24],
developed also at the Technical University of Berlin. AGG
makes direct use of graph transformation concepts follow-
ing the double-pushout approach to typed, attributed graph
transformation [11].

In this paper, we present a new tool environment, called
Tiger [25] (Transformation-based generation of modeling
environments), the first ideas of which have been presented
in [10]. Tiger combines the advantages of precise VL speci-
fication techniques (offered by the graph transformation en-
gine AGG) with sophisticated graphical editor development
features (offered by GEF). Graph transformation is used on
the abstract syntax level. Tiger extends the AGG engine by
a concrete visual syntax definition for flexible means for vi-
sual model representation. From the definition of the visual
language, the Tiger generator generates Java [23] source
code. The generated Java code implements an Eclipse vi-
sual editor plug-in based on GEF which makes use of a va-
riety of GEF’s predefined editor functionalities. Hence, the
generated editor plug-in appears in a timely fashion. More-
over, the generated editor code may easily be extended by
further functionalities.

The paper is organized as follows: In Section 2, we re-
view and compare the basic concepts of visual editor devel-
opment, being based on graph transformation on the one
hand, and on Eclipse/GEF on the other hand. Section 3
describes the aims and the architecture of the Tiger frame-
work for visual language specification and GEF-based editor
generation. In Section 4 we give an introduction to graph
transformation and in Section 5, we discuss VL specification
by Tiger. In Section 6, we describe the generation of editors

for graph-like diagrams on the basis of a VL specification.
Petri nets and activity diagrams are chosen as sample VLs
to demonstrate the use of the Tiger VL structures and to
present the look-and-feel of the generated editors. The pa-
per concludes with an outlook on future development steps
of Tiger.

2. GRAPHICAL EDITOR GENERATION:
STATE OF THE ART

In this chapter, we review the state of the art of model-
based graphical editor generation. We compare editor gen-
eration concepts using models for visual languages based on
graph transformation to editor generation concepts based
on models defined in the Eclipse modeling framework EMF.

2.1 Graph-Transformation based
Editor Generation

The static part of a graph transformation-based VL spec-
ification, i.e. the VL alphabet, is given by a type graph
(the abstract syntax of the VL) plus the necessary layout
specification. An editing operation in the generated editor
is combined with a corresponding change of the internal ab-
stract syntax graph of the diagram. An editor operation is
modeled as a graph rule (typed over the VL type graph) be-
ing applied to the abstract syntax graph of the current dia-
gram. The graph grammar defining these editor operations
is called VL syntax grammar because it defines (together
with the VL alphabet) the complete syntax of the VL. Syn-
tax rules are a well-defined and constructive way to express
which diagrams belong to a VL. Editing based on a syntax
grammar is called syntax-directed editing and allows to edit
syntactically correct diagrams only. Besides, syntax rules
can specify complex editing operations like the insertion of
a complete if-then-else construct in activity diagrams in one
step (see Section 7.2.2, where a syntax grammar for activity
diagrams is discussed). When a diagram has been edited,
other graph rules (like simulation rules) can be applied to
perform model simulation or model analysis, based on the
same diagram.

Visual environment generators like DiaGen [18], AToM3

[15] and GenGED [1] generate their own VL specific edi-
tors from VL specifications based on graph transformation.
The created editor features (e.g. for layouting diagrams,
undo/redo, zooming, etc.) differ heavily. In GenGED,
layouting is based purely on graphical constraint solving, a
flexible and elegant way to model layout constraints. Unfor-
tunately, in some cases this leads to performance problems
as the computation of large constraint satisfaction problems
can be quite complex. Therefore, GenGED (as well as Di-
aGen) allows the editor designer to write VL-specific lay-
out algorithms in Java which replace the constraint solver
when the VL becomes more complex. This solution requires
some knowledge in Java programming and about the inter-
nal language model from the editor designer. AToM3 offers
a standard layout algorithm in its generated editors which
is adequate only for simple graph-like diagrams. For more
complex VLs, the editor user has to take care of an adequate
diagram layout.

All of the generated environments are not meant to be in-
tegrated into other existing tool environments. As stand
alone applications they do not always offer the standard
look-and-feel of common editor features.

2.2 Eclipse-based Editor Generation
Eclipse [3] is an open platform for tool integration man-

aged by an open community, written in Java [23]. Its plug-in
technology allows flexible program development and integra-
tion. Extensive plug-in construction toolkits and examples
allow the easy development of own application plug-ins sup-
porting specific application functionalities.

The Eclipse Modeling Framework (EMF) [6] allows to gen-
erate code from meta-models, called models in EMF, defined
as class diagrams using appropriate CASE plug-ins. Using
EMF for visual language specification, the class diagram
describes mainly the abstract syntax, (i.e. the symbol and
link types used in the diagrams) but does not contain in-
formation about their concrete layout, such as shapes and
lines and their poperties. The generated model code thus
consists of the basic classes allowing to handle the internal
model of the editor. Furthermore, EMF allows to generate a
primitive, tree-based editor which can directly be executed
in the Eclipse Runtime-Workbench. In this editor, a “dia-
gram” can be edited by defining instances for the symbols
and values for their properties, in order to test the underly-
ing generated model code, but is not layouted visually.

The Graphical Editor Framework (GEF) [4] plug-in is part
of the Eclipse project and allows the designer to develop
graphical editors for models of a specific application domain.
GEF-based editors require at least a minimal Eclipse envi-
ronment such as the Eclipse Runtime-Workbench. A GEF-
based editor is linked by action handlers to the Eclipse en-
vironment. Basic and advanced editor functionalities are
offered by GEF to be included in a graphical editor.

Unfortunately, EMF does not support the generation of
graphical editors based on GEF. Therefore, the model-specific
editor features must be coded by hand, e.g. by defining
figures for the concrete layout of diagrams in the graphi-
cal editor, and commands to be used in the editor, thereby
strictly obeying the Model-View-Controller architecture of
GEF applications. The model in GEF is a distinct pack-
age offering all model-manipulating operations (and may be
generated by EMF). The values defined by the model are
the only data that are saved and restored for each model
instance (diagram). Hence, the model has to include also
the part of the layout information (e.g. symbol positions)
which is specific to the diagram.

In order to bridge the gap between EMF-models and GEF-
based graphical editors, the Eclipse Graphical Modeling
Framework (GMF) project [5] started recently as Eclipse
technology subproject and aims to provide the fundamental
infrastructure and components for developing visual design
and modeling surfaces in Eclipse. In essence, a diagram
definition will be linked to a domain visual language model
which serves as input to the generation of a visual editor.
GMF is a generative approach allowing to add diagramming
capabilities to a visual language model expressed in EMF
where a visual editor is desired. In many ways, GMF is an
extension to the capabilities of EMF.

The disadvantage of the Eclipse approach to visual edi-
tor generation based on EMF/GEF and the GMF project,
is that the underlying meta-model (i.e. the EMF model)
mainly defines the visual language alphabet. Therefore it
may be the case that an editor based on this model allows
the editing of diagrams which are not valid in the VL. Addi-
tional language constraints can be expressed by adding e.g.
OCL constraints [20] to the EMF model. A resulting edi-

tor can only offer simple editing operations based on such a
visual language specification. For the generation of syntax-
directed editor operations, the graph transformation-based
approach to VL definition offers better support.

Hence, our approach is to combine GEF features and for-
mal, graph-transformation based VL specifications instead
of EMF models in the visual editor generator Tiger.

3. THE TIGER ENVIRONMENT:
AIMS AND ARCHITECTURE

The overall aim of Tiger is to allow the generation of
modeling environments based on GEF and on formal graph
transformation specifications defining, checking or transform-
ing the diagrams of a specific VL.

For the graph transformation structures used for VL def-
inition, we rely on the tool environment AGG which of-
fers not only a graph transformation engine for typed, at-
tributed, conditional graph rewriting but also algorithms
for checking graph conditions and analysis of graph gram-
mars (such as critical-pair analysis). These analysis tech-
niques can be used to provide syntactic as well as semantic
checks on visual languages. Despite of a similar approach,
the formal basis of Tiger differs from that of GenGED
[1]. Instead of transforming attributed graph structures as
done in GenGED, we transform typed attributed graphs
now. Both kinds of graphs are equally powerful [11], but
typed attributed graphs offer a simpler and more compact
approach to visual language definition.

For the generation of modeling environment components
we rely on the GEF framework. Visual editors based on
model definitions, will play an important role within nearly
all Tiger components: On the one hand, we will have the
designer component which allows the visual definition of VL
specifications themselves from which the modeling environ-
ment is generated, and, on the other hand, we will have the
generated modeling components, namely the editor compo-
nent for editing a model, the simulator/animator compo-
nent for simulating/animating a model’s behavior, the anal-
ysis component for performing model analysis and visual-
izing the analysis results, the model transformation compo-
nent [9] for realizing model conversions from one modeling
language to another (e.g. from function block diagrams to
Petri nets in order to perform Petri net based analyis of
the model). All these components need visual editors or at
least viewers for showing parts of the model or intermediate
model states. In the following we summarize all the different
components which may be generated from one VL specifi-
cation by the notion <vl>.environment, where <vl> should
be replaced with the concrete visual language name.

In Fig. 1, the basic components of the Tiger software
architecture are shown. The basic AGG data structures
are in the package AGG. The packages tiger.generator and
tiger.vlspec build the core packages of the Tiger tool. The
VL specification will be designed by the VL designer using
the tiger.designer component building the VL specification
using the data structures defined in the tiger.vlspec package.

The tiger.generator generates diagram editors, as well as
the envisaged simulation, animation, analysis and model
transformation components belonging to the <vl>.environ-
ment. Moreover, the tiger.generator generates the code for
the visual runtime model from the VL specification in the
package <vl>.model. The basic VL specification package

GEF

EMF
VL
specifi−
cation

tiger.vlspecSyntax

Interface

AGG

<vl>.model

gxl

tiger.generator

<vl>.environment

Syntax
Abstract

VL−Definition Generation Generated Environment

tiger.designer

Concrete

User

Figure 1: Software Architecture

tiger.vlspec allows to create and modify VL specifications.
They are saved in an EMF VL specification model [6]. The
visual runtime model <vl>.model could be exported to an
XML based exchange format for graphs (GXL [27]) in or-
der to allow tool cooperation in the graph transformation
community.

Since the Tiger project is ongoing work in an early stage,
we here present the current state of the development. We
have imposed the following design decisions on the first de-
velopment step:

We generate diagram editors (instead of complete model-
ing environments) on the basis of a VL specification which
consists of a VL alphabet and a syntax grammar; thus we
generate graph-transformation based visual editors. Up to
now, we allow graph-like languages only such as Petri nets
or activity diagrams (see also [17]). For source code genera-
tion, we use Eclipse JET [7] as part of the Eclipse Modeling
Framework (EMF) [6].

4. GRAPH TRANSFORMATION
The main idea of graph grammars and graph transfor-

mation is the rule-based modification of graphs where each
application of a graph transformation rule leads to a graph
transformation step. Graph grammars can be used on the
one hand to generate graph languages by Chomsky gram-
mars in formal language theory. On the other hand, graphs
can be used to model the states of all kinds of systems which
allows to use graph transformation to model state changes
of these systems.

The core of a graph transformation rule p = (LHS, RHS)
is a pair of graphs (LHS, RHS), called left-hand side and
right-hand side, and an injective morphism r : LHS →
RHS as shown in Fig. 2. Applying the rule p = (LHS, RHS)
means to find a match of LHS in the source graph and
to replace LHS by RHS leading to the target graph of
the graph transformation. Especially for the application of
graph transformation techniques to visual language model-
ing, typed attributed graph transformation systems [11, 8]
have proven to be an adequate formalism. A VL is modeled
by a type graph capturing the definition of the underlying vi-
sual alphabet, i.e. the symbols and relations which are avail-
able. Sentences or diagrams of the VL are given by graphs
typed over the type graph. In order to restrict the visual sen-
tences to valid visual models, a syntax graph grammar is de-
fined, consisting of a set of language-generating graph trans-
formation rules describing editing operations which lead to
the construction of valid visual models only.

Definition 4.1 (Graph Transformation)
Let p = (LHS → RHS) be a typed graph transformation
rule and G a typed graph with a typed graph morphism
m : LHS → G, called match. A graph transformation step

G
p,m
=⇒ H from G to a typed graph H via rule p, match m,

and comatch m∗ is shown in Fig. 2. The rule p could be
extended by a set of negative application conditions (NACs)
[14, 8]. The match m : LHS → G satisfies the NAC with
the injective NAC morphism n : LHS → NAC, if there
does not exist an injective graph morphism q : NAC → G
with q ◦ n = m. A sequence G0 ⇒ G1 ⇒ ... ⇒ Gn of graph
transformation steps is called transformation and denoted

as G0
∗⇒ Gn. 4

NAC

q
|

IIII

$$III
II

LHS
r //

m

��

noo RHS

m∗

��
G // H

Figure 2: Graph Transformation Step

Intuitively, the application of rule p to graph G deletes
the image m(LHS) from G and replaces it by a copy of
the right-hand side m∗(RHS). Note that a rule may only
be applied if the so-called gluing condition is satisfied, i.e.
the deletion step must not leave dangling edges, and for two
objects which are identified by the match, the rule must not
preserve one of them and delete the other one.

Now we define graph grammars and languages. The lan-
guage of a graph grammar consists of the graphs that can be
derived from the start graph by applying the transformation
rules.

Definition 4.2 (Graph Grammar and Language)
A typed graph grammar GG = (TG, P, S) consists of a type
graph TG, a set of typed graph transformation rules P , and
a typed start graph S.

The graph language L of GG is defined by

L = {G | ∃ typed graph transformation S
∗⇒ G}.

4

Although we do not define the attribution concept for
graphs formally in this paper (see [11, 8] for a complete
definition of the theory), we use node attributes in our ex-
amples, e.g. text for the names of nodes, or integers for
their positions. This allows us to perform computations on
attributes in our rules and offers a powerful modeling ap-
proach. For flexible rule application, variables for attributes
can be used, which are instantiated by concrete values in
the rule match.

An example for a graph grammar with NACs and node
attributes is the visual syntax grammar for Petri nets (see
Fig. 9) which is explained in detail in Section 7. Graph
objects which are preserved by the rule occur in both L and
R (indicated by equal numbers for the same objects).

5. VISUAL EDITOR SPECIFICATION
Fig. 3 shows the packages abstractsyntax and rules for a

VL specification (VLSpec) which consists of a Alphabet, a
RuleSet and a StartGraph.

5.1 The VL Alphabet
A VL alphabet consists of SymbolTypes and LinkTypes.

In our approach, graph-like languages consist of NodeSym-
bolTypes (e.g. places and transitions in Petri nets) and
EdgeSymbolTypes (e.g. arcs in Petri nets). EdgeSymbol-
Types are connected to NodeSymbolTypes by LinkTypes. Sym-
bolTypes may be attributed by an ordered list of Attribute-
Types e.g. to model the place and transition names in Petri
nets. Classes AttributeType, SymbolType and LinkType have
directly corresponding node and edge types in AGG forming
the abstract syntax representation.

Graphical Layout
The graphical layout (the concrete syntax) is given by addi-
tional classes extending the class diagram shown in Fig. 3,
as indicated in Fig. 4, where the upper part shows the main
classes for the abstract syntax, and the lower part the addi-
tional classes for the concrete syntax.

NodeSymbolType
name: String

EdgeSymbolType
name: String

LinkType
name: String

AttributeType
name: String
type: Enum

ShapeFigure
name: String

borderColor: Color
fillColor: Color

TextFigure
name: String

font: Font
fontColor: Color

LinkLayout
marker: Enum

borderColor: Color
fillColor:Color

Connection
name: String

strokeColor: Color
strokewidth: int

strokeStyle: Style

ConnectionConstraint
kind: Enum

LayoutConstraint
kind: Enum

layout layout layout layout

end begin

first first
secondfirst first

second

Figure 4: Concrete Syntax in VL Specifications

The graphical layout for a NodeSymbol of a certain NodeSym-
bolType is given by class ShapeFigure. The shape of NodeSym-
bols can be a simple form, e.g. a rectangle, circle, ellipse or
a closed polygon. The stroke and fill colors are given by at-
tributes borderColor and fillColor. The standard layout for
a textual attribute of type AttributeType is given by class
TextFigure with attributes font and fontColor where font
is of type java.awt.Font which already includes style and
size attributes. The graphical relations between TextFig-
ures and ShapeFigures are expressed by LayoutConstraints,
such as below(TextFigure, ShapeFigure) on interface Figure.

Figures can be connected by Connections which repre-
sent the concrete graphical layout for the EdgeSymbolTypes.
Connections are lines or polylines. The graphical layout is
given by attributes strokeColor, strokeWidth, and strokeStyle
(e.g. dashed or solid connection). The graphical represen-
tation of a link (e.g. a colored arrow head) is modeled by
attributes marker, borderColor, and fillColor of class Lin-
kLayout. Graphical relations between a Figure and a Con-
nection can be modeled as ConnectionConstraints, such as
atCenter(TextFigure, Connection). For graph-like languages
we use the default GEF graph layouter and therefore we do
not need a graphical constraint solver to compute the layout
of the symbols and links.

5.2 The Syntax Rules
The RuleSet of a VL specification contains the rules for

syntax-directed editing, defining high level diagram modifi-
cation operations in a flexible way. The design for rule sets
is the following: a Rule consists of (at least two) Graphs, a
left hand side (LHS), a right hand side (RHS), and, optional

Figure 3: VL Specification

negative application conditions (NACs). A rule morphism
between a Symbol or Link exists iff LHS and RHS resp.
NAC contain the same Symbol or Link. In addition a Rule
may have input Parameters which could be Attributes or
Symbols selected by the user, and Variables for manipulating
and comparing Attribute values during the rule application.

The attribute kind associates a Rule with a specific Rule-
Kind

• CREATE : New Symbols are created.

• DELETE : Existing Symbols are deleted.

• EDIT : Attribute values of existing Symbols are changed.

• MOVE : NodeSymbols are moved in the editor to new
positions.

The RuleKind controls the generation of user interface
components (such as entries in the editor palette or in con-
text menus).

Fig. 5 shows how the different kinds of syntax rules influ-
ence the editor generator to generate different user interface
components for the application of the specific rule kinds.
Hence, the expected user actions for the application of a
rule depend on the rule kind and on the type and number
of the symbol(s) the rule is applied to.

By default, rules of kind CREATE are represented by
symbol icons or rule names in the editor palette. Rules for
deletion or attribute changes (kinds DELETE or EDIT)
are applied via a context menu after selecting the symbols
for the rule match in the editor panel. MOVE rules are
called when symbols are moved in the panel by mouse. User
guidance concerning the required input parameters is given
by popup dialog windows. Information of currently required
user actions (e.g. the selection of specific match symbols)
and error information are displayed in a status line below
the editor panel.

Note that the generated editor provides a grouping func-
tion Marquee in the palette to select more than one symbols

Rule Kind User Action to trigger Rule Application

CREATE1

select NodeSymbol in Symbol group of the
editor palette; select required match symbols
in editor panel; click in editor panel to create

NodeSymbol at click position.

select EdgeSymbol in Connection group of the
editor palette; select required match symbols in

editor panel; click on source and on target
NodeSymbols in the panel to create an

EdgeSymbol between them.

EDIT
select Symbol in the editor panel; select

edit operation from context menu (right mouse
button); edit attribute values in property dialog.

DELETE2

select NodeSymbol in the editor panel;
select “Delete“ operation from context menu.

MOVE move NodeSymbol by dragging it over the
editor panel; release mouse button at

target position.

select rule name in the editor palette;
select required match symbols in editor panel.

Rule
LHS RHS

empty one
NodeSymbol

two
NodeSymbols

one EdgeSymbol
connecting the

two NodeSymbols

one Symbol same Symbol,
changed attributes

one
NodeSymbol empty

the two
NodeSymbols

one EdgeSymbol
connecting two
NodeSymbols

select EdgeSymbol in the editor panel;
select “Delete“ operation from context menu.

select required match symbols in editor panel;
select “Delete“ operation from context menu of

one of the match symbols

one
NodeSymbol

same Symbol,
changed position

attributes

CREATE2

CREATE3
neither case CREATE1,

nor case CREATE2

DELETE1

DELETE3
neither case DELETE1,

nor case DELETE2

Figure 5: Rule Kinds and User Interface

at once. For such a group of selected symbols, MOVE oper-
ations can be applied in the same way as for single symbols.
Internally, the corresponding MOVE rules for each of the
selected symbols are applied in parallel.

6. THE TIGER GENERATOR
The TIGER generator (package tiger.generator) generates

Java source code from the visual language specification and
the corresponding syntax grammar (package tiger.vlspec).

6.1 The Generation Process
For the editor generation the JET compiler [7] reads the

VL specification and the generator template files which de-
fine the code generation skeleton with code placeholders.
JET replaces the placeholders with the specific code from
the VL specification.

The generation process leads to a new Eclipse Editor Plug-
in Project which can be directly executed in the Eclipse
Runtime-Environment (see Fig. 6).

18.03.2005 Eduard Weiss, Stefan Hänsgen 29

TIGER-Generator
GEF, Draw2d

Editor-Plugin

file with own
extension

GeneratorVL-spec

<alphabet>.gtxl

<grammar>.ggx

import

JET,
Eclipse

ge
ne

rat
es

generates

calls

typegraph , startgraph

Figure 6: Generator Components Overview

Furthermore the generator creates a file with an own ex-
tension which contains the type graph and the start graph
from the given syntax grammar (see VLSpec in Fig. 6). The
data management classes of the generator encapsulate the
SymbolTypes of the VL alphabet and for each SymbolType
a controller class is generated (in GEF ,,EditPart”). These
EditParts represent a controller framework linking the editor
and the underlying model instance which is directly repre-
sented by an AGG instance graph.
The layout constraints defined in the VL alphabet (e.g. above,
below, inside, right, left for figures and atSource, atCenter,
atTarget for connections) are translated by the generator to
static GEF constraints which are data attached to each fig-
ure giving additional guidance to the GEF layout manager.
For example, in the case of the layout constraint below(text,
shape) the generator treats the text as child of the shape
figure. The position of the child is computed relative to the
position of its parent figure.

6.2 The Generated Editor
A generated GEF-based editor is divided into two parts:

on the left hand side is the editor palette and on the right
side the editor panel (see the sample editor in Fig. 7). The
editor palette has the two default items Select for marking
an editor symbol in the panel and Marquee for selecting a
set of symbols in the panel with a dashed rectangle. Below
the default items the palette may contain further icons for
the generated VL-specific language elements (which in Fig. 7
represent SymbolTypes of the Petri net VL). For user inter-

Figure 7: Generated Editor for Petri Nets

action context menus and dialogs are generated. For each
SymbolType which has visible attributes such as ,,name”, a
dialog is created by the generator (see e.g. the ”Create a
Place” dialog in Fig.7). The creation of the context menu
and the contents of the palette depends on the rule kind (see
Fig. 5). For a simple CREATE rule (i.e. case CREATE1

or CREATE2) which creates exactly one symbol, an en-
try in the editor palette is generated, with the name of the
SymbolType, either in the Symbol group (if the rule creates
a NodeSymbol, which corresponds to case CREATE1) or
in the Connection group (if the rule creates an EdgeSym-
bol, which corresponds to case CREATE2). For more com-
plex CREATE rules (case CREATE3), an entry of the rule
name is generated in the editor palette. For an EDIT rule,
an entry of the rule name in the context menu of the cor-
responding SymbolType is generated. For simple DELETE

rules (case DELETE1 or DELETE2), which delete one
symbol, an entry ”Delete” is generated in the context menu
of the corresponding SymbolType (see e.g. the context menu
for place2 in Fig. 7). More complex DELETE rules (case
DELETE3) lead to the generation of the rule name in the
context menus of the types of all deleted symbols. A MOVE
rule is coupled to the mouse listener.

Rules of all kinds are applied to the abstract syntax of
the current diagram in the editor panel. Note that for posi-
tions, we have the exception that they are stored as abstract
syntax attributes although they rather would belong to the
concrete syntax. The reason for this exception is that the
persistent parts of a diagram, i.e. the parts that have to
be saved, in this way correspond precisely to the diagram’s
abstract syntax. Hence, the transformation can be executed
using the AGG transformation engine. The changes of the
diagram lead to an update of the editor view via the corre-
sponding EditParts. If an error occurs during the rule appli-
cation, an exception is thrown by AGG that is displayed as
an error message in the status line of the editor (not shown
in the screen dumps). The transformed diagram is directly
displayed in the editor panel by the editor controller frame-
work.

7. EXAMPLES
As examples we present two visual languages and the re-

spective generated editors, first for place/transition Petri
nets (P/T nets) [22] and second for simple UML activity
diagrams [21].

7.1 The Generated Petri Net Editor
In Petri nets, places are visualized as ellipses, and transi-

tions as rectangles. The marking of a place is represented as
natural number inside the place ellipse. Places and transi-
tions have names which are shown below the corresponding
ellipse or rectangle. For simplicity, arc weights uniformly
correspond to the token number “1”, hence arc inscriptions
are omitted here. Fig. 7 shows the generated GEF-based
P/T net editor which relies on the VL specification for P/T
nets given in this section.

The editor panel contains a sample Petri net with one
transition (t1), two pre-places place1, place2 which are marked
by one token each, and two unmarked post-places place3
and place4. The symbol properties such as names or token
numbers can be changed in a Properties Dialog.

We now give the components of the P/T net VL specifi-
cation in detail, namely the P/T net alphabet and the P/T
net syntax grammar.

7.1.1 The VL alphabet
The alphabet for the VL of P/T nets is presented in Fig. 8

and conforms to the general structure of VL alphabets as
given in Fig. 3. For the abstract syntax (the upper part of
Fig. 8) we use node symbol types Place and Transition for the
Petri net nodes, edge symbol types ArcPT for Petri net arcs
from a place to a transition and ArcTP for arcs from a tran-
sition to a place. Link types arcPTsource, arcPTtarget, arcTP-

source and arcTPtarget are used for linking the edge symbols
to the node symbols. Attribute types (textual attributes)
include the names of places and transitions, and the token
number in a place. Additionally, the model-specific layout
information in form of symbol positions is stored in attribute
types. Model-independent layout information (the lower

part of Fig. 8) is given by shape figures, connections and
text figures linked to the corresponding node symbol types,
edge symbol types and attribute types, respectively. All
these attributes describe model-independent layout. They
are set to default values, e.g. shapeColor=black and fill-

Color=none for shape figures and font=(“Arial”, Font.ITALIC,

12), fontColor=black for text figures. For our Petri net editor
we use these default values, and hence do not have to define
layout attribute values in the alphabet.

:EdgeSymbolType
name=“ArcTP“

:LinkType
name=“arcTPtarget“

:NodeSymbolType
name=“Place“

:LinkType
name=“arcPTsource“

:EdgeSymbolType
name=“ArcPT“

:NodeSymbolType
name=“Transition“

:LinkType
name=“arcTPsource“:AttributeType

name=“PlName“
type=String

:AttributeType
name=“Token“

type=int

:AttributeType
name=“TrName“

type=String

layout

begin

end

end

begin

begin

end

end

begin

:LinkType
name=“arcPTtarget“

:AttributeType
name=“x“
type=int

:AttributeType
name=“y“
type=int

:AttributeType
name=“x“
type=int

:AttributeType
name=“y“
type=int

:ShapeFigure
name=“PlaceFig“

shape=ellipse
borderColor=black

fillColor=none

:TextFigure
name=“PlNameTxt“

font=Roman
fontColor=black

:LayoutConstraint
kind=below

first

second :TextFigure
name=“TokenTxt“

font=Roman
fontColor=black

:LayoutConstraint
kind=inside

first
second

:Connection
name=“ArcPTconn“
strokeColor=black

strokewidth=1
strokeStyle=solid

:Connection
name=“ArcTPconn“
strokeColor=black

strokewidth=1
strokeStyle=solid

:ShapeFigure
name=“TransFig“
shape=rectangle

borderColor=black
fillColor=none

:TextFigure
name=“TrNameTxt“

font=Roman
fontColor=black

:LayoutConstraint
kind=above

first

second

:LinkLayout
marker=FilledTriangle

borderColor=black
fillColor=black

layoutlayout
layout

layout

Figure 8: Alphabet for Place/Transition Nets

The position of a SymbolType figure is the only layout
information which is given as attribute type because this
information is necessary to be held persistent in the gener-
ated editor. All the other layout attributes like shape figures
or layout constraints serve for the generation of the visual
editor features. For example, the class generated for the
CreatePlace command implements the Ellipse figure class
of Draw2D and thus incorporates the shape information.
Layout constraint INSIDE leads to the generation of a hi-
erarchy of figures in GEF, where e.g. the TokenFigure is a
child figure of the parent figure PlaceFigure.

7.1.2 The Syntax Grammar
The start graph of the Petri net syntax grammar is empty.

The abstract syntax of four CREATE rules for P/T nets is
given in Fig. 9. According to Fig. 5, the two rules creat-
ing places and transitions in Fig. 9 are CREATE rules,
case CREATE1. Hence, the SymbolTypes Place and Tran-

sition are entered into the Symbol group of the Petri net
editor palette. The two rules creating arcs are CREATE
rules, case CREATE2. Hence, the SymbolTypes ArcPT and
ArcTP are entered into the palette’s Connection group. Neg-
ative application conditions (NACs) ensure that place and
transition names are unique, and that no more than one
arc in each direction may be inserted between a place and
a transition. Note that this uniqueness of arcs cannot be
expressed by multiplicity constraints as e.g. used in EMF
models, as a Place may have more than one outgoing ArcPT,
and a Transition may have more than one incoming ArcPT in
general. Such a condition would have to be defined by extra

constraints in EMF.

LHSNAC

LHS RHS

NAC LHS

LHS RHSNAC

NAC

RHS

RHS

ArcTP ArcTP

1:Place 2:Trans 1:Place 2:Trans

arcPTsource arcPTtarget

1:Place 2:Trans

arcPTsource arcPTtarget

PlName = pn
Token = tok

Place

x = x_out
y = y_out

addTrans(tn,x_out,y_out)

1:Trans 2:Place 1:Trans 2:Place 2:Place1:Trans

addArcTP

addPlace(pn,tok,x_out,y_out)

addArcPT

ArcPT ArcPT

arcTPtargetarcTPsourcearcTPtargetarcTPsource

Transition

TrName = tn
x = x_out
y = y_out

Transition

TrName = tn

PlName = pn

Place

Figure 9: Syntax grammar for P/T Nets

In addition to the syntax rules depicted in Fig. 9, MOVE
rules and simple DELETE rules are generated for each Sym-
bolType (where the DELETE rules correspond to inversed
CREATE rules without NACs). The syntax rules are ap-
plied internally to edit e.g. the P/T net shown in Fig. 7.
The layout of the resulting net is computed according to
the layout information as provided by the P/T net alphabet
resp. as incorporated as features of the generated editor.

7.2 The Generated Activity Diagram Editor
Activity diagrams are used to describe the control flow

on activities. A concrete activity diagram is drawn in the
editor panel of the generated editor for activity diagrams in
Fig. 10 modeling the workflow of order processing in a shop.

Figure 10: Generated Editor for Activity Diagrams

7.2.1 The VL alphabet
The VL alphabet for activity diagrams contains two kinds

of symbols, activities and next-relations which begin and
end at activities. The activities can be of different kinds,

i.e. simple activities, start and end nodes as well as deci-
sion nodes. Simple activities are usually inscribed by some
text. Moreover, next-relations may have inscriptions which
are used to formulate conditions. The abstract syntax part
of the visual alphabet for activity diagrams is depicted in
Fig. 11. The attribute type kind is an enumeration type con-
sisting of the kinds ActKind = {start, simple, decision, end}.

: AttributeType
name=“name“

type=String : AttributeType
name=“inscr“
type=String: AttributeType

name=“kind“
type=ActKind

: NodeSymbolType
name=“Activity“

: LinkType
name=“begin“

: EdgeSymbolType
name=“Next“

beginend

beginend

: LinkType
name=“end“

: AttributeType
name=“x“
type=int

:AttributeType
name=“y“
type=int

:Connection
name=“nextConn“
strokeColor=black

strokewidth=1
strokeStyle=solid

layout

:LinkLayout
marker=FilledTriangle

borderColor=black
fillColor=black

layout

:ShapeFigure
name=“startFig“

shape=circle
borderColor=black

fillColor=black

:ShapeFigure
name=“simpleFig“

shape=ellipse
borderColor=black

fillColor=none

:ShapeFigure
name=“decisionFig“

shape=polygon
borderColor=black

fillColor=none

:ShapeFigure
name=“endFig1“

shape=circle
borderColor=black

fillColor=none

layout_start

layout_simple

layout_decision

layout_end

:ShapeFigure
name=“endFig2“

shape=circle
borderColor=black

fillColor=black

:TextFigure
name=“nameTxt“

font=Roman
fontColor=black

layout

:TextFigure
name=“inscrTxt“

font=Roman
fontColor=black

layout

:ConnectionConstraint
kind=atCenter

:LayoutConstraint
kind=atCenter

second

first:LayoutConstraint
kind=inside

first

second

Figure 11: VL Alphabet for Activity Diagrams

The abstract syntax part of the alphabet is extended by
defining the concrete layout for the components of an activ-
ity diagram. An activity is either represented as ellipse or as
polygon, depending on its ActKind, as visualized in Fig. 12.

name

simplestart decision end

Figure 12: Concrete Layout Figures for an Activity

The generator in this example relates a NodeSymbol (i.e.
an activity) to its ShapeFigure according to the value of the
ActKind attribute. This allows a much more flexible lay-
out definition than in the Petri net editor example, where
NodeSymbols of the same NodeSymbolType always are lay-
outed by the same ShapeFigure.

A next-relation is shown by a poly line which is attached
to two activity figures. A possible inscription is positioned
at the line center. Again, each figure and line has layout
attributes describing properties such as font, font size, color,
fill color etc.

7.2.2 The Syntax Grammar
The syntax rules for activity diagrams decide important

aspects of the visual language, e.g. the number of start
and end activities which are allowed in one diagram, or the
question whether decision branches have to be merged again.
Our variant of activity diagrams allows only one start and
one end activity. This is realized in the syntax grammar (see
Fig. 13) by defining an activity diagram as start graph which
consists of exactly one start and one end activity, connected

by a next-relation. As none of the syntax rules adds or
deletes start or end activities, their number will always be
fixed to one each.

NAC

NAC LHS

RHS

RHS

start graph

LHS

x = x_out

y = y_out

1:Activity

2:Next
inscr = ""

begin1:Activity

1:Activity

kind="end"

kind="decision"

addActivity(name)

1:Activity begin

kind = "simple"
name = name

Activity

x = x_out
y = y_out + 60

end

2:Next
inscr = ""

begin

1:Next

end

begin end

Next
inscr = leftinscr

beginend

endend

begin

kind = "simple"
name=leftname

Activity

x = x_out − 50
y = y_out + 50

name = ""

Activity

x = x_out

name = ""

Activity

x = x_out
y = y_out + 100

kind = "simple"
name=rightname

Activity

x = x_out + 50
y = y_out + 50

kind="decision"

kind="decision"

begin

y = y_out

addActivityAsDecision(leftname,rightname,leftinscr,rightinscr)

Next
inscr = ""

kind = "end"
name = ""

Activity

x = 50
y = 100

begin end

1:Next
end

Activity

y = y_out
x = x_out
kind="simple"

2:Next

begin

inscr = rightinscr
Next

Next
inscr = ""

kind = "start"
name = ""

Activity

x = 50
y = 10

2:Next

begin
Next
inscr = ""

Next
inscr = ""

Figure 13: Syntax Grammar for Activity Diagrams

The syntax grammar contains two main CREATE rules,
both belonging to the more complex case CREATE3 in
Fig. 5: Rule addActivity inserts a simple activity after an-
other activity (which must not be a decision or the end activ-
ity). The name of the new activity is given by input parame-
ter name. Rule addActivityAsDecision replaces a simple ac-
tivity by a decision activity with two branches. Each branch
contains one simple activity. The branches are merged af-
terwards by another decision activity. This rule has four
input parameters: two arc inscriptions leftinscr and rightin-
scr, and two names leftname and rightname for the simple
activities in both branches. Positions of newly inserted ac-
tivities are computed from the positions of already existing
ones, e.g. in rule addActivity the new activity is inserted
at a fixed distance (60 points) below the activity identified
by number 1. The start graph defines the initial position
of the start and end activities. All other layout properties
are either constant (such as colors and minimal sizes) or rel-
ative (i.e. the connection points of next-relation lines and
the size of simple activities which depends on the size of the
text inside the ellipse.

As both syntax rules are complex CREATE3 rules, the
rule names appear in the editor palette of the generated ed-
itor in Fig. 10. Apart from the two rule names, the editor
palette contains only the default actions Select and Marqee,

but no VL-specific symbol or connection group. Thus, in
contrast to the Petri net editor, editing of an activity dia-
gram is realized by first selecting a rule name in the palette,
and then selecting symbols in the panel which will be part
of the rule match.

The activity diagram in Fig. 10 has been edited by apply-
ing first rule addActivity(“receive order”) with the left-hand
side activity matched to the start activity, then again apply-
ing rule addActivity(“simple activity”) to obtain a match for
the next rule application, namely of rule addActivityAsDeci-
sion(“notify client”, “calculate price”, “product available”,
“product not available”) with the left-hand side activity is
matched to the activity “simple activity” which is now re-
placed by the branch-and-merge structure. At last, rule
addActivity(“send receipt”) is applied, where the left-hand
side activity this time is matched to the activity “calculate
price”.

Further syntax rules (not depicted in Fig. 13) exist for
deleting and moving activities in order to obtain a well-
layouted diagram. Analogously to the Petri net syntax gram-
mar, the DELETE rules correspond to the inverted CREATE
rules.

8. CONCLUSION AND FUTURE WORK
In this paper, we described the first development steps for

a generator for generating visual editors from formal visual
language specifications based on graph transformations and
Eclipse-GEF. The tool environment Tiger1 combines the
advantages of formal VL specifications using graph transfor-
mation (offered by Agg) with sophisticated graphical editor
features (offered by Eclipse-GEF). The generated editors
themselves are Eclipse plug-ins and hence can be integrated
in the Eclipse framework. The current state of this on-
going work is focussed on generating graphical editors for
graph-like languages, where ShapeFigures for NodeSymbols
are connected via poly lines for EdgeSymbols.

The VL specification so far consists of an alphabet (a type
graph plus layout attributes) and a syntax grammar.

An alternative for syntax-directed editing based on graph
transformation is free-hand editing. A free-hand editor would
offer more general symbol editing commands (modeled by
simple editing rules), but add parsing facilities for the cur-
rent diagram, internally realized by applying parsing rules.
The parsing rules for a VL are more or less the inverted rules
of the VL syntax grammar. The applications of the pars-
ing rules reduce the abstract syntax graph of the diagram
edited so far that the start graph is produced (see e.g. [2]).
As advantage of the free-hand editing approach the editing
of intermediate invalid diagrams is tolerated by the editor.
Similarly to parsing, a diagram could also be checked ac-
cording to additional well-formedness constraints, as done
in e.g. AToM3 where a class diagram (the meta-model) is
combined with constraints in e.g. OCL [20] which can be
checked at any time during the editing process.

Since generators for visual editors like Merlin [16] and
OpenArchitectureWare [26] follow the declarative MOF
[19] approach to VL definitions, the generated editors do not
support syntax directed editing. Tiger with its underlying
graph transformation engine AGG follows a constructive ap-
proach allowing syntax-directed editing in which each editor

1The Tiger environment can be downloaded at http://
tfs.cs.tu-berlin.de/tigerprj.

operation leads to a valid diagram of the specific VL.
Near future work (the second development step) will ex-

tend the VL specification to include additional transforma-
tion rules (e.g. parsing rules, simulation rules, model trans-
formation rules) for model manipulation in the generated
environment in addition to editing. To allow a user friendly
definition of the VL specification a VL-Designer compo-
nent is planned to be implemented soon. Here, the expe-
riences made with GenGED [1], a generator for graphical
environments providing a nice graphical user interface for
editing VL specifications, will be helpful. For flexible GUI
specification the user should be supported to specify a non-
default editor environment in the VL specification. Further
development steps aim at allowing more general kinds of
diagrams instead of graph-like languages only. An exam-
ple for a more sophisticated, non-graph-like visual language
is the language of nested UML state diagrams [21] where
NodeSymbols (boxes) are spatially related by being nested
into each other. Such general kinds of diagrams are also
needed to realize animation of model behavior in the layout
of the application domain [12].

9. REFERENCES

[1] Bardohl, R., GenGED – Visual Definition of Visual
Languages based on Algebraic Graph Transformation,
PhD Thesis, TU Berlin, Verlag Dr. Kovac, 1999.

[2] Bardohl,R. and Ermel,C., Visual Specification and
Parsing of a Statechart Variant using GenGED,
Statechart Modeling Contest at IEEE Symposium on
Visual Languages and Formal Methods (VLFM’01),
Stresa, Italy, 2001. http://www2.informatik.
uni-erlangen.de/VLFM01/Statecharts/

[3] Eclipse Consortium, Eclipse – Version 3.0.1, 2004,
available at http://www.eclipse.org.

[4] Eclipse Consortium, Eclipse Graphical Editing
Framework (GEF) – Version 3.0.1, 2004, available at
http://www.eclipse.org/gef.

[5] Eclipse Consortium, Eclipse Graphical Modeling
Framework (GMF), 2005, available at
http://www.eclipse.org/gmf.

[6] Eclipse Consortium, Eclipse Modeling Framework
(EMF) – Version 2.0.1, 2003, available at
http://www.eclipse.org/emf.

[7] Eclipse Consortium, Java Emitter Templates (JET),
Eclipse Modeling Framework – Version 2.0.1, 2003,
available at http://www.eclipse.org/emf.

[8] Ehrig, H. and Ehrig, K. and Prange, U. and Taentzer,
G., Fundamentals of Algebraic Graph Transformation.
EATCS Monographs in TCS, Springer to appear, 2005.

[9] Ehrig, K. and Ermel, C. and Hänsgen, S., Towards
Model Transformation in Generated Eclipse Editor
Plug-Ins. Proc. International Workshop on Graph and
Model Transformation (GraMoT’05). Tallinn, Estonia,
2005.

[10] Ehrig, K. and Ermel, C. and Hänsgen, S. and
Taentzer, G., Towards Graph Transformation based
Generation of Visual Editors using Eclipse. Visual
Languages and Formal Methods (VLFM), 2004.

[11] Ehrig, H. and Prange, U. and Taentzer, G.,
Fundamental Theory for Typed Attributed Graph
Transformation. In Proc. 2nd Int. Conference on Graph

Transformation (ICGT’04), Parisi-Presicce, F. and
Bottoni, P. and Engels, G., eds., Springer LNCS 3256,
pp. 161–177, 2004.

[12] Ermel, C. and Bardohl, R., Scenario Animation for
Visual Behavior Models: A Generic Approach, Journal
on Software and System Modeling: Special Section on
Graph Transformations and Visual Modeling
Techniques, Vol. 3(2), Springer, pp. 164–177, 2004.

[13] Harel, D., Statecharts: A visual formalism for complex
systems, Science of Computer Programming, vol. 8, pp.
231-274, Elsevier Science Publ., Amsterdam, 1987.

[14] Habel, A. and Heckel, R. and Taentzer, G., Graph
Grammars with Negative Application Conditions,
Special Issue of Fundamenta Informaticae, vol. 26, no.
3,4, pp. 287–313, 1996.

[15] de Lara, J., Vangheluwe, H., 2002. AToM3: A Tool for
Multi-Formalism Modelling and Meta-Modelling. In
Proc. FASE’02, Springer LNCS 2306, pp. 174 - 188. See
also the AToM3 home page,
http://atom3.cs.mcgill.ca .

[16] Merlin, Merlin Generator Project, Available at http:

//sourceforge.net/projects/merlingenerator/.

[17] Minas, M., Specifying Graph-like Diagrams with
DiaGen, in Electronic Notes in Theoretical Computer
Science, vol. 72, issue 2, published by Elsevier, 2002.

[18] Minas, M. and Viehstaedt, G., DiaGen: A Generator
for Diagram Editors Providing Direct Manipulation and
Execution of Diagrams, Proc. IEEE Symp. on Visual
Languages, September, 5-9, Darmstadt, Germany, pp.
203–210, 1995.

[19] Object Management Group , Meta-Object Facility
(MOF) – Version 1.4, 2002, Available at
http://www.omg.org/mof.

[20] Object management group (OMG), Object constraint
language – Version 2.0, 2002, available at
http://www.klasse.nl/ocl.

[21] Object management group (OMG), Unified Modeling
Language (UML) – Version 2.0, 2005, available at
http://www.uml.org.

[22] Reisig, W., Petri Nets, EATCS Monographs on
Theoretical Computer Science, vol. 4, Springer-Verlag,
1985.

[23] Sun Microsystems, Java – Version 1.5, 2004, available
at http://java.sun.com.

[24] Taentzer, G., AGG: A Graph Transformation
Environment for Modeling and Validation of Software,
Proc. Application of Graph Transformations with
Industrial Relevance (AGTIVE’03), Pfaltz, J. and
Nagl, M., Charlottesville/Virgina, USA, 2003,
http://tfs.cs.tu-berlin.de/agg.

[25] Tiger Project, 2005, available at
http://tfs.cs.tu-berlin.de/~tigerprj.

[26] Völter, M., OpenArchitectureWare Generator, 2005,
available at www.openarchitectureware.org.

[27] Winter, A., An Overview on the GXL Graph Exchange
Language, S. Diehl (ed.) Software Visualization,
International Seminar at Dagstuhl Castle, Germany,
Springer LNCS 2269, pp. 324–336, 2002.

