
1

Modeling with Graph Transformations

Hartmut Ehrig, Ulrike Prange
Technical University of Berlin, Germany

{ehrig,uprange}@cs.tu-berlin.de

Abstract. In this paper we give a general overview of graph grammars and graph
transformation as important modeling techniques for several areas in computer science. In
particular we present the main ideas of the algebraic approach, which is the basis for a
categorical theory of rule-based transformations of high-level structures.

1 General Overview of Graph Transformation

The research area of graph grammars or graph transformation is a discipline of computer science
which dates back to the early seventies. Methods, techniques, and results from the area of graph
transformations have already been studied and applied in many fields of computer science such
as formal language theory, pattern recognition and generation, compiler construction, software
engineering, concurrent and distributed systems modeling, database design and theory, logical
and functional programming, artificial intelligence, visual modeling, etc.

The wide applicability is due to the fact that graphs are a very natural way of explaining
complex situations on an intuitive level. Hence, they are used in computer science almost
everywhere, e.g. as data and control flow diagrams, entity relationship and UML diagrams, Petri
nets, visualization of software and hardware architectures, evolution diagrams of non-
deterministic processes, SADT diagrams, and many more. Like the token game for Petri nets, a
graph transformation brings dynamic to all these descriptions, since it can describe the evolution
of graphical structures. Therefore, graph transformations become attractive as a modeling and
programming paradigm for complex-structured software and graphical interfaces. In particular,
graph rewriting is promising as a comprehensive framework in which the transformation of all
these very different structures can be modeled and studied in a uniform way.

Before we go into more detail let us discuss the basic question

What is Graph Transformation?

In fact, graph transformation has at least three different roots
-from Chomsky grammars on strings to graph grammars
-from term rewriting to graph rewriting
-from textual description to visual modeling.

2

Figure 1: Rule-based Modification of Graphs

Altogether we use the notion of graph transformation to comprise the concepts of graph
grammars and graph rewriting. In any case, the main idea of graph transformation is the rule-
based modification of graphs as shown in figure 1.

The core of a rule or production p = (L, R) is a pair of graphs (L, R), called left hand side L
and right hand side R. Applying the rule p = (L, R) means to find a match of L in the source
graph and to replace L by R leading to the target graph of the graph transformation. The main
technical problem is how to connect R with the context in the target graph. In fact, there are
different solutions how to handle this problem leading to different graph transformation
approaches, which are summarized below.

Overview of Different Approaches

The main graph grammar and graph transformation approaches developed in the literature so far
are presented in (Rozenberg 1997).

1. The node label replacement approach, mainly developed by Rozenberg, Engelfriet and
Janssens, allows replacing a single node as the left hand side L by an arbitrary graph R. The
connection of R with the context is determined by embedding rules depending on node
labels.

2. The hyperedge replacement approach, mainly developed by Habel, Kreowski and Drewes,
has as the left hand side L a labeled hyperedge, which is replaced by an arbitrary
hypergraph R with designated attachment nodes corresponding to the nodes of L. The
gluing of R with the context at the corresponding attachment nodes leads to the target
graph.

3. The algebraic approach is based on pushout constructions, where pushouts are used to
model the gluing of graphs. In fact, there are two main variants of the algebraic approach,
the double and the single pushout approach. The double pushout approach, mainly
developed by Ehrig, Schneider and the Berlin- and Pisa-groups, is introduced in section 2.

4. The logical approach, mainly developed by Courcelle and Bouderon, allows expressing
graph transformation and graph properties in monadic second order logic.

5. The theory of 2-structures was initiated by Rozenberg and Ehrenfeucht as a framework for
decomposition and transformation of graphs.

6. The programmed graph replacement approach by Schürr used programs in order to
control the nondeterministic choice of rule applications.

3

Aims and Paradigms for Graph Transformation

Computing was originally done on the level of the von Neumann Machine which is based on
machine instructions and registers. This kind of low level computing was considerably improved
by assembler and high level imperative languages. From the conceptual - but not yet from the
efficiency point of view - these languages were further improved by functional and logical
programming languages. This newer kind of computing is mainly based on term rewriting, which
- in the terminology of graphs and graph transformations - can be considered as a concept of tree
transformations. Trees, however, do not allow sharing of common substructures, which is one of
the main reasons for efficiency problems concerning functional and logical programs. This leads
to consider graphs rather than trees as the fundamental structure of computing.

The main idea is to advocate graph transformations for the whole range of computing. Our
concept of Computing by Graph Transformations is not limited to programming but includes
also specification and implementation by graph transformation as well as graph algorithms and
computational models and computer architectures for graph transformations.

This concept of Computing by Graph Transformations has been developed as a basic
paradigm in the ESPRIT Basic Research Actions COMPUGRAPH and APPLIGRAPH as well
as in the TMR Network GETGRATS in the years 1990-2002. It can be summarized in the
following way:

Computing by graph transformation is a fundamental concept for
- programming
- specification
- concurrency
- distribution
- visual modeling
- model transformation.
The aspect to support visual modeling by graph transformation is one of the main intentions

of the ESPRIT TMR Network SEGRAVIS (2002-2006). In fact, there is a wide range of
applications to support visual modeling techniques, especially in the context of the UML, by
graph transformation techniques. A state of the art report for applications, languages and tools
for graph transformation on the one hand and for concurrency, parallelism and distribution on the
other hand is given in (Ehrig, Engels, Kreowski & Rozenberg 1999) and (Ehrig et al. 1999).

2 Main Ideas of the Algebraic Graph Transformation Approach

As mentioned already above, the algebraic graph transformation approach is based on pushout
constructions, where pushouts are used to model the gluing of graphs. In the algebraic approach,
initiated by Ehrig, Pfender and Schneider in (Ehrig et al. 1973), two gluing constructions are
used to model a graph transformation step as shown in figure 3. For this reason this approach is
also known as the double-pushout approach, short DPO approach, in contrast to the single-
pushout (SPO) approach.

4

The DPO Approach
In the DPO approach roughly spoken, a production is given by p = (L, K, R), where L and R are
the left and right hand side graphs and K is the common interface of L and R. Given a production
p = (L, K, R) and a context graph D, which includes also the interface K, the source graph G of a
graph transformation G ⇒ H via p is given by the gluing of L and D via K, written G = L +K D,
and the target graph H by the gluing of R and D via K, written H = R +K D. More precisely we
use graph morphisms K → L, K → R and K → D to express how K is included in L, R and D
respectively. This allows to define the gluing constructions G = L +K D and H = R +K D as
pushout constructions (1) and (2) leading to a double pushout in figure 2.

Figure 2: DPO Graph Transformation

A typical example of a DPO graph transformation step is given in figure 3, corresponding to the
general scheme in figure 2. Note that in diagram (PO1) G is the gluing of the graphs L and D
along K, where the numbering of the nodes indicates how K is embedded into L resp. D in (PO1).
Similarly H is the gluing of R and D along K in (PO2) leading to a graph transformation G ⇒ H
via p. In fact, the diagrams (PO1) and (PO2) are pushouts in the category Graphs of graphs and
graph morphisms.

Figure 3: Example of DPO Graph Transformation

The Algebraic Roots

A graph G = (V, E, s, t) is a special case of an algebra with two base sets V (vertices) and E
(edges) and operations s : E → V (source) and t : E → V (target). Graph morphisms f : G1 → G2
are special cases of algebra homomorphisms f = (fV : V1 → V2, fE : E1 → E2). This means that fV
and fE are required to be compatible with the operations, i.e. fV ◦ s1 = s2 ◦ fE and fV ◦ t1 = t2 ◦ fE. In
figure 3 all arrows between the boxes are graph morphisms. Moreover the gluing construction of

5

graphs can be considered as an algebraic quotient algebra construction. This algebraic view of
graphs and graph transformations is one of the main ideas of the algebraic graph transformation
approach introduced in (Ehrig et al. 1973).

From Graphs to High-Level Structures
The algebraic approach of graph transformation is not restricted to graphs of the form G = (V, E,
s, t) considered above, but has been generalized to a large variety of different types of graphs and
other kinds of high-level structures, like labeled graphs, typed graphs, hypergraphs, attributed
graphs, Petri nets and algebraic specifications. This extension from graphs to high-level
structures - in contrast to strings and trees as lower-level structures - was initiated in (Ehrig et al.
1991) leading to the theory of high-level replacement (HLR) systems. In (Ehrig et al. 2004) the
concept of high-level replacement systems was joined with that of adhesive categories
introduced in (Lack & Sobociński 2004) leading to the concept of adhesive HLR categories and
systems. The theory of adhesive HLR systems can be instantiated in particular to typed attributed
graph transformation systems, which are especially important for applications to visual
languages and software engineering.

References
Ehrig, H., Engels, G., Kreowski, H.-J. & Rozenberg, G., eds (1999), Handbook of Graph

Grammars and Computing by Graph Transformation, Vol 2: Applications, Languages and
Tools, World Scientific.

Ehrig, H., Habel, A., Kreowski, H. & Parisi-Presicce, F. (1991), ‘Parallelism and Concurrency in
High-Level Replacement Systems’, Mathematical Structures in Computer Science 1 (3),
361–404.

Ehrig, H., Habel, A., Padberg, J. & Prange, U. (2004), Adhesive High-Level Replacement
Categories and Systems, in H. Ehrig, G. Engels, F. Parisi-Presicce & G. Rozenberg, eds,
‘Proceedings of ICGT 2004’, Vol. 3256 of LNCS, Springer, pp.144–160.

Ehrig, H., Kreowski, H., Montanari, U. & Rozenberg, G., eds (1999), Handbook of Graph
Grammars and Computing by Graph Transformation, Vol 3: Concurrency, Parallelism and
Distribution, World Scientific.

Ehrig, H., Pfender, M. & Schneider, H. (1973), Graph Grammars: an Algebraic Approach, in
‘14th Annual IEEE Symposium on Switching and Automata Theory’, IEEE, pp. 167– 180.

Lack, S. & Sobociński, P. (2004), Adhesive Categories, in I. Walukiewicz, ed., ‘Proceedings of

FOSSACS 2004’, Vol. 2987 of LNCS, Springer, pp.273–288.

Rozenberg, G., ed. (1997), Handbook of Graph Grammars and Computing by Graph
Transformation, Vol 1: Foundations, World Scientific.

