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Abstract

In this paper we present a model transformation from a visual representation (Vi-
sualOCL) of the Object Constraint Language (OCL) to the textual one using graph
transformation. Starting from VisualOCL diagrams, we show how their underlying
abstract syntax can be modeled by typed attributed graphs and converted into an
OCL string representation using graph transformation rules.
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1 Introduction

For defining models and metamodels, UML [OMG04] has been established as a
well known standard for software system development, especially for designing
and documenting software and systems.

For extending the expressive power, the Object Constraint Language (OCL)
[OMG03] is defined as part of UML. OCL is a textual language to specify
additional constraints about objects in a UML model.

VisualOCL was developed in [BKPPT01,KTW02] directly as a visualiza-
tion of OCL and is meant as an alternative notation to the textual one. Visu-
alOCL provides additional visual information to the user which increase the
usability of a purely textual language (OCL) that is used together with the
visual language UML. VisualOCL follows the UML notation as far as possi-
ble. This makes a direct integration of OCL into UML easier. Like OCL,
VisualOCL is a formal, typed and object-oriented language.

The abstract syntax of VisualOCL is precisely defined by graph transfor-
mation [Win05] on one hand, and metamodeling on the other hand.
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For VisualOCL a visual editor was developed as an Eclipse plug-in [Vis04]
which captures all main concepts of VisualOCL. The user can draw and edit
a VisualOCL constraint using the features of Eclipse [Ecl] and the Graphical
Editing Framework [GEF].

The aim of our paper is to define a model transformation from VisualOCL
to OCL using graph transformation which could be directly executed in the
VisualOCL editor plug-in. Moreover a tool chain is described to transform the
VisualOCL diagram into an attributed graph via the Graph Exchange Lan-
guage (GXL) [GXL] which is transformed using model transformation rules
to a semantically equivalent OCL string.

Section 2 gives an overview on the VisualOCL language. In Section 3, we
describe the model transformation from VisualOCL to OCL and in Section
4 we show how the model transformation could be implemented in the Visu-
alOCL editor plug-in using the graph transformation engine AGG [AGG].

2 VisualOCL

In this section, a short introduction to VisualOCL is given using some simple
examples.

VisualOCL is a visualization of the complete OCL 2.0 release 1.5 [OMG03].
VisualOCL follows the UML notation and its graphical representation as far
as possible. VisualOCL is a formal, typed and object oriented language. New
data types and operations such as collections and operations like forall, se-
lect, union etc. are represented by simple but meaningful graphics. Logical
expressions are denoted as Peircian graphs using nested boxes to express dis-
junctions and conjunctions.
A VisualOCL diagram describes additional constraints about objects in an
UML model. The class diagram in Fig. 1 provides the structural information
for the examples.
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Fig. 1. Class Diagram Example

The following examples are presented in OCL and as VisualOCL diagrams.
The diagram captions express the constraint in natural language.
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An OCL constraint is visualized as a rounded rectangle with two sections,
the context section and the body section. The context section contains the
keyword context followed by the type name of the model element (mostly a
class or method) of the constraint followed by the kind of the constraint e.g.
inv, pre, post or def. Thus, the context is specified as in OCL. In the body
section, the body of the constraint is visualized. If the body is a navigation
expression, it may have a condition section which contains textual sub condi-
tions of the constraint declared, using variables defined in the body. If there
is a condition section, it is separated from the rest of the body by a dashed
line.

The variable self is used like in OCL and is always an instance of the type
of the context. If available, the navigation starts at this instance. The visu-
alization of an object corresponds to that in UML communication diagrams.
The attribute value of an object can be referred to by a variable. This is useful
e.g. if it shall be compared with other attribute values.

In Fig. 2, the variable y refers to the first name of a person. The lastname
is compared with the first name. Both have to be different for each person.

• context Person inv: firstname <> lastname

context Person inv:


self:Person


firstname = y


lastname <> y


Fig. 2. Invariant 1: Each person has a first name different from the last name.

Object navigation is also visualized as in UML communication diagrams.
For the navigation, the role name of the opposite association end is used. In
the case of unambiguous navigation, the role name can be left out. This is
always the case, if there exists only one association between the classes. The
navigation result is the set of objects on the opposite end of a link and has the
multiplicity as defined for the corresponding association in the class diagram.
The navigation on any associations always starts at object self if it exists,
or at the context object defined otherwise. If there is only one object of the
context type, this can also be used as starting point. Navigations can end at
objects, association classes, attribute values, and method or operation calls.

Above we described navigation expressions, now we continue with several
other kinds of VisualOCL expressions. A let expression defines a variable
which can be used in a constraint after its definition. It is depicted by two
frames, a let frame and an in frame. The let frame contains the visualized
definition of the variables. There is a separate frame for each variable where
the name of the variable is depicted in the upper left corner and below the
definition of the variable value follows. Inside the in frame a normal constraint
is described which uses the variables defined above. A let expression is only

3



Ehrig, Winkelmann

known in the constraint in which it was defined.
The if-then-else frame contains three sections, the if section describes the
if condition, the then section describes the then part and the else section
describes the else part. While the if section has to be a boolean expression,
each of the other two sections can contain any VisualOCL expression. Two
objects in different VisualOCL expressions are identical, if they have the same
name.

• context Person inv:

let carSize : Real = car.engine.maxPower in

if (isUnemployed = true )

then carSize < 1.0 else carSize >= 1.0

context Person inv:


self: Person
 : Car


let


carSize: Real


: Engine


maxPower = carSize

engine


 
self: Person


 isUnemployed = true


if


then
 else


carSize < 1.0
 carSize >= 1.0


in


car


Fig. 3. Invariant 2: Unemployed people drive small cars.

Furthermore, there are Boolean expressions with operands like implies, or,
xor etc. represented by nested boxes.

Collections, like sets, bags, and sequences, are predefined types in OCL.
The collection type is an abstract type with three concrete subtypes: Set, Bag
and Sequence. These types are visualized as follows:

Set: Bag: Sequence:

Collections have a large number of predefined operations, simple operations
e.g. isEmpty() and notEmpty, a large variety of set operations like includes,
diff, etc., or iterator operations like select, forall, exists etc. Simple operations
are directly annotated at collections. The visualization of set and iterator op-
erations is more complex. For example, operation exists checks if a constraint
is satisfied for at least one element in a collection. It has one iterator and an
exists frame in which the property of the exists operation is visualized. The
exists operation returns a Boolean value. On the right of the frame in Fig-
ure 4, the ∃-operator and the iterator are depicted. Operation select specifies
a subset of a collection. In Fig. 4, a shortcut of a select operation is shown. If
the iterated value is just an attribute of a collection element, the shortcut for
iterator operations can be used. On the right of the collection representation,
the operator name is depicted. An unlabeled arrow targets at the resulting
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collection.

• context Company inv: Company->exists(c |c.employee->select(p |

p.isFemale and p.isMarried)->isEmpty())

c


:Company


context Company inv:


c: Company

isIn
 :Person


isMarried=true


isFemale=true


employee


select


:Person
  = 0


Fig. 4. Invariant 3: There is a company without female married employees.

An implies expression is visualized in an implies frame. Anything above or
left of the keyword implies describes the premise. When this premise is true,
it implies the conclusion denoted right or below of implies. Both sections may
contain any boolean expression. Note that the conclusion part of the implies
operation in Fig.5 contains a navigation expression where four subexpressions
are combined by and. Please note that this is possible withoutboxing each
expression.

• context Person inv:

(self.isMarried=true and self.isMale=true) implies

(self.husband->isEmpty() and self.wife->notEmpty() and

self.wife.isMarried = true)

Fig. 5. Invariant 4: Married men have a married wife and no husband.

3 From VisualOCL to OCL

This section describes the transformation from an instance graph of the Vi-
sualOCL type graph to an equivalent string containing a textual OCL repre-
sentation of that instance graph. Fig.6 represents a model transformation by
graph transformation. The source and target models are graphs. Performing
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model transformation by graph transformation means to take the underlying
structure of a model as graph, and to transform it according to certain trans-
formation rules. The result is a graph which shows the underlying structure
of the target model. The abstract syntax graphs of the source models are
instance graphs over a type graph Ts, the abstract syntax graphs of the target
models are instance graphs over a type graph Tt. Ts and Tt are subgraphs
of type graph T . Starting the model transformation with instance graph Gs

typed over Ts it is also typed over T . The intermediate graphs are typed over
T which may contain types and relations which are neither in Ts nor in Tt but
needed for the transformation process.

Fig. 6. Model Transformation Process

The type graph of the source models is the VisualOCL type graph defined
in [Win05], the type graph of the target model consists of only one type node,
the OCLString. The type graph of the intermediate models contains the source
type graph and the one type node of the target type graph. It also contains
relations between many node types from the VisualOCL type graph to the
node type OCLString.
Now we describe the rules that model the transformation. The type graph of
VisualOCL and the transformation rules were defined with the AGG graph
grammar editor.

In the following a subset of these rules is explained.

A VisualOCL constraint is represented as a node of type Constraint with
a name, a kind, an edge to the constrained element and an edge to the body
element, that is a VOCLExp (NavExp, IfExp, BooleanExp or LetExp). The
rules are divided into several layers. First the body of the VisualOCL diagram
is transformed and then the complete constraint is build (combining the body
expression with the constraint name, kind etc.). The body can be a NavExp,
IfExp, BooleanExp or LetExp. IfExp, BooleanExp and LetExp can contain
other VOCLExps, so at first the NavExps have to be transformed and then,
in a higher layer, the other VOCLExps.

NavExps consists of roles that can be ClassifierRoles, representing single
instances, and SetRoles, BagRoles or SequenceRoles, representing collections
of instances. The roles can be connected by association roles or collection
operations, like union operation, that return other roles. Each NavExp has
a start and an end role. For each role along the navigation expression a new
OCLString is build from the existing string of the last role and the association
end name of the associarion to the current role.
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OCLString

text=startNav


ClassifierRole
 AssociationRole


OCLString

text=associationEndName


NavExp


associationNode
classifierNode


ClassifierRole


classifierNode


startRole
 endRole


OCLString


text=startNav


ClassifierRole
 AssociationRole


OCLString


text=associationEndName


NavExp


associationNode
classifierNode


ClassifierRole


classifierNode


startRole
 endRole


OCLString


text=startNav.associationEndName


Fig. 7. Creation of the OCLString in a navigation expression

In Fig. 8 the rule for creating the OCLString of the result role of a complex
collection operation is shown. The string is built of the OCLString represent-
ing the start navigation to the role on which the operation is assigned, the
operation name, and the corresponding OCLString of the argument role. If
the NavExp contains a loop operation, like select, that returns a role, the
creation of the OCLString is similar to that described above, see Fig.9.

SetRole


OCLString

text=startNavigation


NavExp


classifierNode
 SetRole


classifierNode


SetRole


OCLString


text=argNavigation


NavExp


classifierNode


CollectionExp

name=opName
arg1


arg2


result


SetRole


OCLString

text=startNavigation


NavExp


classifierNode
 SetRole


classifierNode


SetRole


OCLString

text=argNavigation


NavExp


classifierNode


CollectionExp

name=opName
arg1


arg2


result


OCLString


text=startNavigation->opName(argNavigation)


Fig. 8. Creation of the OCLString for a complex collection operation
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OCLString


text=bodyExp
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LoopExp

name=opName
loopOp


body
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oclBody
oclNavExp


OCLString

text=startNavigation->opName(bodyExp)
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OCLString

text=startNavigation


NavExp


classifierNode
 SetRole


classifierNode


OCLString


text=bodyExp


NavExp


LoopExp
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body
result
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Fig. 9. Creation of the OCLString for a loop operation

After applying the rules described before, each role of all NavExps has
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edges to corresponding OCLString(s). The navigation can end at a role (in
case of equivalent navigation paths like self.ass1.ass2=self.ass3.ass4 ), at an at-
tribute or method result value (navigation expressions like self.ass1.attr1=true
or self.method1()=false), or at a simple collection operation (navigation ex-
pressions like self.ass1.ass2->isEmpty()). The rules for the creation of the
corresponding OCLStrings are shown in Fig.10 and Fig.11. If the naviga-
tion ends at a collection operation or loop expression with boolean result, the
OCLString is built in a similar way.

ClassifierRole


OCLString

text=startNavigation


NavExp


classifierNode


Attribute


name=aName


value=aValue


attribute


OCLString


text=startNavigation.aName=aValue


ClassifierRole


OCLString

text=startNavigation


NavExp


classifierNode


Attribute


name=aName


value=aValue


attribute


Fig. 10. Creation of the OCLString for an attribute as navigation end

SetRole


OCLString

text=startNavigation


NavExp


classifierNode


sco


OCLString


text=startNavigation->opName()


SimpleCollectionExp


name=opName

SetRole


OCLString

text=startNavigation


NavExp


classifierNode


sco
 SimpleCollectionExp


name=opName


Fig. 11. Creation of the OCLString for a simple collection operation as navigation
end

Now the NavExp can have edges to several OCLStrings, describing an
attribute navigation, method navigation or a navigation to a simple collection
expression. These strings have to be combined by ”and”, see the rule in
Fig. 12.

OCLString

text=nav1


NavExp


OCLString

text=nav1 and nav2


OCLString


text=nav2


OCLString

text=nav1


NavExp


OCLString


text=nav2


Fig. 12. Creation of the OCLString for a NavExp

Now the navigation expressions are translated into OCLStrings (containing
an equivalent textual representation) and the other VisualOCL expressions can
be transformed. Therefore the parts (like if or let part) or arguments (two ar-
guments of a logical operation) of the expression have to be transformed (they
must have an edge to a corresponding OCLString). Then the new OCLString
can be built by combining the strings with the particular operator name. The
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rule for a boolean operation, like or, implies etc. is shown in Fig.13. The rules
creating the OCLString for an IfExp or LetExp are analog.

NavExp


Constraint


BooleanExp


name=boolOpName


NavExp


OCLString


text=navExp1


OCLString


text=navExp2


arg2


constraintBody


arg1


NavExp


Constraint


BooleanExp


name=boolOpName


NavExp


OCLString


text=navExp1


OCLString


text=navExp2


arg2


constraintBody


arg1


OCLString


text=navExp1 boolOpName navExp2


Fig. 13. Creation of the OCLString for a BooleanExp

The last step is to create the OCLString for the constraint which contains
the context definition and the context body which was already created, see
Fig.14.

Classifier


name=contextClass


Constraint


kind=contextKind


VOCLExp

OCLString

text=body


constrainedElement


constraintBody


OCLString


text="context contextClass contextKind: body"


Classifier

name=contextClass


Constraint

kind=contextKind


VOCLExp

OCLString


text=body


constrainedElement


constraintBody


Fig. 14. Creation of the complete OCLString of the constraint

If the constraint node has no edge to a node of type VOCLExp with
an equivalent OCLString node an OCLString node with an error message is
created for the constraint node.

Now rules that delete the edges to the OCLString nodes and all OCLString
nodes which are not connected to a node of type Constraint can be applied.
Thereafter each node and edge except the OCLString can be deleted.
The resulting instance contains one node of type OCLString whose text at-
tribute holds a string that is equivalent to the constraint expressed by the
VisualOCL type graph instance which was the source graph.

3.1 Reverse Transformation

The reverse transformation from an OCLString to VisualOCL is possible in
principal, but not unique, because there could exist different representations
for an OCLString in VisualOCL. For instance, consider the constraint
context Person inv: self.isMarried=true implies self.age>=18
that could be translated to the following visualizations: In the VisualOCL
constraint on the left hand side, the attribute condition age>=18 is included in
the classifier role whereas this expression is translated to a variable assignment
age=x and the condition x>=18 on the right hand side in Fig. 15. A unique
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context Person inv:


self: Person


isMarried = true


implies


self: Person


age >= 18


context Person inv:


self: Person


isMarried = true


implies


self: Person


age = x


x >= 18


Fig. 15. reverse transformation

reverse transformation for this example could be provided by default setting
which are not yet included in the VisualOCL specification [Win05].

Although the automatic inversion of the model transformation rules is not
possible, a new model transformation graph grammar for the inverse transfor-
mation could be created. An alternative model transformation could be the
transformation to an OCL meta model instance.

4 Implementation

The model transformation from VisualOCL to OCL is implemented in a visual
editor plug-in for Eclipse [Vis04] which captures all main concepts of Visu-
alOCL. The user can draw and edit a VisualOCL constraint using the features
of Eclipse [Ecl] and the Graphical Editing Framework [GEF].

Fig. 16 shows an overview of the model transformation in the VisualOCL
editor plug-in:

• A VisualOCL diagram presented in the editor, is saved in a file with the
extension .vocl.

• A .vocl file is transformed into a GXL file by an XSL transformation pro-
vided by file vocl2gxl.xsl.

• The GXL file is imported as host graph in the existing model transformation
system in AGG.

• The model transformation rules are applied to the VisualOCL graph in
AGG. The resulting AGG graph contains an OCLString with a text at-
tribute (text) holding the converted OCL string.

• The converted OCL string is reimported in the VisualOCL editor plug-in.
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Fig. 16. Implementation of the Model Transformation

Step 1: XSL Transformation

The underlying model of the VisualOCL editor plug-in was generated with
the Eclipse Modeling Framework (EMF) [EMF] based on an EMF meta model
class diagram which corresponds to the type graph of VisualOCL [Win05].
The editor diagram is stored in a XML [XML] based format (.vocl file) typed
over the EMF meta model. With stylesheet format transformation [XSL] rules
given in the file vocl2gxl.xsl the .vocl file is converted into the graph exchange
format (GXL) [GXL]. To allow a simple format transformation the EMF
meta model classes and associations have an one to one correspondence to the
VisualOCL type graph nodes and edges.

Step 2: Graph Transformation

The converted GXL file is imported as instance graph into the existing
model transformation system in the graph transformation engine AGG [AGG].
The transformation process leads to a OCLString graph node with the con-
verted OCL string expression which is reimported in the VisualOCL editor
plug-in.

VisualOCL editor plug-in

Fig. 17 shows the example constraint from Fig. 3 in the VisualOCL editor
plug-in which is transformed into the OCL string shown in Fig. 18.

Java Code Converter

In addition the conversion from VisualOCL to OCL was realized with plain
Java code. Converting of simple navigation expression was straightforward us-
ing plain Java code but including the hierarchy of if, let and boolean expression
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Fig. 17. Example constraint in the VisualOCL editor plug-in

Fig. 18. Converted OCL string shown in the VisualOCL editor plug-in

results in complex Java code of more than 1200 lines of code. Especially the
implementation of a search algorithm in navigation expressions was a none
trivial task.

For this reason the implementation of the model transformation from Vi-
sualOCL to OCL using graph transformation has a big advantange using the
visual definition of model transformation rules with the AGG GUI. Further-
more AGG provides consistency checks like termination and critical pair anal-
ysis [EEdL+05,EEPT05]. Due to the complexity of our model transformation
consistency checks of AGG are not applicable to the model transformation up
to now.

Comparing the computation time, the Java code converter took less then
one second compared with about three seconds for the model transformation
via graph transformation rules (computed on a notebook with 600MHz pro-
cessor).
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5 Conclusion

The model transformation from VisualOCL to OCL closes the gap between
the visual and textual representations of OCL. VisualOCL provides an intu-
itive and easy way for visual modeling in OCL. With the model transformation
shown in this paper a visual OCL constraint could be used in various applica-
tions working with the textual representation of OCL, such as the extension
of Eclipse EMF by OCL, provided by the Object Constraint Language Library
from the University of Kent [AP03]. This working group has also introduced
Constraint Diagrams in [Ken97] as a visual notation for expressing logical
constraints in an object-oriented system. They may be used as a modeling
notation in their own right [HS05] and are independent of the UML and OCL.
However, they can be used in the context of the UML as an alternative to (or
a visualization of) the OCL. The basic diagrams have been fully formalized
[FFH05], but a complete modeling framework involving the notation is still
under development. It may be interesting to compare these visualizations and
the transformations to the corresponding OCL strings.

Using graph transformation for model transformation has many advantages
then using a Java coded converter resulting in a high level description tech-
nique for visual definition of model transformation rules. Furthermore, con-
sistency checks like termination and critical pair analysis [EEdL+05,EEPT05]
are available for graph transformation techniques although they are not ap-
plicable to all graph transformation systems yet.
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