
Modelling and Analysis of Distributed Simulation Protocols with
Distributed Graph Transformation

Juan de Lara
Escuela Politecnica Superior

Universidad Autónoma de Madrid

Madrid, Spain

Juan.Lara@ii.uam.es

Gabriele Taentzer
Computer Science Department

Technische Universitat Berlin

Berlin, Germany

gabi@cs.tu-berlin.de

Abstract
This paper presents our approach to model distributed dis-
crete event simulation systems in the framework of distrib-
uted graph transformation. In particular, we use distributed
typed attributed graph transformation to describe a conserva-
tive simulation protocol. We use local control flows for rule
execution in each process as the use of a global control would
imply a synchronized evolution of all processes. These are
specified by a Statechart in which transitions are labelled ei-
ther with rule executions or failures. States are encoded as
process attributes, in such a way that rules are only applica-
ble if the process is in a particular state. For the analysis,
we introduce a flattening construction as a functor from dis-
tributed to normal graphs. Global consistency conditions can
be defined for normal graphs which specify safety properties
for the protocol. Once the flattening construction is applied
to each rule, the global conditions can then be translated into
pre-conditions for the protocol rules, which ensure that the
protocol fulfills the global constraints in any possible execu-
tion. Finally, the paper also discusses tool support using the
AToM3 environment.

Keywords: Distributed Graph Transformation, Distributed
Simulation, Protocols, Discrete Event Simulation.

1 Introduction
Traditionally, simulation has been classified as continuous,
discrete or hybrid. In discrete-event simulation there is a finite
number of events in each finite time interval. There are sev-
eral ways (called “world views”) to describe discrete-event
systems. Here, we concentrate in the event-scheduling view,
where events are the basic elements of the model. In this
approach, event classes are defined with the effects of the
event on the system state and in the future (as new events
can be scheduled). One of the event-scheduling modelling
languages is event graphs [18], which we extended and for-
malized in [15] and use in this work.

Some discrete event systems have such a complexity that
techniques for speeding up their simulation are essential. One
of these techniques consists on partitioning the simulation
model, in such a way that different parts are executed in par-
allel in different processors [6]. Processes are usually not

independent, but they need certain events produced by oth-
ers in order to properly perform the computation. In dis-
tributed simulation, protocols synchronize the evolution of
each process, governing how they handle their local time, pre-
venting causality errors when processing events coming from
other processes. This situation is either avoided or methods
are provided to recover from event causality error [7].

In our approach, system dynamics are expressed as graph
transformation. Graph grammars [17] are made of rules, hav-
ing graphs in left (LHS) and right hand sides (RHS). Infor-
mally, when applying a rule to a model, a match morphism
has to be found between the rule LHS and the model. Once
such a morphism is found, the substitution of the matched part
can be performed. The algebraic approach to graph transfor-
mation has a rich body of theoretical results that have been
developed in the last 30 years (see [17]). In this way, transfor-
mations expressed as graph grammars become formal, declar-
ative and high-level models, subject themselves to analysis.

Distributed graph transformation [19] was developed with
the aim to naturally express computations in systems made of
interacting parts. In this way, a distributed graph has two lev-
els: a network and a local level. Network nodes are assigned
local graphs, which represent their state. In this work we show
that distributed graph transformation is a suitable framework
for the modelling (i.e. design) and analysis of distributed dis-
crete event simulation systems. It provides a graphical and
formal notation for behaviour modelling and analysis.

As a main novel result, we show the applicability of distrib-
uted graph transformation by modelling a conservative proto-
col [6]. To specify each process behaviour, any discrete event
simulation language can be used if its operational semantics
are described by means of graph transformation. In partic-
ular, we use an extension to event graphs for this purpose.
The framework of distributed graph transformation allows de-
scribing both the protocol and the specification language se-
mantics in a uniform way, which facilitates analysis. Other
new results that we show include a new characterization and
extension of distributed graph transformation, to include type
graphs and attributes at the network level, a flattening functor
to go from distributed graphs to normal graphs and the def-
inition of local control flows (with Statecharts) for network
nodes.

1



The presented examples have been implemented in the
AToM3 tool [14] by flattening the distributed graphs and ex-
plicitly modelling the hierarchy between network and local
graphs.

The rest of the document is organized as follows. Section 2
introduces event graphs. Section 3 gives a brief introduction
to distributed graph transformation. Section 4 introduces the
main concepts of distributed discrete event simulation. In sec-
tion 5 we show how to model distributed systems with distrib-
uted graph transformation. Section 6 describes event graphs
semantics with graph transformation. In section 7, we model a
conservative protocol using graph transformation rules. Sec-
tion 8 shows some analysis techniques and results. In sec-
tion 9 we discuss tool support for the presented methods. Sec-
tion 10 compares with related work, and finally in section 11
we end with the conclusions and future work.

2 Distributed Event Graphs
In this section we briefly present event graphs [18]. In this
formalism, events are depicted as nodes in a graph. These
have a specification of the state change in the present (as vari-
able assignments, specified between keys) and events to be
scheduled in the future. The latter are depicted as arrows be-
tween the occurring event and each scheduled event. Arrows
may have a time specification and a condition. If the latter is
true the target event is scheduled after the specified amount
of time. Figure 1 shows the main elements of an event graph.
We have extended event graphs for component-based systems
by allowing a port specification in transitions. In this way, the
target event is sent through the given port.

(condition)

{State Change}

Event 1 Event 2

{State Change}

time

Figure 1: Main Elements of an Event Graph.

A simulator for event graphs makes use of an event queue
(or future event list) where the scheduled events are stored, or-
dered by simulation time. Initial events are scheduled at time
zero. A simulator takes the first event, executes the specifica-
tion of the state change and advances the time to the time of
the event. Then it schedules new events according to the spec-
ification, which are stored in the queue. The process continues
until a final time is reached, or a final event is processed. This
process is typical in most discrete-event simulation systems.

3 Distributed Graph Transforma-
tion

While the basics of graph transformation are regular graphs,
in distributed graph transformation [19] distributed graphs
are transformed by means of distributed rules. A distributed
graph has two levels of abstraction. The network graph has
nodes that contain graphs (called local graphs). Edges of dis-
tributed graphs represent total graph morphisms between the
local graphs (see Figure 2). For the present definition, both
network and local graphs are attributed and typed with respect

to a type graph. In our case, we use network nodes to repre-
sent processes and ports, and local graphs depict each process
and port states.

Local graph Â(j)

i

j

k ij

ii

Local graph Â(i)

(Interface Graph)

kl

ki

kj

jj

jl

e

d

Network graph
Â(d)

Â(e)

Local graph Â(k)Distributed Graph (A, Â)

Figure 2: A Distributed Graph.

For representing network graphs, we use the category of
attributed typed graphs. As in [5], we first use the notion of
E-graphs 1. These are extended graphs with two sets of ver-
tices (representing graph and data – attributes – nodes) and
three sets of edges (connecting graph nodes, graph nodes and
attributes and graph edges and attributes). We call the graph
formed with graph nodes and graph edges the “raw graph”
of the E-graph. E-graphs, together with E-graph morphisms
form the category EGraphs.

We can define attribute graphs by providing E-graphs with
an algebra over a data signature (that we call DSIG), in such
a way that the union of the carrier sets of the algebra is the set
of data nodes of the E-graph. Attributed graphs, together with
attributed graph morphisms form the category AGraphs. A
type graph can then be defined as an attribute graph where the
algebra is final. Figure 3 shows an example of an attributed
type graph for the definition of process network models.

Channel

String

Float Int

Data Nodes (V2)

Graph Nodes (V1)

Graph Edges (E1)

Node Attrib.
Edges (E2)

Process

InputPort

Process
InputPorts

Process
OutputPorts

state

name

name

Boolean

checked clock numEvents numEvents

name

DSIG=String+Int+Float+Boolean

OutputPort

Figure 3: An Attributed Type Graph for Process Networks.

Attributed typed graphs can then be defined as a co-
slice category TG ↑ AGraph (denoted as AGraphATG),
where TG is an attribute type graph. Objects in this cate-
gory are of the form (AG, t), where AG is an attributed graph
and t : AG → ATG is an attributed graph morphism called
the typing of AG. Figure 4 shows an attributed typed graph
(AG, t). Nodes and edges are labelled with their identity
(which sometimes is omitted), followed by their type (in the
usual UML notation for instances).

1For space limitations, we keep the definitions informal, a more complete
version of this work will appear as a Technical Report of TU Berlin.

2



: name

: InputPort: Process : Process

"P1":String "Initialize":String "Arrival":String "P2":String0:Float

"InPiece":String

"OutPiece":String

: OutputPort

: OutputPort

: ProcessOutputPorts : Channel : ProcessInputPorts

: ProcessOutputPorts

: name : state : name

false:Boolean

: clock : checked : name

: state

0:Int

: numEvents

: numEvents

: name

: numEvents

Figure 4: An Attributed Typed Graph, with respect to the Type
Graph in Figure 3.

We define a distributed graph as a network graph in cat-
egory AGraph and a functor from the small category in-
duced by the network graph to category AGraph. Thus,
the category of distributed graphs Distr(AGraph), has ob-
jects of the form Â = (A, Ã), where A is an attributed graph
(called the network graph), belonging to category AGraph
and Ã : ARAW → AGraph is a functor from the small
category induced by the raw graph to category AGraph.
As before, we provide distributed attribute graphs with a
typing by defining a co-slice category. Thus, the category
of typed attributed graphs over TG is the co-slice category
TG ↑ Dist(AGraph) (denoted by Dist(AGraph)TG).
This category has as objects all pairs (tX , X), where X ∈
Dist(AGraph) and tX : X → TG is a Dist(AGraph)-
morphism.

Distributed typed attributed graphs are transformed via dis-
tributed typed attributed rules. These consist of a network
rule and a set of local rules, one for each node in the network
rule LHS [19]. Thus, a distributed typed attributed rule p̂ =

(L̂ l̂←− K̂
r̂−→ R̂) consists on two injective Dist(AGr)TG-

morphisms l̂ and r̂ such that ∀i ∈ KV1 (i.e. the set of graph

nodes of K), the span p̂i = (Ll(i)
li←− Ki

ri−→ Rr(i)) is a
typed attributed rule.

In addition to the usual dangling and identification condi-
tions, two additional conditions should be verified: the con-
nection and the network conditions [19]. The former condi-
tion says that if a rule deletes or adds elements in source or
target local graphs, the local mapping should be changed as
well. A rule satisfies the network condition, if whenever a
network node is deleted, its local graph is deleted as well.

In addition, we equip distributed rules with certain con-
ditions that prohibit the application of the distributed rule
when the condition is met by the host graph [19]. Given a
production p̂ defined as before, an attributed graphical con-
straint has the form ccL̂ = (ĉ : L̂ → Â, cÂ) over L̂, where
ĉ is an injective attributed typed distributed morphism and
cÂ = {ĥi : Â→ Âi}i∈KV1

is a K-indexed set of injective at-

tributed typed distributed morphisms ĥi, such that ∀x ∈ LV1

the typed attributed graph morphisms cx are equational con-
straints over L̃(x), and ∀i ∈ KV1 and y ∈ AV1 , the typed at-
tributed graph morphisms hiy are equational constraints over
Ã(y). Notice that if cÂ is empty, we have a negative appli-
cation condition (NAC), thus a match from Â should not be
found in the host graph for the rule to be applicable.

Finally, we can define a distributed typed attributed graph
grammar, with conditional distributed typed attributed rules
(with respect to a distributed graph TG) as a tuple DGGTG =
(SG, {(p̂i, Ai

L̂
)}), where SG is a distributed typed attributed

graph over TG (the start graph) and {(p̂ i, Ai
L̂
)} is a set of

typed distributed attributed rules (with application conditions)
with respect to TG. The semantics of the grammar (i.e., its
language) is the set of all possible graphs resulting from the
repeated application of the rules in the grammar.

A flattening construction can be defined, which puts to-
gether in a single attributed graph the network and local
graphs of a distributed attributed graph, adding edges (that
we call “hierarchy edges”) from each node in the local graph
to its network node, and from source and target nodes of lo-
cal morphisms. Again, we skip the formal definition of the
construction for space limitations. The flattening of typed dis-
tributed attributed graph production is made by flattening the
kernel, left and right hand sides.

4 Distributed Simulation
In distributed simulation, the system is divided in a number
of logical processes (LPs) [6], each one of them executing
a part of the simulation. The simulation is carried out by
the interaction of the LPs, that send timestamped events to
each other. LPs can also produce internal events consumed
by the producer process. In distributed simulation, there must
be a means to synchronize the LPs, as each have a local clock
(called local virtual time, LVT). There are two kinds of al-
gorithms to handle event synchronization: conservative and
optimistic. In the first kind of algorithms, a causality error
due to a LVT higher than the timestap of an incoming event
can never happen. In optimistic protocols, the situation may
happen, and then a part of the simulation performed by the LP
must be undone (rollback) [7].

In this work, we concentrate in conservative protocols. In
this kind of protocols it is possible to follow a synchronous ap-
proach (using a global clock which forces each process to ad-
vance at fixed time steps and in synchronization), or an asyn-
chronous approach, more efficient and that will be used in this
document. This kind of protocols is also known as Chandy-
Misra-Bryant (CMB) protocols [2] [7].Listing 1 shows a typ-
ical pseudocode for a CMB protocol.

[1] LocalVirtualTime.time = 0
// Simulation time for component

[2] EventQueue.first = Initial Event
// Event queue is initially empty

[3] for all i in InputPort: i.clock = 0
// Set clocks for each port to 0

[4] ExecutionPointer.STEP()
// Do one step, inserting internal events in queue

[5] while LocalVirtualTime.timeHorizon < LocalVirtualTime.finalTime:
// loop until simulation final time

[6] for all i in InputPort: await not_empty(i)
// wait for an event in the input port

[7] for all i in InputPort: i.clock=max_timeStamp(i)
// i.clock is the bigger timeStamp of any event in i

[8] LocalVirtualTime.timeHorizon=min(i.clock for i in InputPort)
// The process time horizon is the smaller clock of all ports

[9] min_channel_id = i such that its clock is the smallest
[10] if (Event.Queue.first.scheduledTime <= LocalVirtualTime.timeHorizon)
[11] or (InputPort[min_channel_id].first.scheduledTime <=
[12] LocalVirtualTime.timeHorizon):
[13] if (Event.Queue.first.scheduledTime <
[14] InputPort[min_channel_id].first.scheduledTime):
[15] event = removeFirst(Event.Queue)
[16] else:
[17] event = removeFirst(InputPort[min_channel_id])
[18] LocalVirtualTime.time = event.sheduledTime
[19] if isExternal(event):
[20] put(event@LocalVirtualTime.time+lookahead) in

3



[21] OutpuPort[event.port]
[22] else:
[23] ExecutionPointer.STEP() // execute event
[24] for all o in OutpuPort:
[25] if is_empty(o) put(null@LocalVirtualTime.time+lookahead)
[26] in OutpuPort[o]
[27] for all o in OutpuPort:
[28] send(o.contents)

Listing 1: Pseudocode for a Conservative Protocol (adapted
from [6]).

In conservative protocols, LPs have a time horizon, which
is the maximum simulation time it is safe to reach. Beyond
this point causality errors may occur with incoming events.
The time horizon should be iteratively increased during sim-
ulation by the particular protocol being used. The lookahead
is the simulation time below which no external event will be
generated. It is sent as a timestamp with each event. Thus, as
a difference from other protocols, we assign events two time
specifications: the timestamp and the scheduled time. The
timestamp is the lookahead of the process when the event was
generated. The scheduled time, stores the simulation time at
which the event should be executed.

In order to avoid deadlock, in each simulation loop, if a
process does not send events through an output port, it sends
a null event. These are not taken into account for the simu-
lation, but are used by each LP to calculate its time horizon.
This is inefficient and should be avoided whenever possible.
Nonetheless, null events prevent the possibility of deadlock
for some situations, (but do not work for all possible situa-
tions). The protocol does not indicate how to calculate the
lookahead, this depends on each particular model. In our case,
it is the scheduling time of the first event in the queue.

All these protocol details about time handling should be
kept transparent to the language used to describe LP behav-
iour. One of our goals is to obtain a way to automatically
“port” a simulation language for its use in a distributed envi-
ronment, with any distributed protocol and vice versa. In this
way, one could have a multi-formalism system where LPs are
specified with different formalisms.

5 Distributed Simulation as Dis-
tributed Graph Transformation

In this section we model distributed systems as distributed
graphs, where network nodes are LPs and ports, and local
graphs depict their states. Figure 3 showed a part of the type
graph, the corresponding to the network nodes. The type
graph for the network graph contains processes, which cor-
respond to LPs, with attributes name and state. The latter
is used to define local control flows for rule execution. In
this way, rules are applicable only if the LP is in a certain
state. Processes may be connected to input and output ports.
Ports may contain events. Input ports have an attribute indi-
cating the number of events they contain, and a clock with the
maximum time stamp of the included events. Input ports are
connected to output ports via channels, which represent mor-
phisms from the elements (events) of the input ports to the
elements of the output ports.

Figure 5 shows the type graph for local graphs in nodes
of type Process. As shown before, each process is provided

with a LVT, which contains the current and final simulation
time, the time horizon and the lookahead. If a LP does not
have input ports, its time horizon is made equal to the final
simulation time. Each event that is sent through the ports is
timestamped with the LP lookahead. This information will be
used by other LPs receiving these events to adjust their time
horizon. In addition, each process has an event queue and a
pointer (SentEvents node) to each sent event. An edge is kept
from the SentEvents node to each sent event until the event
is erased (see protocol rules). Additionally, events have at-
tributes to store its type, its scheduling time, its timestamp (the
LP lookahead when they were generated), the port they have
to be sent through (None if it is internal) and a flag (checked)
used by the protocol that indicates if the event has been used
yet to establish the time horizon of the receiver LP. For trans-
parency, the timestamp of the event is not set by the simulation
language, but by the protocol rules when the event is sent.

source

0..*
+ check: Boolean

0..* target

+ checked: Boolean

EventQueue

SentEvents

+ condition: ConditionExpression

+ port_name: String

Transition

+ isInitial: Boolean

DEG Event Type

+ isExternal: Boolean

+ time: TimeExpression

+ action: ActionExpression

+ name: String
+ scheduledTime: Float

Event

+ timeStamp: Float
+ port: String

+ time: Float

LocalVirtualTime

+ finalTime: Float
+ timeHorizon: Float
+ lookAhead: Float

ExecutionPointer

0..1

0..1

first

0..1

0..1

0..1

0..*

0..1event_to_process

0..1

next

Figure 5: Type Graph for Local Graphs in Processes.

The type graph for local graphs in port nodes contains just
node “event”. Events in input ports are used to compute the
time horizon of the receiver LP, as the maximum time of every
event in every input port. Here we use one of the properties of
conservative protocols: LVT in each LP (and thus, its looka-
head) advances monotonically. When an event is used for this
computation, it is marked and can be eliminated from the in-
put port. Additionally, events in ports do not have a port name.

Figure 6 shows an example of a distributed graph that uses
the previous type graphs. It is made of two LPs, the one on the
left is a “generator” that prtoduces “arrival” events. The one
on the right is a “machine” connected to the output port of the
generator. Inside each LP there is a behaviour specification
(using event graphs), a LVT, an event queue and a sent event
node (a black triangle). The machine has an unconnected out-
put port, thus, arrival events sent through it are lost.

6 LP Behaviour Specification
This section models the operational semantics of event
graphs, as we use them to specify LP behaviour. There are
two ways to model the operational semantics of a visual lan-
guage using graph transformation. In the first one, both struc-
ture and behaviour are specified with a visual language and

4



state: Initialize

numEvents: 0
name: OutPiece

Arrival

IF: idle
AFTER: 0.0
THROUGH

IF: queue>0
AFTER: 0
THROUGH

IF: true
AFTER: 10.0
THROUGH

IF: 
AFTER: 0.0
THROUGH OutPiece

Local Virtual Time
time: 0
timeHorizon: 0

lookahead: 0
finalTime: 100

Init
0

BOTTOM
−1

TOP
100.0

−1 100.0
None

0
NoneNone

Local Virtual Time
time: 0
timeHorizon: 0

lookahead: 0
finalTime: 100 IF: true

AFTER: 0
THROUGH Arrival

IF: true
AFTER: 10.0
THROUGH

Arrival
(External)

Arrival
(Initial)

Arrival
0

BOTTOM
−1

TOP
100.0

−1 100.0
None

0
NoneNone

Process name: Arrival state: Initialize

InputPort

numEvents: 0
name: InPiece

clock: 0
checked: F

OutputPort

numEvents: 0
name: Arrival

Process

End_Proc

Start_Proc
queue=0

DO:

DO:queue−−

DO: idle=1

idle=0

queue++

Init
(Initial) Arrival

(External)

name: Machine

OutputPort

Figure 6: A Distributed Simulation System.

graph grammars are used to “interpret” such behaviour. The
present work is an example of this approach. We explicitly
model event graphs, and then use a graph grammar to inter-
pret the behaviour defined by the model.

In the second approach, behaviour is directly implemented
by means of graph rewriting rules. Examples of this approach
can be found for example in [3], where process nets with ports
are represented with a visual language and their behaviour
using context-free grammars. In our case, we could “com-
pile” an event graph into rules. These rules are responsible for
rewriting the system state, which consists on the event queue
and the system variables. The compiler approach needs dif-
ferent sets of rules for each different event graph model. In the
interpreter approach the same set of rules is enough to model
the behaviour of any event graph model.

6.1 Specification of Local Control Flow

In distributed graph transformation if rules are executed
with a certain global control flow, for example layers, then all
LPs are implicitly synchronized. As rules represent process
actions, all processes execute the same kind of actions in a
synchronized way. A more realistic model of execution is to
provide each LP with local control flows. This can be done by
using a statechart to explicitly model the states each LP can
be in. The transitions in the statechart are labelled with ac-
tions representing either the execution or the failure of rules.
The LP state can be implemented as an attribute of network
nodes (see Figure 3).

Figure 7 shows the main elements of a statechart for control
flow specification. We assume the type graph in Figure 3 for
network nodes, and we assign the statechart to LPs.

We can identify different kinds of transitions. They can be
labelled with a rule name (rule1 in the figure). In this case,
the rule’s LHS should check the state the LP is in, and then
in the RHS the LP state can be changed. For the example,
rule1 should check that the state is S1 and in the RHS change

rule2

S1 S2 S3
rule1

composite 1

!rule1

Figure 7: Statechart for Control Flow Specification.

it to S3. This checking can be done automatically with the
statechart specification.

In addition, a transition may lead to a composite state. This
is the case of transition labelled as rule1. In this case a rule
is automatically generated to change the state from the com-
posite state to its initial state. That is, these rules go down
in the statechart hierarchy. In our example a rule should be
generated, taking LPs from state composite 1 to S2.

A transition may have no label (such as the transition going
from S2 to S3). In this case, a rule is automatically generated
that changes the LP state from the source to the target state.

Finally, a transition may be labelled with the failure of a
rule. In this case, the transition takes place if the rule is not
applicable. In the example this is the case with transition la-
belled as !rule1. In this case, it is possible to build a rule
named !rule1 which is applicable in the source state if and
only if rule1 is not. In general, we assume that rules can
have application conditions (as defined in [9]) of the form
{ci : P → Q}, but we are able to build the converse of the
rule only if the set ci is empty. Moreover, this construction
can be generalized to calculate the converse of a set of rules.
The resulting rule is applicable if none of the rules in the set
are applicable. For this purpose, we introduce the converse
construction on rule sets as follows:

Definition 1 (Converse of a set of rules) Given a set of lo-

cal rules with application conditions P = {pi = (Li
li←−

Ki
ri−→ Ri, {xi : Li → Pi, {cij : Pi → Qi}})} for node n

(that is, we assume node n is in the host graph), with each

cij empty, we define the converse of P as: !P = (L l←−
K

r−→ R,
⋃

pi∈P {x′
i : L → Li, {xi : Li → Pi}}), where

L = K = R and they contain only node n

Lemma 2 Given a set of local rules P for node n (as in pre-
vious definition), if any rule in P is applicable, then !P is not
applicable. Moreover, if none of the rules in P is applicable,
then !P is applicable 2.

We use converse rules as labels for transitions. In this way,
the converse rule is applicable if the process is in the source
state and change it to the target state if the rule is applied. In
our example, rule !rule1 would be applicable if rule1 is not
and change state from S1 to S3.

Additionally, from a given state, several transitions may de-
part. If several of the rules they are labelled with are applica-
ble, we have a non-deterministic choice. In the example, this
is the case of state S2, (but not of S1, as rule1 and !rule1

2The proof is given in the appendix

5



are mutually exclusive by construction). Altoghether, the ex-
ample defines the following execution trace (given as a reg-
ular expresion): (rule1 rule2)∗(rule1+!rule1). Note how,
in general, one can obtain a regular expression from a state-
chart (without parallel components) by first flattening the stat-
echarts and the using the well-known algorithms of automata
theory [11].

Figure 8 shows a statechart depicting the local control flow
for a step (an event execution) in a simulator for event graphs
(rules are explained in next subsection). The “Advancing
Time” state is the initial one. Here either rule “Advance Time”
can be executed, or not. In the latter case the LP goes to state
“Step Ends” and the simulation step finishes. We assume that
some other rules (the ones implementing the distributed pro-
tocol in next section) bring the LP state to “Advancing Time”,
and that additional ones change the state from “Step Ends”.
As a convention, we assume that in order to use a certain sim-
ulation language in our framework, after each simulation step,
the LP should end in state “Step Ends”, even if no event can
be consumed in its event queue. One of the reasons for which
the rule can be applied is that the time horizon is less than
the event time. Ending the simulation step here gives the LP
the opportunity to increase the time horizon (by the protocol
rules). At this point, the protocol rules can be executed (if
distributed execution), or additional simulation steps can be
performed (if sequential execution).

!Advance Time

Simulation step

Advancing Scheduling
Time Events

Delete

Advance Time

Schedule Events

!Schedule Events

Uncheck Events

Pointer
Delete

Step
Ends

Figure 8: Statechart Depicting a Step for the DEG Simulator

Once the first event is consumed and the LP is in state
“Scheduling Events”, rule “Schedule Events” is executed as
long as possible. When it is no longer applicable, then
its converse is applicable and changes the state to “Delete”.
Here either “Uncheck Events” or “Delete Pointer” are ex-
ecuted. In the latter case, the state is changed to “Step
Ends”. In this way, the statechart defines the following trace:
(AdvanceT ime ScheduleEvents∗ !ScheduleEvents
UncheckEvents∗ DeletePointer)+!AdvanceT ime.

As stated before, these control flows are specified for dis-
tributed graphs. For the implementation of the control flow in
the system, an attribute is created in the network node which
represents the node state. However, for analysing the system,
we flatten the distributed graph with the functor presented
before. In the resulting normal graph, the control flow does
not change. With flattening, network nodes and local graphs
are merged in a unique graph, where nodes and edges keep
their attributes (including the attribute used to store the state).
Therefore, the control flow works in the same way for the flat-
tened graph.

6.2 Event Graphs Semantics
In this section we describe the operational semantics of event
graphs by means of rules. In the rule in Figure 9, the first event
in the queue is selected (an event labelled “BOTTOM” is al-
ways kept in the first position to make rules easier), together
with its specification in the event graph. The rule is applicable
if the event time is less than the time horizon and the LP is in
state “Advancing Time” (see Figure 8). If the rule is applied,
the event is consumed, the simulation time is increased, and a
pointer is created signaling the event specification that should
be executed. In addition, the event action is performed.

finalTime: tf
Execution

BOTTOM
−1 t2

S1

Execution
Pointer

Name: p
state:Scheduling Events

BOTTOM
−1 t2

S1

Name: S

Do: Action

isExternal: False

S
t1

state:
Name: p

Advancing Time
Process

NAC

Name: p

Rule 1.− AdvanceTime
RHS

Process

Name: S

Do: Action

isExternal: False

exec parse(Action)
Action

LHS

Process

time: t
finalTime: tf

time: t1
Pointer

Figure 9: Rule for the DEGs Simulator (consuming an event).

Additional rules (not shown for space limitations) schedule
new events, following the transitions of the event that is be-
ing executed (pointed by the Execution Pointer). The event is
placed in the local event queue, even if it is an external event
(which should be sent through some port). This is done by
simplicity and transparency, as additional rules for the distrib-
uted protocol will place the external events in the appropriate
output port. Other rules set the flag check to false and delete
the execution pointer. After each simulation step, the LP ends
up in state “Step Ends”. Finally, some other rules must take
care of the initialization process. This process is made once,
before the simulation execution starts, and schedules the ini-
tial event(s) of the event graph in each LP local queue.

As stated before, for the use of this rules in a distributed en-
vironment, some NACs will be added later, induced by global
safety properties of the given distributed simulation protocol.

7 Modelling a Protocol
In this section, we model a conservative protocol using dis-
tributed graph transformation. LP behaviour can be described
using the statechart in Figure 10. The actions to occur in
states “Simulation Step” and “Initialize Simulation” are im-
plemented by the semantics of the simulation language used
in each LP. As stated before, we add a rule to change the
process from state “Step Ends” inside “Simulation Step” to
state “Consuming Ext Events”. The statechart states are in-
deed embedded in the model as attribute state of LPs (see
Figure 3).

Again, we just show some rules for space limitations. Fig-
ure 11 shows the applicable rule in state “Consuming Ext
Events”. The rule “Consume External Event” takes one ex-
ternal event from the local queue and places it in the cor-
responding output port. The event is also connected to the
“Sent Events” node. The external events are placed in the lo-

6



Remove Null Event}

Event
Removing

Event

Simulation
Step

Generating
Null Event

Simulation
Initialize

Lookahead
Setting

Lookahead
Set

Consuming
Ext Events

Consume
External Event

main simulation loop

Lookahead
Set

no advance

FindMinTimeEvent
no Input Ports

External Event
!Consume

Unchecking

Uncheck

!Uncheck

Sending

S
en

d 
E

ve
nt

! S
en

d 
E

ve
nt

! Generate Null Event

Generate Null Event

calculate Time Horizon

Remove
Null Event

GetMinTime

Check Used Events

FindMinTimeEvent

Event

SetNewTimeHorizon

!{Remove Event, 

Remove

Figure 10: Statechart Depicting Processes General Behaviour

cal queue by the simulator rules. The LP changes its state to
“Setting Lookahead” if the converse of this rule is applicable.

OutputPort

Event

evt0

port0

sct0
tst0

Event

sct2
tst2
port2

evt2

Event

evt1
sct1
tst1
port1

SentEvents

Event

evt0

port0

sct0
tst0

Event

sct2
tst2
port2

evt2

SentEvents

Local Virtual Time
time: t
timeHorizon: th
finalTime: tf
lookahead: tlh

Local Virtual Time
time: t
timeHorizon: th
finalTime: tf
lookahead: tlh

Event

evt1
sct1

port1
tlh

name: port1
numEvents: ne

name: port1
numEvents: ne+1

1.− Consume External Event

LHS
Process name: p

state: ConsumingExtEvents RHS

Process name: p
state: ConsumingExtEvents

Event

evt1
sct1
tlh

OutputPort

Figure 11: “Consume External Event” Protocol Rule.

Rule “Send Event” in Figure 12 sends the events that are
already stored in ouput ports. This rule is applicable if the
sending LP is in state Sending Event (the receiver can be in
any state). When the rule is executed, the event is stored in
the input port of the reciever LP as well as in its local queue
(properly ordered). The converse of the previous rule changes
LP state to “calculate Time Horizon”.

Rules in Figure 13 are used to set the LP time horizon.
The first rule (“FindMinTimeEvent”) is executed in state “get-
MinTime” and looks for the event with the maximum time
stamp in each input port. This time is assigned to attribute
“clock” of the port. No event can be received in each input
port with a timestamp which is smaller.

Rule “Check Used Events” marks as “used” all events in
each input port. In addition, the port clock is updated if new
events arrived after last rule execution and before this rule
was executed. Rule “Set New Time Horizon” sets the LP time
horizon as the minimum of the clock in each input port. The
first NAC checks that all events inside each port have been
considered. The second NAC checks that all ports have been
considered. Finally, the third NAC checks that the selected

Process

Event

sct2
tst2
port2

evt2

Event

sct1
tst1
port1

evt1
name: in_port
InputPort

clock: itime
numEvents: ne

name: port
OutputPort

LHS

Channel

nextname: proc
Process

state: SendingEvent

Event

event
schedtime
tstamp

Event

event
schedtime
tstamp
port

name: port
OutputPort

name: proc
Processname: in_port

InputPort

clock: itime
numEvents: ne+1

Event

event
schedtime
tstamp
port

RHS

Channel

name: proc
Process

state: SendingEvent

Event

event
schedtime
tstamp

Event

event
schedtime
tstamp

Event

sct1
tst1
port1

evt1
Event

event
schedtime
tstamp
None

Event

sct2
tst2
port2

evt2

(sct1 <= schedtime <= sct2)
Condition

4.− Send Event

Event

event
schedtime
tstamp

NAC

Event

event
schedtime
tstamp

name:in_ port
InputPort

name: port
OutputPort

name: proc

Figure 12: “Sending Events” Protocol Rule.

port has the minimum time. If applied, the rule also changes
the LP state to “Unchecking”.

Two additional rules (“FindMinTimeEvent No Input Ports”
and “Uncheck”, not shown in the paper) are applicable when
the LP has no input ports, and to set the checked attribute of
each input port to false, respectively.

getMinTime

numEvents: n
clock: tstamp

Process
state:
getMinTime

InputPort

numEvents: n
clock: ck

time: t
timeHorizon: tstamp
finalTime: tf
lookAhead: lh

time: t
timeHorizon: th
finalTime: tf
lookAhead: lh

Process

InputPort

numEvents: n
clock: tst1

time: t
timeHorizon: th
finalTime: tf
lookAhead: lh

Process

InputPort

numEvents: n
clock: tstamp

InputPort

numEvents: n
clock: tstamp

InputPort

numEvents: n
clock: ck

InputPort

numEvents: n
clock: tstamp>clock?tstamp:clock

InputPort

numEvents: ne
clock: t

state:Uncheckingstate:getMinTime

6.− Check Used Events

LHS InputPort
clock: ck
numEvents: n
checked: F

6.− FindMinTimeEvent

RHS

checked: T

NAC

tstamp1 > tstamp
Condition

evt1
sctime1
tstamp1

Event

7.− Set New Time Horizon

RHS
Process

Condition

NAC

tst1<tstamp

LHS
NAC

Event

evt
sctime
tstamp

Event

evt
sctime
tstamp

Process
state:
getMinTime

LHS InputPort
clock: ck
numEvents: n
checked: T

Process
state:
getMinTime

Event

evt
sctime
tstamp

RHS

Process
state:
getMinTime

Event

evt
sctime
tstamp

checked: T

TF

Event

evt
sctime
tstamp

Process
state:
getMinTime

F
checked : F

NAC

Process
state:

InputPort

Figure 13: Rules to Update the Time Horizon.

8 Consistency Conditions
In this section, we specify global invariants for the system
(safety properties). These properties can be translated into
pre- conditions for the rules. We use this technique for three
purposes:

• To detect flaws in already existing rules. In this case,
the induced pre-conditions are stronger (more restrictive)
than existing pre-conditions in the rule.

• To ensure that a simulator specified with graph transfor-
mation rules can work with a distributed protocol.

• To ensure that the protocol rules preserve a safe state in
case of the simulation language does something incor-
rect. In our case, one incorrect behaviour is for example
sending events in non-monotonical ascending order. In
this case, the induced pre-conditions by the safety condi-
tions are a kind of “exception handler”.

As the protocol we have modelled is conservative, there
cannot be any causality violation, that is, any incoming event

7



should have a scheduled time which is in the present or future
of the receiving LP. This is shown in the constraint on the left
in Figure 14.

OutputPort

evt
sct
tst

evt
sct
tst

Causality Error 1

NAC
Process

time: sct+x+1
timeHorizon: th
finalTime: tf
lookAhead: lh

InputPort
NAC
Process

Causality Error 2

time: t
timeHorizon: sct+x+1
finalTime: tf
lookAhead: lh

InputPort

Figure 14: Global Consistency Conditions for Causality
Preservation.

The constraint is a NAC and signals the existence of a
causality violation, as a LP receives an event in its past. How-
ever, it is useful to identify such condition before, namelly,
before the event is sent. In this way, the inconsistency cannot
only be detected, but avoided. This situation is shown in the
condition on the right of Figure 14. The condition identifies a
situation in which an event is going to be sent to a LP, and the
event scheduled time is less than the time horizon. This may
lead to a consistency error, as the receiving LP can advance
its local time to the time horizon before receiving the event. If
this happens, then the event will be received in the past.

OutputPort

clock: sct+x+1
numEvents: n

InputPort
clock: sct+x+1
numEvents: n

evt
sct
tst

InputPort evt
sct
tst

NAC

time: t
timeHorizon: th
finalTime: tf
lookAhead: lh

Process

NAC

time: t
timeHorizon: th
finalTime: tf
lookAhead: lh

Process

OutputPort

InputPort

Figure 15: Induced Pre-Conditions by “Causality Error 2” on
rule “Set New Time Horizon”.

Now, we convert the global condition into local pre- con-
ditions for rules. If we want to make sure that the protocol
fulfills the condition, we must do it for each rule in the gram-
mar. Here we only show some interesting cases. Figure 15
shows the induced NACs on rule “Set New Time Horizon”
(which was shown in Figure 13). Checking these conditions
in this rule is particularly significative, as this is the rule that
increases the time horizon. The NACs were not taken into ac-
count in the original rules. They prohibit increasing the time
horizon, which will be made after one simulation loop, after
the events are received. This is one example of how this graph
transformation technique can help for the design of a complex
software system in general and a distributed simulation pro-
tocol in particular. Other interesting rule for which another
NAC would be added is “Send Event”. The NAC would pro-
hibit executing the rule if the event to be sent had a scheduling
time larger than the receiving LP time horizon.

An additional global condition labelled as “Time Horizon
Overpassing Error”, is shown to the left of Figure 16. It de-

Process

time: th+x+1
timeHorizon: th
finalTime: tf
lookAhead: lh

state:

BOTTOM
−1

Name: S

Do: Action

isExternal: False

time: t
timeHorizon: th
finalTime: tf
lookAhead: lh

t2
S1

NAC

Process
Name: p

Advancing Time

S
th+x+1

Induced Pre−Condition on Advance Time

Time Horizon Overpassing Error

NAC

Figure 16: Global Consistency Condition Checking Correct-
ness of Time Horizon (left) and Induced Pre-Condition on rule
“Advance Time”(right).

tects the (non-desirable) situation in which the LVT of a LP
becomes larger than its time horizon. The right of Figure 16
shows the NAC induced by this condition on rule “Advance
Time” (shown in Figure 9), one of the rules implementing the
operational semantics of event graphs, responsible to advance
time. The NAC prohibits the application of the rule if the
scheduled time of the first event is larger than the time hori-
zon. In general, this consistency condition is very useful in
cases where the rules implementing the operational semantics
of a certain formalism were not designed for distributed envi-
ronments, and then did not take into account the time horizon.
Thus, it allows the automatic migration of rules into distrib-
uted environments. In our case, this is the only safety con-
straint that we have to consider for the rules implementing the
semantics of the visual language. For other distributed sim-
ulation protocols additional constraints should be taken into
account.

tst

Event Sequentiality Error

NAC
Process

state: not in [GetMinTime,
clock: tst+x+1Unchecking, Removing Event])

InputPort

evt
sct

Figure 17: Global Consistency Condition Checking Correct
External Event Sequentiality.

Finally, the last condition we consider is labelled as “Event
Sequentiality Error”, and is shown in Figure 17. It describes
the case in which an event arrives to an input port, whose time
is smaller than the port clock, once it has been calculated. This
implies that the event did not come in ascending timestamp
order. Of course, the processing of events in ascending or-
der should be a basic condition for discrete event simulations.
This exception may be due to an error in the specification of
the particular formalism for the simulation of LPs (which did
not properly ordered the event queue). After the condition is
translated into local pre- conditions, it will serve as some kind
of “exception handler”. This is because, if the error is really
found at run time, none of the protocol rules can be applied to
the receiving LP. In this way, it can be seen as if the receiving
LP ends its execution.

8



9 Tool Support

We have implemented the described examples in AToM3 [14],
after flattening the type graphs. AToM3 is a tool that was
built in colaboration between the Universidad Autónoma in
Madrid and McGill University in Montreal. It allows build-
ing meta-models, in which the abstract and concrete syntax
of visual languages is specified. For the manipulation of such
languages, graph transformation rules can be used.

Figure 18 shows an example modelled with AToM3. The
example shows three simple components. A User process
generates job events, which are sent to a Buffer process. After
a delay of 2 time units, the Buffer sends the event to a Proces-
sor component. After a delay of 10 time units, the job is done
and sent to the user again. As AToM3 does not support dis-
tributed graphs, we used flattened graphs. Each element of
local graphs inside processes and ports have to be connected
to the corresponding network node through hierarchy edges.

Figure 18: A Distributed Simulation Modelled in AToM3.

10 Related Work

With respect to the specification technique to describe the pro-
tocols, other similar approach to describe distributed systems
(also based on graph transformation) can be found in [13].
Other approaches are based on domain specific languages
such as TED [16] and L.0 [1]. A popular approach for mod-
elling protocols is the use of Coloured Petri Nets [12]. For ex-
ample, in [8], a part of the TCP protocol was modelled and an-
alyzed. They encoded TCP segments (messages) as coloured
tokens and were able to use Petri nets results to calculate the
reachability graph (for certain configurations of processes)
and detect possible deadlocks. It could also be possible to cal-
culate the reachability graph of a graph transformation system
and to perform reachability analysis on it. Other techniques
based on Petri nets use numerical simulation to obatin perfor-
mance metrics. This kind of simulation is outside the scope
of our work, which uses symbolic techniques.

11 Conclusions and Future Work
In this paper, we have explored the usabe of distributed graph
transformation for the specification and analysis of simulation
protocols. We have extended previous definitions of distrib-
uted graph transformation by adding type graphs and using
attributes also at the network level. The use of distributed
graph transformation simplifies the models, as one does not
have to explicitly include “hierarchy” edges between contain-
ers (LPs) and its contained graphs. In the modelling phase,
we have also taken advantage of the possibility to specify
global safety properties for the system. These are translated
into preconditions for the rules implementing the operational
semantics. This helps in discovering possible flaws in the de-
signed rules, to port the operational semantics of simulation
languages to a distributed environment and to set “exception
handlers” for unexpected errors. In addition, we specify by
means of statecharts the control flow of actions (rule applica-
tions) that each LP can perform. In this way, no global control
flow is present, as this leads to a global synchronization of all
process actions. For the analysis, we can flatten the distrib-
uted graphs and perform critical pair analysis. This shows
rules which are in conflict and may produce different results
depending on the particular interleaving sequence. We used
AToM3 for the implementation of the visual languages and
the protocol rules.

In addition to consistency conditions, for the analysis of the
protocol we can also compute critical pairs [10]. This allows
us to identify rules that are in conflict: the execution of a rule
may disable the other. The technique allows us to investigate
if the protocol rules (and in particular those involving interac-
tion of LPs) are independent.

For the future, it is desirable a direct tool support for dis-
tributed transformation. It is also up to future work to generate
code for the distributed applications from the models. Other
conservative and optimistic protocols could be modelled and
analyzed as well.

Acknowledgements: This work has been sponsored by the
SEGRAVIS network and the Spanish Ministry of Science and
Technology (TIC2002-01948).

References
[1] Cameron, E. J., Cohen, D. M., Guinther, T. M., Keese,

W. M., Ness, L. A., Norman, C., Srinidhi, H. N. 1991.
The L.0 Language and Environment for Protocol Simu-
lation and Prototyping IEEE Transactions on Comput-
ers, Vol 40(4), April 1991. pp.: 562-571.

[2] Chandy, K., Misra, J. 1979. Distributed Simulation: A
Case Study in Design and Verification of Distributed
Programs. IEEE Transactions on Software Engineering,
Vol 5. No 5., pp.: 440-452.

[3] Degano, P., Montanari, U. 1987. A Model for Distributed
Systems Based on Graph Rewriting Journal of the ACM,
34(2), April, pp.: 411-449.

9



[4] Ehrig, H., Engels, G., Kreowski, H.-J. and Rozenberg,
G. eds. 1999. Handbook of Graph Grammars and Com-
puting by Graph Transformation. Vol 2 World Scientific.

[5] Ehrig, H., Prange, U., Taentzer, G. 2004. Fundamen-
tal Theory for Typed Attributed Graph Transformation
ICGT’04 (Rome). LNCS 3256, pp.: 161-177.

[6] Ferscha, A. 1995. Parallel and Distributed Simulation
of Discrete Event Systems. In Parallel and Distributed
Computing Handbook, McGraw Hill, pp.: 1003-1041.

[7] Fujimoto, R. 2000. Parallel and Distributed Simulation
Systems, John Wiley and Sons, Inc.

[8] Han, B., Billington, J. 2002. Validating TCP Connec-
tion Management. Workshop of Software Engineering
and Formal Methods, Adelaide, Australia. pp: 47 - 55.

[9] Heckel, R., Wagner, A. 1995. Ensuring consistency of
conditional graph rewriting - a constructive approach
Proc. of SEGRAGRA 1995, ENTCS Vol 2, 1995.

[10] Heckel, R., Küster, J. M., Taentzer, G. 2002. Confluence
of Typed Attributed Graph Transformation Systems. In
ICGT’2002. LNCS 2505, pp.: 161-176. Springer.

[11] Hopcroft, J., Motwani, R., Ullman, J. 2001. Introduction
to Automata Theory, Languages, and Computation. 2nd
ed. Addison-Wesley.

[12] Jensen, K. 1997. Coloured Petri Nets: Basic Concepts,
Analysis Methods and Practical Use, Vol.1, Basic Con-
cepts. Springer-Verlag, Berlin.

[13] Koch, M. 2002. A graph-based approach to the compo-
sitional specification of distributed systems GETGRATS
Closing Workshop, ENTCS 51.

[14] de Lara, J., Vangheluwe, H. 2002 AToM3: A Tool
for Multi-Formalism Modelling and Meta-Modelling.
FASE’02, LNCS 2306, pp.:174-188. Springer-Verlag.

[15] de Lara, J. 2004. Distributed Event Graphs: Formalizing
Component-based Modelling and Simulation. In Visual
Languages and Formal Methods, VLFM’2004. Rome.

[16] Perumalla, K., Fujimoto, R., Ogielski, A. 1998. TED –
A Language for Modeling Telecommunication Networks.
ACM SIGMETRICS Vol.25(4). pp: 4 - 11.

[17] Rozenberg, G. (ed) 1997. Handbook of Graph Gram-
mars and Computing by Graph Transformation. World
Scientific. Volume 1.

[18] Schruben, L. W. 1983. Simulation modeling with event
graphs. Communications of the ACM, 26:957-963.

[19] Taentzer, G., Fischer, I., Koch, M. and Volle, V. Distrib-
uted Graph Transformation with Application to Visual
Design of Distributed Systems. In Handbook of Graph
Grammars and Computing by Graph Transformation,
Vol. 3, World Scientific, 1999.

Appendix: Proof of Lemma 2
First, let’s assume that some pi ∈ P is applicable. Then as
the following diagram shows, !P is not applicable, as it is for-
bidden by the application condition built from p i (a morphism
m : Li → G exists, but not another one between Pi and G).

pi : Pi

/
��

�

���
���

Li
xi��

m

��

Ki
li�� ri ��

��

Ri

��
G D�� �� H

!P : Pi

/�������

���������

Li
xi��

m

����������
L

x′
i��

m′

��

K
l�� r �� R

Figure 19: pi ∈ P is applicable, and !P is not.

Now let’s assume that no pj ∈ P is applicable. As it was
shown in the construction, we build application conditions for
!P for each pi ∈ P . If one of the pi is not applicable, it can
be because of two reasons. The first one is because no mor-
phism is found between the LHS of pi and the host graph. In
this case, the corresponding condition in !P allows the appli-
cation, as there is no morphism between Li and the host graph
G.

pi : Pi Li
xi��

−m

��

Ki
li�� ri �� Ri

G D�� �� H

!P : Pi Li
xi��

−��� m

�����

L
x′

i��

m′

��

K
l�� r ��

��

R

��

Figure 20: pi ∈ P is not applicable, and !P is applicable.

Finally, some pi may not be applicable because of its appli-
cation condition. In this case, the corresponding application
of !P allows its execution as we find morphisms m : Li → G
and n : Pi → G.

pi : Pi

n
���

��
��

��
� Li

xi��

m

��

Ki
li�� ri �� Ri

G D�� �� H

!P : Pi

n

�����������������
Li

xi��
m

����������
L

x′
i��

m′

��

K
l�� r ��

��

R

��

Figure 21: pi ∈ P is not applicable (because of its application
condition), and !P is applicable.

�

10


