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Abstract In this paper, we propose a new loose semantics for place/tran-
sition nets based on transition systems and generalizing the reachability
graph semantics. The loose semantics of a place/transition net reflects all
its possible refinements and is given as a category of transition systems
with alternative sequences of events over the net. The main result states
that each plain morphism between two place/transitions nets induces a
free construction between the corresponding semantic categories.

1 Introduction

Petri nets are one of the most thoroughly investigated approaches with a multi-
tude of extensions and variants. They are one of the most prominent specification
techniques for modeling concurrency and have a wide range of application areas
in practice. In this paper, we introduce a new semantics for Petri nets which is
based on transition systems. The semantics of a net is given by a class of mod-
els corresponding to all possible refinements of a net with respect to transition
refinement. In this sense, it is a loose semantics as known and well accepted in
the area of data type specification (see, e.g. [Rei99]).
The semantics we define here is developed in view of system specification. It is
suitable for relating different stages of refinement. This is obviously important for
the vertical structuring, but as well for horizontal structuring with abstraction
mechanisms like parameterization and modularization.
The reachability graph is a standard model of a place/transition net describing
all possible sequences of firings of transitions starting from an initial marking.
Our new semantics generalizes this net semantics in such a way that a firing of a
transition can be refined by sequences of events. Moreover, we allow alternative
possibilities for each such refinement. Typical examples of alternative sequences
are the interleavings of independent events. Altogether, the loose semantics of a
place/transition net consists of the class of transition systems with alternative
sequences of events including the reachability graph. This class forms a category
in a natural way. As the main result of the paper, we show that each plain
morphism between two place/transition nets induces a free construction between
the corresponding semantic categories. This is the key result that allows one to
consider Petri nets as building blocks of parameterization and modularization.



We continue this paper by introducing state transition systems that capture our
idea of alternatives and refinement. In Section 3, we show that transitions sys-
tems over Petri nets can be considered as a loose semantics of the corresponding
Petri net. Next we show that we obtain a free functorial construction of the
place/transition net semantics, based on contravariant forgetful functor. Subse-
quently in Section 5 we treat the relation to other approaches in some detail and
discuss at last the impact of a loose semantics for Petri nets in Section 6.

2 Transition Systems with Alternative Sequences

In this section, we recall the notion of state transition systems and add a new
feature to them: a relation of alternative sequences of events. Transition systems
with alternative sequences will be combined with place/transition nets in the
next section.

A state transition system STS = (S, E, TS, ŝ) is given by a set of states S, a set
of events E, the set of transitions TS ⊆ S × E × S, and the initial state ŝ ∈ S.

If one reads the events along the paths in state transition systems, one gets
sequences of events. More formally, we write s0

w−→ sn if there is some sequence
of transitions (si−1, ei, si) ∈ TS for i = 1, .., n and w = e1e2...en ∈ E∗ or if
w = λ and s0 = sn.

Next we want to consider some of these sequences of events as alternatives to each
other. To make this precise, let AS ⊆ E∗×E∗ be some relation on E∗ and ASCon

denote its congruence closure, i.e. the closure of AS that is reflexive, symmetric,
transitive, and congruent with respect to concatenation. Moreover, let E� denote
the quotient factoring E∗ through ASCon and [ ] : E∗ → E� the canonical
function with [ ](w) = [w] for all w ∈ E∗ where [w] = {w′|(w, w′) ∈ ASCon} is
the congruence class of w ∈ E∗.

Definition 1 (Transition Systems with Alternative Sequences). A tran-
sition system with alternative sequences TSA = (S, E, TS, ŝ, AS) is given by
a state transition system (S, E, TS, ŝ) and the relation of alternative sequences
AS ⊆ E∗ × E∗ subject to the following consistency condition:

∀w′ ∈ [w] : s
w−→ s′ ⇐⇒ s

w′
−→ s′

The consistency condition ensures that alternatives are alternatives at all states.So,
they are global alternatives in the following sense: Whenever there is a state
where the sequence w occurs the alternative sequence w′ ∈ [w] has to occur as
well.

Next we examine morphisms between transition systems with alternative se-
quences. We allow mapping one event e1 ∈ E1 to a congruence class of se-
quences of events by a morphism fE : E1 → E�

2 with fE(e1) = [w]. This
denotes the refinement of one event by alternative sequences of events. The
morphism fE : E1 → E�

2 can be extended uniquely by fE
� : E�

1 → E�
2 defined

for w = e1 · ... ·en ∈ E∗
1 by f�([w]) = f(e1) · ... ·f(en), where the concatenation of



congruence classes is defined by the congruence class of the concatenation, i.e.
[u] · [v] = [uv].

Definition 2 (TSA-Morphisms). Given transition systems with alternative
sequences TSAi = (Si, Ei, TSi, ŝi, ASi) for i = 1, 2, then a TSA-morphism is
given by f : TSA1 → TSA2 with f = (fS , fE) and fS : S1 → S2 and fE : E1 →
E�

2 such that the following conditions hold:

1. Existence of a path: For all (s1, e1, s
′
1) ∈ TS1 and for all e1

2·e2
2·...·en

2 ∈ fE(e1)

there is a path fs(s1)
e1
2−→ s1

2

e2
2−→ s2

2
∗−→ sn

2

en
2−→ fs(s′1).

2. Reachability of initial state: We have ŝ2
∗−→ fS(ŝ1).

3. Preservation of alternatives: Given (w, w′) ∈ AS1 then we have f�
E([w]) =

f�
E([w′]) for the unique extension fE

� : E�
1 → E�

2 and w ∈ E∗
1 .

Then we obtain:

– Composition g ◦ f : TSA1 → TSA3 of the morphisms f : TSA1 → TSA2

and g : TSA2 → TSA3 is given by the composition of its components with
(g ◦ f)S = gS ◦ fS and (g ◦ f)E : g�E ◦ fE, where gE

� : E�
2 → E�

3 is the unique
extension.

– Identity idTSA : TSA → TSA is given by idTSA = (idS , [ ]E).

Hence, we have the category TSA of transition systems with alternative se-
quences.

Note, condition 3 obviously implies f�
E([w]) = f�

E([w′]) for any w′ ∈ [w] ∈ E�
1

(see [Pad03]) and the composition is well-defined as we have congruence with
respect to concatenation.

Example 1 (Transition Systems with Alternative Sequences). Here we give a
short example of some transition systems with alternative sequences, where we
concentrate on the events and depict the states merely as •, and the initial state
by → •. The numbers adjacent to the states are merely used to illustrate mor-
phisms later on. First, we investigate the examples in Fig. 1 to illustrate our
notion of morphisms and subsequently we give an interpretation of the example.
All states are mapped injectively. TSA1 is mapped to TSA2 by f , where fE(s) =
[s] = {s} and fE(d) = [d] = {d}. Preservation of alternatives is satisfied as
AS1 = ∅. The TSA morphism g : TSA2 → TSA3 is defined for the events by
gE(s) = [t] = {t, uv}, gE(s′) = [s′] = {s′}, gE(d) = [d] = {d}, and gE(d) =
[d] = {d}. Preservation of alternatives is satisfied since we have g�E([sd]) =
[td] = {td, uvd, s′d′} = [s′d′] = g�E([s′d′]). The composition g ◦ f is for the
events obviously given by g�E ◦ fE(s) = g�E([s]) = [t] = {t, uv} and g�E ◦ fE(d) =
g�E([d]) = [d] = {d}. Again preservation of alternatives is satisfied since (gE ◦
fE)�([sd]) = g�E ◦ f�

E([sd]) = [td] = {td, uvd, s′d′} = [s′d′] = (gE ◦ fE)�([s′d′]).
The interpretation of this example is that the transition system TSA1 describes
a simple system with the following events s for start, d for distribute, r for
receive, and q for quit. These events follow each other as depicted in Fig. 1.



The transition system TSA2 states that the sequences of events sd and s′d′ are
alternatives. Whenever one of both occurs at a certain state the other does so
too. This describes independently of the syntactic specification that a system has
different, but equally desired sequences of events. As in the case of our example,
they need not be induced by single events. In TSA2 two alternatives for starting
and distributing namely sd or s′d′ result in the same state, and they do that
in any case. Nevertheless neither s and s′ nor d and d′ are alternatives. By the
morphism g : TSA2 → TSA3 we refine the event s by [t] = {t, uv}, that is s can
be expressed either by the event t or the sequence uv.�

�

�

�
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Fig. 1. Transition systems

3 Transition Systems with Alternative Sequences over
Net Systems

In this section, we associate place/transition systems with transition systems
with alternative sequences. We use place/transition nets in the usual way with
weighted arcs so that the pre- and post-domains of transitions as well as the
markings are multisets over the sets of places (as the algebraic notation in



[MM90]). Given a set P , let the set of finite multisets over P be denoted by
P⊕.

Then a place/transition net is given by N = (P, T, pre, post, m̂) where P is
the set of places, T the set of transitions, pre, post : T → P⊕ are mappings
associating a pre- and a post-domain to each transition, and m̂ ∈ P⊕ is the
initial marking.

The set of finite multisets over P is the free commutative monoid over P. An
element w ∈ P⊕ can be presented either by the natural function w : P → N or
as a linear sum w =

∑
p∈P λp · p, and we can extend the usual operations and

relations on N as ⊕, 
, ≤, and so on to P⊕. Moreover, we need to state how often
is a basic element with in an element of the free commutative monoid given. We
define this for an element p ∈ P and a linear sum w =

∑
p∈P λp · p ∈ P⊕ with

w|p = λp for p ∈ P⊕ and w|Q =
∑

p∈Q λp · p for a subset Q ⊆ P .
The pre-set •x and the post-set x• are defined as usual, and so is the set of
reachable markings [m̂>.
The set of enabled transitions is [T > = {t ∈ T |m[t> m′ for some m ∈ [m̂ >}.
We now define transitions systems that can be viewed as models of a net, where
a refinement of the enabled transitions and the representation of the states relate
the net to the transition system. In particular, we allow refinements of transitions
to be equivalence classes of alternative sequences.

Definition 3 (Transition Systems with Alternative Sequences over
Place/Transition Nets). A transition system with alternative sequences TSA
over a place/transition net N = (P, T, pre, post, m̂) consists of a transition sys-
tem with alternative sequences TSA = (S, E, TS, ŝ, AS, rep, ref) and two func-
tions rep : [m̂ > → S and ref : [T > → E� subject to the following conditions:

1. Representation of markings: The function rep : [m̂> → S represents the
reachable markings.

2. Refinement of transitions: The function ref : [T > → E� refines the transi-
tions.

3. Reachability of initial marking: We have ŝ
∗−→ rep(m̂).

4. Existence of a path: For all m[t> m′ with m ∈ [m̂> we have a path for all
w ∈ ref(t) so that rep(m) w−→ rep(m′).

Note that we may have ref(t) = [λ] only for transitions where for all m, m′ ∈
[m̂> with m[t> m′ we have rep(m) = rep(m′). Next we establish the category
of transition systems with alternative sequences over N . Hence, this category is
the loose semantics of a net N .

Definition 4 (Category TSA(N) of Transition Systems with Alterna-
tive Sequences over N). The category TSA(N) of transition systems with
alternative sequences over the place/transition net N = (P, T, pre, post, m̂) is
given by the class of transition systems TSA = (S, E, TS, ŝ, AS, rep, ref) over
N , and by TSA-morphisms f : TSA1 → TSA2 with rep1 : [m̂1 > → S1 and
ref1 : [T1 > → E�

1 (resp. rep2 : [m̂1 > → S2 and ref2 : [T1 > → E�
2) satisfying

the following conditions:



1. Preservation of representation: fS ◦ rep1 = rep2.
2. Preservation of transition refinement: f�

E ◦ ref1 = ref2.

Now we have a class of transition systems for each net. Moreover, it is a cate-
gory so we have morphisms, that denote refinements of events with alternatives.
To illustrate this new type of net semantics, we now present the well-known
producer-consumer net and discuss its loose semantics.

Example 2 (Producer-Consumer).
In Fig. 2 we have the well-known
producer-consumer net with the
transitions s for start, d for dis-
tribute, r for receive, and q for
quit. This net is obviously closely
related to the transition systems in
Fig. 1. This producer-consumer net
PCN denotes a part of the category
TSA(PCN) of transition systems
over this net.

p1

p2

d b r

c2

q

c1

s

Fig. 2. Producer-Consumer net PCN

The transition system TSA1 is extended by the representation function rep1 :
[m̂> → S1 with rep1(p1⊕ c1) = 1, the follower marking is mapped by rep1(p2⊕
c1) = 2, rep1(p1 ⊕ b ⊕ c1) = 3, and so one, where the numbers denote the
states of transition system TSA1 in Fig. 1. The transitions are refined trivially
by themselves, ref1(s) = [s] = {s}, ref1(d) = [d] = {d}, and so forth. The tran-
sition systems TSA2 and TSA3 with suitable representations and refinements
are clearly transition systems over PCN .
The transition system TSA1 is isomorphic to the reachability graph of PCN
and hence it is initial in this category (see Section 5).

The loose semantics for some place/transition net N comprises all possible re-
finements, where we use refinement in a very broad sense: A transition can be
refined by various alternatives of event sequences including the empty sequence.
The only requirement is that the source of these event sequences needs to be
the representation of the marking before firing the transition, and the target
of the sequence needs to be the representation of the marking after firing the
transition. The initial object is the usual reachability graph R(N) of a net N
(see Section 5). So, the classical semantics of a net is a distinguished member of
the loose semantics and any transition system TSA in TSA(N) is a refinement
of R(N), as there is a unique morphism from R(N) to TSA.

4 Free Construction of the Loose Semantics over Plain
Morphisms

Based on the algebraic notion of Petri nets [MM90] we use simple homomor-
phisms that are generated over the set of places. These morphisms map places



to places and transitions to transitions. Morphisms are the basic entity in cat-
egory theory; they can present the internal structure of objects and relate the
objects. So they are the basis for the structural properties a category may have
and can be used successfully to define various structuring techniques.

Definition 5 ((Plain) Morphisms). A plain morphism f : N1 → N2 is given
by f = (fP , fT ) with fP : P1 → P2 and fT : T1 → T2 so that pre2◦fT = f⊕

P ◦pre1

and post analogously.
Moreover, for the initial marking we have for all p ∈ P1:
m̂1(p) ≤ m̂2(fP (p)) for the natural function associated to a multiset.

Lemma 1 (Plain morphisms preserve firing). Plain morphisms f : N1 →
N2 preserve firing in the following sense:

m[t > m′ implies f⊕
P (m)[fT (t) > f⊕

P (m) for m, m′ ∈ P⊕
1 and t ∈ T1.

Then we define f̂P : [m̂1 >→ [m̂2 > with f̂P (m) = f⊕
P (m) ⊕ mR

2 where we have
m̂2 = f⊕

P (m̂1) ⊕ mR
2 .

Note, by induction over the length of the firing sequence we can show that f̂P

is well-defined and preserves firing as well: m[t > m′ with m ∈ [m̂1 > implies
f̂P (m)[fT (t) > f̂P (m′)

Theorem 1 (Forgetful Functor of Transition Systems with Alternative
Sequences over N). A plain morphism f : N1 → N2 induces the following
forgetful functor (if necessary subscripted with the corresponding net morphism)
V = Vf : TSA(N2) → TSA(N1). This functor V (TSA2) = TSA1 is defined
by TSA2 = (S2, E2, TS2, ŝ2, AS2, rep2, ref2) with rep2 : [m̂2 >→ S2 and ref2 :
[T2 > → E�

2 , where TSA1 = (S2, E2, TS2, ŝ2, AS2, rep1, ref1) and we have

– the following representation
rep1 := rep2 ◦ f̂P : [m̂1 >→ S2, and

– the following refinement
ref1 := ref2 ◦ fT : [T1 > → E�

2 .

A TSA-morphism h : TSA2 → TSA′
2 is mapped by V (h) = h.

Proof. TSA1 is a transition system over N1:

1. Representation: rep1 is well-defined.
2. Refinement: ref1 is well-defined.
3. Reachability of of initial state: ŝ2

∗−→ rep2(m̂2) = rep2(f̂P (m̂1)) = rep1(m̂1)
4. Existence of a path:

for any m[t > m′ with m ∈ m̂1 > we have f̂P (m)[fT (t) > f̂P (m′) and

hence there is the path rep2(f̂P (m))
ref2◦fT (t)−→ rep2(f̂P (m′)) that is the path

rep1(m)
ref1(t)−→ rep1(m′) .

Given TSA-morphism h : TSA2 → TSA′
2 then V P (h) : TSA1 → TSA′

1 with
V (h) = h is well-defined:



1. preservation of representation :
hs ◦ rep1 = hS ◦ rep2 ◦ f̂P = rep′2 ◦ f̂P = rep′1

2. preservation of transition refinement:
h�

E ◦ ref1 = h�
E ◦ ref2 ◦ fT = ref ′

2 ◦ fT = ref ′
1

See the diagrams below:

[m̂1 >

bfP

��
rep1

��

rep′
1

��

[m̂2 >

rep2

��

rep′
2

����
���

���

S2
hS

�� S′
2

[T1 >

fT

��
ref1

��

ref ′
1

��

[T2 >

ref2

��

ref ′
2

���
��

��
��

�

E�
2

h�
E

�� E′�
2 √

Theorem 2 (Free Functor of Transition Systems with Alternative Se-
quences over N). A plain net morphism f : N1 → N2 induces the follow-
ing free functor F = Ff : TSA(N1) → TSA(N2). This functor F (TSA1) =
TSA2 is defined by TSA1 = (S1, E1, TS1, ŝ1, AS1, rep1, ref1) and TSA2 =
(S2, E2, TS2, ŝ2, AS2, rep2, ref2) as given in the proof.
A TSA-morphism h : TSA1 → TSA′

1 is mapped by F (h) = h.

Proof. 1. First we give the construction for TSA2.

In Set we construct the pushout PO1
below and obtain S2, and hence rep2 :
[m̂2 >→ S2. We define ŝ2 = uS(ŝ1).

[m̂1 >

rep1

		��
��

��
��

�
bfP



��
��

�����

S1

uS
����

��
��

��
� (PO1) [m̂2 >

rep2
�����

���
���

�

S2

The construction of E2 is given by E2 = E1 
 [T2 > \ fT ([T1 >) in Set.
Then we define AS2 = AS1


{(w1, w2)|fT (t1) = fT (t2) for some w1 ∈ ref1(t1) and w2 ∈ ref1(t2)}.
Then we have E�

2 , and we define uE := [ ] ◦ incE : E1 → E�
2 and hence

u�
E : E�

1 → E�
2 . This is well-defined as E1 ⊆ E2 and AS1 ⊆ AS2.

We now define ref2 : [T2 > → E�
2 by

ref2(t) :=

{
[t] t /∈ fT ([T1 >)
u�

E ◦ ref1(t′) t = fT (t′) and t′ ∈ [T1 >
.

[T1 >

ref1

����
��

��
�� fT



��������

E1

[ ] ��

uE

��

incE1

��

E�
1

u�
E

����
��

��
��

(2) [T2 >

ref2

����
��

��
��

�

E2 = E1 
 [T2 > \ fT ([T1 >)
[ ] �� E�

2



The square (2) commutes due to the quotient construction, since we have
E�

2 = E∗
2 |ASEq

2
.

We define TS2 ⊆ S2×E2×S2 using the transition system TS1, all new firing
paths of N2 and then construct all alternatives event sequences inductively:
(a) If (s, e, s′) ∈ TS1

then (uS(s), e, uS(s)) ∈ TS2.
(b) If m[t> m′ in N2 and t /∈ ft([T1 >)

then (rep2(m), t, rep2(m′)) ∈ TS2.
(c) If m[t> m′ in N2, m /∈ f̂P (m̂1), t = fT (t1), and with some m1[t1 > m′

1
then for all w = e0....en ∈ ref2(t)
with rep1(m1)

e0−→ s1...sn
en−→ rep(m′

1) ∈ TS1

we have (rep2(m), e0, uS(s1)) ∈ TS2 and
(uS(sn), en, rep2(m′)) ∈ TS2.

So, we have TSA2 = (S2, E2, TS2, ŝ2, AS2, rep2, ref2).
It is obviously well-defined.

2. We have a free construction:
There is u : TSA1 → V ◦ F (TSA1).
Note that, V ◦ F (TSA1) = V (TSA2)

= (S2, E2, TS2, ŝ2, rep2 ◦ f̂P , ref2 ◦ fT ).
So we define u = (uS , uE) where uS and uE

are given in PO1 and (2) above.
u is well-defined as uS ◦ rep1 = rep2 ◦ f̂P

and u�
E ◦ ref1 = ref2 ◦ fT .

TSA1

g

��

u

��												

V ◦ F (TSA1)

V (g)��












V (TSA′
2)

Given g : TSA1 → V (TSA′
2) in TSA(N1) defined by g = (gS , gE) with gS :

S1 → S′
2 and gE : E1 → E′�

2 then we have to construct g : TSA2 → TSA′
2

in TSA(N2). We have gS induced by PO1.
And we obtain gE : E2 → E′�

2 due to the coproduct E2.

[m̂1 >

rep1

		��
��

��
��

�
bfP



���
��

���
�

S1

uS
����

��
��

��
�

gS

��

(PO1) [m̂2 >

rep2
�����

���
���

�

rep′
2

��

S2

gS

��

(3) (4)

S′
2

E1

incE1

���
��

��
��

�

gE

��

T2

incT2

����
��

��
��

ref ′
2

��

E2

gE

��
E′�

2

E2

gE

��

[ ] �� E�
2

g�
E����

��
��

��

E′�
2

g is well-defined in TSA(N2), as (4) commutes,
and we have g�E ◦ ref2 = g�E ◦ [ ] ◦ incT2 = gE ◦ incT2 = ref ′

2.
Now we prove that g = V (g) ◦ u:
We have gS = gS ◦ uS due to (3).
And we have g�E ◦ uE = g�E ◦ [ ] ◦ incE1 = gE ◦ incE1 = gE

√



Example 3 (Refining the Producer-Consumer).

In Fig. 3 we again have the
producer-consumer net PCN .
This net is refined by the mor-
phism f : PCN → PCN ′ to the
producer-consumer net PCN
where we can directly feed and
empty the buffer. The morphism
f maps the states and transi-
tions injectively. Now, we have
the categories TSA(PCN) and
TSA(PCN′) that are related
by the forgetful and the free
functor as given in the Theo-
rems 1 and 2. In Fig. 4 we il-
lustrate the two functors, that
form the adjunction F � V .
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Fig. 3. PCN and PCN ′�
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Fig. 4. Free and Forgetful Functor



We have the transition system R(PCN) in TSA(PCN), that is the reachability
graph of the net PCN . This transition system R(PCN) is mapped by the free
functor F : TSA(PCN) → TSA(PCN′) to the transition system F (R(PCN)).
This is isomorphic to the transition system R(PCN ′). F (R(SynPCN)) is con-
structed by adding the reachable markings and the new transitions in the net
N2. The forgetful functor V : TSA(PCN′) → TSA(PCN) maps the transition
system TSA4 to the transition system V (TSA4) and R(PCN ′) to V (R(PCN ′)
by keeping the transition system and redirecting the representation and the re-
finement functions.

5 Related work

In the course of the last 40 years there has been developed a lot of different
Petri net semantics: reachability or marking graph [Rei85,DR98], event struc-
tures [NPW81,CEL+94,NS98], trace languages [Maz89,HKT95,MR99], partial
orders semantics [BD90,Kin97], and others more. All these semantics have in
common that they relate a Petri net to one semantic object.
In this section we relate our loose semantics to the two closest Petri net seman-
tics, namely reachability graph and trace languages, in a provisional way. Since
most of the above semantics are related to each other in a significant way (see
[Roz92,NSW93]) the results from the discussion below can be adopted accord-
ingly.

Reachability Graph of Place/Transition Net Systems The reachability
graph of a place/transition net is given by the reachable markings and the firing
transitions in-between. Hence, a suitable definition of the reachability graph is
a transition systems with the empty alternative sequence of events. So, more
formally the reachability graph R(N) = ([m̂ >, T, TS, m̂, ∅) with TS ⊆ [m̂ >
×T × [m̂ > defined by TS = {(m, t, m′)|m[t > m′ for any m ∈ [m̂1 >} of a
place/transition net N is a TSA over N , where rep(m) = M and ref(t) = [t] =
{t}. Moreover, the reachability graph R(N) is initial in the category TSA(N)
for the proof see [Pad03]. This means, that every transition system over N is
TSA(N) can be considered a refinement of the reachability graph along a unique
morphism.

Trace Equivalences The relation to trace equivalences is the following.
Local trace equivalences [HKT95,MR99] denote the set of independent events
following a sequence of events. So in a sense the interleaving of independent
events are alternative sequences. But our approach states alternatives globally
(in Definition 1).
Let us denote with | |e : E∗ → N the family of functions, that counts the number
of times an event e ∈ E occurs in a sequence.
So given a transition system with alternative sequences, we can compute multi-
sets of independent events. A multiset m ∈ E⊕ consists of independent events,



if for any linearization v ∈ Lin(m) = {w ∈ E∗|m|e = |w|e for all e ∈ E} we have
Lin(m) ⊆ [v].
The other way round we can consider for the set of alternatives AS the set
of linearization Lin(m) of each multiset m ∈ M , the set M of multisets of
independent events i.e. AS =

⋃
m∈M Lin(m) × Lin(m).

6 Discussion of the Impacts of a Loose Semantics

Parameterized Petri Nets
Based on the ideas of pa-
rameterization for data types,
Petri nets can be parameter-
ized by distinguishing a subnet
as the parameter. Analogously
to algebraic specifications, we
map the formal parameter net
PAR by an inclusion to the
target net TAR. In Fig. 5 we
have the formal parameter net,
that denotes the transition s
can be replaced by an actual
parameter net.
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Fig. 5. Actualization
The semantics of a parameterized Petri net (PAR, TAR) maps each transition
system over the PAR to the corresponding transition net over TAR. The se-
mantics is given by the free functor F : TSA(PAR) → TSA(TAR). In Fig. 5
the net is refined by the actual parameter, where the transition s is substituted
by the subnet containing the transitions s1, s2.

Constructor Semantics for Petri Net Modules Most attempts to Petri net
modules (among others [CP00,DJL01,JL02]) do not provide Petri nets as inter-
faces. For a not so recent survey see [BC92]. There are either places or transitions,
but no full Petri nets in the interface. When modeling software components these
notions of Petri net modules are not powerful enough, since they do not allow
specifying behavior in the interfaces. Our approach to Petri net modules [Pad02]
has been achieved by a transfer from the concept of algebraic module specifica-
tions presented in [EM90]. The main motivation for our approach to Petri net
modules is the modeling of component-based systems. The component concept
as suggested in [MW98,Web99] for Continuous Software Engineering (CSE) is
the underlying concept for our approach.
A Petri net module MOD = (IMP, EXP, BOD) con-
sists of three Petri nets, namely the import net IMP , the
export net EXP and the body net BOD. Two Petri net
morphisms m : IMP → BOD and r : EXP → BOD
connect the interfaces to the body. The import interface

EXP

r

��
IMP

m �� BOD



specifies resources which are used in the construction of the body, while the
export interface specifies the functionality available from the Petri net module
to the outside world. The body implements the functionality specified in the
export interface using the imported functionality. The import morphism m is
a plain morphism and describes how and where the resources in the import
interface are used in the body. The export morphism r is a substitution morphism
and describes how the functionality provided by the export interface is realized
in the body. The class of substitution morphism is as generalization of plain
morphisms, where a transition is replaced by a subnet. Nevertheless, the forgetful
functor constructions can be given for substitution morphisms as well (explicitly
in [Pad03]).
In [PE03] a transformation-based semantics for Petri net modules has been in-
troduced based on the transformation-based approach to generic components
[EOB+02]. There the semantics is defined based on all transformations the im-
port may undergo. The advantage of our approach is that it is constructive: The
semantics of a module is based on the loose semantics presented in this paper.
It gives for each possible transition system over the import net the according
transition system over the export net.

So we obtain a functor map-
ping the category of transition
systems over the import net
TSA(IMP) to the category of
transition systems over the ex-
port net TSA(EXP).

TSA(EXP)

TSA(IMP)
Fm ��

Sem

��












TSA(BOD)

Vr

��

This semantic functor naturally depends on the morphisms that relate the in-
terfaces to the body of the module. We define the functor Sem : TSA(IMP) →
TSA(EXP) by Sem = Vr ◦ Fm. Vr and Fm are constructed using the mor-
phisms r and m. Now, we have the constructive semantics of a Petri net modules
analogously to [EM90]. Each model of the import net is mapped to the corre-
sponding model of the export. This module semantics takes some transition
system over the import net and then constructs freely along the plain morphism
m : IMP → BOD, yielding a transition system over the body net BOD. Then
it forgets along ’ the forgetful functor Vr the internal details of the body and
only represents the part specified by the export net EXP . Based on this notions
we then obtain directly: internal and model correctness, compositional semantics
with respect to module operations as union, composition (as given for Petri net
modules [Pad02]) or general module operations, based on schemes.
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