
T F S C



H E

Technical University of Berlin, Department of Computer Science
Franklinstraße 28/29, D-10587 Berlin, Germany

ehrig@cs.tu-berlin.de

A G  T: R

 D R

Hartmut Ehrig
Institut für Softwaretechnik und Theoretische Informatik

Technische Universität Berlin, Germany
ehrig@cs.tu-berlin.de

Abstract

Attributed graphs and typing play an important role in theory and appli-
cations of graph grammars, graph transformation systems, visual languages
and metamodelling. Attributed graphs can be represented basically as pairs
of graphs and algebras on one hand and as algebras of suitable algebraic sig-
natures on the other hand. In this note the different notions are compared on
the syntactical and on the semantical level. Two different kinds of algebraic
signatures for attributed algebras are discussed leading to different results
on both levels. In the case of attributed graph signatures the corresponding
category of algebras is isomorphic to the category of typed attributed graphs,
while we have only a non-surjective functor in the more general case of at-
tributed algebras for graph structure signatures. An overview of all results is
given in the last section of this paper.

http://www.cs.tu-berlin.de�
ehrig@cs.tu-berlin.de�
ehrig@cs.tu-berlin.de�

1 Introduction

In this note we discuss different versions of attributed graphs and typing in the
area of graph transformation systems and discuss their relationship. Perhaps the
most intuitive notion is to define attributed graphs as pairsAG = (G,A) of a graph
G and an algebraA of a given data type signatureDS IG, where specific domains
of A, the attribute values, are considered as part of the vertices of the graphG (see
[4]). Together with suitable attributed graph morphisms, consisting of pullback-
compatible pairs of graph and algebra homomorphisms, we obtain the category
AGraphs of attributed graphs. Given in addition an attributed type graphATG =

(TG,Z), whereZ is the finalDS IG− algebra, we obtain as comma category the
categoryAGraphsATG of ATG-typed attributed graphs of graph transformation
(see [2], [6]).

From a theoretical point of view, especially in view of high-level replacement
systems, [1],we would like to representAGraphsATG as a category of algebras
for a given algebraic signature. The most obvious choice for this purpose seem
to be attributed graph structure signaturesAS S IG= (S IG,DS IG): They consist
of a graph structure signatureS IG, an algebraic signature with unary operation
symbols only, and a data type signatureDS IG, where the sorts ofS IGandDS IG
overlap in attribute value sorts. In fact, there is an injective functor from the cate-
gory of AS S IG−algebrasto the categoryAGraphsATG, which - however - is not
an isomorphism of categories in general. This functor is based on a representation
of graph structure signatures as graphs, where all sorts of the signature are consid-
ered as vertices of the graph and the unary operations as edges. A more compact
representation as graph can be obtained if the sorts of the graph structure signature
are divided into vertex and edge sorts. In this case the vertex sorts are represented
as vertices and the edge sorts as edges of the graph, where source and target of
the edges are defined by the signature of the operation symbols. This special kind
of graph structure signature is called graph signature. Taking graph signatures
GS IG instead of graph structure signaturesS IG and attributed graph signatures
AS IG= (GS IG,DS IG) instead of attributed graph structure signatures has three
advantages:

1. The representation of graph signatures as graphs is much more intuitive and
compact than that of graph structure signatures, where some of the sorts of
the signature have to be interpreted as attribute carrier nodes in the graph. In
a similar way the representation of attributed graph signatures as attributed
graphs is much more intuitive and compact than that of the more general
attributed graph structure signatures.

2. Based on the more compact representation discussed above, there is an iso-
morphism of the categoryASIG-Alg of AS IG−algebraswith the category

AGraphsATG, whereATG is the compact representation of the attributed
graph signatureAS IG.

3. The categoryASIG-AlgT A of typedAS IG− algebras, where the type al-
gebraT A is an arbitraryAS IG− algebra, is isomorphic to the category
AGraphsT AG of typed attributed graphs, where the attributed type graph
T AG is obtained fromT A according to the isomorphism discussed above.
This means thatT AG is typed overATG, such that the attributed graphs in
AGraphsT AG are double typed.

In Sections 2 and 3 of this note we present attributed graphs and attributed
graph signatures as discussed above. In Section 4 we show the bijective corre-
spondence between attributed graph signatures and attributed type graphsATG=

(TG,Z) with final DS IG− algebra Z. In Section 5 we show the isomorphism
ASIG-Alg

∼−→ AGraphsATG and the isomorphismASIG-AlgT A
∼−→ AGraphsT AG

together with some examples in Section 6. In Section 7 we briefly sketch the corre-
sponding results for general graph structure signatures instead of the more specific
graph signatures. It is important to note that we obtain an isomorphic represen-
tation of typed attributed graphs in Sections 5 and 6, but only a non-surjective
functorial representation in Section 7. In Section 8 we give an overview of all the
results. For all of the results we have proof sketches, but only the main construc-
tions are presented together with examples in this note.

Acknowledgements

We are grateful to the GRA-GRA group at TU Berlin and to Reiko Heckel for
fruitful discussions concerning this note and to Mara Oswald and Claudia Ermel
for careful typing and figure drawing.

2 Attributed Graphs and Typing

In this section we follow the approach in [4] to introduce attributed graphsAG =

(G,A) as pairs of a graphG and an algebraA with data type signatureDS IG in
the sense of algebraic signatures and data types (see [3]). Some of the domains
of A serve as attribute values. For this reason they are considered as part of the
vertices of the graphG such that the attribute assignment can be given by edges
in G. Attributed graph morphisms are pairs of graph morphisms and algebra ho-
momorphisms with a suitable compatibility, called pullback-compatibility, which
is stronger than the compatibility required in [4]. For typing we consider specific
attributed graphs as attributed type graphsATG= (TG,Z), whereZ is required to
be the finalDS IG− algebra. A typed attributed graph overATG consists of an

attributed graphAG and a type morphismt : AG→ ATG. Note that the data part
tD : A→ Z is uniquely determinated by the fact thatZ is a final algebra.

Altogether we obtain two important categories, the categoryAGraphs of at-
tributed graphs and the categoryAGraphsATG of ATG-typed attributed graphs.

Definition 1

Given a data type signatureDS IG = (SD,OPD) with attribute value sortsS′ ⊆
SD, an attributed graphAG = (G,A) consists of a

graphG = (GV,GE, sourceG, targetG) and an

algebraA which is aDS IG-algebra with
·⋃

s∈S′ As ⊆ GV (attribute values are ver-
tices)

An attributed graph morphismf : AG1 −→ AG2 from AG1 = (G1,A1) to
AG2 = (G2,A2) is a pair f = (fG, fA),

fG : G1 −→ G2 graph morphism

fA : A1 −→ A2 algebra homomorphismwith PB-compatibility, i.e. (1) is pull-
back in the categorySetsfor all s ∈ S′.

1,V 2,VG,V

2,s

GG

(1)

A,sf

f

A1,sA

This leads to the categoryAGraphs of attributed graphs where attribute graphs
are the objects and the morphisms are given by attributed graph morphisms.

An attributed type graphATG = (TG,Z) is an attributed graph, whereZ is a
final DS IG-algebra withZs = {s} for all s ∈ SD.

This leads to the categoryAGraphsATG of ATG-typed attributed graphs, de-
fined as comma category overAGraphs.

This means that the objects ofAGraphsATG are given by pairs(AG, t : AG→
ATG) of attributed graphsAG with type morphismt : AG → ATG, and the
morphisms inAGraphsATG are given byf : (AG1, t1) → (AG2, t2), where f :
AG1→ AG2 is an attributed graph morphism witht1 = t2 ◦ f .

Examples will be given in sections 4 to 7.

Remarks

1. For attributed graphsAG = (G,A) only attribute valuesAs(s ∈ S′) are
required to be vertices inG. Edges inG with sources in data domainsAs

for s ∈ S′ are allowed for graphs without typing, but can be prohibited for
ATG-typed attributed graphs if ATG has no edges with source inS′.

2. For attributed graph morphisms the PB-compatibility is stronger than in-
clusions fA,s ⊆ fGV for s ∈ S′. It makes sure that we have in addition
f −1
GV

(A2,s) = A1,s which is essential for most of the results.

3. For attributed type graphsATG = (TG,Z) the algebraZ is final, but we
will also consider arbitrary attributed graphs as type graphs, calledT AG =

(TG,A) in this case, s.t.AGraphsT AG = Category of TAG-typed attributed
graphs.

3 Attributed Graph Signatures

In this section we follow the idea of [5] to consider attributed graphs as alge-
bras of a specific algebraic signature. In [5] graph structure signatures have been
considered for the graph part. This idea will be discussed in Section 7. In this
section we consider a specific subclass of graph structure signatures, called graph
signatures, which allow a very compact representation as graphs (see section 4).
Graph signaturesGS IGcan be extended by data type signaturesDS IG leading
to attributed graph signaturesAS IG = (GS IG,DS IG). This approach allows to
consider attributed graphs asAS IG−algebras, where the GSIG-part corresponds
to the graph and the DSIG-part to the attribute algebra. An overlap of sorts in
GS IGandDS IG leads to a connection between both parts which represents the
attribute functions. The correspondence between attributed graph signatures and
attributed type graphs will be discussed in Section 4.

Definition 2

A graph signatureGS IG= (SG,OPG) is an algebraic signature with

SG = SV

·∪ SE (distinction of vertex and edge sorts),

OPG =
·∪e∈SE OPe OPe = {srce, tare}, e ∈ SE with

srce : e→ v1(e) and tare : e→ v2(e) for v1(e), v2(e) ∈ SV.

An attributed graph signatureAS IG= (GS IG,DS IG) consists of

GS IG= (SG,OPG) graph signature,
DS IG= (SD,OPD) data type signature with value sortsS′ ⊆ SD andS′ ⊆ SV

(value sorts ofDS IGare vertex sorts ofGS IG),
SA = SG ∪ SD (sorts ofAS IGdefined by union),
OPA = OPG ∪OPD (opns ofAS IGdefined by union whereOPG ∩OPD = ∅).

The class of all attributed graph signaturesAS IG= (GS IG,DS IG) with fixed
data type signatureDS IG is denoted byAGraphSig.

Remarks

1. A graph signature is a special kind of graph structure signatureS IG, where
all operation symbols are unary. In a graph signature vertex sorts correspond
to vertices and edge sorts to edges of a graph, while for graph structure
signatures all sorts correspond to vertices of a graph.

2. Attributed graph signatures are a special case of LKW-signatures consid-
ered by Löwe, Korff and Wagner [5].

3. In order to avoid edges in the graph part with source in a value sort we can
requirev1(e) ∈ SV − S′ for srce : e→ v1(e).

Example 1

An example of an attributed graph signature is given byAS IG= (GS IG,DS IG)
below, where the sort nat is shared betweenGS IGandDS IG.

GS IG= vertex sorts: v1, v2,nat
edge sorts: e1,e2,e0

opns: srce1 : e1→ v1

tare1 : e1→ v2

srce2 : e2→ v2

tare2 : e2→ v1

srce0 : e0→ v2

tare0 : e0→ nat
DS IG= nat =

value sorts: nat
opns: ZERO:→ nat

S UC : nat→ nat
ADD : nat nat→ nat

Two different graph representations ofGS IG are considered as type graphs
TG in example 2 and asTG1 in example 4.

4 Bijective Correspondence between Attributed
Graph Signatures& Attributed Type Graphs

In this section we show the close correspondence between attributed graph signa-
tures and attributed type graphs as introduced in the previous sections. In fact we
have a bijective correspondence.

Lemma 1

Let AGraphSig be the class of attributed graph signatures,andATGGraphs the
class of attributed type graphs, then we have bijective correspondence
AGraphSig

∼−→ ATGGraphs.

Construction

In the following we give two transformationsAGra and AGra−1 between the
classesAGraphSig andATGGraphs which are inverse to each other, where the
data type signatureDS IG is given explicitly inAS IG = (GS IG,DS IG) and im-
plicitly in ATG= (TG,Z) becauseZ is the finalDS IG− algebra.

AGra : AGraphSig
∼−→ ATGGraphs

AS IG= (GS IG,DS IG) 7→ AGra(AS IG) = (TG,Z) with
with S′ ⊆ SV TGV = SV,TGE = SE

SG = SV

·∪ SE sourceTG(e) = v1(e) for srce : e→ v1(e)
targetTG(e) = v2(e) for tare : e→ v2(e)
Z final DSIG-algebra with
S′ ⊆ SV = TGV

AGra−1 : ATGGraphs
∼−→ AGraphSig

ATG= (TG,Z) 7→ AS IG= (GS IG,DS IG)with

with S′ ⊆ SV SG = SV

·∪ SE,SV = TGV,SE = TGE

srce : e→ v1(e) for sourceTG(e) = v1(e)
tare : e→ v2(e) for targetTG(e) = v2(e)

Remark

This bijection is not an isomorphism of categories, unless the signature morphisms
for AGraphSig are restricted to preserve vertex sortsSV and and edge sortsSE

separately.

Example 2

The attributed type graphAGra(AS IG) with AS IG from previous example 1 is
given byAGra(AS IG) = (TG,Z) with

v1

e1

¹¹
v2

e2

VV

e0

²²

nat
LL

ADD

vv

S UC

LL

nat ZERO

ddIIIIIIIII

TG Z

5 Isomorphism between Categories of Attributed
Graph Algebras

Based on the bijective correspondence on the syntactical level in the previous
section we show now a bijective correspondence on the semantical level. This is a
bijection between the class ofAS IG− algebrasand the class of attributed graphs
typed overATG, whereAS IG andATG correspond to each other according to
Lemma 1.

Theorem 1

Let ASIG-Alg be the category ofAS IG− algebrasfor an attributed graph signa-
tureAS IG, andAGraphsATG category of ATG-typed attributed graphs with
ATG= AGra(AS IG) (see Lemma 1).
Then we have an isomorphismTAGra : ASIG-Alg

∼−→ AGraphsATG.

Construction

In the following we present the construction for objects of the corresponding cat-
egories. But it can also be shown for morphisms leading to an isomorphism be-
tween the two categories.

TAGra: ASIG-Alg
∼−→ AGraphsATG

A 7→ TAGra(A) = (AG, t : AG→ ATG)
with AS IG= (GS IG,DS IG) with AG = (G,D)

GS IG= (SG,OPG) GV =
·∪s∈SV As

SG = SV

·∪ SE tV(a) = s for a ∈ AS, s ∈ SV

OPG =
·∪ OPe with t−1

v {s} = As

OPe = {srce, tare} GE =
·∪e∈SE Ae

tE(a) = e for a ∈ AE,e ∈ SE

with t−1
e {e} = Ae

sourceG(a) = srcA
e(a) for a ∈ Ae

targetG(a) = tarA
e (a)

D = VDS IG(A)
tD(A) = s for a ∈ As, s ∈ SD

T−1
AGra : AGraphsATG

∼−→ ASIG-Alg
(AG, t : AG→ ATG) 7→ A with
AG = (G,D) As = t−1

V {s} ⊆ GV for s ∈ SV

ATG= (TG,Z) Ae = t−1
E {e} ⊆ GE for e ∈ SE

tv : Gv→ TGv = Sv srce
A(a) = sourceG(a) for e ∈ SE

with t−1
V {s} = Ds for s ∈ SD As = t−1

V {s} = Ds for s ∈ SD

An example for the transformationTAGra : ASIG-Alg → AGraphsATG is
given in Example 3 below, whereA is anAS IG− algebraandTAGra(A) = (AG, t :
AG→ ATG) an ATG-typed attributed graph witht = Tt ◦ t′A.

6 Isomorphism between Categories of Typed Attri-
buted Graph Algebras& Typed Attributed Graphs

In this section we extend attributed graph algebras considered asAS IG−algebras
in the previous section by typing. This means that we extend categoryASIG-Alg
to the comma categoryASIG-AlgT A with AS IG−algebra T Aas type algebra. The
objects inASIG-AlgT A are pairs(A, tA : A→ T A) with AS IG−algebra Aand type
morphismtA : A→ T A, called typed attributed graph algebras. Based on theorem
1 in the previous section we can show now that typed attributed graph algebras are
in bijective correspondence with doubly typed attributed graphs(AG, t′A : AG→
T AG). In fact, the type graphT AG corresponding to the type algebraT A by
theorem 1 is itself typed over the attributed type graphATG corresponding to
AS IGaccording to lemma 1.

Theorem 2

Let ASIG-AlgT A be the category of typed attributed graph algebras for the at-
tributed graph signatureAS IGandAS IG− algebra T Aas type algebra, and let
AGraphsT AG be the category of TAG-typed attributed graphs with

T AG= TAGra(T A) (see theorem 1).

Then we have an isomorphismTTAGra : ASIG-AlgT A
∼−→ AGraphsT AG.

Remarks

1. T AG is typed overATGby Tt : T AG→ ATGwhereATG= AGra(AS IG).
Hence attributed graphs inAGraphsT AG are double typed, where typing
overT AG is more restrictive then typing overATG. Typing overT AG al-
lows restrictions concerning specific attribute values and not only concern-
ing attribute value sorts.

2. More precisely we haveTAGra(T A) = (T AG,Tt : T AG→ ATG).

Construction

Similar to the previous section we present the constructions only for the objects
of the corresponding categories using the consturctionsTAGra andT−1

AGra from the-
orem 1. The extended constuctions are denoted byTTAGra andTT−1

AGra.

TTAGra : ASIG-AlgT A
∼ // AGraphsT AG

(A, tA : A→ T A) Â // (AG, t′A : AG→ TAG) with

A
f //

tA ÃÃA
AA

AA
AA

A A′ Â //

t′A~~||
||

||
||

AG
f ′ //

t′A ""FF
FF

FF
FF

F AG′

t′
A′wwpppppppppppp

T A T AG

Tt
²²

1st type level

ATG 2nd type level

TT−1
AGra : AGraphsT AG

∼ // ASIG-AlgT A

(AG, t′A : AG→ T AG) Â // (A, tA : A→ TA) with

A = T−1
AGra(AG,AG

t′A−→ T AG
Tt−→ ATG),

tA = T−1
AGra(t

′
A) : A→ T A

Example 3

In the following we present an example for the transformationTTAGra applied
to anAS IG− algebra Atyped over anAS IG− algebra T A, which is given by
(A, tA : A → T A). The resultTTAGra(A, tA) is an attributed algebra typed over
T AG= TAGra(T A), which is given by(AG, t′A : AG→ T AG) with T AGtyped over
ATGby Tt : T AG→ ATG. Let AS IG− algebras A,T Aand typingtA : A→ T A
be given by the following diagram

t
1Av A

2 0 nat

a2
b2

c1
d1

a1

Ae

b3

c
3c4

1
0

TAe1

TAe2

TAv1

t t tAv

1
1 2

SUC ZERO

.
. .

(mod2)

NN

a1

c1

c
c5

Avb

c2
2d

Ae1

Ae2

Ae
0

ADDN

S
0

c3
Av

(mod2)

A

TA

t
A

a2
b2

2

Ae
0

ADD

0

SUC ZERO

(mod2)

The TAG-typed graphTTAGra = (AG, t′A : AG → T AG) with AG = (G,D),
T AG= (TTG,TT A) andATG= (TG,Z) is given by the following diagram

AG

At’

TAG

Tt

a2
c1 c3

a1 b

TTA

1 c

d1

b

d

b
b2

2

2

1

1
2 c3

TTG

2

TG Z

v1 2 natv
e

e1

e2

0
ATG

G D=NAT

ZERO

(mod2)

b3

c

5c

2
c4

1
0

ADD

SUC ZERO

(mod2)

(mod2)

1
0

a

SUC ZERO

.
. .

NN

nat

SUC

ADD

S
.

.
. N

a

a

S

ADDN

7 Transformations Based on Attributed Graph
Structure Signatures

In section 3 we have introduced graph signatures as a special case of graph struc-
ture signature, because they allow a very compact representation as graphs. Ac-
tually vertex sorts have been interpreted as vertices and edge sorts as edges of
the corresponding graphs. In the more general case of graph structure signatures,
which are studied in this section, all sorts of the signature are interpreted as ver-
tices and all unary operation symbols as edges. This correspondence is stated in
lemma 2 and leads to a less compact representation as graph as shown in example
4. In fact, we introduce in definition 3 graph structure signatures and attributed
graph structure signatures, and lemma 2 and example 4 are dealing with the at-
tributed case. In the attributed case graph structure signatures allow attribution of
vertices and edges, while graph signatures allow only attribution of vertices, but

not of edges. This is certainly an advantage. The disadvantage compared with
attributed graph signatures is that the corresponding transformations from alge-
bras to attributed graphs in analogy to theorem 1 and 2 lead to functors in theorem
3 and 4, which are no longer bijective. This means that they do not define iso-
morphisms of the corresponding categories, but only non surjective functors (see
counterexample 6). In contrast to the previous sections we only state the results
and show the changes in examples 4 and 5 compared with examples 2 and 3 based
on the same signature in example 1.

A graph structure signatureS IG = (S,OP) is an algebraic signature, where
all operation symbols inOP are unary. An attributed graph structure signature
AS S IG= (S IG,DS IG) consists of a graph structure signatureS IG and a data
type signatureDS IG with attributed value sortsS′ ⊆ S. Similar to lemma 1 in
section 4 we have now

Lemma 2

Let AGraphStructSig be the category of attributed graph structure signatures and
ATGGraphs the category of attributed type graphs (with identity in the algebra
part). Then we have isomorphismASGra: AGraphStructSig

∼−→ ATGGraphs.
According to this isomorphism we obtain from the exampleAS IG in section

3, considered now as attributed graph structure signature, the following attributed
type graph(TG,Z), which is certainly more complex than the type graph(TG,Z)
from example 2.

Example 4

ASGra(AS IG) with AS IGfrom Example 1 is given by
ASGra(AS IG) = (TG1,Z) = ATG1.

1 2 e0 nat

sre1

sre22tar

0 0tarsre
tar1

ATG 1

1 TG Z

v nat

SUC

ADD

ZERO

e1

e2

v

Similar to Theorem 1 we obtain now a functorTASGra from categoryASSIG-Alg
of ASSIG-algebras (for a given attributed graph structure signatureASSIG) to
the categoryAGraphsATG, whereATG is given now byATG = ASGra(AS S IG)
according to lemma 2.

Theorem 3

TASGra : ASSIG-Alg → AGraphsATG is functor based onASGra in lemma 2
with ATG= ASGra(AS S IG).

In contrast to Theorem 1 this functor is in general not surjectiveand hence
no isomorphismas shown in Example 5.

Example 5

Given the ASSIG-algebraA as shown in Example 3 theATG1-typed graph
TASGra(A) = (AG1, t : AG1→ ATG1) with t = (tG, tA) and
tG(si) = srci , tG(ti) = tari for i = 0,1,2 is given by

2 c3 t0
a1

1c

d
1

t1

t
s

a

S

SUC ZERO

.
. .

NN

N

N

S
.
.

. N

1

2

s

s0

AG1

t
tG

tA

nat

SUC

ADD

ZERO

2

s

1
b1

1

c
2

d2

b2t

t
2

2

s

ADD

nat

sre1

sre22tar

0 0tarsre
tar1

ATG 1 0

e1

e2

v v1 2 e

Counterexample 6

We modify Example 5 in order to show that the functorTASGra is not surjective
in general. Consider theATG1-typed graph(AG′1, t

′), which isAG1 together with
an additional edge formc2 to a2 mapped tosrc2 in ATG1 by t′G. According to the
construction ofTASGraAG′1 would correspond to a modificationA′ of the ASSIG-
algebraA in example 3, wherec2 is mapped bysrc2A to a2. But c2 is already
mapped bysrc2A to b2, s.t. src2A is no longer a function andA′ no longer an
ASSIG-algebra. In fact,A′ would become a relational ASSIG-algebra and we
may obtain an isomorphism in Thm 3 for relational ASSIG-algebras. Finally we
obtain similar to Thm 2 a functorTTASGra from the categoryASSIG-AlgT A of
typed ASSIG-algebras (for a given ASSIG-algebraT A as type algebra) to the
categoryAGraphsT AG, whereT AG= TASGra(T A) according to Theorem 3.

Theorem 4

TTASGra : ASSIG-AlgT A→ AGraphsT AG is a functor based onTASGra in Thm 3
with T AG= TASGra(T A).

Remarks

1. More precisely we haveTASGra(T A) = (T AG,Tt : T AG→ ATG).

2. Similar toTASGra in theorem 3 also the functorTTASGra in the typed case is
non surjective in general.

8 Overview of Results

In this section we summarize the transformations on the syntactical level (see
lemma 1 and 2) and those on the semantical level (theorems 1-4). It is important
to note that the transformations on the syntactical level define bijections between
AGraphSig andATGGraphs by lemma 1 and betweenAGraphStructSig and
ATGGraphs by lemma 2 althoughAGraphSig is a proper subclass of category
AGraphStructSig. This implies that the corresponding diagrams on the semanti-
cal level do not commute in general.

Syntactical Transformations (Lemma 1+2)

Summarizing lemma 1 and 2 we obtain the following non commutative diagram:

AGraphSig Â Ä //

∼
AGra ((QQQQQQQQQQQQ

,

AGraphStructSig
∼
ASGrauukkkkkkkkkkkkkk

ATGGraphs

Semantical Transformations (Thms 1-4)

Summarizing theorems 1 to 4 we obtain the following digram, where it is im-
portant to distinguishATG1 = AGra(AS IG) from ATG2 = ASGra(AS S IG) and
similarly T AG1 = TAGra(T A) from T AG2 = TASGra(T A).

ASIG-AlgT A
Â Ä //

∼
TT AGra ((QQQQQQQQQQQQ

V

²²

ASSIG-AlgT A

TTASGravvmmmmmmmmmmmmm

V

²²

AGraphsT AG1
,

(1)
=

,

,V
²²

AGraphsT AG2

V
²²

(2)
=

AGraphsATG1

,

, AGraphsATG2

ASIG-Alg

∼
TAGra

66mmmmmmmmmmmm
Â Ä // ASSIG-Alg

TASGra

hhQQQQQQQQQQQQQ

Remark

V denotes different kinds of forgetful functors s.t. diagrams (1) and (2) commute,
but all the other ones do not commute except of the outer diagram.

References

[1] H. Ehrig, A. Habel, H.-J. Kreowski, and F. Parisi-Presicce. 1991. Parallelism and
concurrency in high-level replacement systems.Math. Struct. in Comp. Science,
Vol. 1, pp.:361–404.

[2] H. Ehrig. 1979. Introduction to the Algebraic Theory of Graph Grammars (A Sur-
vey). InGraph Grammars and their Application to Computer Science and Biology,
Springer LNCS 73, pp.:1–69.

[3] H. Ehrig and B. Mahr. 1985.Fundamentals of Algebraic Specification 1: Equations
and Initial Semantics, volume 6 ofEATCS Monographs on Theoretical Computer
Science. Springer Verlag, Berlin.

[4] R. Heckel, J. Küster, and G. Taentzer. 2002. Towards Automatic Translation of UML
Models into Semantic Domains . In H.-J. Kreowski, editor,Proc. of APPLIGRAPH
Workshop on Applied Graph Transformation (AGT 2002), pp.: 11 – 22.

[5] M. Löwe, M. Korff, and A. Wagner. 1993. An Algebraic Framework for the Trans-
formation of Attributed Graphs. In M.R. Sleep, M.J. Plasmeijer, and M.C. van Eeke-
len, editors,Term Graph Rewriting: Theory and Practice, chapter 14, John Wiley &
Sons Ltd, pp.: 185–199.

[6] G. Rozenberg, editor. 1997.Handbook of Graph Grammars and Computing by
Graph Transformations, Volume 1: Foundations. World Scientific.

