
High-Level Replacement Systems for
Software Components

Julia Padberg

Bericht–Nr. 2005-07

ISSN-Nummer: 1436-9915

High-Level Replacement Systems for Software

Components

Julia Padberg

Technische Universität Berlin
Fakultät IV – Informatik und Elektrotechnik
Franklinstr. 28/29
D-10587 Berlin

padberg@cs.tu-berlin.de

11th September 2005

Contents

1 Introduction 2

2 Examples of Rule-Based Refinement for Components 4
2.1 Automata . 4
2.2 Petri Nets . 10

3 Transformations of Components 15
3.1 The Transformation Framework . 15
3.2 Rules, Transformations and Hierarchical Composition 20

4 Transformations of Automata Components 33
4.1 Automata Components . 33
4.2 Transformations for Automata Components 35

5 Transformations of Petri Net Modules 39
5.1 Review of Petri Net Modules . 39
5.2 Transformation of Petri Net Modules 40

6 Conclusion 44

A Review of VK Squares and Weak AHLR Categories 49

B Technical Background 50

C Additional Diagrams 52

1 Introduction

Changing environments - commercial, technical or social - demand software systems
that can be adapted to those changes with reasonable effort. Component-based sys-
tems have been proposed as an adequate support for that task. Today there is no
doubt on the importance of component-based systems. There are various specifica-
tion for the description of component-based software architectures. In [28] a com-
ponent concept for continuous software engineering is introduced that represents
the informal basis of the generic approach adopted in this paper. Component-based
software engineering needs to be backed by thorough formal concepts and model-
ing techniques, so that the correctness and consistency of the component and the
component-based system increase. Formal specification of the component interface
and the component specification allow the precise modeling and the verification of
required functionality. Moreover, the composition of components can be given for-
mally and correctness and consistency can be ensured even in the composed system.
In our approach the formal description is the basis to make the conditions under
which a component can be changed or exchanged explicitly. The compatibility of
component transformation with component composition is an key issue of compo-
nent transformation as it represents the core question of changing a component
in some given context. The second main results concerns the conditions for the
most complex case: transforming both components and their interfaces in different
ways and keeping the composition of these components via their interfaces intact.
This result is given by the Compatibility Theorem stating that the result of first
transforming the two components and the composing them is the same (up to re-
naming) as composing the two components first and applying then the composed
rule. Transformations of components arise whenever a component-based system
is changed and new components are introduced, components are replaced by other
ones, components are changed, or components are deleted. Here we present a formal
frame for the description of these transformations.
As mentioned above the generic component framework including transformation
can be applied to various formal and semi-formal specification techniques In this
paper we concentrate on the new instantiation to automata. We use a very simple
categorical notion of deterministic input automata. Additionally we show that the
extension of the generic framework to transformations also holds for Petri nets.
In this report we concentrate on two formal specification techniques, automata and
Petri nets. So we first give a cursory glance on the components concepts that use
these.

Automata The use of automata for the description of components and/or their
interfaces is well established. In [9] the interfaces are modelled using input/output
automata. The parallel composition of the interfaces is given and criteria for the
compatibility are presented. but this approach merely concerns the interfaces. In
[1] input/output automata are used as well. There are three abstraction levels, the
structural description of the architecture, the modeling of the component behavior
and a data type description of the component. but the the component is monolithic,
consiting only of an interface. Parameterized contracts [29, 41] are used for the ad-
equate component composition and architecture evaluation in practice. They make
use of a component definition that is the motivation for the definition of automata
components below. Provides and requires interfaces a given using deterministic au-
tomata, and they are related – making parameterization of contracts possible – by
so called service effect automata (see [42]). these service effect automata represent
the componet specification and allows the connection of the interfaces. The provides
interface cyyresponds to the export interface, the requires interface to the import
interface and the service effect automata correspond to the body specification.

2

Petri Nets In the area of Petri nets various structuring concepts have been pro-
posed during the last 40 years, some of these are even called modules or modular
approach. There are hierarchical concepts (e.g. [24, 6, 23, 22]) as well as a variety
concepts for connector mechanisms as communication, coordination or cooperation
(e.g. [8, 43, 11, 10]). In other approaches places and transitions of modules are
merged by well-defined operations (e.g. [26, 3, 2, 5]). Most attempts to Petri net
modules (among others [7, 12, 25]) do not provide Petri nets as interfaces. For a
not so recent survey see [4]. There are either places or transitions, but no full Petri
nets in the interface. When modeling software components these notions of Petri
net modules are not powerful enough, since they do not allow specifying behavior
in the interfaces.
The transformation-based component framework for generic components has been
first presented at FASE 2002 in [17]. The main concepts are a self-contained se-
mantics and composition of components, based on a generic transformation concept.
Here we have presented a categorical formalization where we use pushouts to char-
acterize the main construction. We achieve the desired properties as proposed in
[17] using properties of the pushout construction. There have been quite different
formal and semi-formal specification techniques used within in this frame work,
process algebras, Petri nets and UML. The idea of transferring the principles of
algebraic graph transformation has been successfull. There are various specification
techniques, where via high-level replacement systems the double-pushout transfor-
mations have been applied for different purposes starting with different types of
Graphs, structures and place/transition nets in [15]. Transformations of algebraic
specification have been given in [14], and to high-level Petri nets via abstract Petri
nets in [31]. A recent survey can be found in chapter 5 of [21]. Hence, the main
idea is to integrate two abstract descriptions: the transformation-based component
framework and high-level replacement systems.

Overview

This report continues with two examples, that illustrate the transformation of com-
ponents. In the first example in section 2.1 components are based on automata and
in the second example in section 2.2 components are based on Petri nets. Then
we present the general part of the theory starting with the transformation-based
component framework. Subsequently we show that under specific assumptions we
have transformations of components. Additionally we show that the hierarchical
composition of components is compatible with transformations. This result is ex-
tended to the comaptibility of hierarchical composition with Q-transformations. To
achieve the formal foundation for the examples given in section 2 we have first the
section 4 where we introduce automata components based on our formal frame-
work. These automata components are the formal foundation for components used
for parametrized contracts in [29]. We define components, their composition and
how that the categorical assumptions for the transformations are satisfied. In sec-
tion 5 we review Petri net modules as given in [34], that are components in the
sense of section 3. Then we prove that the assumption for the transformation of
components are satisfied. The conclusion summarizes the results (and the possible
results) we have for the transformation of components for the given instantiations
as well as for further instantiations.

3

2 Examples of Rule-Based Refinement for Com-

ponents

EXP

BOD

IMP

In this section we present two small examples to motivate the use of
transformations of components. The first is based on automata and
the second is based on Petri nets. In the first case we use a notation,
where the component is given as a box as depicted adjacently. EXP ,
IMP and BOD are then automata as in section 2.1. In case of
Petri nets we could clearly use the same notation, but have used one
that is closer to the formal basis and already has been used in [35].
There we give a components as an diagram. In section 1 we have already discussed
the advantages of the generic approach and its instantiation to other specification
techniques.

2.1 Automata

In this section we present a simplified version of an automatic teller machine, that
consists of two components, that are composed hierarchically. Subsequently, both
components get modified.
First we have a look at the two components. The component ATM1 consists of the
export interface EXP ATM1, the import interface IMP ATM1, and the body
BOD ATM1. The export automaton models the allowed steps as the user may
observe them. The body is a refinement in the sense that intermediate transitions as
send PIN, valid PIN, and update are modeled additionally. The component imports
those parts that deal with the connection to the corresponding bank.

eject

ok

reject amount_50

amount_100

corrections

ok eject put_money
insert

eject amount_50

amount_100

corrections

ok eject
insert

reject

IMP_ATM1

BOD_ATM1

EXP_ATM1

valid_PIN

send_PIN

ok

put_money update_acc

valid_PINsend_PIN update_acc

Figure 1: Component ATM1

In figure 2 we have the export that consists of two unconnected parts, that each
abstract from the subautomaton that models the transactions concerning the bank,
i.e. the sending and the validation of the PIN and the update of the users bank
account. This is modeled in the body of the component. The import automaton

4

consists of two unconnected transitions, that each model the contact to the bank.

contact_bank contact_bank

contact_bank

failed

contact_bank

failed

update_acc

IMP_ATM2

BOD_ATM2

EXP_ATM2

valid_PIN

valid_PIN

send_PIN

send_PIN update_acc

Figure 2: Component ATM2

The composition results in the following component ATM = ATM1◦ATM2, where
the resulting component ATM7 is depicted in figure 3 and the construction diagram
can be found in the appendix C in figure 21. ATM1 is the importing component
and ATM2 the imported component. Hence, the export of ATM7 consists of the
export of ATM1, and the import of ATM consists of the import of ATM2. The
body of ATM is a well-defined gluing of the bodies of AMT1 and ATM2, see figure
21 in appendic C.

eject

accept_PIN

reject amount_50

amount_100

corrections

ok eject put_money
insert

contact_bank contact_bank

send_PIN valid_PIN

eject

insert

amount_50

amount_100

corrections

ok eject

ok

EXP_ATM = EXP_ATM1

IMP_ATM = IMP_ATM2

BOD_ATM

put_money

failed

update_acc

contact_bank

reject

contact_bank
failed

Figure 3: Component ATM

5

Transformations of the ATM

Let us imagine the following modifications: in ATM2 two times the bank is
contacted, now we change this component, so that one a connection to the bank is
opened and at the end of the transaction it is closed.

The rules and transformations we now illustrate are in the sense of the double
pushout approach to graph transformation (e.g. in [21]). Rules are give by a span
of morphisms where the left hand morphism indictes the part that is deleted or
preserved, and the right hand morphisms indicates the part that is preserved or
added. The application of rule leads to a transformation of the source usunig two
pushouts in the corresponding category (hence double pushout approach).

The first rule depicted in figure 4 is a very basic one that merely changes the
body without affecting the interfaces. The body automaton is changed as first the
transitions send between s1 and s2 is deleted and subsequently replaced so that an
additional state and the additional transition open con and send are added. Here
we give the states explicitly only to indicate the morphisms as inclusions. There
are no automata in the export and import denoting the empty automata with the
empty alphabet, the empty set of states and the empty transition function.

sendopen_con s2
send

s2s1

BOD_L1

IMP_L1

EXP_L1

BOD_K1

IMP_K1

s1 s2

BOD_R1

IMP_R1

EXP_K1 EXP_R1

s1

Figure 4: Rule atm r1

The application of atm r1 to the component ATM2 yields the transformation de-
picted in figure 5. This transformation consists of three transformations at the level
of the automata, namely:

EXP L1 = ∅

��

EXP K1 = ∅

��

//oo EXP R1 = ∅

��
EXP ATM2 EXP ATM3 = EXP ATM2 //oo EXP ATM4 = EXP ATM2

IMP L1 = ∅

��

IMP K1 = ∅

��

//oo IMP R1 = ∅

��
IMP ATM2 IMP ATM3 = IMP ATM2 //oo IMP ATM4 = IMP ATM2

and

BOD L1

��

BOD K1

��

//oo BOD R1

��
BOD ATM2 BOD ATM3 //oo BOD ATM4

The export and the import parts do net get changed, and in the body part first
the transition send PIN is deleted and subsequently its added together with the
transition open con.

6

send
s2s1

BOD_L1

IMP_L1

EXP_L1

send_PIN valid_PIN

send_PIN valid_PIN

contact_bank

failed

update_acc

contact_bank contact_bank

contact_bank

failed

EXP_ATM2

update_acc

BOD_ATM2

IMP_ATM2

send_PIN valid_PIN

contact_bank

failed

update_acc

contact_bank contact_bank

contact_bank

failed

EXP_ATM3

update_acc

BOD_ATM3

IMP_ATM3

valid_PIN

contact_bank

failed

update_acc

contact_bank contact_bank

valid_PIN

BOD_K1

IMP_K1

s1 s2

EXP_K1

sendopen_con s2

BOD_R1

IMP_R1

s1

EXP_R1

contact_bank

failed

EXP_ATM3

update_acc

BOD_ATM3

IMP_ATM3

valid_PIN

send_PIN

send_PIN

open_con

Figure 5: Transformation ATM2
atm r1
=⇒ ATM4

7

The second rule depicted in figure 6 changes the second time the bank is contacted.
There we change all three parts; export, import and body and replace in body and
export the transition update acc with the transitions update acc and close con. In

the import the transition contact bank is deleted. The application ATM4
atm r2
=⇒

ATM5 to the component ATM4 yields the component ATM5 depicted in figure 7.
There we have achieved that the bank has to be contacted only once and we open
and close the corresponding connection.

contact_bank

IMP_L2

BOD_L2

EXP_L2

update_acc

contact_bank

failed

update_acc update_accsend_accnr

update_accsend_accnr

IMP_K2

BOD_K2

EXP_K2

IMP_R2

BOD_R2

EXP_R2

close_con

Figure 6: Rule atm r2

contact_bank

update_accsend_accnr

update_accsend_accnr

close_convalid_PINsend s2

valid_PINsend s2

contact_bank

failed

IMP_ATM5

BOD_ATM5

EXP_ATM5

s1
open_con

Figure 7: ATM5

Next we want to change the component ATM1 so that the import and the body is
changed. We want to have an additional transition for counting the money before
putting it to the withdrawal box for the user. This is modeled in rule atm r3 in figure
8. In the body one state and the two adjacent transitions put money and update acc
are deleted and two new state with two adjacent transitions count, put money, and
update acc are added. In order to have a consistent interface component Comp K3
in the import also one state and the adjacent transition update acc is deleted and
added again. Similarly in the export the adjacent transition put money is deleted

and added again. The result of ATM1
atm r3
=⇒ ATM6 is depicted in figure 9.

Now we can again compose ATM5 ◦ ATM6 = ATM7. The composition diagram
is given in the appendix in Figure 22 and the result ATM7 is given in figure 10.

8

update_acc

put_money update_acc put_money update_acc

put_money
put_money

BOD_K3 BOD_R3

EXP_K3

IMP_K3 IMP_R3

BOD_L3

EXP_L3

IMP_L3

update_acc

count

EXP_R3

Figure 8: Rule atm r3

eject

ok

reject amount_50

amount_100

corrections

ok eject put_money
insert

IMP_ATM6

eject amount_50

amount_100

corrections

ok eject
insert

reject

BOD_ATM6

EXP_ATM6

valid_PIN

ok

valid_PIN update_acc

send_PIN

put_money

update_acccount

send_PIN

Figure 9: Component ATM6

send_accnr

close_con

update_acc

eject

ok

reject amount_50

amount_100

corrections

ok eject put_money
insert

contact_bank

amount_50

amount_100

ok eject

put_money

BOD_ATM7

correctionsok

EXP_ATM6

IMP_ATM5

eject

insert

failedcontact_bank

reject

send_PIN valid_PINopen_con

Figure 10: Component ATM7

9

put_money
put_money

put_money

contact_bank

close_conupdate_accsend_accnr

EXP_K3 EXP_R3

BOD_L

EXP_L3

contact_bank

failed

update_acc

IMP_L2 IMP_K2 IMP_R2

BOD_K BOD_R

count put_money

Figure 11: Rule atm r = atm r3 ◦ atm r2

In fact 3.11 we state the conditions that a rule is independent of the composition.
Obviously atm r1 is independent of the composition ATM1 ◦ ATM2, so we can

conclude there is the derivation ATM
atm r1
=⇒ ATM ′ where ATM ′ ∼= ATM1◦ATM2.

i.e. that ATM ′ and ATM1 ◦ATM2 are equal up to renaming.
One of the main results of this paper states in theorem 3.14 that the composition
can be compatible with transformations, where even the intermediate interfaces are
involved. Therefore we have to compose the rules atm r3 and atm r2 hierarchically.
these means that we have to compose the left-hand side components of both rules,
the intermediate components of both rules, and he right-hand side components of
both rules. Hence we have the following three hierarchical compositions:

EXP L3

��
IMP L3 //

��

BOD L3

��

EXP L2

��
IMP L2 // BOD L2 // BOD L

EXP K3

��
IMP K3 //

��

BOD K3

��

EXP K2

��
IMP K2 // BOD K2 // BOD K

EXP R3

��
IMP R3 //

��

BOD R3

��

EXP R2

��
IMP R2 // BOD R2 // BOD R

So we can directly transform ATM ′ r
=⇒ ATM ′′ using the rule r = atm r3◦atm r2

as depicted in figure 11, where r is constructed by hierarchical composition with
atm r3 ◦ atm r2. And we then have due to theorem 3.14 that ATM ′′ ∼= ATM7,
i.e. that ATM ′′ and ATM7 are equal up to renaming.

2.2 Petri Nets

Here we use the same example as given in [35]: We have an example with three
modules that describe the process of writing urging and offering letters. The module
ModW given in Figure 12 provides the writing of a letter via the export to the
environment. It imports two precise processes for the urging and offering letters. In
Figure 13 we show the corresponding module and then in figure 15 we illustrate the
composition of these modules. The module ModW in Figure 12 has the import net
IMPW with the two transitions Urge and Offer and their adjacent places. These
are mapped to the net BODYW by a injective morphism. The import describes
that this module assumes these two transitions to be abstractions. The export net
EXPW consists of a transition and two adjacent places. The places are mapped
to the corresponding places in the body net BODW . The transition is mapped to
the whole net BODW . Hence the morphism EXPW BODW is a substitution
morphism. The export abstracts from the possibilities to write either an urging or
offering letter.

10

Letter

Finished LetterLetter Write

Letter

Urge

Finished Letter

Offering Letter

OfferUrge

Urging Letter

Offer

Offering Letter

Urging Letter

BOD

EXP

IMPW

W

W

Figure 12: MODW

Letter

Type AdressSales Dep

Letter

Sales Dep

Get Offer

Offering Letter

Type Adress

Letter

BOD

IMPUO

UO

Billing Billing

Get Urge

Urgring Letter

UOEXP

Urge

Urging Letter

Offer

Offering Letter

Figure 13: MODUO

Sales Dep

Sales DepLetter

Get Offer

Offering Letter

Type Adress

Billing Finished Letter

Type Adress
Billing

Finished LetterLetter Write
WUO

IMP

EXP

WUO WUOBOD

Get Urge

Urgring Letter

Figure 14: MODWUO

11

Sales Dep

Letter

Urge

Finished Letter

Offering Letter

Offer

Urging Letter

BODW

Sales DepLetter

Get Offer

Offering Letter

Type Adress

Type Adress

Get Urge

Urgring Letter

Billing Finished Letter

WUOBOD

Type Adress

Letter

Sales Dep

Get Offer

Offering Letter

Type Adress

Letter

Letter

IMPUO

Billing

UOEXP

Urge

Urging Letter

Finished LetterLetter Write

Urge

Urging Letter

Offer

Offering Letter

EXP

IMPW

W

BODUO

Billing

Get Urge

Urgring Letter

Offer

Offering Letter

Figure 15: Composition of MODUO and MODW

The module MODUO is then composed with module MODW In Figure 15 we
show the construction with the intermediate nets. BODWUO is the pushout of
BODUO +IMPUO

BODW . In Figure 14 we finally see the result of the composition.
Note that IMPWUO = IMPUO and EXPWUO = EXPW . The rule rUO depicted
in figure 16 transforms the Petri net modules modUO in the following way: The
transition offer is deleted and replaced by the transtions GetOffer and GetSignature.
This is done in the export as well as in the body. applying this rule to the module
ModUO . The transformation MODUO

rUO=⇒MOD2 changes the module accordingly
resulting in MOD2 as given in Figure 17. To apply rUO to the composed module
MODWUO we need to compose it with the rule rW = (ModRW ← MODRW →
MODRW), that has for the left-hand side, the intermediate and the right-hand side
the same module, namely MODRW , see figure 18. This rule obviously does not
change anything in MODW . The composition rW ◦rUO is depicted in figure 19 and
its application to MODWUO yields the transformation MODWUO

rW ◦rUO=⇒ MOD3.
So, due to Theorem 3.14 we have

MODW

rW

��

◦ MODUO

rUO

��

= MODWUO

rW ◦rUO

��
MODW ◦ MOD2 = MOD3

12

Offering Letter

REXP

IMPR

Letter

Sales Dep

Offering Letter

Letter

LEXP

IMPL

Offer

Letter

Offering Letter

KEXP

IMPK

Letter

Sales Dep

KBOD
Offering Letter

Letter

Get Signature

Get Offer

Letter Get Offer

Sales Dep

LBOD
Offering Letter

Type Adress

RBOD
Offering Letter

Get Offer

Type Adress

Get Signature

Figure 16: Rule rUO

Offering Letter

Sales Dep

Letter

Get Signature

Get Offer

Get Signature

Get Offer

Offering Letter

Type Adress

Billing

Urge

Urging Letter

Type Adress

Urgring Letter

LetterGet Urge

2BOD

Sales Dep

IMPUO

Billing

2EXP

Figure 17: Module MOD2

Offering Letter

Letter

RWEXP

Offer Offer

Letter

BODRW

Finished Letter

Offering Letter

Finished LetterLetter Write
EXPRW

Figure 18: Module MODRW

13

BODW

Offering Letter

Type Adress

Get Offer

Letter

IMPL

Finished LetterLetter Write
EXPW

Finished Letter

BODWIMPL

Finished LetterLetter Write
EXPW

Letter

Offering Letter

Finished Letter

BODWIMPL

Finished LetterLetter Write
EXPW

Letter

Offering Letter

Finished Letter

Get Signature

Get Offer

Figure 19: Rule rW ◦ rUO

1
4

3 Transformations of Components

In this section we sketch how the notion of rule-based refinement can be carried
over to components. Basically the idea is that the rule-based refinement of each
part of the component, i.e. the export, the import, and the body, is a a rule-based
refinement in the underlying specification category. Naturally, there the assumption
need to be met, that is the specification category has to be weakly adhesive. As
the definition of components involves different classes of morphisms these need to
be taken into consideration. The difficulties to establish transformations of com-
ponents is directly dependent from the class of refinement morphisms. So we first
need to investigate the properties of component categories in regard of the involved
morphism classes, as we have a more complicated situation as the class of refinement
morphisms belongs to a supercategory of the morphisms used for the construction:

3.1 The Transformation Framework

In this section we present our work concerning the generic concept of components
in a categorical frame.
In the transformation-based component framework a component consists of an im-
port, an export and the body. The import states the prerequisites the component
assumes. The body represents the internal functionality. The export gives an
abstraction of the body that can be used by the environment. The abstract compo-
nents conform with the basic concepts of components and component-based systems
of Continuous Software Engineering (CSE) [46].
In [38] we present a categorical formalization of the concepts of the transformation-
based approach using specific kinds of pushout properties. Hence they are an instan-
tiation of the transformation-based approach. In order to achieve transformations
of components we have to make the approach in [38] more concrete, by relating the
morphism classes used for the transformation and the components.

Definition 3.1 (Categorical Assumptions)
The following assumptions

1. Catp category of specifications with plain morphisms

2. Catr category of specifications with refinement morphisms

3. the functor Inc : Catp → Catr is an inclusion in the sense that ObjCatp =
ObjCatr .

4. (Catp,MCatp) is weakly adhesive HLR category

5. Catr has pushouts where at least one morphism is in Inc(MorCatp) and the
pushout preserves Inc(MorCatp).

6. the inclusion functor Inc : Catp → Catr preserves pushouts where at least
one morphism is in MCatp .

7. the inclusion functor Inc : Catp → Catr preserves pullbacks where at least
one morphism is in MCatp .

are supposed to hold throughout section 3. ♦

Definition 3.2 (Transformation Framework T)
A transformation framework T = (Catr, I, E) consists of an arbitrary category and
two classes of morphisms I = Inc(MorCatp), called import morphisms and denoted
by a simple arrow → and E = MorCatr , called export morphisms and denoted by
an undulated arrow . ♦

15

The following fact states that this transformation framework is in accordance with
[38].

Fact 3.3 (Transformation Framework T)
The following extension conditions hold:

1. E-I-Pushout Condition:
Given the morphisms A

e
 B with e ∈ E and A

i−→ C with i ∈ I, then

there exists the pushout D in Cat with morphisms B
i′−→ D and C

e′

 D as
depicted below.

A

i

��

e ///o/o/o

(1)

B

i′

��
C

e′

///o/o/o D

2. E and I are stable under pushouts:
Given a E-I-pushout as (1) above, then we have i′ ∈ I and e′ ∈ E as well.

♦

Trivial, due to the assumption in definition 3.1 item 5.
Accordingly we have to require for a component that the import and export con-
nection are of the right class of morphisms.

Definition 3.4 (Component [38])
A component C = (IMP, EXP, BOD, imp, exp) is given by objects IMP, EXP ,
and BOD in Cat and by morphisms exp : EXP BOD and imp : IMP → BOD,
so that exp ∈ E and imp ∈ I. ♦

Several different operations on components can be considered in our generic frame-
work, eg. those that are given for algebraic module specification in [16]. For the
sake of simplicity we subsequently consider merely one basic operation that al-
lows composing components C1 and C2 hierarchically. It provides a connection,
h : IMP1 EXP2 from the import interface IMP1 of C1 to the export interface
EXP2 of C2. Now we are able to define the composition C3 = C1 ◦h C2 as follows.

Definition 3.5 (Composition [38])
Given components Ci = (IMPi, EXPi, BODi, impi, expi) for i ∈ {1, 2} and a mor-
phism h : IMP1 → EXP2 in E the composition C3 of C1 and C2 via h is defined
by

C3 = (IMP3, EXP3, BOD3, imp3, exp3)

with imp3 = imp′1 ◦ imp2 and exp3 = h′ ◦ exp1 as depicted below, where (1) is
pushout diagram :

EXP3 = EXP1

exp1

��
�O
�O
�O

IMP1
imp1 //

h

��
�O
�O
�O

(1)

BOD1

h′

��
�O
�O
�O
�O
�O
�O
�O
�O

EXP2

exp2

��
�O
�O
�O

IMP3 = IMP2
imp2 // BOD2

imp′

1 // BOD3

The composition is denoted by C3 = C1 ◦h C2. ♦

16

Next we define the category of components Comp, where we use plain morphisms
at the specification level for the definition of component morphisms, that have to
be compatible with the corresponding import and export morphisms.

Definition 3.6 (Component Category)
Component morphisms are defined by comp : comp1 → comp2 with comp =
(compI , compB , compB) s.t.

compI : IMP1 → IMP2

compB : BOD1 → BOD2

compE : EXP1 → EXP2

where compI , compB , compB ∈Mor(Catp)

1. compB ◦ imp1 = imp2 ◦ compI

2. compB ◦ exp1 = exp2 ◦ compE

Components and component morphisms constitute Comp the category of compo-
nents. ♦

Subsequently we want to show that the category of components Comp is an ad-
hesive HLR category, provided that the underlying category of specifications with
plain morphisms is adhesive HLR category as well.
First we need the following facts.

Fact 3.7 (Pushouts with at least one M-morphism in Comp)
Given the square (1) in Comp with m ∈ M

A m //

��
(1)

B

��
C // D

pushout B → D ← C is constructed componentwise in Catp and Catr. ♦

Proof:
We have a component-wise construction, so we obtain the subsequent diagram

IMPA

''NNNN
wwpppp

BODA

''OOOO
wwoooo

IMPC

''NNNN
(1) IMPB

wwpppp
BODC

''OOOO
(2) BODB

wwoooo

IMPD

impD // BODD

where (1) and (2) are pushouts in the category Catp and impD : IMPD → BODD

is the induced pushout morphism. Analogously, we obtain – as Inc preserves
pushouts – from pushout (3) in Catr the induced morphism expD : EXPD →
BODD :

EXPA

''OOOO
wwoooo

BODA

''OOOO
wwoooo

EXPC

''OOOO
(3) EXPB

wwoooo
BODC

''OOOO
(2) BODB

wwoooo

EXPD

expD ///o/o/o/o/o/o/o/o/o/o/o/o/o/o/o BODD

As IMPD and BODD are pushouts in Catp and EXPD is pushout in Catr com-
mutativity and the universal property are inherited.
Hence we obtain D = (EXPD, IMPD, BODD) as the pushout.

√

17

Fact 3.8 (Pullbacks with at least one M-morphism in Comp)
Given the square (1) in Comp with m ∈ M

A //

��
(1)

B

��
C m // D

pullback B ← A→ C is constructed componentwise in Catp and Catr. ♦

Proof is analogously to proof of fact 3.7. Proof:
We have a component-wise construction, so we obtain the subsequent diagram

IMPA

''NNNN
wwpppp

impA // BODA

''OOOO
wwoooo

IMPC

''NNNN
(1) IMPB

wwpppp
BODC

''OOOO
(2) BODB

wwoooo

IMPD BODD

where (1) and (2) are pullbacks in the category Catp and impA : IMPA → BODA is
the induced pullback morphism. Analogously, we obtain – as Inc preserves pullbacks
– from pullback (2) in Catr the induced morphism expA : EXPA → BODA:

EXPA

''OOOO
wwoooo

expA ///o/o/o/o/o/o/o/o/o/o/o/o/o/o/o BODA

''OOOO
wwoooo

EXPC

''OOOO
(3) EXPB

wwoooo
BODC

''OOOO
(2) BODB

wwoooo

EXPD BODD

As IMPD and BODD are pushouts in Catp and EXPD is pushout in Catr com-
mutativity and the universal property are inherited.
Hence we obtain A = (EXPA, IMPA, BODA) as the pullback.

√

Theorem 3.9 (Comp is weakly adhesive HLR category)
Given the assumptions in 3.1 then (Comp,M) is weakly adhesive HLR category
with
M = {comp = (compI , compB , compE)|compI , compB , compE ∈ MCatp} ♦

Proof:

Given the pushout (1) and the commutative cube (2) in Comp we need to show
that (2) is a VK square in Comp, i.e. the top is pushout ⇔ the front faces are
pullbacks.

A m //

f

��
(1)

B

g

��
C n // D

A′

a

��

f ′jjjjj

ttjjjjj m′

MM

&&MM

C ′

c

��

n′

MM

&&MM
B′

b

��

g′jj

ttjjjjjjjj

(2)
D′

d

��

A

fiiiiiiii

ttii
m

NNN

&&NN
N

C
n

NNN

&&NNN
B

gjjjjj

ttjjjjj

D
We have for each part of the component an VK-diagram in Catp, e.g. for the
import part we have:

18

IMPA′

aI

��

f ′

I

ffffff

ssffffff m′

I

RR
((RR

IMPC′

cI

��

n′

I

RR
((RR

IMPB′

bI

��

g′

I

ff

ssffffffffff

IMPD′

dI

��

IMPA

fI
ffffffffff

ssff
mI

RR
((RR

IMPC

nI

RR
((RR

IMPB

gI
ffffff

ssffffff

IMPD

Part 1: (” ⇒ ”) the top is pushout, so we have to show that the components B ′

and C ′ are pullbacks ∈ Comp.
As we have the corresponding VK-diagram in Catp, we have IMPC′ , BODC′

and EXPC′ are pullbacks in Catp. Hence, we obtain the component
IMPC′ → BODC′ ← EXPC′ . Due to the uniqueness of the induced mor-
phisms we have C ′ = IMPC′ → BODC′ ← EXPC′ and hence is pullback.

Analogously for B′.

Part 2: (” ⇐ ”) The front faces are pullbacks and we need to show that compo-
nent D′ is pushout in Comp.
As we have the corresponding VK-diagram in Catp, we have IMPD′ , BODD′

and EXPD′ are pushouts in Catp. Hence, we obtain the component
IMPD′ → BODD′ ← EXPD′ . Due to the uniqueness of the induced mor-
phisms we have D′ = IMPD′ → BODD′ ← EXPD′ and hence is pushout.

√

So now we directly have the following nice concepts and results for the transfor-
mation of components (see [21]) as the category of components Comp with the
distinguished classM is adhesive HLR category:

Rules and transformations These are the basic entities a rule is given by
r = (CL ← CK → CR), where CL and CR are the left and right hand side
components and CK is an intermediate component1 of CL and CR. Given
a rule r = (CL, CK , CR) and a context component C2, we use morphisms
CK → CL, K → CR and CK → C2 to express a transformation as pushout
constructions (1) and (2) leading to a double pushout as depicted below:

CL

��

CK

��

//oo CR

��
C1 C2

//oo C3

Below we give these notions more precisely.

Parallelism results (chapter 5 in [21]) The Church-Rosser Theorem states a
local confluence in the sense of formal languages. The required condition of
parallel independence means that the matches of both rules overlap only in
parts that are not deleted. Sequential independence means that those parts
created by the first transformation step are not deleted in the second. The

1In graph and net transformations K is often called the interface (of the rule) but in the context
of components, this notion gets too confusing.

19

Parallelism Theorem states that sequential or parallel independent transfor-
mations can be carried out either in arbitrary sequential order or in parallel.
In the context of step-by-step development these theorems are important as
they provide conditions for the independent development of different parts or
views of the system.

Concurrency and pair factorization (chapter 5 in [21]) The Concurrency
Theorem handles general transformations, which may be non-sequentially
independent. Roughly spoken, for a sequence there is a concurrent rule that
allows the construction of a corresponding direct transformation.

Embedding and local confluence (chapter 6 in [21]) Further important re-
sults for transformation systems are the Embedding, Extension and the Local
Confluence Theorems. The first two allow to embed transformations into
larger contexts and with the third one we are able to show local confluence of
transformation systems based on the confluence of critical pairs.

Up to now the instantiations of the HLR theory have been specification techniques
as various types of graph transformations, Petri nets, algebraic specifications, etc.
Now we instantiate with a gemeric component construction above these specification
techniques, hence it is obvious, that new questions of compatibility arise. Namely,
are the operations at the level of components compatible with the transformation
concept. In the subsequent section we characterize the conditions under which
transformations and hierarchical composition are compatible.

3.2 Rules, Transformations and Hierarchical Composition

Definition 3.10 (Rules and Transformations)
Given a rule in Comp with r = (CL ← CK → CR) then the application of r yields

the transformation C1
r

=⇒ C3 given by the following diagram in Catr:

EXPL

��
�O
�O
�O

��5
55

55
55

55
55

5
EXPK

��
�O
�O
�O

��5
55

55
55

55
55

5
//oo EXPR

��
�O
�O
�O

��5
55

55
55

55
55

5

IMPL

''OOO

��5
55

55
55

55
55

5
IMPK

((PPP

��6
66

66
66

66
66

6
//oo IMPR

''PPP

��5
55

55
55

55
55

5

BODL

��5
55

55
55

55
55

5
BODK

��5
55

55
55

55
55

5
//oo BODR

��5
55

55
55

55
55

5

EXP1

��
�O
�O
�O

EXP2

��
�O
�O
�O

//oo EXP3

��
�O
�O
�O

IMP1

''OOO
IMP2

''PPP
//oo IMP3

''PPP

BOD1 BOD2
//oo BOD3

with the following double pushouts in Catp

EXPL

��

EXPK

��

//oo EXPR

��
EXP1 EXP2

//oo EXP3

IMPL

��

IMPK

��

//oo IMPR

��
IMP1 IMP2

//oo IMP3

BODL

��

BODK

��

//oo BODR

��
BOD1 BOD2

//oo BOD3

♦

Compatibility with Component Composition

Obviously the tansformation of components in the context of hierarchical composi-
tion is quite complex and we can distinguish different cases, here we start with the
more or less least complex and end with the most complex one. In principle, all the
possible cases are subsumed by the most complex one.

20

• There is one rule changing only the body.

• There is one rule changing only the only the interface, that is not involved in
the composition.

• There are two rules changing only the body or only the interfaces, that are
not involved in the composition.

• There are two rules changing the involved interfaces as well.

For the sake of simplicity and as we have the first case in our example in section
2.1 we treat the first case explicitly.

Fact 3.11 (Simple Compatibility)

Given the composition of Ĉ1 = C1 ◦h C ′
1 and a rule r = (CL ← CK → CR) where

IMPL, IMPK , IMPR = ∅ and EXPL, EXPK , EXPR = ∅, where ∅ denotes the
initial object, then we have
C ′

1
r

=⇒ C ′
3 iff Ĉ1

r
=⇒ Ĉ3 = C1 ◦ C ′

3 ♦

Proof:
Applying r to C ′

1 we have

∅

��
�O
�O
�O

��5
55

55
55

55
55

5 ∅

��
�O
�O
�O

��5
55

55
55

55
55

5
//oo ∅

��
�O
�O
�O

��5
55

55
55

55
55

5

∅
$$I

III

��.
..

..
..

..
..

∅
$$J

JJJ

��.
..

..
..

..
..

//oo ∅
$$J

JJJ

��.
..

..
..

..
..

BODL

��4
44

44
44

44
44

4
BODK

��4
44

44
44

44
44

4
//oo BODR

��4
44

44
44

44
44

4

EXP ′
1

��
�O
�O
�O

EXP ′
1

��
�O
�O
�O

//oo EXP ′
1

��
�O
�O
�O

IMP ′
1

''NNN
IMP ′

1

''OOO
//oo IMP ′

1

''NN
N

BOD′
1 BOD′

2
//oo BOD′

3

with the following double pushouts in Catp

∅

��

∅

��

//oo ∅

��
EXP ′

1 EXP ′
1

//oo EXP ′
1

∅

��

∅

��

//oo ∅

��
IMP ′

1 IMP ′
1

//oo IMP ′
1

BODL

��

BODK

��

//oo BODR

��
BOD′

1 BOD′
2

//oo BOD′
3

So we can construct C1 ◦h C ′
2 and C1 ◦h C ′

3 with the pushouts (1) and (2)

EXP1

��
�O
�O
�O

IMP1
//

h

��
�O
�O
�O

(1)

BOD1

�� �O
�O
�O
�O
�O
�O
�O
�O
�O

EXP ′
1

��
�O
�O
�O

IMP ′
1

// BOD′
2

// B̂OD2

and EXP1

��
�O
�O
�O

IMP1
//

h

��
�O
�O
�O

(2)

BOD1

�� �O
�O
�O
�O
�O
�O
�O
�O
�O

EXP ′
1

��
�O
�O
�O

IMP ′
1

// BOD′
3

// B̂OD3

21

and it is easy to show that we obtain the same (up to isomorphism) result with

Ĉ1
r

=⇒ Ĉ3:
We have the pushouts (3), (4) and (5)

BODL

��
(3)

BODK

��

//oo

(4)

BODR

��
IMP1

//

��
(5)

BOD′
1

��
(6)

BOD′
2

//oo

��
(7)

BOD′
3

��
BOD1

// B̂OD1 B̂OD2
//oo B̂OD3

Redrawing the above diagram we obtain the following pushout decomposition dia-
grams and hence have the pushouts (6) and (7) as well

IMP1
//

��
(1)

BOD′
2

//

��
(6)

BOD′
1

��
BOD1

// B̂OD2
// B̂OD1

and IMP1
//

��
(1)

BOD′
3

//

��
(7)

BOD′
1

��
BOD1

// B̂OD3
// B̂OD1

With pushout composition (3 + 6) and (4 + 7) we then have Ĉ1
r

=⇒ Ĉ3.
√

If we have two rules changing the involved interfaces as well and want to apply them
together to the composed component, we need to compose the rules as well. The
following fact states the conditions, that ensure that the composition is well-defined.

Fact 3.12 (Componentwise composition of rules)
Given the rules r = (CL ← CK → CR) and r′ = (C ′

L ← C ′
K → C ′

R) for hL :
IMPL EXP ′

L, hK : IMPK EXP ′
K , and hR : IMPR EXP ′

R so that

1. IMPK → IMPL
hL

 EXP ′
L = IMPK

hK

 EXP ′
K → EXP ′

L

2. IMPK → IMPR
hR

 EXP ′
R = IMPK

hK

 EXP ′
K → EXP ′

R

as depicted in the following diagram:

22

EXPL

��
�O
�O
�O
�O
�O
�O
�O
�O

EXPK

��
�O
�O
�O
�O
�O
�O
�O
�O

--
mm EXPR

��
�O
�O
�O
�O
�O
�O
�O
�O

IMPL

 B
BB

BB
BB

B

hL

�O
�O
�O
�O

��
�O
�O
�O

IMPK

!!C
CC

CC
CC

C
--

mm

hK

�O
�O
�O
�O

��
�O
�O
�O

IMPR

!!B
BB

BB
BB

B

hR

�O
�O
�O
�O

��
�O
�O
�O

BODL

��
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O

BODK
--

mm

��
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O

BODR

��
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O

EXP ′
L

�� �O
�O
�O
�O
�O
�O
�O
�O
�O

EXP ′
K

�� �O
�O
�O
�O
�O
�O
�O
�O
�O

--
mm EXP ′

R

�� �O
�O
�O
�O
�O
�O
�O
�O
�O

IMP ′
L

��@
@@

@@
@@

IMP ′
K

 A
AA

AA
AA

--
mm IMP ′

R

 @
@@

@@
@@

BOD′
L

��@
@@

@@
@@

B′
K

--
mm

 A
AA

AA
AA

BOD′
R

 @
@@

@@
@@

B̂ODL B̂ODK

--
mm B̂ODR

then we compose componentwise r̂ := r ◦ r′ = (ĈL ← ĈK → ĈR) where

ĈL = (IMP ′
L → B̂ODL ← EXPL),

ĈK = (IMP ′
K → B̂ODK ← EXPK), and

ĈR = (IMP ′
R → B̂ODR ← EXPR) ♦

Due to assumption 4 in definition 3.1.

Definition 3.13 (Independence of transformation and composition)
Given the rules r = (CL ← CK → CR) and r′ = (C ′

L ← C ′
K → C ′

R) with r ◦ r′ for
hL : IMPL EXP ′

L, hK : IMPK EXP ′
K , and hR : IMPR EXP ′

R then the
composition C1 ◦h1

C ′
1 is independent from r and r′ if there is h2 : IMP2 → EXP ′

2

s.t.

1. IMP2
h2

 EXP ′
2 → EXP ′

1 = IMP2 → IMP1
h1

 EXP ′
1

2. IMPL → IMP1
h1

 EXP ′
1 = IMPL

hL

 EXP ′
L → EXP ′

1

3. IMPK → IMP2
h2

 EXP ′
2 = IMPK

hK

 EXP ′
K → EXP ′

2

23

as in the diagram below:

EXPL

�� �O
�O
�O
�O
�O
�O

��/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/

EXPK

�� �O
�O
�O
�O
�O
�O

��/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/

//oo EXPR

�� �O
�O
�O
�O
�O
�O

��/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/

IMPL

$$I
II

II
I

��/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/

hL

�L
�L
M
M
M
M
M
�N
�N
�N
�N
�N

��

�O
�O
�O
�O
�P
�P
�P
�P
�P
�Q
�Q
�Q
�Q
�R
�R
�R

IMPK

%%J
JJ

JJ
J

��/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/

//oo

hK

�L
�L
M
M
M
M
M
�N
�N
�N
�N
�N

��

�O
�O
�O
�O
�P
�P
�P
�P
�P
�Q
�Q
�Q
�Q
�R
�R
�R

IMPR

$$J
JJ

JJ
J

��/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/

hR

�L
�L
M
M
M
M
M
�N
�N
�N
�N
�N

��

�O
�O
�O
�O
�P
�P
�P
�P
�P
�Q
�Q
�Q
�Q
�R
�R
�R

BODL

��/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/

BODK

��/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/

//oo BODR

��/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/

EXP1

�� �O
�O
�O
�O
�O
�O

EXP2

�� �O
�O
�O
�O
�O
�O

//oo EXP3

�� �O
�O
�O
�O
�O
�O

IMP1

$$I
II

II
I

h1

�O
�O
�O
�O
�O
�O
�O
�O
�O
�O

��
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O

IMP2

$$I
II

II
I

//oo

h2

�O
�O
�O
�O
�O
�O
�O
�O
�O
�O

��
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O

IMP3

$$I
II

II
I

BOD1 BOD2
//oo BOD3

EXP ′
L

��
�O
�O
�O
�O
�O
�O

��.
.
.
.
..

.
..

.
..

.
..

.
.

EXP ′
K

��
�O
�O
�O
�O
�O
�O

��.
.
.
.
..

.
..

.
..

.
..

.
.

//oo EXP ′
R

��
�O
�O
�O
�O
�O
�O

��.
.
.
.
..

.
..

.
..

.
..

.
.

IMP ′
L

##G
GGG

G

��-
--

--
--

--
--

--
-
--

-
IMP ′

K

$$H
HHHH

��.
.
..

.
..

..
..

..
..

.
.

//oo IMP ′
R

##H
HHHH

��.
.
..

.
..

..
..

..
..

.
.

BOD′
L

��.
.
..

..
.
..

..
.
..

..
.

BOD′
K

��.
.
..

..
.
..

..
.
..

..
.

//oo BOD′
R

��.
.
..

..
.
..

..
.
..

..
.

EXP ′
1

��
�O
�O
�O
�O
�O
�O

EXP ′
2

��
�O
�O
�O
�O
�O
�O

//oo EXP ′
3

��
�O
�O
�O
�O
�O
�O

IMP ′
1

##H
HHHH

IMP ′
2

$$I
IIII

//oo IMP ′
3

$$H
HHHH

BOD′
1 BOD′

2
//oo BOD′

3

♦

If there are two components and two rules to be applied we can either compose
two components and then use a composed rule to transform the component or
we transform the two components independently and compose the results of the
composition.
The following theorem states that under independence both ways result in the same
component (up to isomorphism).

Theorem 3.14 (Composition Theorem)
Let the rules r = (CL ← CK → CR) and r′ = (C ′

L ← C ′
K → C ′

R) with r ◦h r′

for h = (hL, hK , hR) with hL : IMPL EXP ′
L, hK : IMPK EXP ′

K , and
hR : IMPR EXP ′

R be independ of the composition C1 ◦h1
C ′

1, then we have

C1
r

=⇒ C3 as well as C ′
1

r′

=⇒ C ′
3 and C1 ◦h1

C ′
1

r◦hr′

=⇒ C3 ◦h3
C ′

3

24

This can be illustrated in a diagram style by:

C1
◦h1

r

��

C ′
1

=

r′

��

Ĉ1

r◦′

r

��
C3

◦h3 C ′
3

= Ĉ3

♦

Proof:

First we construct the two derivations C1
r

=⇒ C3 and C ′
1

r′

=⇒ C ′
3 and then the

composition Ĉ3 = C3 ◦h3
C ′

3:
We obtain h3 : IMP3 EXP ′

3 as the induced pushout morphism in Catr, because
we have

IMPK → IMPR
hR

 EXP ′
R → EXP ′

3

= IMPK
hK

 EXP ′
K → EXP ′

R → EXP ′
3 due to composition (item 2 of def. 3.17)

= IMPK
hK

 EXP ′
K → EXP ′

2 → EXP ′
3 due to rule r′, the second PO in export part

= IMPK → IMP2
h2

 EXP ′
2 → EXP ′

3 due to independence (item 3 of def. 3.13)

Now we can construct the pushout BOD3 → B̂OD3 ← BOD′
3 of

BOD3 ← IMP3
h3

 EXP ′
3 → BOD′

3, because of assumption 4 in definition

3.1 and obtain Ĉ3 = C3 ◦h3
C ′

3 = (IMP ′
3, EXP3, B̂OD3).

As h1 and h2 are given we obtain similarly Ĉ1 = C1◦h1
C ′

1 = (IMP ′
1, EXP1, B̂OD1)

and Ĉ2 = C2 ◦h2
C ′

2 = (IMP ′
2, EXP2, B̂OD2).

25

EXPL

�� �O
�O
�O
�O
�O
�O

��/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/

EXPK

�� �O
�O
�O
�O
�O
�O

��/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/

//oo EXPR

�� �O
�O
�O
�O
�O
�O

��/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/

IMPL

$$I
II

II
I

��/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/

hL

�O
�O
�O
�O
�O
�O
�O
�O
�O

�� �O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O

IMPK

%%J
JJ

JJ
J

��/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/

//oo

hK

�O
�O
�O
�O
�O
�O
�O
�O
�O

�� �O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O

IMPR

$$J
JJ

JJ
J

��/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/

hR

�O
�O
�O
�O
�O
�O
�O
�O
�O

�� �O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O

BODL

��/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/

BODK

��/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/

//oo BODR

��/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/

EXP1

�� �O
�O
�O
�O
�O
�O

EXP2

�� �O
�O
�O
�O
�O
�O

//oo EXP3

�� �O
�O
�O
�O
�O
�O

IMP1

$$I
II

II
I

h1

�O
�O
�O
�O
�O
�O
�O
�O
�O
�O

��
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O

IMP2

$$I
II

II
I

//oo

h2

�O
�O
�O
�O
�O
�O
�O
�O
�O
�O

��
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O

IMP3

$$I
II

II
I

h3

�O
�O
�O
�O
�O
�O
�O
�O
�O
�O

��
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O

BOD1

��

�K
�L
�L
�L
�L
M
M
M
M
�N
�N
�N
�N
�O
�O
�O
�O
�O
�P
�P
�P
�P
�Q
�Q
�Q
�Q
�R
�R
�R
�R

BOD2
//oo

��

�K
�L
�L
�L
�L
M
M
M
M
�N
�N
�N
�N
�O
�O
�O
�O
�O
�P
�P
�P
�P
�Q
�Q
�Q
�Q
�R
�R
�R
�R

BOD3

��

�K
�L
�L
�L
�L
M
M
M
M
�N
�N
�N
�N
�O
�O
�O
�O
�O
�P
�P
�P
�P
�Q
�Q
�Q
�Q
�R
�R
�R
�R

EXP ′
L

��
�O
�O
�O
�O
�O
�O

��.
.
.
.
..

.
..

.
..

.
..

.
.

EXP ′
K

��
�O
�O
�O
�O
�O
�O

��.
.
.
.
..

.
..

.
..

.
..

.
.

//oo EXP ′
R

��
�O
�O
�O
�O
�O
�O

��.
.
.
.
..

.
..

.
..

.
..

.
.

IMP ′
L

##G
GGG

G

��-
--

--
--

--
--

--
-
--

-
IMP ′

K

$$H
HHHH

��.
.
..

.
..

..
..

..
..

.
.

//oo IMP ′
R

##H
HHHH

��.
.
..

.
..

..
..

..
..

.
.

BOD′
L

��.
.
..

..
.
..

..
.
..

..
.

BOD′
K

��.
.
..

..
.
..

..
.
..

..
.

//oo BOD′
R

��.
.
..

..
.
..

..
.
..

..
.

EXP ′
1

��
�O
�O
�O
�O
�O
�O

EXP ′
2

��
�O
�O
�O
�O
�O
�O

//oo EXP ′
3

��
�O
�O
�O
�O
�O
�O

IMP ′
1

##H
HHHH

IMP ′
2

$$I
IIII

//oo IMP ′
3

$$H
HHHH

BOD′
1

##G
GG

GG
BOD′

2

##G
GGGG

//oo BOD′
3

##G
GG

GG

B̂OD1 B̂OD2
//oo B̂OD3

Based on this construction it remains to show that (A) and (B) are pushouts in
Comp :

ĈL

��
(A)

ĈK

��

oo // ĈR

��
(B)

Ĉ1 Ĉ2
oo // Ĉ3

As we have the C1
r

=⇒ C3 and C ′
1

r′

=⇒ C ′
3 we already have the corresponding

pushouts for the export and import part. In the category Catr we have to show
the corresponding pushouts for the body part:

26

EXPL

��
�O
�O
�O
�O
�O
�O

��-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

EXPK

��
�O
�O
�O
�O
�O
�O

��.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

//oo EXPR

��
�O
�O
�O
�O
�O
�O

��.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

IMP ′
L

##G
GG

GG

��-
-
--

--
--

-
--

--
--

--
IMP ′

K

##H
HHHH

��.
.
..

..
..

..
..

.
..

..
//oo IMP ′

R

##G
GG

GG

��.
.
..

..
..

..
..

.
..

..

B̂ODL

��.
..

..
..

..
..

..
..

..
B̂ODK

��.
..

..
..

..
..

..
..

..
//oo B̂ODR

��.
..

..
..

..
..

..
..

..

EXP1

�� �O
�O
�O
�O
�O
�O

EXP2

�� �O
�O
�O
�O
�O
�O

//oo EXP3

�� �O
�O
�O
�O
�O
�O

IMP ′
1

##G
GG

GG
IMP ′

2

##G
GG

GG
//oo IMP ′

3

##G
GG

GG

B̂OD1 B̂OD2
//oo B̂OD3

So, first we need to construct B̂ODL → B̂OD1. We have :

IMPL → BODL → BOD1 → B̂OD1

= IMPL → IMP1 → BOD1 → B̂OD1 as CL → C1 is morphism in Comp

= IMPL → IMP1
h1

 EXP ′
1 → BOD′

1 → B̂OD1 due to PO B̂OD1

= IMPL
hL

 EXP ′
L → EXP ′

1 → BOD′
1 → B̂OD1 due to independence (item 2 in def. 3.13)

= IMPL
hL

 EXP ′
L → BOD′

L → BOD′
1 → B̂OD1 as C ′

L → C ′
1 is morphism in Comp

So we can construct B̂ODL → B̂OD1 as the induced pushout morphisms and all
squares in the left diagram below commute.

Analogously we obtain B̂ODK → B̂OD2 and B̂ODr → B̂OD3:

IMPL
//

hL

�O
�O

��
�O
�O

##G
GG

GG
BODL

##G
GG

GG

��
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O

IMP1
//

h1

�O
�O

��
�O
�O

BOD1

�� �O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O

EXP ′
L

""F
FF

FF

��
�O
�O
�O
�O
�O
�O

EXP ′
1

��
�O
�O
�O
�O
�O
�O

BOD′
L

//

""D
DD

DD
D B̂ODL

""D
DD

DD

BOD′
1

// B̂OD1

IMPK
//

hK

�O
�O

��
�O
�O

##H
HHHH

BODK

##H
HHHH

��
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O

IMP2
//

h2

�O
�O

��
�O
�O

BOD2

�� �O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O

EXP ′
K

##F
FF

FF

��
�O
�O
�O
�O
�O
�O

EXP ′
2

��
�O
�O
�O
�O
�O
�O

BOD′
K

//

""E
EE

EE
E B̂ODK

""E
EE

EE

BOD′
2

// B̂OD2

IMPR
//

hR

�O
�O

��
�O
�O

##G
GGGG

BODR

##G
GG

GG

��
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O

IMP3
//

h3

�O
�O

��
�O
�O

BOD3

�� �O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O

EXP ′
R

""F
FF

FF

��
�O
�O
�O
�O
�O
�O

EXP ′
3

��
�O
�O
�O
�O
�O
�O

BOD′
R

//

""D
DD

DD
D B̂ODR

""D
DD

DD

BOD′
3

// B̂OD3

Next we show the body part of pushout (B), i.e. that B̂ODR → B̂OD3 ← B̂OD2

is pushout of B̂ODR ← B̂ODK → B̂OD2:

First we show commutativity, i.e. B̂ODK → B̂OD2 → B̂OD3 = B̂ODK →
B̂ODR → B̂OD3 using the uniqueness of the induced pushout morphism of pushout

B̂ODK in Catr:

27

IMPK
//

��
�O

BODK

��
�O
�O
�O
�O
�O
�O
�O
�O
�O

��7
77

77
77

77
77

**TTTTTTTTTT

EXP ′
K

��
�O
�O
�O
�O
�O

BODR

��6
66

66
66

66
66

�� �O
�O
�O
�O
�O
�O
�O
�O
�O
�O

BOD2

))TTTTTTTTTTT

��
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O

BOD′
K

//

��5
55

55
55

55
55

5

))SSSSSSSSSS B̂ODK

��5
55

55
55

55
55

))SSSSSSSSSS BOD3

��
�O
�O
�O
�O
�O
�O
�O
�O
�O
�O

��

�\ �[
�Y
�X
�W
�U
�T
�S
�R
�Q
�P
�O
�N
M
�L
�L

BOD′
R

��5
55

55
55

55
55

5
// B̂ODR

��5
55

55
55

55
55

��

%e
$d
"b
 `
�^
�\
�Z
�X
�W
�V
�T
�S
�R

BOD′
2

))SSSSSSSSSSS
// B̂OD2

))SSSSSSSSSSS

..

�\ �] �^ �^
 `
"b
$d
%e
'g (h)i *j +k ,l -m -m .n .n

BOD′
3

//

22

(h)i)i)i *j *j +k +k +k ,l ,l ,l -m -m -m .n .n .n .n /o /o /o 0p 0p 0p 1q 1q 1q

B̂OD3

X
First we have:

IMPK → BODK → BODR → BOD3 B̂OD3

= IMPK → BODK → BOD2 → BOD3 B̂OD3

due to PO in C1
r

=⇒ C3

= IMPK → BODK → BOD2 B̂OD2 → B̂OD3

due to construction of B̂OD2 → B̂ODK

= IMPK → BODK B̂ODK → B̂OD2 → B̂OD3

due to construction of B̂ODK → B̂OD2

= IMPK EXP ′
K BOD′

K → B̂ODK → B̂OD2 → B̂OD3

due to PO B̂ODK

= IMPK EXP ′
K BOD′

K → BOD′
2 → B̂OD2 → B̂OD3

due to construction of B̂OD2 → B̂ODK

= IMPK EXP ′
K BOD′

K → BOD′
2 → BOD′

3 → B̂OD3

due to construction of B̂OD2 → B̂OD3

So there is unique B̂ODK → B̂OD3. Secondly we have:

BODK B̂ODK → B̂OD2 → B̂OD3

= BODK → BOD2 B̂OD2 → B̂OD3 due to construction of B̂ODK → B̂OD2

= BODK → BOD2 → BOD3 B̂OD3 due to construction of B̂OD2 → B̂OD3

= BODK → BODR → BOD3 B̂OD3 due to PO in C1
r

=⇒ C3

= BODK → BODR B̂ODR → B̂OD3 due to construction of B̂ODR → B̂OD3

= BODK B̂ODK → B̂ODR → B̂OD3 due to construction of B̂ODK → B̂ODR

And third we have:

BOD′
K → B̂ODK → B̂OD2 → B̂OD3

= BOD′
K → BOD′

2 → B̂OD2 → B̂OD3 due to construction of B̂OD2 → B̂ODK

= BOD′
K → BOD′

2 → BOD′
3 → B̂OD3 due to construction of B̂OD2 → B̂OD3

= BOD′
K → BOD′

R → BOD′
3 → B̂OD3 due to PO in C ′

1
r′

=⇒ C ′
3

= BOD′
K → BOD′

R → B̂ODR → B̂OD3 due to construction of B̂ODR → B̂OD3

= BOD′
K → B̂ODK → B̂ODR → B̂OD3 due to construction of B̂ODK → B̂ODR

28

So both B̂ODK → B̂OD2 → B̂OD3 and B̂ODK → B̂ODR → B̂OD3 are the
unique pushout morphism and hence we conclude:

B̂ODK → B̂OD2 → B̂OD3 = B̂ODK → B̂ODR → B̂OD3

Now we show the universal property of the square

B̂ODK → B̂OD2 → B̂OD3 = B̂ODK → B̂ODR → B̂OD3:

Given some X ∈ Catr, s.t. B̂ODK → B̂OD2 X = B̂ODK → B̂ODR X ,
then we can construct BOD3 → X and BOD′

3 → X due to the universal property
of the pushouts BOD3 and BOD′

3 as we have:

BODK → BODR → B̂ODR X

= BODK B̂ODK → B̂ODR X

= BODK B̂ODK → B̂OD2 X

= BODK → BOD2 B̂OD2 X

and BOD′
K → BOD′

R → B̂ODR X

= BOD′
K → B̂ODK → B̂ODR X

= BOD′
K → B̂ODK → B̂OD2 X

= BOD′
K → BOD′

2 → B̂OD2 X

So we have
IMP3

//

h3

�� �O
�O
�O

BOD3

��
�O
�O
�O
�O
�O
�O
�O
�O

��

�Z
�Y
�X
�W
�V
�U
�T
�S
�R
�Q
�P
�P
�O
�N

EXP ′
3

��
�O
�O
�O

BOD′
3

//

11

$d %e 'g (h)i *j ,l -m .n /o 0p 1q

B̂OD3

"""b
"b

X

Now we use the pushout B̂OD3 to obtain

B̂OD3 X . Therefore we have to show that
IMP3 → BOD3 X

= IMP3 BOD′
3 → X .

Again we use the uniqueness property of in-
duced pushout morphisms.

IMPK
//

��

IMPR

��

��
�\
�\
�\
�\
�\
�\

**UUUUUUUUUUU

BODR

���[
�[
�[
�[
�[
�[
�[

��

BOD′
R

**TTTTTTTTTTT

��

IMP2
//

��
�[
�[
�[
�[
�[
�[

**TTTTTTTTTTT IMP3

��
�[
�[
�[
�[
�[
�[

**UUUUUUUUUUU B̂ODR

��
�O
�O
�O
�O
�O
�O
�O
�O
�O

BOD2

��
�[
�[
�[
�[
�[
�[

// BOD3

���[
�[
�[
�[
�[
�[
�[

BOD′
2

))TTTTTTTTTT
// BOD′

3

***j*j
*j*j

*j*j
*j*j

B̂OD2
///o X

First we have:

IMPK → IMPR → BODR B̂ODR X

= IMPK → IMPR BOD′
R → B̂ODR X due to PO B̂ODR

= IMPK → IMPR BOD′
R → BOD′

3 X due to construction of BOD′
3 X

= IMPK → IMPR → IMP3 BOD′
3 X due to composition of rules r ◦ r′

= IMPK → IMP2 → IMP3 BOD′
3 X due to PO IMP3

= IMPK → IMP2 BOD′
2 → BOD′

3 X due to construction of h3 and due to r′

= IMPK → IMP2 BOD′
2 → B̂OD2 X due to construction of BOD′

3 X

29

So there is a unique induced morphisms.
Second we have:

IMPR → IMP3 BOD′
3 X

= IMPR BOD′
R → BOD′

3 X

= IMPR BOD′
R → B̂ODR X

= IMPR BOD′
R → BOD3 X

= IMPR → IMP3 → BOD3 X

And thirdly we have:

IMP2 → IMP3 BOD′
3 X

= IMP2 BOD′
2 → BOD′

3 X

= IMP2 BOD′
2 → B̂OD2 X

= IMP2 → BOD2 B̂OD2 X
= IMP2 → BOD2 → BOD3 X
= IMP2 → IMP3 → BOD3 X

So both morphisms IMP3 → BOD3 X and IMP3 BOD′
3 X are unique

induced morphisms, hence

IMP3 → BOD3 X = IMP3 BOD′
3 X

And we obtain the unique B̂OD3 X with respect to BOD′
3 → B̂OD3 X =

BOD′
3 X and BOD3 B̂OD3 X = BOD3 X .

The universal property of B̂ODR leads to B̂ODR → B̂OD3 X = B̂ODR X

and the universal property of B̂OD2 leads to B̂OD2 → B̂OD3 X = B̂OD2 X .

Uniqueness of B̂OD3 X is due to its construction.
Hence we have pushout (B) as required on page 26. Pushout (A) is constructed
analogously.

√

Compatibility with Component Composition for Q-Transformations

Let us review the conditions for Q-transformations:

Definition 3.15 (Q-Transformations [32])
Let QCat be a category, so that Cat is a subcategory Cat ⊆ QCat and Q a class
of morphisms in QCat. We have the following Q-conditions:

Preservation of Pushouts:
The inclusion functor I : Cat→ QCat preserves pushouts.

Closedness: Q has to be closed under composition.

Inheritance of Q-morphisms under Pushouts:
The class Q in QCat is closed under the construction of pushouts in QCat

that is, if C
f ′

−→ D
g′

←− B is a pushout of B
f←− A

g−→ C in QCat, then
f ∈ Q =⇒ f ′ ∈ Q.

Inheritance of Q-morphisms under Coproducts:
The class Q in QCat is closed under the construction of coproducts in QCat

that is, for A
f−→ B and A′ f ′

−→ B′ we have f, f ′ ∈ Q =⇒ f + f ′ ∈ Q
provided that the coproduct A + A′ f+f ′

−→ B + B′ of f and f ′ exists in QCat.

30

The morphisms in Q are called Q-morphisms, or refinement morphisms.

A Q-rule (p, q) is given by a rule p = L
l←− K

r−→ R in Cat and a Q-morphism

q : L→ R, so that K
l−→ L

q−→ R = K
r−→ R in QCat.

Given a Q-rule (p, q) and a transformation G
p

=⇒ H in Cat defined by the pushouts
(1) and (2), there is a unique q′ ∈ Q, such that q′ ◦ g = h and q′ ◦m = n ◦ q in

QCat. The transformation (G
p

=⇒ H, q′ : G→ H), or G
(p,q′)
=⇒ H for short, is called

Q-transformation

L

q

''

m

��
(1)

K
l

oo
r

//

k

��
(2)

R

n

��
G

q′

77C
g

oo h // H

Moreover, R
n−→ H

q′

←− G is pushout of G
m←− L

q−→ R in QCat. ♦

For the assumptions in 3.1 we need to clarify the relation of the morphism calss Q
to the others.

Definition 3.16 (Q-Rules for components)
Given the categories Catp ⊆ Catr ⊆ Catq, so that assumptions 3.1 and the
Q-conditions in 3.15 hold for Cat = Catp and QCat = Catq, then

a Q-rule (r, p) is given by a rule r = (L ← K → R in Catp and a Q-morphism

p : L→ R, so that K → L
q−→ R = K → R in Catq. ♦

So we directly have the extension of rules and transformations with additional
morphisms. So, each part of the component, import, export and body can be
refined by applying rules, that preserve or reflect properties. So, proof rules are
obtained, that allow the stepwise preservation of desireable component properties.
The proof rule states that given certain assumptions (stated above the line) the
property (stated under the line) holds.
For the property preserving transformations C1 =⇒ C2 and a property preserving
rule (r, f) we have the following proof rule:

(r, f) is a property preserving rule; C1 satisfies the corresponding property

C2 satisfies the property too

Moreover, the Composition Theorem 3.14 can be achieved for Q-transfomations as
well.

Fact 3.17 (Componentwise composition of Q-rules)
Given the Q-rules r = (CL ← CK → CR, p : CL → CR) with p = (pI , pE, pB) and
r′ = (C ′

L ← C ′
K → C ′

R, p′ : C ′
L → C ′

R) with p′ = (p′I , p
′
E, p′B) for hL : IMPL

EXP ′
L, hK : IMPK EXP ′

K , and hR : IMPR EXP ′
R so that

1. IMPK → IMPL
hL

 EXP ′
L = IMPK

hK

 EXP ′
K → EXP ′

L

2. IMPK → IMPR
hR

 EXP ′
R = IMPK

hK

 EXP ′
K → EXP ′

R

then we compose componentwise r̂ := (r◦h r′, p̂) = (ĈL ← ĈK → ĈR, p̂ : ĈL → ĈR)
with p̂ = (p′I , pE, p̂B) ♦

31

Proof:
We merely need to construct p̂B : B̂ODL → B̂ODR as the induced pushout mor-
phism in the diagram below.

IMPL
//

��

BODL

pB //

��

BODR

��

BOD′
L

//

p′

B

��

B̂ODL

cpB

$$I
II

III
III

BOD′
R

// B̂ODR

√

Independence is defined as in definition 3.13.

Theorem 3.18 (Composition Theorem for Q-Transformations)
Let Q-rules r = (CL ← CK → CR, p : CL → CR) with p = (pI , pE , pB) and
r′ = (C ′

L ← C ′
K → C ′

R, p′ : C ′
L → C ′

R) with p′ = (p′I , p
′
E, p′B) with r ◦h r′ with

p̂ = (p′I , pE, p̂B for h = (hL, hK , hR) with hL : IMPL EXP ′
L,

hK : IMPK EXP ′
K , and hR : IMPR EXP ′

R be independ of the com-
position C1 ◦h1

C ′
1, then we have

C1
(r,p)
=⇒ C3 as well as C ′

1

(r′,p′)
=⇒ C ′

3 and C1 ◦ C ′
1

(r◦hr′,bp)
=⇒ C3 ◦h3

C ′
3

This can be illustrated in a diagram style by:

C1
◦h1

(r,p)

��

C ′
1

=

(r′,p′)

��

Ĉ1

(r◦hr′,bp)

��
C3

◦h3 C ′
3

= Ĉ3

♦

Proof:
Analogously to the proof of the Composition Theorem 3.14 we have for the com-
posed as well as for the simple Q-transformations the following double-pushouts

ĈL

��

bp

%%

(A)

ĈK

��

oo // ĈR

��
(B)

Ĉ1

bq

99Ĉ2
oo // Ĉ3

CL

��

p

%%

(C)

CK

��

oo // CR

��
(D)

C1

q

99C2
oo // C3

C ′
L

��

p′

%%

(E)

C ′
K

��

oo // C ′
R

��
(F)

C ′
1

q′

99C ′
2

oo // C ′
3

with

p̂ = (p′I , pE, p̂B) p = (pI , pE, pB) p′ = (p′I , p
′
E , p′B)

q̂ = (q′I , qE , q̂B) q = (qI , qE , qB) q′ = (q′I , q
′
E , q′B)

32

where q̂B is given as the induced pushout morphism of BOD′
1 → B̂OD1 ← BOD1

of BOD′
1 ← IMP1 → BOD1.

And it remains to show that (A + B) is a pushout as well. At the level of specifi-
cations (A + B) is given in the category Catr by:

EXPL

��

pE //

��

EXPR

��

��		
		

		
		

		
		

		
		

		
	

IMP ′
L

((QQQQQQ

p′

I //

��

IMP ′

R

((QQQQQQ

��

B̂ODL

cpB //

��		
		

		
		

		
		

		
		

		
B̂ODR

��		
		

		
		

		
		

		
		

		

EXP1

��

qE // EXP3

��

IMP ′
1

((QQQQQQ

q′

I // IMP ′
3

((QQQQQQ

B̂OD1

cqB // B̂OD3

where we have the following pushouts due to C1
(r,p)
=⇒ C3 and C ′

1

(r′,p′)
=⇒ C ′

3

EXPL

pE //

��
PO

EXPR

��
EXP1

qE // EXP3

IMPL

pE //

��
PO

IMPR

��
IMP1

qE // IMP3

Due to pushout decomposition we obtain that (2) is pushout as well.

B̂ODK

��

//
))

(1)

B̂ODL

��

cpB //

(2)

B̂ODR

��

B̂OD2
//

55B̂OD1

cqB // B̂OD3

So, (A + B) is a pushout and we have C1 ◦ C ′
1

(r◦hr′, cpB)
=⇒ C3 ◦h3

C ′
3 is given by the

double pushout (A,B).
√

4 Transformations of Automata Components

4.1 Automata Components

Here we use a reduced version of the automata in [19]. We skip the output function
as this is not needed for the automata we want to relate to in section 6. Basically,
an automaton A = (I, S, δ : I × S ⇀ S) consists of the input alphabet I , the set
of states S and the partial function δ : I × S ⇀ S: For an element of the input
alphabet i ∈ I and a state s ∈ S the transition function δ(i, s) = ⊥ is undefined or
δ(i, s) = s′ yields the followers state s′. A plain morphisms f = (fI , fS) : A1 → A2

from Automaton A1 to A2 maps the alphabet to the alphabet fI : I1 → I2 and the
set of states to the set of states fS : S1 → S2.

Definition 4.1 (Automata)
The category Autp is given as the comma category Autp := (Prod ↓ ID), where
Prod : parSet × parSet → parSet is the product functor and ID : parSet →
parSet is the identity on sets with partial functions. ♦

33

This definition states the category of automata with plain morphisms as discussed,
nevertheless we use the comma category construction as it yields directly many
important results.

Fact 4.2 (Properties of Autp)
Autp has pushouts and pullbacks, as parSet has both, and Prod preserves pushouts
and ID preserves pullbacks.
Moreover, (Autp,M) withM the class of injective morphisms is an adhesive HLR-
category, as it is a comma category over parSet. ♦

See facts A.3 and B.2 and because of the construction of adhesive HLR-categories
[21].
Note, that in the example we have starts symbols as well as terminal symbols. As
these do not affect the morphisms (i.e. they need not to be mapped onto each
other), we simply ignore them in the formal description.
Next we need to define refinement morphisms that allow the refinement of a state
by automaton.

Definition 4.3 (State Refinement for Automata)
Given two automata Ai = (Ii, Si, δi : Ii ×Si → Si) for i = 1, 2, then f : A1 → A2 is
given by fI : I1 → I2 and f : S1 → P(A2), such that for f(s1) = A′

2 = (I ′2, S
′
2, δ2) ⊆

A2 we have for all i ∈ I1 with δ1(i, s1) = s′1:

∃!s2 ∈ S′
2 : δ2(fI(i), s2) ∈ f(s′1)

The category Autr is given by automata and refinement morphisms. ♦

Figure 20 illustrates a state refinement as used in the example in section 2.1. The
states s1, s4, s5 and s7 of the automaton EXP ATM1 are mapped to the corre-
sponding states (more precisely to the subautomaton consisting only of that state)in
the automaton BOD ATM1. The state s2 is mapped to the sub-auotmaton of
BOD ATM1 that consists of the states s2.1, s2.2 and s2.3 and the transitins in-
between. Similarly the states s3 and s6 are mapped to the subautomata that are
enclosed by the light green line.

okreject

s2.1

s2.1 s2.3

s3.1

valid_PIN s7.1

s1

EXP_ATM1

eject amount_50

amount_100

corrections

ok eject
insert

send_PIN

BOD_ATM1

eject

ok

reject amount_50

amount_100

corrections

ok eject put_money
insert

s2 s3 s4 s5 s6 s7

s1 s4 s5

put_money

s6 s7.2

update_acc

Figure 20: Refinement morphism from EXP ATM1 BOD ATM1 in ATM1

34

Note that this definition is a syntactic notion of refinement. The two conditions
merely ensure that the mapping does not delete transitions. Here we require the
preservation of connectedness, but allow for instance that the target automata of
a refined state may have unreachable states. For example in section 2.1 in trans-

formation ATM2
atm r1
=⇒ ATM4 in figure 5 we have as an intermediate situation

component ATM3, where the mapping EXP ATM3 BOD ATM3 yields an
unreachable state due to the deletion of a transition. Nevertheless the right hand
side of the rule closes this gap again. So, more complex refinement notions need a
restriction the target automata of a refined state. They can be defined explicitly,
but should not be integrated into the morphisms, because not in all situations the
more complex refinement is desirable. The above given syntactic refinement can be
easily extended to a proper refinement, e.g. in the following way: If we only use
in the body an alphabet that is the codomain of the alphabet of the export and
substitute all other elements by the silent tansition τ , then the language of the body
automaton has to be equal to the language of the export automaton.

Definition 4.4 (Automata Component)
An automata component AC = (IMP, EXP, BOD) con-
sists of three automata, namely the import automaton
IMP , the export automaton EXP and the body automa-
ton BOD. Two morphisms imp : IMP → BOD and
exp : EXP BOD connect the interfaces to the body
with imp ∈ I and exp ∈ E .

EXP

exp

��
�O
�O
�O

IMP
imp

// BOD

♦

Examples can be found in section 2.1.

4.2 Transformations for Automata Components

Fact 4.5 (Plain and Refinement Morphisms for Automata)
Given a plain morphism f : A1 → A2 then there is the refinement morphism with
f : S1 → P(A2) where f(s) = (∅, {fs(s)}, ∅) is the automaton that consists only of
one state.
Hence, we have Inc : Autp → Autr ♦

Fact 4.6 (Automata component categories satisfy the assumptions 3.1)
The following holds:

1. Autp category of specifications with plain morphisms

2. Autr category of specifications with refinement morphisms

3. we have the inclusion functor Inc : Autp → Autr so that ObjAutp = ObjAutr .

4. Autr has pushouts where at least one morphism is in Inc(MorAutp) and the
pushout preserves Inc(MorAutp).

5. (Autp,M) is weakly adhesive HLR category with M the class of injective
morphisms

6. the inclusion functor Inc : Autp → Autr preserves pushouts where at least
one morphism is in M.

7. the inclusion functor Inc : Autp → Autr preserves pullbacks where at least
one morphism is in M.

♦

35

Proof:
Item 1-3 we have given above.
Let Ai = (Ii, Si, δi : Ii × Si ⇀ Si) for i = 1, 2, 3, ...:

Proof of item 4

Given the span A2
g←− A0

f
 A1 then we can construct A3 with I3 = I2 +I0 I1

the pushout of the alphabets, and

A0
f

///o/o/o

g

��
(1)

A1

g′

�� g′′

��

$d "b
 `
�^
�[
�Z
�X
�V
�U
�S
�R
�Q
�P

A2 f ′/o ///o

f ′′ 00

�]
�_
!a #c $d &f (h)i *j ,l -m .n /o

A3

h

 `

 `

(2)

(3)

A4

S3 = S1|Ē ∪ S2 \ gS(S0) with Ē the equivalence closure of
E = {(s1, s

′
1)|s1 ∈ f(s0), s

′
1 ∈ f(s′0) for g(s0) = g(s′0)} and δ3 : I3 × S3 ⇀ S3

with

δ3(i, s) =

[δ1(i1, s1)]Ē for i = g′
I(i1), s = [s1]

δ2(i2, s2) for i = f ′
I(i2), s = s2, δ2(i2, s2) /∈ gS(S0)

[δ1(i1, s1)]Ē for i = f ′
I(i2), s = s2, δ2(i2, s2) = gS(s′0)

and there is unique s1 ∈ S1 : δ1(fI(i0), s1) ∈ f(s0)

δ3 is well-defined, as we have the following cases for δ3(i, s), if

1. i = g′I(i1), s = [s1], due to the equivalence relation Ē and the corre-
sponding equivalence classes and the PO I3 this case is well-defined.

2. i = g′I(i1), s = s2] in this case we have due to PO I3 that i = f ′
I(i2), so

it is well-defined due to item 3.

3. i = f ′
I(i2), s = [s1] this case we have due to PO I3 that i = g′

I(i1), so it
is well-defined due to item 1.

4. i = f ′
I(i2), s = s2 there are again two possiblities: δ2(i2, s2) /∈ gS(S0) or

δ2(i2, s2) = gS(s0) for some s0

For δ2(i2, s2) /∈ gS(S0) we have that δ2(i2, s2) ∈ S3 and hence it is well-
defined.
For δ2(i2, s2) = gS(s0) we have due to the condition in 4.3 a unique s1 ∈
f(s0) with δ1(fI(i0), s1) ∈ f(s′0) since there has to be gS(δ0(i0, s0)) = s2.
Hence δ1(i1, s1) is given and hence the corresponding equivalence class.

(1) commutes, due to the construction of S3 and as I3 is PO with g′
S = []Ē

and f
′

(s2) = g′(f(s0)) for gS(s0) = s2 and f
′

(s2) = (∅, {s2}, ∅) ⊆ A3 else.

Given some automata in Autr s.t. g′′ ◦ f = f ′′ ◦ g, the h : A3 → A4 is given
by h = (hI , h), where hI is induced by PO I3. h is defined by

h(s) =

⋃
x∈[s1]

g
′′

(x) s = [s1], s1 ∈ S1

f
′′

(s2) s = s2 ∈ S2 \ gS(S0)⋃
x∈f(s0)

g
′′

(x) s = s2 = gS(s0)

h is well-defined and unique wrt. (2) and (3) due to construction.

Proof of item 5 due to fact 4.2.

36

Proof of item 6

Given the following pushout (PO) in Autp with f ′′ : A2 A and g′′ : A1

A s.t f ′′ ◦ g = g′′ ◦ f in Autr

A0
f

//

g

��
(PO)

A1

g′

�� g′′

��

#c "b
 `
�]
�[
�Y
�W
�V
�T
�S
�R
�P
�O

A2 f ′ //

f ′′ 00

�\
�^
 ` "b $d &f (h)i +k ,l -m .n /o

A3

h

 `

 `
 `

A

As the square commutes in Autr, it remains to show the universal property:
Then we define h = (hI , h) : A3 → A with hI as induced by the pushout I3

in Set.
h : S3 P(A) is given by

h(s) =

{
g

′′

(s1) ; if s = g′S(s1) for some s1 ∈ S1

f
′′

(s2) ; if s = f ′
S(s2) for some s2 ∈ S2

h is well-defined because due to the pushout properties of S3 in Set we have
that f ′ and g′ are jointly surjective and for g′

S(s1) = s = f ′
S(s2) we have some

s0 ∈ S0 with f(s0) = s1 and g(s0) = s2 and hence g
′

(s1) = g
′ ◦ f(s0) =

f
′ ◦ g(s0) = f

′

(s2).

h is unique as hI is unique wrt. g′
I and f ′

I , and h is unique wrt. g
′

and f
′

due
to construction.

proof of item 7

Given the pullback (PB) in Autp with injective f ′, we show that (PB) is
pullback in Autr as well.

A

h
 `

f ′′

&&

-m ,l ,l +k +k *j *j)i (h (h 'g 'g &f
(2)

g′′

��

�R
�R
�S
�S
�T
�U
�U
�V
�W
�W
�X
�Y
�Y

(3) A0 f //

g

��

(PB)

A1

g′

��
A2

f ′

// A3

As (PB) commutes in Autr it remains to show the universal property.

Given f ′′ : A A1 and g′′ : A A2 so that:
f ′ ◦ g′′ = g′ ◦ f ′′ (∗)

we define h(hI , h) : A→ A0 with hI as induced by the pullback I1 in Set.
h : S → P(A0) is defined for some s ∈ S where
f
′′

(s) = A′
1 = (I ′1, S

′
1, δ1 : I ′1 × S′

1 → S′
1) by

h(s) = A′
0 = (I ′0, S

′
0, δ0 : I ′0 × S′

0 → S′
0) with

I ′0 = {i ∈ I0 | fI(i) ∈ I ′1} and S′
0 = {s ∈ S0 |; fS(s) ∈ S′

0}.

37

h : A→ A0 is well-defined:
Given some i ∈ I then there is some s1 ∈ S1 with δ1(f

′′
I (i), s1) ∈ f

′′

(δ(i, s1)
as f ′′ is well-defined.

So, there is some s0 ∈ S′
0 with fS(s0) = s1 and we have

fS ◦ δ0(hI(i), s0)) = δ1(f
′′
I (i), s1) ∈ f

′′

(δ(i, s1)) = f ◦ h(δ(i, s1))
and hence δ0(hI(i), s0)) ∈ h(δ(i, s)) as f is injective as well.

h : A→ A0 commutes uniquely (2) :
fI ◦ hI = f ′′

I due to pullback I0 in SET , and

f ◦ h = f
′′

due to construction of h.

h : A→ A0 commutes uniquely (3) :
gI ◦ hI = g′′I due to pullback I0 in SET .

For s ∈ S we have g
′′

(s) = A′
2 = (I ′2, S

′
2, δ2 : I ′2 × S′

2 → S′
2) and we need to

show
gS(S′

0) = S′
2 and gI(I

′
0) = I ′2: (∗∗)

To show directly gS(S′
0) ⊆ S′

2, let s0 ∈ S′
0 then

s0 ∈ S′
0 =⇒ fS(s0) ∈ S′

1 due to definition of S′
0

=⇒ g′S ◦ fS(s0) ∈ g′(f
′′

(s)) mapping via g′

=⇒ f ′
S ◦ gS(s0) ∈ f ′(g

′′

(s)) due to (∗)
=⇒ gS(s0) ∈ g

′′

(s) as f is injective
=⇒ gS(s0) due to definition of S′

2

And to show directly S′
2 ⊆ gS(S′

1), let s2 ∈ S′
2 then

s2 ∈ S′
2 =⇒ s2 ∈ g

′′

(s) due to definition of S′
2

=⇒ f ′
S(s2) ∈ f ′(g

′′

(s)) mapping via f ′

=⇒ f ′
S(s2) ∈ g′(f

′′

(s)) due to (∗)
=⇒ ∃s1 ∈ S′

1 with f ′
S(s2) = g′S(s1) due to def. of refinement mor.

=⇒ ∃s0 ∈ S′
0 with fS(s0) = s1 and gS(s0) = s2 due to PB S0 in Set

=⇒ s2 ∈ gS(S′
0) due to definition of S′

0

Analogously we show gI(I
′
0) = I ′2.

Hence for s ∈ S we have g ◦ h(s) = g(I ′
0, S

′
0, δ0) = (gI(I

′
0), gS(S′

0), gS ◦ δ0) =
(I ′2, S

′
2, δ2) = g

′′

(s).
h is unique wrt. (3) due to (∗∗). √

38

5 Transformations of Petri Net Modules

5.1 Review of Petri Net Modules

In [35] Petri net modules have been introduced independently of the categorical
framework discussed above. Similar to components they consist of three nets: the
import net IMP , the export net EXP , and the body net BOD. The import net
presents those parts of the net that need to be provided from the ”outside”. The
export net is that what the net module presents to the ”outside”. The body is the
realization of the export using the import. The body is the realization of the export
using the import. The relation between import IMP and body BOD is given by
a plain morphism. Export EXP and body BODare related by a substitution mor-
phism, that allows mapping one transition to a subnet. Different module operations
are required for the flexible composition of modules. At the moment we have union
of modules and composition of modules. We motivate the notions and results of
modules in terms of a larger example in the area of telephone services in [37], where
we have developed a Petri net model of an automated telephone service center with
a variety of telephone services. In [36] this approach is extended to include safety
properties.
A Petri net module MOD = (IMP, EXP, BOD) consists of three Petri nets,
namely the import net IMP , the export net EXP and the body net BOD. Two
Petri net morphisms m : IMP → BOD and r : EXP BOD connect the inter-
faces to the body.

EXP

r

��
�O
�O
�O

IMP
m // BOD

The import interface specifies resources which are used
in the construction of the body, while the export inter-
face specifies the functionality available from the Petri
net module to the outside world. The body implements
the functionality specified in the export interface using
the imported functionality. The import morphism m
is a plain morphism and describes how and where the
resources in the import interface are used in the body.
The export morphism r is a substitution morphism and describes how the func-
tionality provided by the export interface is realized in the body. The class of
substitution morphism is as generalization of plain morphisms, where a transition
is replaced by a subnet. Nevertheless, the forgetful functor constructions can be
given for substitution morphisms as well.

Morphisms of Petri Nets

First we give a short intuition of the underlying basics. The precise definitions can
be found in [33]. Here we use the algebraic notion of Petri nets as introduced in
[30]. Hence a Petri net is given by the set of transitions and the set of places and
the pre- and post domain function.

N = T
pre

//
post

// P⊕, where P⊕ is the free commutative monoid over P , or the set of

finite multisets over P . So an element w ∈ P⊕ can be presented as a linear sum
w = Σp∈P λpp and we can extend the usual operations and relations as ⊕, 	, ≤,
and so on. Nevertheless we need the pre- and post-sets as well. Hence we have as
usually •t the set of all places in the pre- domain of a transition t. Analogously
t•, •p and p•. Moreover we need to state how often is a basic element with in an
element of the free commutative monoid given. We define this for an element p ∈ P
and a word w ∈ P⊕ with w|p = λp ∈ P⊕.
Subnets N ′ ∈ P(N) of a given net N with N ′ ⊆ N can be easily defined by subsets
of places and transitions, where the pre- and postdomain of transitions may be

39

extended. P(N) denotes the set of all subnets. Note that this subnet relation is not
an inclusion in terms of plain morphisms.
Morphisms are the basic entity in category theory; they can present the internal
structure of objects and relate the objects. So they are the basis for the struc-
tural properties a category may have and can be used successfully to define various
structuring techniques.
Based on the algebraic notion of Petri nets [30] we use simple homomorphisms
that are generated over the set of places. These morphisms map places to places
and transitions to transitions. They preserve firing and they yield nice categorical
properties as cocompleteness.

Plain morphisms are presented as usual by an arrow →.

Definition 5.1 (Plain Morphisms)
A plain morphism f : N1 → N2 is given by f = (fP , fT) with fP : P1 → P2 and
fT : T1 → T2 so that

pre2 ◦ fT = f⊕
P ◦ pre1

and post analogously.
These morphisms give rise to the category PT. ♦

A more elaborate notion of morphisms are substitution morphisms. These map
places to places as well. But they can map a single transition to a whole subnet.
Hence they substitute a transition by a net. These morphisms are more complicated
and do net yield nice categorical properties. But they capture a very broad idea of
refinement and hence are adequate for the relation between the export net and the
body net.
Subsequently substitution morphisms are presented by an undulate arrow .

Definition 5.2 (Substitution Morphisms)
A substitution morphism f : N1 N2 is given by f = (fP , fT) with fP : P1 → P2

and fT : T1 → P(N2) with fT (t) := N t
2 ⊆ N2 such that N t

2 = (P t
2 , T t

2 , pret
2, postt2)

• fP (•t) ∈ P t
2 and

• fP (t•) ∈ P t
2

Composition of substitution morphisms f : N1 N2 and g : N2 N3 is given by:
g ◦ f := (gP ◦ fP , gT ◦ fT) where gT ◦ fT : T1 → P(N3) is defined by gT ◦ fT (t) :=⋃

x∈T t

2

Nx
3 . Since all Nx

3 ⊆ N3 this construction is well defined. ♦

Note that these morphisms do not preserve properties. They can be restricted in
order to preserve liveness (see for example [45]).

5.2 Transformation of Petri Net Modules

In the this section we briefly sketch the modifications and transformations for the
various instantiations of our component concept. Rule-based Refinement of Petri
net modules is achieved by proving the assumptions in definition 3.1.

Fact 5.3 (Petri net module categories satisfy the assumption 3.1)
The following holds:

1. PN category of specifications with plain morphisms

2. SPN category of specifications with refinement morphisms

3. we have the inclusion functor Inc : PN→ SPN so that ObjPN = ObjSPN.

40

4. SPN has pushouts where at least one morphism is in Inc(MorPN) and the
pushout preserves Inc(MorPN).

5. (PN,MPN) is weakly adhesive HLR category

6. the inclusion functor Inc : PN → SPN preserves POs where at least one
morphism is in MPN.

7. the inclusion functor Inc : PN → SPN preserves PBs where at least one
morphism is in MPN.

♦

Note, that in [35] we have used specific conditions to ensure component-wise con-
struction of pushouts with one plain morphism in SPN. In [38] we have used
pushouts with one plain, injective morphism. Here, we have pushouts with one
plain morphism in SPN, that can be constructed allways, but is less intuitive. We
use more or less the same idea as for automata.
Proof:
In [35] we have already shown item 1-3 and 6. Item 5 is shown in [21]. Here we
show item 4 and item 7.

proof of item 4

Given a plain morphism f : N0 → N1 and a substitution morphism g : N0

N2, then we have N3 := (P3, t3, pre3, post3) with

N0
g

//

f

��
�O
�O
�O

(1)

N1

f ′

��
�O
�O
�O

f ′′

���X
�X
�X
�X
�X
�X
�X
�X
�X
�X

N2
g′

//

g′′

(((h
(h(h

(h(h
(h(h

(h(h
N3

h

!!
!a

!a
!a

!a

N4

• P3 = (P1] P2)|Ē where Ē is the equivalence closure of
E = {(gP (p0), fP (p0)) |pp ∈ P0}
∪{(x, y) |gT (t0) = gT (t′0), t0 6= t′0, fT (t0) 6= fT (t′0), x ∈ fT (t0), y ∈ fT (t′0)}

g′P and f ′
P are the coresspnding natural functions, and obviously we

have g′P ◦ fP = f ′
P ◦ gP .

• T3 := T1 \ gT (T0)] T2,

hence we have: t3 ∈ T3 implies t3 ∈ T1

·∨ t3 ∈ T2 (∗)
and,

• pre3 =

{
g′P (pre1(t3)) ; t3 ∈ T1

f ′
P (pre2(t3)) ; t3 ∈ T2

post3 is defined analogously.

N3 is well defined due to (∗).

41

Next we define f
′

T and g′T :

g
′

T : T2 → P(N3) with

g
′

T (t) = (f ′
P , idT2

)(net(t))
So f is plain and we write g′

T .

f
′

T : T1 → P(N3) with

f
′

T (t) =

{
g′T (fT (t0)) ; t = gT (t0)

(f ′
P , idT1

)(net(t)) ; else

g
′

T is well defined due to the construction of N3.

It remains to prove the universal property:
Given f

′′

T : N2 N4 and g
′′

T : N1 N4 such that g
′′

T ◦ f = f
′′

T ◦ g, then we
define the unique h : N3 N4 where hP : P3 → P4 is uniquely dedfined by

hP (p3) =

{
f ′′(p2) ; f ′

P (p2) = p3

g′′(p1) ; g′P (p1) = p3

and well-defined due to the equivalence classes. And we define hT : T3 →
P(N4) with

hT (t) =

{
f
′′

T (t3) ; t3 ∈ T2

g
′′

T (t3) ; t3 ∈ T1

hT is well defined due to (∗).

proof of item 7 Given the pullback (1) in PT with injective f ′, we show that (1)
is pullback in SPN as well.

N1
f

//

g

��

(1)

N2

g′

��
N3

f ′

// N4

N0

h
!a

!a

!!!a
!a

f ′′

''

,l ,l +k +k *j *j *j)i)i (h (h (h 'g

(2)

g′′

��

�R
�S
�S
�T
�T
�T
�U
�U
�V
�V
�W
�W
�X
�X

(3) N1 f //

g

��

(1)

N2

g′

��
N3

f ′

// N4

Given f ′′ : N0 N2 and g′′ : N0 N3 so that:
f ′ ◦ g′′ = g′ ◦ f ′′ (∗)

Then we have f
′′

T : T0 → P(N2) and for some t0 ∈ T0 we have

f
′′

T (t0) = N ′
2 = (P ′

2, T
′
2, pre2|P ′

2

, post2|P ′

2

).

We define h : N0 N1 by
hP : P0 → P1 by the induced pullback morphism in Set and
hT : T0 → P(N2) with hT (t0) = N ′

1 = (P ′
1, T

′
1, pre1|P ′

1

, post1|P ′

1

) and

P ′
1 ⊆ P1 with P ′

1 = {p | fP (p) ∈ P ′
2} and

T ′
1 ⊆ T1 with T ′

1 = {t | fT (t) ∈ T ′
2}.

hT : T0 → P(N2) is well-defined according to definition 5.2:
For t0 ∈ T0 we have fP ◦ hP (•t0) = f ′′

P (•t0) as hP is induced by pullback in
Set and hence fP ◦ hP (•t0) ∈ P ′

2. This implies hP (•t0) ∈ P ′
1.

42

Analogously we show hP (t•0) ∈ P ′
1.

(2) commutes:
fp ◦ hP = f ′′

P as hP is induced by pullback in Set.

For f ◦ hT = f
′′

T we first have to show that fP (P ′
1) = P ′

2 and fT (T ′
1) = T ′

2.
Obviously fP (P ′

1) ⊆ P ′
2 and fT (T ′

1) ⊆ T ′
2 holds.

To show P ′
2 ⊆ fP (P ′

1) indirectly, let
p2 ∈ P ′

2 \ fP (P ′
1). (∗∗)

Then we have g′
P (p2) ∈ g′ ◦ f

′′

T (t0) and because of (∗) we have g′
P (p2) ∈

f ′ ◦ g
′′

T (t0). It follows that g′
P (p2) ∈ f ′

P (P3) and as (1) is pullback in PN
there is some p1 ∈ P1 with fP (p1) = p2. This contradicts (∗∗).
Analogously we show T ′

2 ⊆ fT (T ′
1).

For t0 ∈ T0 we now have f ◦ hT (t0) =
f(N ′

1) =
(fP (P ′

1), fT (T ′
1), f

⊕
p ◦ pre1|P ′

1

, f⊕
p ◦ post1|P ′

1

) =

(P ′
2, T

′
2, pre2|P ′

2

, post2|P ′

2

) =

N ′
2 =

f
′′

T (t0)

(3) commutes:
gp ◦ gP = g′′P as hP is induced by pullback in Set.

To show g ◦ hT = g
′′

T :

For t0 ∈ T0 we have g
′′

T (t0) = N ′
3 = (P ′

3, T
′
3, pre3|P ′

3

, post3|P ′

3

).

We first have to show that gP (P ′
1) = P ′

3 and gT (T ′
1) = T ′

3.

To show P ′
3 ⊆ gP (P ′

1) indirectly, let
p3 ∈ P ′

3 \ gP (P ′
1). (∗ ∗ ∗)

Then we have f ′
P (p3) ∈ f ′ ◦ g

′′

T (t0) and because of (∗) we have f ′
P (p3) ∈

g′ ◦ f′′T (t0). It follows that f ′
P (p3) ∈ g′P (P2) and as (1) is pullback in PN there

is some p1 ∈ P1 with fP (p1) = p3. This contradicts (∗ ∗ ∗).
Analogously we show T ′

3 ⊆ fT (T ′
1).

To show gP (P ′
1) ⊆ P ′

3 indirectly let
gP (p1) ∈ gP (P ′

1) \ P ′
3. (~)

Then we have fP (p1) ∈ P ′
2 and hence g′

P ◦ fP (p1) ∈ g′ ◦ f
′′

T (t0). This implies

f ′
P ◦ gP (p1) ∈ f ′ ◦ g

′′

T (t0), because of (∗).
Hence we have gP (p1) ∈ g

′′

T (t0) contradicting (~)
Analogously we show fT (T ′

1) ⊆ T ′
3.

We now have g ◦ hT (t0) =
g(N ′

1) =
(gP (P ′

1), gT (T ′
1), g

⊕
p ◦ pre1|P ′

1

, g⊕p ◦ post1|P ′

1

) =

(P ′
3, T3, pre3|P ′

3

, post3|P ′

3

) =

N ′
3 =

g
′′

T (t0)

h : N0 N1 is unique w.r.t. (2) and (3):
hP : P0 → P1 is the induced pullback morphism in Set and hence unique
w.r.t. (2) and (3).

For h
′

T : T0 → P(N2) so that (2) and (3) commute and for h
′

T (t0) = (̂N1) we

43

have f (̂(N1) = N2 = f(N ′
1) and as f is injective we conclude h

′

T (t0) = (̂N1) =
N ′

1 = hT (t0). Hence h : N0 N1 is unique w.r.t. (2) and (3).

√

6 Conclusion

In the conclusion we summarize the results and discuss future research. In table
2 we give a survey of the generic component concept and its instantiations. The
various specification techniques we present have a component concept as used in
this paper. nevertheless they have not been necessarily instantiated directly but
have been developed independently, but are very closely related, e.g.. algebraic
module specifications, graph transformation systems, or local action systems. The
first column name th specification technique, the second refres to the existence
of a component concept in the sense of [17], the third asks for the hierarchical
composition and the last whether additional component operations are possible,
e.g for algebraic module specifications there are union, renaming, actualization and
others.

Spec. Tech. component hierarch comp. other comp. ops

Det. input automata yes yes
P/T nets yes yes union [35]
AHL nets yes [18] yes [18]
Graph transf. systems yes [44] yes [44] union [44]
Local action systems yes [44] yes [44] union [44]

Algebraic spec
yes, but with
add. parameter
[16]

yes [16] yes [16]

CSP as connector ar-
chitectures in [20]

yes [20]

UML 2 as connector ar-
chitectures in [13]

yes [13]

Table 1: Results concerning component operations

Table 2 lists whether specification techniques have a transformation concept in the
sense of the DPO approach, whether it is known that it forms an AHLR system,
and whether component transformation is available.

Spec. Tech. Trafo of Spec Spec is AHLR component trafo
det. input automata yes yes yes
P/T nets yes yes yes
AHL nets yes yes [21] straight forward
Graph transf. systems yes yes [39, 40] straight forward
Alg. spec yes yes straightforward

Table 2: Results concerning component transformations

In this paper we have investigated deterministic input automata and
place/transition nets, but other instantiations are easy to obtain. If the generic

2class diagrams, state machines, sequence diagrams

44

component concept can be used for a specific specification technique and the tech-
nique is an AHLR system, then component transformation can be achieved in a
straightforward way.

References

[1] M. C. Bastarrica, S. F. Ochoa, and P. O. Rossel. Integrated notation for soft-
ware architecture specification. In Proc. of the XXIV International Conference
of the SCCC, 2004.

[2] E. Battiston, F. De Cindio, and G. Mauri. OBJSA Nets: A Class of High-Level
Nets Having Objects as Domains. In Rozenberg/Jensen, editor, Advances in
Petri Nets. Springer, 1991.

[3] E. Battiston, F. De Cindio, G. Mauri, and L. Rapanotti. Morphisms and Mini-
mal Models for OBJSA Nets. In 12th International Conference on Application
and Theory of Petri Nets, pages 455–476, Gjern, Denmark, 1991. extended
version: Technical Report i. 4.26, Progretto Finalizzato Sistemi Informatici e
Calcolo Parallelo. Consiglio Nazionale delle Ricerche (CNR), Italy, Jan, 1991.

[4] L. Bernadinello and F. De Cindio. A survey of basic net models and modular
net classes. Lecture Notes in Computer Science; Advances in Petri Nets 1992,
609:304–351, 1992.

[5] M. Broy and T. Streicher. Modular functional modelling of Petri nets with
individual tokens. Advances in Petri Nets, LNCS 609, 1992.

[6] P. Buchholz. Hierarchical high level Petri nets for complex system analysis.
In Application and Theory of Petri Nets, volume LNCS 815, pages 119–138.
Springer, 1994.

[7] S. Christensen and L. Petrucci. Modular analysis of Petri nets. Computer
Journal, 43(3):224–242, 2000.

[8] S. Christinsen and N.D. Hansen. Coloured Petri nets extended with channels
for synchronous communication. In Application and Theory of Petri Nets,
volume LNCS 815, pages 159–178. Springer, 1994.

[9] L. de Alfaro and T.A Henzinger. Interface automata. In ESEC/FSE 01: Pro-
ceedings of the Joint 8th European Software Engineering Conference and 9th
ACM SIGSOFT International Symposium on the Foundations of Software En-
gineering, 2001.

[10] W. Deiters and V. Gruhn. The FunSoft Net Approach to Software Process
Management. International Journal on Software Engineering and Knowledge
Engineering, 4(2):229–256, June 1994.

[11] J. Desel, G. Juhás, and R. Lorenz. Process semantics of Petri nets over partial
algebra. In M. Nielsen and D. Simpson, editors, Proceedings of the XXI Inter-
national Conference on Applications and Theory of Petri Nets, volume LNCS
1825, pages 146–165. Springer, 2000.

[12] J. Desel, G. Juhás, and R. Lorenz. Petri Nets over Partial Algebras. In H. Ehrig,
G. Juhás, J. Padberg, and G. Rozenberg, editors, Advances in Petri Nets:
Unifying Petri Nets, volume 2128 of LNCS. Springer, 2001.

[13] H. Ehrig, B. Braatz, M. Klein, F. Orejas, S. Pérez, and E. Pino. Object-oriented
connector-component architectures. In Proc. FESCA, 2005.

45

[14] H. Ehrig, M. Gajewsky, and F. Parisi-Presicce. High-Level Replacement Sys-
tems with Applications to Algebraic Specifications and Petri Nets. In G. Rozen-
berg, U. Montanari, H. Ehrig, and H.-J. Kreowski, editors, Handbook of Graph
Grammars and Computing by Graph Transformations, Volume 3: Concur-
rency, Parallelism, and Distribution, chapter 6, pages 341–400. World Scien-
tific, 1999.

[15] H. Ehrig, A. Habel, H.-J. Kreowski, and F. Parisi-Presicce. Parallelism and
concurrency in high-level replacement systems. Math. Struct. in Comp. Science,
1:361–404, 1991.

[16] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 2: Module
Specifications and Constraints, volume 21 of EATCS Monographs on Theoret-
ical Computer Science. Springer Verlag, Berlin, 1990.

[17] H. Ehrig, F. Orejas, B. Braatz, M. Klein, and M. Piirainen. A generic compo-
nent concept for system modeling. In Proc. FASE ’02, LNCS 2306. Springer,
2002.

[18] H. Ehrig, F. Orejas, B. Braatz, M. Klein, and M. Piirainen. A Transformation-
Based Component Framework for a Generic Integrated Modeling Technique.
Journal of Integrated Design and Process Science, 6(4):78–104, June 2003.

[19] H. Ehrig and Pfender, M. et al. Kategorien und Automaten. de Gruyter
Lehrbuch, 1972.

[20] Hartmut Ehrig, Julia Padberg, Benjamin Braatz, Markus Klein, Fernando Ore-
jas, Sonia Pérez, and Elvira Pino. A generic framework for connector architec-
tures based on components and transformations. In Proc. FESCA’04, satellite
of ETAPS’04, Barcelona, ENTCS, volume 108, pages 53–67, 2004.

[21] K. Ehrig, H.and Ehrig, U. Prange, and G. Taentzer. Fundamentals of Algebraic
Graph Transformation. Springer, 2005. in preparation.

[22] R. Fehling. A concept of hierarchical Petri nets with building blocks. In
Advances in Petri Nets’93, pages 148–168. Springer, 1993. LNCS674.

[23] X. He. A Formal Definition of Hierarchical Predicate Transition Nets. In
Application and Theory of Petri Nets, volume LNCS 1091, pages 212–229.
Springer, 1996.

[24] K. Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and Prac-
tical Use, volume 1: Basic Concepts. Springer Verlag, EATCS Monographs in
Theoretical Computer Science edition, 1992.

[25] G. Juhás and R. Lorenz. Modelling with Petri modules. In B. Caillaud, X. Xie,
and L. Darondeau, Ph.and Lavagno, editors, Synthesis and Control of Discrete
Event Systems, pages 125–138. Kluwer Academic Publishers, 2002.

[26] E. Kindler. Modularer Entwurf verteilter Systeme mit Petrinetzen. PhD thesis,
Technische Universität München, Institut für Informatik, 1995.

[27] S. Lack and P. Sobociński. Adhesive Categories. In Proc. FOSSACS 2004,
volume 2987 of LNCS, pages 273–288. Springer, 2004.

[28] S. Mann, B. Borusan, H. Ehrig, M. Große-Rhode, R. Mackenthun, A. Sünbül,
and H. Weber. Towards a component concept for continuous software engi-
neering. Technical Report 55/00, FhG-ISST, 2000.

46

[29] Jasminka Matevska-Meyer, Wilhelm Hasselbring, and Ralf Reussner. Soft-
ware architecture description supporting component deployment and system
runtime reconfiguration. In Proceedings of Workshop on Component-Oriented
Programming (WCOP 2004), 2004.

[30] J. Meseguer and U. Montanari. Petri Nets are Monoids. Information and
Computation, 88(2):105–155, 1990.

[31] J. Padberg. Abstract Petri Nets: A Uniform Approach and Rule-Based Refine-
ment. PhD thesis, Technical University Berlin, 1996. Shaker Verlag.

[32] J. Padberg. Categorical Approach to Horizontal Structuring and Refinement
of High-Level Replacement Systems. Applied Categorical Structures, 7(4):371–
403, December 1999.

[33] J. Padberg. Place/Transition Net Modules: Transfer from Algebraic Specifica-
tion Modules. Technical Report TR 01-3, Technical University Berlin, 2001.

[34] J. Padberg. Basic Ideas for Transformations of Specification Architectures. In
R. Heckel, T. Mens, and Wermelinger M., editors, Proc. Workshop on Software
Evolution through Transformations (SET 02), Satellite Event of ICGT’02, vol-
ume 74 of Electronic Notes in Theoretical Computer Science (ENTCS), Octo-
ber 2002.

[35] J. Padberg. Petri net modules. Journal on Integrated Design and Process
Technology, 6(4):121–137, 2002.

[36] J. Padberg. Safety properties in Petri net modules. Journal on Integrated
Design and Process Technology, 2004.

[37] J. Padberg and M. Buder. Structuring with Petri Net Modules: A Case Study.
Technical Report TR 01-4, Technical University Berlin, 2001.

[38] J. Padberg and H. Ehrig. Petri net modules in the transformation-based com-
ponent framework. Journal of Logic and Algebraic Programming, page 35,
2005. accepted.

[39] F. Parisi-Presicce. Transformation of Graph Grammars. In 5th Int. Workshop
on Graph Grammars and their Application to Computer Science, Williamsburg
’94, LNCS 1073, 1996.

[40] F. Parisi-Presicce. On Modifying High-Level Replacement Systems. In
H. Ehrig, J. Padberg, and C. Ermel, editors, Proc. Workshop on Uniform
Approaches to Graphical Process Specification Techniques (UniGra’01), vol-
ume 44. ENTCS, 2001.

[41] Ralf H. Reussner and H. W. Schmidt. Using Parameterised Contracts to Pre-
dict Properties of Component-Based Software Architectures. In I. Crnkovic,
S. Larsson, and J. Stafford, editors, Workshop on Component-Based Software
Engineering, 2002.

[42] Ralf Heinrich Reussner. Parametrisierte Verträge zur Protokolladaption
bei Software-Komponenten. PhD thesis, Universität Karlsruhe (Technische
Hochschule), 2001.

[43] C. Sibertin-Blanc. Cooperative Nets. In Application and Theory of Petri
Nets’94, pages 471–490. Springer LNCS 815, 1994.

47

[44] M. Simeoni. An Abstract Module Concept for Graph Trans-
formation Systems. Electronic Notes of TCS, 51, 2002.
http://www.elsevier.nl/locate/entcs/volume51.html .

[45] M. Urbášek and J. Padberg. Preserving liveness with rule-based refinement of
place/transition systems. In Society for Design and Process Science (SDPS),
editors, Proc. IDPT 2002: Sixth World Conference on Integrated Design and
Process Technology, CD-ROM, page 10, 2002.

[46] H. Weber. Continuous Engineering of Communication and Software Infrastruc-
tures. volume 1577 of Lecture Notes in Computer Science 1577, pages 22–29.
Springer Verlag, Berlin, Heidelberg, New York, 1999.

48

A Review of VK Squares and Weak AHLR Cate-

gories

Definition A.1 (van Kampen square)
A pushout (1) is a van Kampen (VK) square, if for any commutative cube (2) with
(1) in the bottom and back faces being pullbacks holds: the top is pushout ⇔ the
front faces are pullbacks.

A m //

f

��
(1)

B

g

��
C n // D

A′

a

��

f ′jjjjj

ttjjjjj m′

MM

&&MM

C ′

c

��

n′

MM

&&MM
B′

b

��

g′jj

ttjjjjjjjj

(2)
D′

d

��

A

fiiiiiiii

ttii
m

NNN

&&NNN

C
n

NNN

&&NNN
B

gjjjjj

ttjjjjj

D

♦

The main reason why adhesive categories are important for the theory of graph
transformation and its generalization to high-level replacement systems (see [15])
is the fact that most of the HLR conditions required in [15] are shown to be valid
already in adhesive categories (see [27]). On the other hand HLR categories in
[15] are based on a class M of morphisms, which is restricted to the class of all
monomorphisms in adhesive categories. This rules out several interesting examples.
In order to avoid this problem we combine the two concepts leading to the notion
of weak adhesive HLR categories in [21].

Definition A.2 (Weak adhesive HLR category and system [21])
A category Cat with a morphism class M is called weak adhesive HLR category
(Cat,M), if

1. M is a class of monomorphisms closed under isomorphisms and closed under
composition (f : A → B ∈ M, g : B → C ∈ M ⇒ g ◦ f ∈ M) and
decomposition (g ◦ f ∈ M, g ∈M ⇒ f ∈M),

2. Cat has pushouts and pullbacks alongM-morphisms andM-morphisms are
closed under pushouts and pullbacks,

3. pushouts in Cat along M-morphisms are weak VK squares, i.e. the VK
square property holds for all commutative cubes with m ∈ M and (f ∈M or
b, c, d ∈ M) see definition A.1.

An adhesive HLR system AHS = (Cat,M, P) consists of an adhesive HLR cate-
gory (Cat,M) and a set of rules P . ♦

Fact A.3 ((parSet,M) is adhesive HLR category)
The category of set with partial functions parSet together with the class M of
injective functions (parSet,M) is adhesive HLR category. ♦

Proof Sketch:
The category of sets with partial functions parSet is isomorphisc to the category of
pointed sets which is the coslice category {•}\Set, where {•} is some one-element
set. As a coslice category adhesive HLR category if the underlying category is
adhesive HLR category, we have the above result.

√

49

B Technical Background

In this appendix we give for the sake of completeness all the definitions, lemmata
and proofs required for the two main results. These notions are not neccessary for
the understanding of the paper. They are only required for following the central
and new proof. So we do not give additional comments.

Concerning Automata

Definition B.1 (Subautomata)
Given A = (I, S, δ : I × S ⇀ S) and A′ = (I ′, S′, δ : I ′ × S′ ⇀ S′) then A′ ⊆ A if
and only if I ′ ⊆ I and S′ ⊆ S and the transition function is obviously the same if

defined, i.e δ′(i, s) =

{
⊥ ; δ(i, s) /∈ S′

δ(i, s) , else
The set of all subautomata of A is given by P(A) := {A′ ⊆ A}. ♦

Fact B.2 (The functor Prod preserves POs) ♦

Proof Sketch:
Given Prod : parSet × parSet → parSet with Prod(A, B) = A × B and for the
partial morphisms we have Prod(f, g) = f × g with f × g(a, b) = ⊥ ⇔ (f(a) =
⊥ ∨ g(b) = ⊥)
Given the POs D = B +A C and H = F +E G in parSet then Prod(D, H) ∼=
Prod(B, F) +Prod(A,E) Prod(C, G). obviously (1) commutes:

A×E
a×e //

c×g

��

B × F

b×f

��

x

��

(1)

C ×G
d×h

//

y //

D ×H

z
GG

GG

##G
GGG(3)

(2)

X

z : D ×H ⇀ X is defined by

z(d, h) =

{
x(b1, f1) ; if b(b1) = d and f(f1) = h
y(c, g)δ(i, s) ; if c(c1) = d and g(g1) = h

z is well-defined and unique with respect to (2) and (3) due to the PO properties
of D and H .

√

Concerning Petri Nets

Definition B.3 (Commutative Free Monoids)
Given a set P then the free commuative monoid (P⊕, ε,⊕) is constructed freely
according to the following equations for u, v, w ∈ P⊕ :

1. w ⊕ ε = w neutrality
2. w ⊕ v = v ⊕ w commutativity

3. w ⊕ (v ⊕ u) = (w ⊕ v)⊕ u associativity

50

Elements w ∈ P⊕ can be given by finite linear sums: w =
∑

p∈P λp · p with λp ∈ N.
Hence, the usual operations can be extended from natural numbers to linear sums.
We use:

w ⊕ w′ addition
w 	 w′ substraction
w ≤ w′ comparison

♦

Definition B.4 (Restriction of a Linear Sum)
For w =

∑
p∈P λp · p we define the restriction to p ∈ P : w|p = λp · p And for

P ′ ⊆ P we define: w|P ′ =
∑

p∈P ′ λp · p For a mapping f : P1 → P2 we use as a
abbreviation:w|f(P) = w|f ♦

Definition B.5 (Pre-Set, Post-Set)
The pre-set of a net element is given by •t = {p|pre(t)|p 6= ε} or •p = {t|post(t)|p 6=
ε}, and analogously for the post-set. ♦

Definition B.6 (Subnets)
N ′ ⊆ N if and only if P ′ ⊆ P and T ′ ⊆ T as well as for pre- and postdomain
pre′(t) = pre(t)|P ′ for all t ∈ T ′ , post analogously.
The set of all subnets of N is given by P(N) := {N ′ ⊆ N}. ♦

Definition B.7 (Net of a Transition)
Given a transition t ∈ T for some net N , then net(t) the net surrounding t is given
by : net(t) := (P t, T t, pret, postt) with

• P t = •t ∪ t•,
• T t = {t}, and

• pret : T t → P t⊕ with pret(t) = pre1(t), analogously postt ♦

51

C Additional Diagrams

EL

��

��+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

EK

��

��+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

//oo ER

��

��+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

IL

!!C
CC

CC
CC

C

��+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

hL

��

IK

!!D
DD

DD
DD

D

��,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,

//oo

hK

��

IR

!!C
CC

CC
CC

C

��+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

hR

��

BL

��+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

BK

��+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

//oo BR

��+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

E1

��

E2

��

//oo E3

��

I1

!!B
BB

BB
BB

B

h1

��

I2

!!C
CC

CC
CC

C
//oo

h2

��

I3

!!C
CC

CC
CC

C

h3

��

B1

��

B2
//oo

��

B3

��

E′
L

��

��+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

E′
K

��

��+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

//oo E′
R

��

��+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

I ′L

 @
@@

@@
@@

@

��
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

I ′K

 B
BB

BB
BB

B

��+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

//oo I ′R

 A
AA

AA
AA

A

��
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

B′
L

��+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

B′
K

��+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

//oo B′
R

��+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

E′
1

��

E′
2

��

//oo E′
3

��

I ′1

 B
BB

BB
BB

B I ′2

!!C
CC

CC
CC

C
//oo I ′3

!!B
BB

BB
BB

B

B′
1

 A
AA

AA
AA

B′
2

 A
AA

AA
AA

A
//oo B′

3

 A
AA

AA
AA

A

B̂1 B̂2
//oo B̂3

52

contact_bank

contact_bank

IMP_ATM2

update_acc

eject

ok

reject amount_50

amount_100

corrections

ok eject put_money
insert

contact_bank

failed

valid_PINsend_PIN

valid_PINsend_PIN

IMP_ATM1

EXP_ATM1

BOD_ATM2

EXP_ATM2
update_acc

contact_bank

failed

send_PIN valid_PIN

contact_bank

failed

update_acc

eject

insert

amount_50

amount_100

corrections

ok eject

ok

BOD_ATM

valid_PINsend_PIN

eject amount_50

amount_100

corrections

ok eject
insert

send_PIN

okreject

BOD_ATM1

valid_PIN

update_acc

put_money

put_money
update_acc

rejectfailed

contact_bank

Figure 21: Composition ATM = ATM1 ◦ATM2

5
3

eject

ok

reject amount_50

amount_100

corrections

ok eject put_money
insert

EXP_ATM6

update_accsend_accnr

update_acc

put_money

count

put_money

update_accvalid_PINsend_PIN

valid_PINsend_PIN

contact_bank

close_conupdate_accsend_accnr

valid_PINsend_PIN

amount_50

amount_100

ok eject

BOD_ATM7

corrections

close_con

eject amount_50

amount_100

corrections

ok eject
insert

reject ok

send_PIN

BOD_ATM6 valid_PIN

count

send_accnr

update_acc

IMP_ATM6

EXP_ATM5

IMP_ATM5

contact_bank

failed

BOD_ATM5

open_con

send_PIN valid_PIN

ok

eject

insert

open_con

contact_bank

failed

reject

Figure 22: Composition ATM7 = ATM6 ◦ATM5

5
4

