
Ensuring Structural Constraints in Graph-Based
Models with Type Inheritance

Gabriele Taentzer1 and Arend Rensink2

1 Computer Science Department
Technical University of Berlin

Berlin, Germany
2 Computer Science Department

University of Twente
Enschede, The Netherlands

Abstract Graphs are a common means to represent structures in models and
meta-models of software systems. In this context, the description of model do-
mains by classifying the domain entities and their relations usingclass diagrams
or type graphshas emerged as a very valuable principle. The constraints that can
be imposed by pure typing are, however, relatively weak; it is therefore com-
mon practice to enrich type information withstructural properties(such as local
invariants or multiplicity conditions) orinheritance.
In this paper, we show how to formulate structural properties usinggraph con-
straintsin type graphs with inheritance, and we show how to translate constrained
type graphs with inheritance to equivalent constrained simple type graphs. From
existing theory it then follows that graph constraints can be translated into pre-
conditions for productions of a typed graph transformation system which ensures
those graph constraints. This result can be regarded as a further important step of
integrating graph transformation with object-orientation concepts.

1 Introduction

Graphs and graphical representations play a central role in modeling and meta-modeling
of software systems. Graphs are used to describe essential structures of entities and their
relations. Their representation ranges from simply formatted, graph-like notations such
as class diagrams, Petri nets, automata, etc. to more elaborated diagram kinds such as
message sequence charts and to more application-specific notations for modeling, e.g.,
for industrial production processes.

In graph-based modeling and meta-modeling, graphs are used to define the static
structure, such as class and object structures, data base schemes, as well as visual sym-
bols and interrelations, i.e., visual alphabets and sentences. Graph manipulations de-
scribe the dynamic changes of these structures. Classifying the possible entities and
interrelations in static system structures or visual language constructs has emerged as
a valuable principle for the description of model domains. In the object-oriented ap-
proach,class diagramsare the basic means to specify classification structures, for in-
stance in UML (Unified Modeling Language) [12] for software systems and MOF (Meta

Object Facility) [12] for visual language specification. When applying graph transfor-
mation for modeling or meta-modeling,type graphsare used to classify graph nodes
and edges.

One of the main principles to handle complex classification structures comes from
the object-orientation paradigm: class inheritance enhances the typing principle by
adding more abstract types on top of the ones concretely used in the (meta)models.
Thus, inheritance allows much more compact representations by reducing redundancy.
The principle of inheritance has been carried over and formalized for graph transfor-
mation in [4]; there we have shown that node inheritance in typed graph transformation
leads to a denser form of a graph transformation system, since similar transformation
rules can be abstracted to one.

The power of pure typing to describe and constrain the static structure is, however,
relatively weak (and is not enhanced by inheritance). It is therefore common practice to
enrich type information withstructural propertieswhich further constrain the correct
instances. A typical class of such structural properties aremultiplicity conditions, which
restrict correctly typed structures to those where the numbers of entities and interrela-
tions must be within given ranges. Further constraints can belocal invariantswhich
require, e.g., the existence or non-existence of certain substructures. In class diagrams,
some of these constraint kinds are built-in, like multiplicities, while others have to be
stated by separate constraints using, e.g., OCL [12]. On the other hand, typed graphs
can be equipped withgraph constraints, as proposed first in [10], which can be used to
describe a variety of local invariants. Note, however, that graph constraints have so far
been studied forflat graphs only (i.e., without node type inheritance).

The object-oriented and graph transformation approaches can be integrated by iden-
tifying classes with node types, and associations with edge types. In this way, class in-
heritance naturally corresponds to node type inheritance. At this stage, therefore, we
have already the possibility to manipulate object structures by rule applications, which
is theconstructiveelement in system modeling and meta-modeling.Declarativeele-
ments come in through constraints, formulated on top of type graphs with inheritance.
For instance, we show how multiplicities andedge inheritancecan be expressed by
graph constraints. To have a precise definition at hand, we give a translation of con-
strained type graphs with inheritance to constrained flat type graphs. From existing the-
ory [8] it then follows that graph constraints can be translated into pre-conditions for the
rules of a typed graph transformation system which ensure those graph constraints. Our
result can be regarded as a further important step of integrating graph transformation
with object-orientation concepts. Application areas for the resulting theory are for in-
stance:operational semanticsfor object-oriented systems as in [6] (leading to a theory
of behavioral verification) andrefactoringas in [11] (leading to a formal underpinning).
We use an example from the former area as a running example in the paper.

The paper is organized as follows: In the next section, we review the basis of in-
tegrating graph transformation with object-orientation concepts by first recalling type
graphs with node type inheritance introduced in [4]. In Section 3, graph constraints over
type graphs with inheritance are defined and a translation to constraints over simple type
graphs is presented. Then in Section 4, multiplicities and edge inheritance are shown
to be expressible by graph constraints. Section 5 presents the basic transformation con-

2

cepts for typed graphs using type inheritance, and describes how graph constraints can
be ensured by typed graph transformation systems, reusing and extending the results in
[8].

2 Type Graphs with Node Type Inheritance

The basic idea for specifying node type hierarchies is to introduce a special kind of
(directed) edges, calledinheritance edges, into type graphs. The source node of an
inheritance edge is said to be a sub-type of the target node, which is called the former
one’s super-type. Moreover, nodes are marked either asconcreteor abstract; we will
see that only concrete type nodes can have direct instances. In host graphs only nodes
of concrete types shall occur, while graphs in rules may contain nodes of both types.

Definition 1 (type graph with inheritance) A type graph with inheritance is a triple
TGI = (TG , I, A) consisting of a type graphTG = (N,E, s, t) (with a setN of
nodes, a setE of edges, source and target functionss, t : E → N), an acyclic inheri-
tance relationI ⊆ N ×N , and a setA ⊆ N , called abstract nodes. For eachx ∈ N ,
the inheritance clanis defined byclanI(x) = {y ∈ N | (y, x) ∈ I∗}, whereI∗ is the
transitive closure ofI.

Example 1.As sample type graph we use a graph description of a special kind of sets,
namely ordered sets, which contain a number of objects which can be put into some
order indicated by edges. We consider two possible specializations of ordered sets,
namelyStringSet and IntegerSet, which are intended to containStrings andIntegers,
respectively. Considering the corresponding type graphTGI in Figure 1, we use edge
typescnt andnxt to describe the containment and order relations on objects in ordered
sets.

The type graph does not yet demand a strict separation of strings and integers in
their kinds of sets. E.g. this type graph does not rule out thatStringSets contain also
Integers, and vice versa.

StringSet

IntegerSetOrderedSet
{abstract}

Integer

String String

Integer

StringSet

IntegerSet IntegerSet

StringSet

Integer

String

Object
{abstract}

nxt

cnt

{abstract}
Object

{abstract}
OrderedSet

cnt

nxt

TGI TGI T̂GI

cnt
nxt

nxt

Figure1. A sample type graph with node type inheritance, and its abstract and concrete closure

To benefit from the existing theory of graph transformation [7], which does not recog-
nize the notion of inheritance, we define theflatteningor closureof type graphs with
inheritance to ordinary ones.

3

Definition 2 (Closure of type graph with inheritance) Let TGI = (TG , I, A) be a
type graph with inheritance, and letTG = (N,E, src, tar). Theabstract closureof
TGI is the graphTGI = (N,E, src, tar) with

– E = {(n1, e, n2) | e ∈ E,n1 ∈ clanI(src(e)), n2 ∈ clanI(tar(e))};
– src((n1, e, n2)) = n1;
– tar((n1, e, n2)) = n2.

Theconcrete closureof TGI is the graphT̂GI = TGI |N−A.1

Example 2.Fig. 1 also shows the abstract and concrete closure of the type graph with
inheritanceTGI . Please note that for better readability of the closures, the edge types
are bundled using auxiliary nodes. Note that the inheritance edges are no longer present
in the closure, and the abstract node types and adjacent edge types are absent from the
concrete closure. Instead, for all combinations of corresponding sub-types a new edge
type is inserted — including those which do not follow our intuition, like edge typenxt
betweenString andInteger. We will use structural graph properties in addition to rule
out those unwanted structures.

The distinction between the abstract and the concrete closure of a type graph is nec-
essary, since we use instance graphs with respect to either one. For instance, we will
define abstract graph transformation rules of which the left hand and right hand sides are
typed over the abstract closure (see Section 5), whereas ordinary host graphs and con-
crete rules are typed over the concrete closure. Note that, due to the canonical inclusion
incTG : T̂GI ↪→ TGI , all graphs typed over̂TGI are also typed overTGI .

Definition 3 (instance graph) An abstract instance graph(G, tpA) of a type graph
with inheritanceTGI is an instance graph ofTGI ; i.e., tpA : G→ TGI . Analogously,

a concrete instance graph(G, tpC) of TGI is a graph typed over̂TGI .

The construction of the closure in Def. 2 gives rise to a characterization of instance
graphs directly on type graphs with inheritance. Namely, instance graphs can be typed
over the type graph with inheritance by a pair of functions, one assigning a node type to
each node and the other one assigning an edge type to each edge. This pair of functions
does not constitute a graph morphism, but will be calledclan morphism; it uniquely
characterizes the type morphism into the flattened type graph.

Definition 4 (clan morphism) Let TGI = (TG , I, A) be a type graph with in-
heritance. Aclan-morphismfrom G to TGI is a pair ctp = (ctpN : NG →
NTG , ctpE : EG → ETG) such that for alle ∈ EG the following holds:

– ctpN ◦ sG(e) ∈ clanI(sTG ◦ ctpE(e)) and
– ctpN ◦ tG(e) ∈ clanI(tTG ◦ ctpE(e)).

(G, ctp) is called aclan-typed graph. ctp is calledconcreteif ctp−1
N (A) = ∅.

Example 3.Figure 2 shows a sample instance graph typed overTGI of Fig. 1. The
edge typing is not shown explicitly, but follows uniquely from the node typing. The
typing is done by a clan morphism which maps each node to its node type and each
edge to an edge type between potentially more abstract node types holding the source
and target types of the instance edge in their clans.
1 Given a graphG = (N,E, s, t) and a setX ⊆ N , we denote byG|X the sub-graph(X,EX =
{e ∈ E | s(e), t(e) ∈ X}, s|EX , t|EX).

4

:String

s:StringSet

:String

:String

OrderedSet
{abstract}

IntegerSet

StringSet

Integer

String

cnt

nxt

cnt

nxt

cnt

Object
{abstract}

nxt

cnt

I TGI

Figure2. Sample clan-typed graph

Proposition 1 (universal clan morphism). Let TGI = (TG , I, A) be a type graph
with inheritance. There is a universal clan morphismuTG : TGI → TG such that for
each clan morphismctp : G → TG there is a unique graph morphismtp : G → TGI
with uTG ◦ tp = ctp. Moreover, there is a bijective correspondence between clan
morphismsctp : G→ TG and graph morphismstp : G→ TGI such thatuTG ◦ tp =
ctp.

For the proof see [3]. By abuse of notation we often useG to stand for the clan-typed
graph(G, ctpG).

To formalize the relationship between abstract and concrete rules (see Section 5),
we introduce the notion oftype refinement. Thus imposes an order over possible typ-
ing morphisms for a given instance graph. A typing morphism is said to befiner than
another one if it assigns more concrete node types to the nodes of the instance graph.

Definition 5 (type refinement and typed graph morphism) Let TGI = (TG , I, A)
be a type graph with inheritance, and letctp, ctp′ : G → TG be clan typings.ctp is a
refinementof ctp′, denotedctp ≤ ctp′, if

– ctpN (n) ∈ clanI(ctp′N (n)) for all n ∈ NG, and
– ctpE = ctp′E .

Given two clan-typed graphs(G, ctpG : G→ TG) and(H, ctpH : H → TG), a graph
morphismg : G → H is calledtype-refiningif g ◦ ctpH ≤ ctpG, andtype-preserving
if g ◦ ctpH = ctpG.

We also write(G, ctpG) ≤ (H, ctpH) if G = H and ctpG ≤ ctpH . We write
g : G →c H to denote thatG andH are both concrete andg is an injective type-
preserving morphism, andg : G →a H to denote thatg is an injective type-refining
morphism.

The following proposition states some facts regarding type-refining and type-
preserving morphisms.

Proposition 2. LetG,H be clan-typed graphs, and letg : G→H be type refining.

1. There is a unique clan-typed graphK ≤ G such thatg : K→H is type-preserving;
2. For any clan-typed graphK ≥ G, g : K→H is type-refining.
3. For any clan-typed graphK ≤ H, g : G→K is type-refining.

5

Proof. 1. Let us write outG in full as (G, ctpG). Let (K, ctpK) = (G, ctpH ◦ g);
then clearly(K, ctpK) ≤ (G, ctpG) andg : K → H is a type-preserving graph
morphism. On the other hand, if(L, ctpL) ≤ (G, ctpG) andg : L→H is a type-
preserving morphism, thenL = G = K andctpL = ctpH ◦ g = ctpK , hence
(L, ctpL) = (K, ctpK).

2. g is clearly a graph morphism, andctpK ≥ ctpG ≥ ctpH ◦ g; since≥ is transitive,
g : K→H is type-refining.

3. g is clearly a graph morphism, andctpG ≥ ctpH ◦ g ≥ ctpK ◦ g due toctpH ≥
ctpK and the fact that composition of morphisms is monotonic in≥; henceg : K→
H is type-refining.

3 Structural Properties over Type Graphs with Inheritance

The following definition extends the concept of graph constraints, originally introduced
in [10] (where they are called consistency constraints). In fact there are two points of
change:

– Rather than using ordinary typed graphs we are defining constraints over concrete
clan-typed graphs. However, this is not a real extension since (due to Prop. 1),
there is a one-to-one correspondence between concrete clan morphisms and type
morphisms to the concrete closure of the type graph.

– Rather than having constraints consisting of a single premise and conclusion, as in
[10,8], we generalize to multiple conclusions. This is a real extension, as it properly
enlarges the set of properties expressible through graph constraints.

Whenever we mention “clan-typed graphs” in the following, we mean graphs with a
clan morphism to some implicit, globally given type graph with inheritanceTGI .

Definition 6 (graph atoms and formulae) LetL,G be clan-typed graphs, such thatG
is concrete.

– A concrete [abstract] graph atomA overL is a tuple(n : L→cP,Con) [(n : L→a

P,Con)], wheren is an injective type-preserving [type-refining] morphism, and
Con is a set of injective type-preserving [type-refining] morphisms starting inP .
If L = ∅ we also write(P,Con) for A.

– A is said to be satisfied by an injective type-preserving [type-refining] morphism
m : L→c G [m : L→a G], denotedm |=c A [m |=a A], if for all injective type-
preserving [type-refining] morphismsp : P→cG [p : P→aG] such thatm = p◦n,
there is a(q : P → C) ∈ Con and an injective type-preserving [type-refining]
morphismc : C →c G [c : C →a G] such thatp = c ◦ q. If L = ∅ (i.e., the empty
graph) then we also writeG |=c A [G |=a A].

– A concrete [abstract] graph formulaF overL is a boolean formula over concrete
[abstract] graph atoms overL. The satisfaction relation|=c [|=a] is extended to
graph formulae by defining the semantics of the boolean operators in the usual
way. We sometimes callF a constraintif L = ∅, and anapplication condition
otherwise.

We can now define the flattening of an abstract atom and an abstract formula.

6

Definition 7 (flattening) LetK,L be clan-typed graphs, such thatK ≤ L andK is
concrete.

– For any abstract graph atomA = 〈n : L→a Q,Con〉, we define theK-flattening
ofA as follows:

flatK(A) =
∧
{(n : K→c P,flatP (Con)) | P ≤ Q}

flatP (Con) = {q : P →c C | (q : Q→a D) ∈ Con, C ≤ D} .

– For any abstract graph formulaF overL, we define theK-flatteningflatK(F)
by replacing each abstract graph atomA occurring in F by the corresponding
K-flatteningflatK(A).

The following theorem is the main contribution of this paper. It states that satisfaction
of an abstract atom or formula over an abstract clan-typed graphL by a type-refining
morphismm : L →a G is equivalent to satisfaction of the flattening of that atom or
formula with respect to the concrete clan-typed graphK ≤ L for whichm : K →c G
is type-preserving (which uniquely exists due to Prop. 2.1). This allows us to re-use
existing theory on concrete graph formulae.

Theorem 1 (flattening of abstract graph formulae). Let K,L,G be clan-typed
graphs such thatK ≤ L, and letm : K →c G. For any abstract graph atomA and
graph formulaF overL the following holds:

(m : L→a G) |=a A iff (m : K→c G) |=c flatK(A)
(m : L→a G) |=a F iff (m : K→c G) |=c flatK(F) .

Proof. We prove the case for atoms; the case for formulae follows by a straightforward
induction over the structure of boolean formulae. LetA = (n : L→a Q,Con).

If. Assume(m : K →c G) |=c flatK(A), and letp : Q→a G be arbitrary such that
m = p ◦ n; that is,ctpG ◦ p ≤ ctpQ. SinceG is concrete, it follows thatctp′ =
ctpG ◦ p is a concrete clan morphism forP . We denoteP = (Q, ctp′); it follows
thatP ≤ Q andp : P →c G. Sincem : K →c G is also type-preserving, we may
conclude that so isn : K→c P .
Due to(m : K →c G) |=c flatK(A) = (n : K →c P,flatP (Con)), it follows that
there is aq : P →c C ∈ flatP (Con) and ac : C →c G such thatp = c ◦ q. By
construction offlatP (Con), there is a(q : Q→a D) ∈ Con such thatC ≤ D;
hence (due to Prop. 2.2),c : D→a G is type-refining. We may concludem |=a A.

Only if. Assume(m : L →a G) |=a A. Let P ≤ Q andn : K →c P be arbitrary.
We prove(m : K →c G) |=c (n : K →c P,flatP (Con)); this then impliesm |=c

flatK(A).
Let p : P →c G be arbitrary such thatm = p ◦ n; that is,ctpG ◦ p = ctpP . Due
to (m : L→a G) |=a A, there is a(q : Q→a D) ∈ Con andc : D→a G such that
p = c ◦ q. Due to Prop. 2.1 there is a (unique) concreteC ≤ D such thatc : C→G
is type-preserving. HencectpC = ctpG ◦ c, implying ctpC ◦ q = ctpG ◦p = ctpP .
It follows thatq : P→cC, and hence(q : P→cC) ∈ flatP (Con). This establishes
(m : K→c G) |=c flatK(A).

7

4 Multiplicities and Edge Inheritance as Graph Formulae

In this section we show that two existing classes of constraints on type graphs with
inheritance can be translated to abstract graph formulae. This serves to give some intu-
ition about graph formulae, and to demonstrate that they are expressive enough to cover
practically useful examples.

Multiplicities By enriching a type graph with multiplicities we can restrict the class of
instance graphs to those which are not only correctly typed but also satisfy additional
constraints concerning the number of nodes and edges for each type. These constraints
are expressed using so-calledmultiplicities.

Definition 8 (multiplicities) A multiplicity is a pair [i, j] ∈ N × (N ∪{∗}) with i ≤ j
or j = ∗. The set of multiplicities is denotedMult . The special value∗ indicates that
the maximum number of nodes or edges is not constrained. For an arbitrary finite set
X and[i, j] ∈ Mult , we write|X| ∈ [i, j] if i ≤ |X| and eitherj = ∗ or |X| ≤ j.

As usual, we use multiplicities to decorate the nodes and edges of type graphs. For the
nodes, the multiplicity indicates the total number of instances; for the edges, we use
multiplicities expressing the number of incoming, respectively outgoing edgesfor each
target, respectively source instance.

Definition 9 (Type graph with multiplicities) A type graph with multiplicities is a tu-
pleTGM = (TGI ,mN ,msrc ,mtar) consisting of a type graph with inheritanceTGI
and additional functionsmN : NTGI → Mult , callednode multiplicity function, and
msrc ,mtar : ETGI → Mult , callededge multiplicity functions.

The satisfaction of multiplicity constraints is expressed by counting inverse images with
respect to the clan typing.

Definition 10 (Semantics of type graphs with multiplicities) A clan-typed graphG
over TGI = (TG , I, A) is said to satisfy a type graph with multiplicities
(TGI ,mN ,msrc ,mtar) if the following conditions hold:

– for all n ∈ NTG , |ctp−1
G (clanI(n))| ∈ mN (n);

– for all e ∈ ETG andp ∈ ctp−1
G (clanI(src(e))), |ctp−1

G (e)∩src−1
G (p)| ∈ mtar (e);

– for all e ∈ ETG andp ∈ ctp−1
G (clanI(tar(e))), |ctp−1

G (e)∩ tar−1
G (p)| ∈ msrc(e).

We now show how a type graph with multiplicitiesTGM can be translated to an ab-
stract graph formula that is satisfied by precisely those clan-typed graphs that also sat-
isfy TGM . In order to do that, we introduce two special types of graphs: for alli ∈ N ,

– For alln ∈ N ,Gni is the graph consisting ofi distinctn-typed nodes.
– For alle ∈ E, Ge,src

i is thesetof graphs withi distincte-typed edges and all source
nodes glued together; dually,Ge,tar

i is the set of graphs withi distincte-typed edges
and all target nodes glued together.

Definition 11 (Multiplicities as abstract graph formulae) Given a type graph with
multiplicitiesTGM = (TGI ,mN ,msrc ,mtar), we define

FTGM =
∧
n∈NTGI

Fn ∧
∧
e∈ETGI

(F src
e ∧ F tar

e)

whereFn, F src
e andF tar

e are abstract graph formulae defined as follows:

8

– Fn regulates the node multiplicity ofn. LetmN (n) = [i, j]; thenFn = An≥i ∧
An≤j if j 6= ∗ andFn = An≥i otherwise, where

An≥i = (∅, {∅ → Gni })
An≤j = (Gnj+1, ∅) .

– F src
e regulates the edge source multiplicity ofe. Letmsrc(e) = [i, j]; thenF src

e =
Asrc
e≥i ∧ F

src
e≤j if j 6= ∗ andF src

e = Asrc
e≥i otherwise, where

Asrc
e≥i = (Gtar(e)

1 , {qtar : Gtar(e)
1 → H | H ∈ Ge,tar

i })

F src
e≤j =

∧
{(H, ∅) | H ∈ Ge,tar

j+1 }

with qtar mapping the sole node ofGtar(e)
1 to the unique target node ofH.

– F tar
e regulates the edge target multiplicity ofe, and is the exact dual ofF src

e (ob-
tained by switchingsrc andtar everywhere in the above definition).

Theorem 2 (semantics of multiplicities).For all type graphs with multiplicityTGM
and all graphsG clan-typed overTGI , G satisfiesTGM (in the sense of Def. 10) if
and only ifG |=a FTGM .

Proof. The essence of the construction ofFTGM is that for each condition arising out
of the satisfaction of the multiplicities, there is a graph (sub)-formula expressing exactly
that condition. We show this for the first two conditions in Def. 10; the third is analogous
to the second.

– For alln ∈ NTG , V = ctp−1
G (clanI(n)) is the set of all (distinct) nodes typed by

a node in the clan ofn. It follows that there is an injective type-refining morphism
a : Gni →G to that set for alli ≤ |V | but not fori > |V |; henceG |=a An≥i for all
i ≤ |V | andG 6|=a An≤j for all j > |V |. This implies thatG |=a An≥i ∧ An≤j if
and only if|V | ∈ [i, j] andG |=a An≥i if and only if |V | ∈ [i, ∗].

– For alle ∈ ETG andp ∈ ctp−1
G (clanI(src(e))), Ep = ctp−1

G (e) ∩ src−1
G (p) is the

set of alle-typed edges inG starting atp. It follows that for alli ≤ |Ep| there is an
injective type-refining morphisma : H→G for someH ∈ Ge,src

i such thata maps
the unique source node ofH to p; but no such morphism exists ifi > |Ep|. This
implies thatAsrc

e≥i ∧ F
src
e≤j |=a G if and only if |Ep| ∈ [i, j] andAsrc

e≥i |=a G if and
only if |Ep| ∈ [i, ∗] ut

Example 4(multiplicity constraints).In Figure 3 (left hand side), the type graphTGI
of Fig. 1 has been extended with multiplicities at edge types. For the notation of mul-
tiplicities we follow UML. Each object has always to belong to precisely one ordered
set. This statement contains two constraints: a lower and an upper bound, which in this
case are both equal to 1. Vice versa, ordered sets are allowed to contain arbitrarily many
objects, which is indicated by an asterisk. Thenxt relation on objects is constrained to a
partial order where at most one object isnxt, but each object may have arbitrarily many
predecessors. This results in the five graph constraints depicted in Figure 4, where the
premises are depicted on the left and the conclusions on the right of the block arrow, and

9

String

Integer

StringSet

IntegerSetOrderedSet
{abstract}

OrderedSet
{abstract}

String

StringSet

IntegerSet

IntegerObject
{abstract}

nxt

cnt

*

*

1

0..1
Object
{abstract}

nxt

cnt

nxt

nxt

cnt

cnt

TGM TGEI

Figure3. Type graph with multiplicities, respectively edge inheritance

graph atoms of the form(P, {P → Ci}) are depicted more compactly as(P → {Ci}).
The first constraint states that every object is contained in a set (which is apositive
constraint), the next two that an object is not allowed to have two outgoing contain-
ment edges, neither to different nor to the sameOrderedSet node (which arenegative
constraints), and the last two constraints (also negative) express that an object does not
have two successor objects.

Object
OrderedSet

OrderedSet

cnt

cnt
Object OrderedSet

cnt

cnt

Object
Object

Object

nxt

nxt
Object Object

nxt

nxt

1:Object 2:OrderedSetcnt1:Object

Figure4. Multiplicity constraints as abstract graph atoms

The next step is to flatten these graph constraints; i.e., we formulate graph con-
straints w.r.t. the concrete closurêTGI also given in Fig. 1. Some representatives of
the flattened constraints are shown in Fig. 5. The first of these is the complete flatten-
ing of the first constraint in Fig. 4; the second and third show two of the four atomic
constraints that constitute the flattening of the second constraint in Fig. 4.

1:String
1:String 2:IntegerSetcnt

1:String 2:StringSetcnt

1:String
2:StringSet

3:StringSet
1:String

3:IntegerSet

2:StringSet

cnt

cnt

cnt

cnt

Figure5. Flattened multiplicity constraints

10

Edge inheritanceAs we have seen, node inheritance is used to formulate a compact
type graph in the sense that edge types between super types stand for all combinations
of edge types between their sub-types (including themselves). This might lead to a type
graph with too loose type information concerning edges. In the following, we introduce
edge type inheritance, which aims at restricting the combinations of sub-types allowed.

Definition 12 (type graph with edge inheritance) A type graph with edge inheritance
is a tuple(TG , I, A) whereI ⊆ (N × N) ∪ (E × E) is an acyclic relation such
that TGI = (TG , I|N , A) is a type graph with (node) inheritance, and moreover,
(e, f) ∈ I ∩ (E × E) impliessrc(e) ∈ clanI(src(f)) andtar(e) ∈ clanI(tar(f)).

The idea is that if a type edgee inherits from another type edgef , thenf can occur
as an edge type only for concrete graph edges whose source and target node types are
not in the clan of the source type, resp. target ofe. The semantics of edge inheritance
can either be expressed by redefining the closure, or directly as a constraint on the clan
morphism. In other words, if the source or target node of an edge would allowe as an
edge type, then no proper super-type ofe may be used.

Definition 13 (semantics of type graphs with edge inheritance)A clan-typed graph
G overTGI is said tosatisfya type graph with edge inheritance(TG , I, A) for which
TGI = (TG , I|N , A) if for all x ∈ EG and (e, ctpG(x)) ∈ I, ctpG(srcG(x)) /∈
clanI(srcTG(e)) andctpG(tarG(x)) /∈ clanI(tarTG(e)) .

We now construct an abstract graph formula which expresses the same constraint.

Definition 14 (edge inheritance as an abstract formula)Given a type graph with
edge inheritanceTGEI = (TG , I, A), we defineFTGEI =

∧
(e,f)∈I A

src
e,f ∧ A

tar
e,f

where

Asrc
e,f = (Gsrc(e),f,tar(f), {qe,f : Gsrc(e),f,tar(f) → Gsrc(e),e,tar(e)})

Atar
e,f = (Gsrc(f),f,tar(e), {qe,f : Gsrc(f),f,tar(e) → Gsrc(e),e,tar(e)}) .

withGn1,e,n2 for n1 ∈ clanI(src(e)) andn2 ∈ clanI(tar(e)) being the graph consist-
ing of two nodes typed overn1 andn2, and one edge typed overe. qe,f is the unique
type-refining morphism between the source and target graph.

Theorem 3 (semantics of edge inheritance).For all type graphs with edge inheri-
tanceTGEI = (TG , I, A) and all graphsG clan-typed over(TG , I|N , A),G satisfies
TGEI (in the sense of Def. 13) if and only ifG |=a FTGEI .

Proof. Let (e, f) ∈ I ∩ (E × E). We show thatAsrc
e,f precisely captures the condition

on the source typingG-edges mapped tof ; the proof for the target typing is analogous.
Note that, below, we extend the notion of inheritance clan toE by definingclanI(x) =
{y ∈ E | (y, x) ∈ I∗} for all x ∈ E.

If. AssumeG |=a Asrc
e,f and letx ∈ EG such thatf = ctpG(x). If ctpG(srcG(x)) ∈

clanI(srcTG(e)) then there is an injective type-refining morphism mapping the
unique edge ofGsrc(e),f,tar(f) to x, but which cannot be refined further to
Gsrc(e),e,tar(e) because (due to the acyclicity ofI) ctpG(x) /∈ clanI(e). This con-
tradictsG |=a Asrc

e,f .

11

Only if. AssumeG satisfiesTGEI , and leta : Gsrc(e),f,tar(f)→G be an injective type-
refining morphism. It follows thatctpG(x) ∈ clanI(f) for the sole edgex ∈ EG in
the image ofa; however,ctpG(x) = f contradicts the assumption thatG satisfies
TGEI . We concludectpG(x) ∈ clanI(e), and hencea : Gsrc(e),e,tar(e) → G is
also a type-refining morphism. This impliesG |=a Asrc

e,f . ut

Example 5(edge inheritance constraints).In Figure 3 (right hand side) we extended
the type graph of Fig. 1 with edge type inheritance, depicted by (dashed) inheritance
arrows between edges. Hence this type graph expresses (among other things) that an
instance may not contain anxt-edge from aString-typed node to anything but another
String-typed node — in particular not to anInteger-typed node — or to a node typed by
a subtype ofString(of which there are none in this example).

1:StringSet 2:Object 2:String1:StringSet

1:OrderedSet 2:String 2:String1:StringSet

1:String 2:Object 2:String1:String

1:Object 2:String 1:String 2:String

nxt

nxt

cnt

cnt cnt

cnt

nxt

nxt

Figure6. Edge inheritance as graph constraints

Similarly to the example above, we flatten these graph constraints, i.e., we formulate
graph constraints w.r.t. the concrete closurêTGI given in Fig. 1. The constraints shown
in Fig. 7 are the complete flattening of the first constraint in Fig. 6. Note that the first
flattened constraint is always true, and the second describes a handle not allowed by the
edge inheritances.

1:String 2:String 1:String 2:Stringnxtnxt

1:Integer 2:Objectnxt

Figure7. Flattened edge inheritance constraints

5 Ensuring Abstract Graph Formulae

Having defined the concept of abstract graph formulae and shown their utility in for-
malizing node multiplicities and edge inheritance, we now turn to the issue ofensuring
graph constraints (not arbitrary formulae) in a given graph transformation system. A
graph transformation system is said to ensure a graph constraint if all the graphs that
can be derived satisfy the constraint; in other words, if the constraint is an invariant on
the derivable graphs. The method for enforcing a constraint is by including appropriate
preconditions(which are themselves graph formulae) in the rules, using a technique
worked out recently for sub-classes of concrete constraints in [8].

12

We first define abstract and concrete rules with application conditions, and their
matching. The following definition extends that in [4].

Definition 15 (abstract and concrete rules)An abstractrule typed over a type graph

TGI = (TG , I, A) with inheritance is given byp = (L l←− K r−→ R,FL, FR), where
L,K,R are abstract clan-typed graphs,l andr are type-preserving graph morphisms,
FL andFR are abstract graph formulae, andctp−1

R (A) ⊆ r(NK).
p is calledconcreteif L,K,R are concrete clan-typed graphs andFL, FR are con-

crete graph formulae.
Concrete rulep′ refinesabstract rulep, if L′ ≤ L, K ′ ≤ K, R′ ≤ R and

ctp′R|N ′R = ctpR|N ′R , and moreover,F ′L = flatL′(FL) andF ′R = flatR′(FR). The
set of all concrete refinements of an abstract rulep is denoted bŷp.

Definition 16 (matching and application of concrete rules)Let p = (L l←− K
r−→

R,FL, FR) be a concrete rule,G a concrete clan-typed graph, andm : L→ G a type-
preserving graph morphism.m is amatchof p in G if

– m is a match of the untyped ruleL
l←− K r−→ R in the untyped graphG,

– m |=c FL.

A direct derivation step is denoted byG
p,m,m∗

=⇒ H, whereH is a concrete clan-typed
graph and there is a span of type-preserving morphismsG ←− D −→ H riving rise
to a derivation in the classical theory of (untyped) graph transformations [7], with
m∗ : R → H as the co-match ofp in H. This derivation step is only performed if
m∗ |=c FR.

Definition 17 (matching and application of abstract rules) Let p = (L l←− K
r−→

R,FL, FR) be an abstract rule typed overTGI , G a concrete clan-typed graph, and
m : L→ G a type-refining graph morphism. Thenm is a match ofp in G if

– m is a match of the untyped ruleL
l←− K r−→ R in the untyped graphG;

– tK(x1) = tK(x2) for tK = ctpG ◦m ◦ l andx1, x2 ∈ NK with r(x1) = r(x2);
– m |=a FL.

Given a matchm, the abstract rule can be applied toG yielding an abstract direct
derivationG

p,m
=⇒ H, whereH is a concrete clan-typed graph and there is a span of

type-preserving morphismsG ←− D −→ H riving rise to a derivation in the sense of
[4], with m∗ : R→ H as the co-match ofp inH. This derivation step is only performed
if m∗ |=a FR.

The following is the main theorem of [3], extended to the more general application
conditions used in the paper and proved using Theorem 1.

Theorem 4 (equivalence of abstract and concrete derivations).Given an abstract
rulepa = (L←− K −→ R,FL, FR), concrete clan-typed graphG,H and a structural
match morphismm : L → G (i.e. a match with respect to the untyped ruleL ←−
K −→ R), the following statements are equivalent:

1. m is a match ofpa in G, yielding an abstract direct derivation:G
pa,m=⇒ H.

13

2. m is a match of the concrete rulepc = Lc ←− Kc −→ Rc, F
c
L, F

c
R) in G with

pc ∈ p̂a andm : Lc →c G type-preserving, yielding a concrete direct derivation:
G

pc,m=⇒ H.

In the following, we want to use the translation of graph constraints to application con-
ditions of graph rules as described in [8]. Therefore, we have to restrict the class of
graph formulae we use to the ones defined in [8]. If we restrict our concrete graph
constraintsGC = (P,Con) to those with|Con| ≤ 1, they become equivalent to the
positive and negative graph constraints of [8]: the case of|Con| = 1 corresponds to
positive graph constraints, while the case of|Con| = 0 correspond to negative graph
constraints.2 Another difference is that, in [8], the morphisms inCon are allowed to be
arbitrary, but that does not add expressiveness (although it does add compactness) to
those we have defined here, which have injective morphisms only. The following is the
relevant result from [8].

Theorem 5 (from concrete constraints to left application conditions).Given a con-

crete constraintGC and a concrete rulep = 〈L l← I
r→ R〉, there is a left ap-

plication condition accL such that for all direct derivationsG
p,m
=⇒ H we have:

m |=c accL ⇔ H |=c GC .

By combining this with Theorems 1 and 4, we can prove the following:

Theorem 6 (from abstract constraints to left application conditions).Given an ab-
stract constraintGC a and an abstract rulepa with left hand sideLa, there is a setS of
concrete application conditions such that for all direct derivationsG

pa,m=⇒ H we have:
(∃F ∈ S : m |=c F)⇔ H |=a GC a.

Proof. We fix GC = flat∅(GC a) for the duration of this proof. For an arbitrary con-

crete rulep = 〈L l← I
r→ R〉 ∈ p̂a, let us write accp for the left application condition

(which is guaranteed to exist by Theorem 5) such that for all direct derivationsG
pc,m=⇒ H

we have:m |=c accp ⇔ H |=c GC .
Each suchaccp is a concrete graph formula, meaning that there is a concrete clan-

typed graphK such thatA = (n : K →c PA,ConA) for all (concrete) graph atoms
occurring in accp; in fact we haveK = L. Moreover, by the construction of̂pa, L
uniquely identifiesp.

We now define the set of concrete application conditions required in the theorem:

S = { accpc | pc ∈ p̂a} .

LetG
pa,m=⇒ H be a direct derivation. According to Theorem 4 it follows that for some

pc ∈ p̂a, with left hand sideLc such thatm : Lc →c G is type-preserving,G
pc,m=⇒ H.

It is important to note that, once more,pc is uniquely determined byLc, due to the fact
thatm : Lc→c G is type-preserving.
2 The result of [8] has since been extended in [9] to and beyond our graph formulae, namely to

arbitrarily nested formulae as in [13], which means that the results below also hold for arbitrary
formulae.

14

⇒ Assumem |=c F for someF ∈ S, and letp ∈ p̂a be such thatF = accp. This
implies thatm : L→c G (whereL is the left hand side ofp) is type-preserving. But
then it follows that actuallyL andLc are the same concrete clan-typed graphs, and
hencep = pc, implying (by construction ofaccp) H |=c GC . Due to Theorem 1
it follows thatH |=a GC a.

⇐ AssumeH |=a GC a; hence (due to Theorem 1)H |=c GC , implying (by Theo-
rem 5)m |=c accpc . ut

To conclude: we can start with some abstract graph formulaFa typed over type graph
TGI with inheritance, flatten it to a concrete graph formulaFc as described in Section
3. Fc can be considered as simply typed over concrete closurêTGI and translated to
a left application conditionaccL. Please note thataccL is also typed over̂TGI . If
there is an abstract rulepa which has rulep as some concrete rule, thenaccL is also an
application condition ofpa, since it is also typed overTGI due to Prop. 1.

6 Conclusions

In the literature, a variety of formal integrations of object-orientation and formal spec-
ification techniques exist. They are considered in the context of precise semantics for
UML as well as for precise meta-modeling. It is the declared aim of the precise UML
group [2,1] to come up with a precise standard semantics of the whole language UML,
and then to use it for verification purposes. There are various approaches being devel-
oped, each formalizing certain aspects of UML with the intention of using the resulting
precision for formal reasoning. In [5], the authors are especially concerned with the
formalization of classes and their relations, inheritance and constraints on the basis of
description logics. This work is dedicated entirely to the static part and does not regard
the dynamic behavior of objects. Precise meta-modeling is considered in [14], where
MOF and graph transformation concepts are integrated. While the aim and the basic
ideas are similar to ours, the formalization chosen in [14] is different and not as com-
prehensive; in particular, it does not deal with constraints.

In addition toformulatinga precise semantics, one has also to consider the process
by which constraints areenforced. In this paper we have shown one way in which
this can be done (by translation to application conditions). We are not aware of other
approaches in the literature.

Summarizing, in this paper we have obtained a further, important step of integrat-
ing graph transformation with object-orientation concepts: now, type inheritance, con-
straints, and graph transformation concepts are integrated in one comprehensive formal
framework. This offers the possibility to check properties for object-oriented software
models. On the meta-model level, the results in our paper can be used to check con-
straints for model transformation. Further work is needed to carry over other analysis
techniques to typed graph transformation with inheritance, to come up with a compre-
hensive visual and precise framework for object-oriented modeling and meta-modeling.

References

1. Journal of Software and Systems Modelinghttp:// www.sosym.org/ , 2004.

15

2. The precise UML grouphttp:// www.puml.org/ , 2004.
3. R. Bardohl, H. Ehrig, J. de Lara, O. Runge, G. Taentzer, and I. Weinhold. Node Type In-

heritance Concepts for Typed Graph Transformation. Technical Report 2003–19, Technical
University Berlin, Dept. of Computer Science, November 2003.

4. R. Bardohl, H. Ehrig, J. de Lara, and G. Taentzer. Integrating Meta Modelling with Graph
Transformation for Efficient Visual Language Definition and Model Manipulation. In
M. Wermelinger and T. Margaria-Steffens, editors,Proc. Fundamental Aspects of Software
Engineering 2004, volume 2984. Springer LNCS, 2004.

5. A. Cal, D. Calvanese, G. De Giacomo, and M. Lenzerini. A formal framework for reasoning
on UML class diagrams. InProc. of the 13th Int. Sym. on Methodologies for Intelligent
Systems (ISMIS 2002), volume 2366 ofLecture Notes in Computer Science, pages 503–513.
Springer, 2002.

6. A. Corradini, F. L. Dotti, L. Foss, and L. Ribeiro. Translating Java into graph transformation
systems. In H. Ehrig, G. Engels, F. Parisi-Presicce, and G. Rozenberg, editors,Second Inter-
national Conference on Graph Transformation, volume 3256 ofLecture Notes in Computer
Science, pages 383–389. Springer-Verlag, 2004.

7. A. Corradini, U. Montanari, and F. Rossi. Graph Processes.Special Issue of Fundamenta
Informaticae, 26(3,4):241–266, 1996.

8. H. Ehrig, K. Ehrig, A. Habel, and K.-H. Pennemann. Constraints and application condi-
tions: From graphs to high-level structures. In H. Ehrig, G. Engels, F. Parisi-Presicce, and
G. Rozenberg, editors,Proc. 2nd Int. Conference on Graph Transformation (ICGT’04), vol-
ume 3256. Springer LNCS, 2004.

9. A. Habel. Private communication, 2004.
10. R. Heckel and A. Wagner. Ensuring Consistency of Conditional Graph Grammars – A con-

structive Approach.Proc. of SEGRAGRA’95 “Graph Rewriting and Computation”, Elec-
tronic Notes of TCS, 2, 1995.http://www.elsevier.nl/locate/entcs/volume2.html.

11. T. Mens, S. Demeyer, and D. Janssens. Formalising behaviour preserving program transfor-
mations. In A. Corradini, H. Ehrig, H.-J. Kreowski, and G. Rozenberg, editors,First Inter-
national Conference on Graph Transformation, volume 2505 ofLecture Notes in Computer
Science, pages 286–301. Springer-Verlag, 2002.

12. OMG. MDA, MOF, UML and OCL specifications. OMG, 2004. at the OMG web page:
http://www.omg.org/.

13. A. Rensink. Representing first-order logic using graphs. In H. Ehrig, G. Engels, F. Parisi-
Presicce, and G. Rozenberg, editors,International Conference on Graph Transformations
(ICGT), volume 3256 ofLecture Notes in Computer Science, pages 319–335. Springer-
Verlag, 2004.

14. D. Varró and A. Pataricza. VPM: A visual, precise and multilevel metamodeling framework
for describing mathematical domains and UML.Journal of Software and Systems Modelling,
(1):1–24, 2003.

16

