Ensuring Structural Constraints in Graph-Based
Models with Type Inheritance

Gabriele Taentzérand Arend Rensirk

1 Computer Science Department
Technical University of Berlin
Berlin, Germany
2 Computer Science Department
University of Twente
Enschede, The Netherlands

Abstract Graphs are a common means to represent structures in models and
meta-models of software systems. In this context, the description of model do-
mains by classifying the domain entities and their relations uslags diagrams

or type graphshas emerged as a very valuable principle. The constraints that can
be imposed by pure typing are, however, relatively weak; it is therefore com-
mon practice to enrich type information wigtiructural propertiegsuch as local
invariants or multiplicity conditions) anheritance

In this paper, we show how to formulate structural properties ugiagh con-
straintsin type graphs with inheritance, and we show how to translate constrained
type graphs with inheritance to equivalent constrained simple type graphs. From
existing theory it then follows that graph constraints can be translated into pre-
conditions for productions of a typed graph transformation system which ensures
those graph constraints. This result can be regarded as a further important step of
integrating graph transformation with object-orientation concepts.

1 Introduction

Graphs and graphical representations play a central role in modeling and meta-modeling
of software systems. Graphs are used to describe essential structures of entities and their
relations. Their representation ranges from simply formatted, graph-like notations such
as class diagrams, Petri nets, automata, etc. to more elaborated diagram kinds such as
message sequence charts and to more application-specific notations for modeling, e.g.,
for industrial production processes.

In graph-based modeling and meta-modeling, graphs are used to define the static
structure, such as class and object structures, data base schemes, as well as visual sym-
bols and interrelations, i.e., visual alphabets and sentences. Graph manipulations de-
scribe the dynamic changes of these structures. Classifying the possible entities and
interrelations in static system structures or visual language constructs has emerged as
a valuable principle for the description of model domains. In the object-oriented ap-
proach,class diagramsre the basic means to specify classification structures, for in-
stance in UML (Unified Modeling Language) [12] for software systems and MOF (Meta



Object Facility) [12] for visual language specification. When applying graph transfor-
mation for modeling or meta-modelingpe graphsare used to classify graph nodes
and edges.

One of the main principles to handle complex classification structures comes from
the object-orientation paradigm: class inheritance enhances the typing principle by
adding more abstract types on top of the ones concretely used in the (meta)models.
Thus, inheritance allows much more compact representations by reducing redundancy.
The principle of inheritance has been carried over and formalized for graph transfor-
mation in [4]; there we have shown that node inheritance in typed graph transformation
leads to a denser form of a graph transformation system, since similar transformation
rules can be abstracted to one.

The power of pure typing to describe and constrain the static structure is, however,
relatively weak (and is not enhanced by inheritance). It is therefore common practice to
enrich type information wittstructural propertieswhich further constrain the correct
instances. A typical class of such structural propertiesrariplicity conditionswhich
restrict correctly typed structures to those where the numbers of entities and interrela-
tions must be within given ranges. Further constraints caloded invariantswhich
require, e.g., the existence or non-existence of certain substructures. In class diagrams,
some of these constraint kinds are built-in, like multiplicities, while others have to be
stated by separate constraints using, e.g., OCL [12]. On the other hand, typed graphs
can be equipped withraph constraintsas proposed first in [10], which can be used to
describe a variety of local invariants. Note, however, that graph constraints have so far
been studied foflat graphs only (i.e., without node type inheritance).

The object-oriented and graph transformation approaches can be integrated by iden-
tifying classes with node types, and associations with edge types. In this way, class in-
heritance naturally corresponds to node type inheritance. At this stage, therefore, we
have already the possibility to manipulate object structures by rule applications, which
is the constructiveelement in system modeling and meta-modeliDgclarative ele-
ments come in through constraints, formulated on top of type graphs with inheritance.
For instance, we show how multiplicities amdge inheritancean be expressed by
graph constraints. To have a precise definition at hand, we give a translation of con-
strained type graphs with inheritance to constrained flat type graphs. From existing the-
ory [8] it then follows that graph constraints can be translated into pre-conditions for the
rules of a typed graph transformation system which ensure those graph constraints. Our
result can be regarded as a further important step of integrating graph transformation
with object-orientation concepts. Application areas for the resulting theory are for in-
stancepperational semanticfor object-oriented systems as in [6] (leading to a theory
of behavioral verification) angkfactoringas in [11] (leading to a formal underpinning).

We use an example from the former area as a running example in the paper.

The paper is organized as follows: In the next section, we review the basis of in-
tegrating graph transformation with object-orientation concepts by first recalling type
graphs with node type inheritance introduced in [4]. In Section 3, graph constraints over
type graphs with inheritance are defined and a translation to constraints over simple type
graphs is presented. Then in Section 4, multiplicities and edge inheritance are shown
to be expressible by graph constraints. Section 5 presents the basic transformation con-



cepts for typed graphs using type inheritance, and describes how graph constraints can
be ensured by typed graph transformation systems, reusing and extending the results in

8.

2 Type Graphs with Node Type Inheritance

The basic idea for specifying node type hierarchies is to introduce a special kind of
(directed) edges, calleithheritance edgesinto type graphs. The source node of an
inheritance edge is said to be a sub-type of the target node, which is called the former
one’s super-type. Moreover, nodes are marked eitheomnsreteor abstract we will

see that only concrete type nodes can have direct instances. In host graphs only nodes
of concrete types shall occur, while graphs in rules may contain nodes of both types.

Definition 1 (type graph with inheritance) A type graph with inheritance is a triple
TGI = (TG,1,A) consisting of a type grapl'G = (N, E, s, t) (with a setN of
nodes, a sel’ of edges, source and target functions : £ — N), an acyclic inheri-
tance relationfl C N x N, and asetd C N, called abstract nodes. For eache N,
theinheritance clans defined byclan;(z) = {y € N | (y,x) € I*}, whereI* is the
transitive closure of .

Example 1.As sample type graph we use a graph description of a special kind of sets,
namely ordered sets, which contain a number of objects which can be put into some
order indicated by edges. We consider two possible specializations of ordered sets,
namelyStringSet and IntegerSet, which are intended to contaftrings andintegers,
respectively. Considering the corresponding type grapt in Figure 1, we use edge
typescnt andnxt to describe the containment and order relations on objects in ordered
sets.

The type graph does not yet demand a strict separation of strings and integers in
their kinds of sets. E.g. this type graph does not rule out $tétgSets contain also
Integers, and vice versa.

e e e e e S L EC LSS R e e e e e e e e e (PO OIS

 [OrderedSet k3 IntegerSet OrderedSet/{ IntegerSet | | [IntegerSet] !

{abstract} {abstract} 0
StringSet | !

Y

. [ Object } [ Object \ !
, {abstract} <l_ ; {abstract} ;
| L”Xt ' é

nxt :

I N
0 nxt

:

cnt

Figurel. A sample type graph with node type inheritance, and its abstract and concrete closure

To benefit from the existing theory of graph transformation [7], which does not recog-
nize the notion of inheritance, we define ti@teningor closureof type graphs with
inheritance to ordinary ones.



Definition 2 (Closure of type graph with inheritance) Let TGI = (TG,I,A) be a
type graph with inheritance, and 1&fG = (N, E, src, tar). Theabstract closuref
TGI is the graphTGI = (N, E, s7¢, tar) with

— E={(n1,e,n2) | e € E,ny € clan;(src(e)),ng € clani(tar(e))};

- m((nla 6,”2)) =n,

— tar((n1, e,ng)) = na.
Theconcrete closuref TGI is the graph@ = TGI|n_at

Example 2.Fig. 1 also shows the abstract and concrete closure of the type graph with
inheritanceT'GI. Please note that for better readability of the closures, the edge types
are bundled using auxiliary nodes. Note that the inheritance edges are no longer present
in the closure, and the abstract node types and adjacent edge types are absent from the
concrete closure. Instead, for all combinations of corresponding sub-types a new edge
type is inserted — including those which do not follow our intuition, like edge type
betweenstring andinteger. We will use structural graph properties in addition to rule

out those unwanted structures.

The distinction between the abstract and the concrete closure of a type graph is nec-
essary, since we use instance graphs with respect to either one. For instance, we will
define abstract graph transformation rules of which the left hand and right hand sides are
typed over the abstract closure (see Section 5), whereas ordinary host graphs and con-
crete rules are typed over the concrete closure. Note that, due to the canonical inclusion

mnera: TGI — TGI , all graphs typed over GI are also typed ovel'G1I.
Definition 3 (instance graph) An abstract instance graptG, tp 4) of a type graph

with inheritanceT'GI is an instance graph of'GI; i.e., tp ,: G — TGI. Analogously,
a concrete instance graplts, tp) of TGI is a graph typed ovefl'GI.

The construction of the closure in Def. 2 gives rise to a characterization of instance
graphs directly on type graphs with inheritance. Namely, instance graphs can be typed
over the type graph with inheritance by a pair of functions, one assigning a node type to
each node and the other one assigning an edge type to each edge. This pair of functions
does not constitute a graph morphism, but will be catiksth morphismit uniquely
characterizes the type morphism into the flattened type graph.

Definition 4 (clan morphism) Let TGI = (TG,I,A) be a type graph with in-
heritance. Aclan-morphismfrom G to TGI is a pair ctp = (ctpy: Ng —
Nrg, ctpg: Eq — Erg) such that for alle € E; the following holds:

— ctpy o sg(e) € clan;(spg o ctpg(e)) and

— ctpy otg(e) € clany(trg o ctpg(e)).
(G, ctp) is called aclan-typed graphetp is calledconcretef cipy' (A) = 0.

Example 3.Figure 2 shows a sample instance graph typed @W@f of Fig. 1. The

edge typing is not shown explicitly, but follows uniquely from the node typing. The
typing is done by a clan morphism which maps each node to its node type and each
edge to an edge type between potentially more abstract node types holding the source
and target types of the instance edge in their clans.

! GivenagraplG = (N, E, s,t) and aseX C N, we denote by7|x the sub-graplX, Ex =
{e€ E|s(e),tle) € X}, s|Ex,tlES)-



OrderedSet<]‘—"—|\ IntegerSet

{abstract}

cnt [ StringSet | |

\

ing | : | [ Object
f E {abstract} <

Figure2. Sample clan-typed graph

Proposition 1 (universal clan morphism). Let TGI = (TG, I, A) be a type graph
with inheritance. There is a universal clan morphismg : TGI — TG such that for
each clan morphismtp: G — TG there is a unique graph morphistp: G — TGI

with urg o tp = ctp. Moreover, there is a bijective correspondence between clan
morphismsctp: G — TG and graph morphism& : G — TGI such thatu g o tp =

ctp.

For the proof see [3]. By abuse of notation we often Gst stand for the clan-typed
graph(G, ctp).

To formalize the relationship between abstract and concrete rules (see Section 5),
we introduce the notion di/pe refinementThus imposes an order over possible typ-
ing morphisms for a given instance graph. A typing morphism is said finbethan
another one if it assigns more concrete node types to the nodes of the instance graph.

Definition 5 (type refinement and typed graph morphism) Let TGI = (TG, I, A)
be a type graph with inheritance, and lefp, ctp’: G — TG be clan typingsctp is a
refinemenbf ctp’, denotedctp < ctp’, if

— ctpy(n) € clan;(ctp’y(n)) forall n € Ng, and

— clpp = ctply.
Given two clan-typed graph&s, ctp: G — TG)and(H, ctpy: H — TG), agraph
morphismg: G — H is calledtype-refiningif g o ctpy < ctp, andtype-preserving
if goctpy = ctpg.

We also write(G, ctp;) < (H,clpy) if G = H and clp, < ctpy. We write
g: G —. H to denote thatz and H are both concrete angl is an injective type-
preserving morphism, ang: G —, H to denote thay is an injective type-refining
morphism.

The following proposition states some facts regarding type-refining and type-
preserving morphisms.

Proposition 2. LetG, H be clan-typed graphs, and let G — H be type refining.

1. There is a unique clan-typed grapt < G such thaly: K — H is type-preserving;
2. For any clan-typed grapti > G, g: K — H is type-refining.

3. For any clan-typed grapli{ < H, g: G — K is type-refining.



Proof. 1. Let us write outG in full as (G, ctps). Let (K, ctpy) = (G, ctpy © g);
then clearly(K, ctpy) < (G, ctp) andg: K — H is a type-preserving graph
morphism. On the other hand, (i, ctp;) < (G, ctp) andg: L — H is a type-
preserving morphism, theh = G = K andctp;, = ctpy o g = clpg, hence
(L. ctpp) = (K, ctpy).

2. gis clearly a graph morphism, anrdp ;- > ctp > clpy o g; since> is transitive,
g: K — H is type-refining.

3. g is clearly a graph morphism, andp > ctpy o g > ctpy o g due toctpy >
ctp i and the fact that composition of morphisms is monotonigjhencey: K —
H is type-refining.

3 Structural Properties over Type Graphs with Inheritance

The following definition extends the concept of graph constraints, originally introduced
in [10] (where they are called consistency constraints). In fact there are two points of
change:

— Rather than using ordinary typed graphs we are defining constraints over concrete
clan-typed graphs. However, this is not a real extension since (due to Prop. 1),
there is a one-to-one correspondence between concrete clan morphisms and type
morphisms to the concrete closure of the type graph.

— Rather than having constraints consisting of a single premise and conclusion, as in
[10,8], we generalize to multiple conclusions. This is a real extension, as it properly
enlarges the set of properties expressible through graph constraints.

Whenever we mention “clan-typed graphs” in the following, we mean graphs with a
clan morphism to some implicit, globally given type graph with inheritaficg .

Definition 6 (graph atoms and formulae) Let L, G be clan-typed graphs, such that
is concrete.

— A concrete [abstract] graph ato overL is atuple(n: L—. P, Con) [(n: L—,

P, Con)], wheren is an injective type-preserving [type-refining] morphism, and
Con is a set of injective type-preserving [type-refining] morphisms starting.in
If L = () we also write( P, Con) for A.

— A is said to be satisfied by an injective type-preserving [type-refining] morphism
m: L —.G[m: L —, G], denotedm = A [m = A], if for all injective type-
preserving [type-refining] morphisms P—.G [p: P—,G]suchthatm = pon,
there is a(q: P — C) € Con and an injective type-preserving [type-refining]
morphisme: C —. G [¢: C —, G] such thatp = coq. If L = () (i.e., the empty
graph) then we also writ&/ = A [G 2 A].

— A concrete [abstract] graph formul&’ over L is a boolean formula over concrete
[abstract] graph atoms ovef.. The satisfaction relatiof=¢ [ =2] is extended to
graph formulae by defining the semantics of the boolean operators in the usual
way. We sometimes call a constraintif L = (J, and anapplication condition
otherwise.

We can now define the flattening of an abstract atom and an abstract formula.



Definition 7 (flattening) Let K, L be clan-typed graphs, such that < L and K is
concrete.

— For any abstract graph atoml = (n: L —, @, Con), we define thd(-flattening
of A as follows:

flat g (A) = N{(n: K —c P, flatp(Con)) | P < Q}
flatp(Con) ={q: P —-.C | (q: Q —a D) € Con,C < D} .

— For any abstract graph formuld&’ over L, we define thd{-flattening flat ;. (F')
by replacing each abstract graph atorh occurring in F' by the corresponding
K-flatteningflat ; (A).

The following theorem is the main contribution of this paper. It states that satisfaction
of an abstract atom or formula over an abstract clan-typed gkamp a type-refining
morphismm: L —, G is equivalent to satisfaction of the flattening of that atom or
formula with respect to the concrete clan-typed graphk< L for whichm: K —. G

is type-preserving (which uniquely exists due to Prop. 2.1). This allows us to re-use
existing theory on concrete graph formulae.

Theorem 1 (flattening of abstract graph formulae). Let K, L,G be clan-typed
graphs such that < L, and letm: K —. G. For any abstract graph atoml and
graph formulaF over L the following holds:

(m: L —, Q) E Aiff (m: K —=.G) E° flat - (A)
(m: L —, Q) E? Fiff (m: K —.G) E flat . (F) .

Proof. We prove the case for atoms; the case for formulae follows by a straightforward
induction over the structure of boolean formulae. Het= (n: L —, @, Con).

If. Assume(m: K —. G) ¢ flat,(A), and letp: @ —, G be arbitrary such that

m = pon,thatis,ctpg o p < cipg. SinceG is concrete, it follows thattp’ =
ctp o p is a concrete clan morphism fét. We denoteP = (Q, ctp’); it follows
thatP < @ andp: P —. G. Sincem: K — G is also type-preserving, we may
conclude thatsois: K —. P.
Dueto(m: K —. G) = flatx(A) = (n: K —¢ P, flat p(Con)), it follows that
thereis ag: P —. C € flatp(Con) and ac: C —. G such thatp = c o q. By
construction offlat p(Con), there is alq: Q —, D) € Con such thatC' < D;
hence (due to Prop. 2.2); D —, G is type-refining. We may conclude 2 A.

Only if. Assume(m: L —, G) E* A. Let P < Q andn: K —. P be arbitrary.
We prove(m: K —. G) =€ (n: K —¢ P, flat p(Con)); this then impliesn =¢
flat g (A).

Letp: P —. G be arbitrary such thats = p o n; that is,ctp; o p = ctpp. Due
to(m: L —, G) E* A, thereis dq: Q —, D) € Con andc: D —, G such that
p = coq. Due to Prop. 2.1 there is a (unique) concr@te. D such that: C — G
is type-preserving. Henagp . = ctp oc, implying ctpooq = ctpgop = ctpp.
It follows thatq: P —.C, and hencéq: P —.C) € flat 5(Con). This establishes
(m: K —¢G) E° flat x (A).



4  Multiplicities and Edge Inheritance as Graph Formulae

In this section we show that two existing classes of constraints on type graphs with
inheritance can be translated to abstract graph formulae. This serves to give some intu-
ition about graph formulae, and to demonstrate that they are expressive enough to cover
practically useful examples.

Multiplicities By enriching a type graph with multiplicities we can restrict the class of
instance graphs to those which are not only correctly typed but also satisfy additional
constraints concerning the number of nodes and edges for each type. These constraints
are expressed using so-calledltiplicities

Definition 8 (multiplicities) A multiplicity is a pair [, j] € N'x (N U{x}) withi < j

or j = *. The set of multiplicities is denotddult. The special value indicates that

the maximum number of nodes or edges is not constrained. For an arbitrary finite set
X and[i, j] € Mult, we write| X | € [i, j] if ¢ < |X| and eitherj = x or | X| < j.

As usual, we use multiplicities to decorate the nodes and edges of type graphs. For the
nodes, the multiplicity indicates the total number of instances; for the edges, we use
multiplicities expressing the number of incoming, respectively outgoing ddgesch

target, respectively source instance

Definition 9 (Type graph with multiplicities) A type graph with multiplicities is a tu-
ple TGM = (TGI,my, mg, M) CONsisting of a type graph with inheritan@&:1
and additional functionsny : Nrg; — Mult, callednode multiplicity function and
Mgre, Miar : ETar — Mult, callededge multiplicity functions

The satisfaction of multiplicity constraints is expressed by counting inverse images with
respect to the clan typing.

Definition 10 (Semantics of type graphs with multiplicities) A clan-typed graph
over TGI = (TG,I,A) is said to satisfy a type graph with multiplicities
(TGI, mp, Msre, Mear) if the following conditions hold:

— foralln € Nrg, |ctpg' (clan;(n))| € my(n);

— foralle € Eqg andp € ctpg (clan;(sre(e))), |etpg (e) Nsreg (p)| € miar(e);

— foralle € Eqg andp € ctp,'(clan;(tar(e))), |ctpg' (e) Ntarg' (p)| € mge(e).

We now show how a type graph with multiplicitiesGM can be translated to an ab-
stract graph formula that is satisfied by precisely those clan-typed graphs that also sat-
isfy TGM. In order to do that, we introduce two special types of graphs: farallV,

— Foralln € N, G is the graph consisting afdistinctn-typed nodes.

— Foralle € E, G*™ is thesetof graphs withi distincte-typed edges and all source
nodes glued together; dually,"**" is the set of graphs withdistincte-typed edges
and all target nodes glued together.

Definition 11 (Multiplicities as abstract graph formulae) Given a type graph with
multiplicities TGM = (TGI, my, Mg, Miar), We define

FTGM = /\TIENTGI F’L A /\EEETG1 (F;TC A F;Uﬂ”)

whereF,,, F*™ and F!*" are abstract graph formulae defined as follows:



— F, regulates the node multiplicity of. Letmy(n) = [4,j]; then F,, = A,,>; A
An<jif j #+andF,, = A,>; otherwise, where

Apzi = (0,40 — G}})
Anﬁj = (G?—H:@) :

— F?™ regulates the edge source multiplicityeofLetm..(e) = [i, j]; then F2™ =
ANS NFIS i j # «and e = AT otherwise, where

AL = (G g G — H | H e Gy
FI5 = NUH,0) | H e giy)
with g*a™ mapping the sole node 6f:*"*) to the unique target node &f.

— F!or regulates the edge target multiplicity ef and is the exact dual af s (ob-
tained by switchingrc and tar everywhere in the above definition).

Theorem 2 (semantics of multiplicities). For all type graphs with multiplicityl’ GM
and all graphsG clan-typed overI'GI, G satisfiesTGM (in the sense of Def. 10) if
and only ifG =2 Frgum -

Proof. The essence of the constructionfofg,, is that for each condition arising out

of the satisfaction of the multiplicities, there is a graph (sub)-formula expressing exactly
that condition. We show this for the first two conditions in Def. 10; the third is analogous
to the second.

— Foralln € Nzg, V = ctpg'(clan;(n)) is the set of all (distinct) nodes typed by
a node in the clan of. It follows that there is an injective type-refining morphism
a: GI' — G tothat set for ali < |V|but not fori > |V|; henceG =2 A,,>; for all
i < |V]andG 2 A,<; forall j > |V]. This implies thatG |=* A,,>; A A, <; if
and only if|V| € [i, j] andG =2 A,,>; ifand only if |V] € [, *].

— Foralle € Exg andp € ctpg'(clan;(sre(e))), E, = ctpg'(e) N sreg' (p) is the
set of alle-typed edges iid7 starting ap. It follows that for alli < |E,| there is an
injective type-refining morphism: H — G for someH € G;**"* such that maps
the unique source node &f to p; but no such morphism existsif> |E,|. This
implies thatA}S; A F7Z5 =2 Glifand only if | E,| € [i,j] and AT = G if and
only if |E,| € [i, %] O

Example 4(multiplicity constraints)In Figure 3 (left hand side), the type grafitGI

of Fig. 1 has been extended with multiplicities at edge types. For the notation of mul-
tiplicities we follow UML. Each object has always to belong to precisely one ordered
set. This statement contains two constraints: a lower and an upper bound, which in this
case are both equal to 1. Vice versa, ordered sets are allowed to contain arbitrarily many
objects, which is indicated by an asterisk. Tixerelation on objects is constrained to a
partial order where at most one objechig, but each object may have arbitrarily many
predecessors. This results in the five graph constraints depicted in Figure 4, where the
premises are depicted on the left and the conclusions on the right of the block arrow, and



.................................. R
4 \

OrderedSet<}— IntegerSet OrderedSet kt—— ] IntegerSet

| {abstract) D[ fabstracty |, _f T

50"1 Ob‘j'et:t <]_ Ob‘j'ect <—} ______ o 'Wt(‘a'gertlé
{abstract} {abstract} | _L____|_____
"""""""" pon T gy T

Figure3. Type graph with multiplicities, respectively edge inheritance

graph atoms of the forrP, { P — C;}) are depicted more compactly @8 — {C;}).

The first constraint states that every object is contained in a set (whiclpasitive
constraint), the next two that an object is not allowed to have two outgoing contain-
ment edges, neither to different nor to the sabnéeredSet node (which areegative
constraints), and the last two constraints (also negative) express that an object does not
have two successor objects.

] cnt ["OrderedSet | ! ] cnt |
! L= {} ' [ Object [~ OrderedSet | | —> {}
X cnt | OrderedSet | X cnt !

Figure4. Multiplicity constraints as abstract graph atoms

The next step is to flatten these graph constraints; i.e., we formulate graph con-
straints w.r.t. the concrete closuféG] also given in Fig. 1. Some representatives of
the flattened constraints are shown in Fig. 5. The first of these is the complete flatten-
ing of the first constraint in Fig. 4; the second and third show two of the four atomic
constraints that constitute the flattening of the second constraint in Fig. 4.

\

cnt [ 2:StringSet | ! {}

Figure5. Flattened multiplicity constraints

10



Edge inheritanceAs we have seen, node inheritance is used to formulate a compact
type graph in the sense that edge types between super types stand for all combinations
of edge types between their sub-types (including themselves). This might lead to a type
graph with too loose type information concerning edges. In the following, we introduce
edge type inheritangevhich aims at restricting the combinations of sub-types allowed.

Definition 12 (type graph with edge inheritance) A type graph with edge inheritance
is a tuple(TG,1,A) wherel C (N x N)U (E x E) is an acyclic relation such
that TGI = (TG,I|y,A) is a type graph with (node) inheritance, and moreover,
(e, f) e IN(E x E) impliessrc(e) € clan;(sre(f)) andtar(e) € clan;(tar(f)).

The idea is that if a type edgeinherits from another type edgg then f can occur

as an edge type only for concrete graph edges whose source and target node types are
not in the clan of the source type, resp. target.ofhe semantics of edge inheritance

can either be expressed by redefining the closure, or directly as a constraint on the clan
morphism. In other words, if the source or target node of an edge would alésian

edge type, then no proper super-type ofiay be used.

Definition 13 (semantics of type graphs with edge inheritanceA clan-typed graph
G over TGI is said tosatisfya type graph with edge inheritan€€'G, I, A) for which
TGI = (TG,I|n,A) ifforall x € Eq and (e, ctpa(x)) € I, ctpa(sreq(x)) ¢
clany(srepa(e)) and ctpg(targ(x)) € clan;(tar po(e)) .

We now construct an abstract graph formula which expresses the same constraint.

Definition 14 (edge inheritance as an abstract formula)Given a type graph with

. . . src f T
e(age inheritanceGEI = (TG, I, A), we defineFrge; = /\(e,f)el Aef; A Ae‘ff
where

AZ‘]CC _ (Gsrc(e),f,tar(f), {Qe,f : Gsrc(e),f,tar(f) N Gsrc(e),e,tar(e)})
AZI; _ (Gsrc(f),f,tar(e)’ {CIe,f . Gsrc(f),f,tar(e) _ Gsrc(e),e,tar(e)}) )

with G2 for ny € clan;(sre(e)) andng € clan(tar(e)) being the graph consist-
ing of two nodes typed over, andn,, and one edge typed overg, ¢ is the unique
type-refining morphism between the source and target graph.

Theorem 3 (semantics of edge inheritance)For all type graphs with edge inheri-
tanceTGEI = (TG, I, A) and all graphsG clan-typed ovet{ TG, I |y, A), G satisfies
TGEI (in the sense of Def. 13) if and onlyGf =2 Frag;.

Proof. Let (¢, f) € I N (E x E). We show thatd)"; precisely captures the condition
on the source typingr-edges mapped tf; the prodf for the target typing is analogous.
Note that, below, we extend the notion of inheritance claf tay definingclan;(z) =
{ye E|(y,z) € I*}forallz € E.

If. AssumeG [=* A7) and letr € Eg such thatf = cipg (). If ctpg(sreg(z)) €
clan;(srcpi(e)) then there is an injective type-refining morphism mapping the
unique edge ofGse(e).-ftar(f) to z, but which cannot be refined further to
Gerele)seitar(e) pecause (due to the acyclicity 8f ctpo(x) ¢ clan;(e). This con-
tradictsG' |=* A]'%.

11



Only if. AssumeG satisfiesTGEI, and leta: G*¢(¢)./:tar(f) @G be an injective type-
refining morphism. It follows thattp . (x) € clan;(f) for the sole edge € E¢ in
the image ofs; however,ctp(z) = f contradicts the assumption thatsatisfies
TGEI. We concludectp(z) € clan;(e), and hencer: Gee(e)-etar(e) . G is
also a type-refining morphism. This implies=2 A7 O

Example 5(edge inheritance constraintsn Figure 3 (right hand side) we extended

the type graph of Fig. 1 with edge type inheritance, depicted by (dashed) inheritance
arrows between edges. Hence this type graph expresses (among other things) that an
instance may not containrt-edge from &string-typed node to anything but another
String-typed node — in particular not to ameger-typed node — or to a node typed by

a subtype oftring(of which there are none in this example).

________________________________________

_________________________________________

_______________________________________

__________________________________________

_____________________________________________

_____________________________________________

______________________________________________

Figure6. Edge inheritance as graph constraints

Similarly to the example above, we flatten these graph constraints, i.e., we formulate
graph constraints w.r.t. the concrete closti@! givenin Fig. 1. The constraints shown
in Fig. 7 are the complete flattening of the first constraint in Fig. 6. Note that the first
flattened constraint is always true, and the second describes a handle not allowed by the
edge inheritances.

________________________________________

__________________________________________

Figure7. Flattened edge inheritance constraints

5 Ensuring Abstract Graph Formulae

Having defined the concept of abstract graph formulae and shown their utility in for-
malizing node multiplicities and edge inheritance, we now turn to the isseesafring

graph constraints (not arbitrary formulae) in a given graph transformation system. A
graph transformation system is said to ensure a graph constraint if all the graphs that
can be derived satisfy the constraint; in other words, if the constraint is an invariant on
the derivable graphs. The method for enforcing a constraint is by including appropriate
preconditions(which are themselves graph formulae) in the rules, using a technique
worked out recently for sub-classes of concrete constraints in [8].

12



We first define abstract and concrete rules with application conditions, and their
matching. The following definition extends that in [4].

Definition 15 (abstract and concrete rules)An abstractrule typed over a type graph
TGI = (TG, 1, A) with inheritance is given by = (L L K-SR Fy, Fr), where
L, K, R are abstract clan-typed graphsandr are type-preserving graph morphisms,
Fy, and Fr, are abstract graph formulae, anetp,' (A) C r(Ng).

pis calledconcretdf L, K, R are concrete clan-typed graphs aidl, F'r are con-
crete graph formulae.

Concrete rulep’ refinesabstract rulep, if L' < L, K’ < K, R’ < R and
ctprlny, = ctpg|ny,, and moreoverf; = flat,, (Fr) and F, = flatp (Fr). The
set of all concrete refinements of an abstract nuie denoted by.

Definition 16 (matching and application of concrete rules)Letp = (L ML LN
R, Fy,, Fr) be a concrete rule7 a concrete clan-typed graph, amd: L — G a type-
preserving graph morphismu is amatchof p in G if

— m is a match of the untyped rule <~ K - R in the untyped grapls,
- m ':C FL.

A direct derivation step is denoted I6y =2 H, whereH is a concrete clan-typed
graph and there is a span of type-preserving morphisins— D — H riving rise

to a derivation in the classical theory of (untyped) graph transformations [7], with
m*: R — H as the co-match gf in H. This derivation step is only performed if
m* ':C FR.

Definition 17 (matching and application of abstract rules) Letp = (L «— K -
R, F1, Fr) be an abstract rule typed oveéFGI, G a concrete clan-typed graph, and
m: L — G atype-refining graph morphism. Thenis a match op in G if

— m is a match of the untyped rule <~ K " R in the untyped grapl&;
— tr(x1) =tr(xa) fortx = ctpg omolandxy, ze € Ng withr(z1) = r(z2);
- m ):a FL-

Given a matchn, the abstract rule can be applied @ yielding an abstract direct
derivationG 22 H, whereH is a concrete clan-typed graph and there is a span of
type-preserving morphisnds «—— D — H riving rise to a derivation in the sense of
[4], with m*: R — H asthe co-match gfin H. This derivation step is only performed
if m* =2 Fg.

The following is the main theorem of [3], extended to the more general application
conditions used in the paper and proved using Theorem 1.

Theorem 4 (equivalence of abstract and concrete derivations)Given an abstract
rulep, = (L — K — R, F, Fg), concrete clan-typed grapf, H and a structural
match morphismn: L — G (i.e. a match with respect to the untyped rule<——
K — R), the following statements are equivalent:

1. mis a match o, in G, yielding an abstract direct derivatiors 222 H.

13



2. m is a match of the concrete rujg = L. «— K. — R, F5, F5) in G with
pe € py andm: L. — G type-preserving, yielding a concrete direct derivation:

G

In the following, we want to use the translation of graph constraints to application con-
ditions of graph rules as described in [8]. Therefore, we have to restrict the class of
graph formulae we use to the ones defined in [8]. If we restrict our concrete graph
constraintsGC = (P, Con) to those with|Con| < 1, they become equivalent to the
positive and negative graph constraints of [8]: the casglof| = 1 corresponds to
positive graph constraints, while the casg 66n| = 0 correspond to negative graph
constraintg. Another difference is that, in [8], the morphismséhn are allowed to be
arbitrary, but that does not add expressiveness (although it does add compactness) to
those we have defined here, which have injective morphisms only. The following is the
relevant result from [8].

Theorem 5 (from concrete constraints to left application conditions).Given a con-
crete constraintGC' and a concrete rulep = (L Y g R), there is a left ap-

plication condition accy, such that for all direct derivationgr 2% H we have:
m =¢ accy, & H E° GC.

By combining this with Theorems 1 and 4, we can prove the following:

Theorem 6 (from abstract constraints to left application conditions). Given an ab-
stract constraintG C', and an abstract rule, with left hand side.,, there is a sef of
concrete application conditions such that for all direct derivatigh$=>" H we have:
(FFeS:mE‘F)< HE GC,.

Proof. We fix GC = flaty(GC,) for the duration of this proof. For an arbitrary con-

crete rulep = (L Lo R) € pa, let us write acc, for the left application condition

(which is guaranteed to exist by Theorem 5) such that for all direct derivafides: H
we havemn =° acc, < H =° GC.

Each suchacc, is a concrete graph formula, meaning that there is a concrete clan-
typed graphK such thatd = (n: K —. P4, Con,) for all (concrete) graph atoms
occurring in acc,; in fact we havek’ = L. Moreover, by the construction gk, L
uniguely identifiew.

We now define the set of concrete application conditions required in the theorem:

S ={accp, | pc €pa} -

Let @ 22 H be a direct derivation. According to Theorem 4 it follows that for some
pe € Pa, With left hand sidel. such thatn: L. —. G is type-preservingi? =2 H.

It is important to note that, once mone, is uniquely determined by, due to the fact
thatm: L. —. G is type-preserving.

2 The result of [8] has since been extended in [9] to and beyond our graph formulae, namely to

arbitrarily nested formulae as in [13], which means that the results below also hold for arbitrary
formulae.

14



= Assumem [=° F for someF € S, and letp € p, be such tha¥ = acc,. This
implies thatm: L — G (whereL is the left hand side gf) is type-preserving. But
then it follows that actually. and L. are the same concrete clan-typed graphs, and
hencep = p., implying (by construction ofacc,) H =¢ GC. Due to Theorem 1
it follows that H =2 GC,.

< AssumeH ? GC,; hence (due to Theorem H < GC, implying (by Theo-
rem 5)m = accy,. O

To conclude: we can start with some abstract graph formiiltyped over type graph
TGI with inheritance, flatten it to a concrete graph formalaas described in Section
3. F. can be considered as simply typed over concrete clo®ae and translated to
a left application conditionaccy. Please note thatccy, is also typed overT'GI. If
there is an abstract rule which has rulev as some concrete rule, thewc, is also an
application condition op,, since it is also typed oveFGI due to Prop. 1.

6 Conclusions

In the literature, a variety of formal integrations of object-orientation and formal spec-
ification techniques exist. They are considered in the context of precise semantics for
UML as well as for precise meta-modeling. It is the declared aim of the precise UML
group [2,1] to come up with a precise standard semantics of the whole language UML,
and then to use it for verification purposes. There are various approaches being devel-
oped, each formalizing certain aspects of UML with the intention of using the resulting
precision for formal reasoning. In [5], the authors are especially concerned with the
formalization of classes and their relations, inheritance and constraints on the basis of
description logicsThis work is dedicated entirely to the static part and does not regard
the dynamic behavior of objects. Precise meta-modeling is considered in [14], where
MOF and graph transformation concepts are integrated. While the aim and the basic
ideas are similar to ours, the formalization chosen in [14] is different and not as com-
prehensive; in particular, it does not deal with constraints.

In addition toformulatinga precise semantics, one has also to consider the process
by which constraints arenforced In this paper we have shown one way in which
this can be done (by translation to application conditions). We are not aware of other
approaches in the literature.

Summarizing, in this paper we have obtained a further, important step of integrat-
ing graph transformation with object-orientation concepts: now, type inheritance, con-
straints, and graph transformation concepts are integrated in one comprehensive formal
framework. This offers the possibility to check properties for object-oriented software
models. On the meta-model level, the results in our paper can be used to check con-
straints for model transformation. Further work is needed to carry over other analysis
techniques to typed graph transformation with inheritance, to come up with a compre-
hensive visual and precise framework for object-oriented modeling and meta-modeling.

References

1. Journal of Software and Systems Modelintp:// www.sosym.org/, 2004.

15



11.

12.

13.

14.

. The precise UML groupttp:// www.puml.org/, 2004.
. R. Bardohl, H. Ehrig, J. de Lara, O. Runge, G. Taentzer, and I. Weinhold. Node Type In-

heritance Concepts for Typed Graph Transformation. Technical Report 2003-19, Technical
University Berlin, Dept. of Computer Science, November 2003.

. R. Bardohl, H. Ehrig, J. de Lara, and G. Taentzer. Integrating Meta Modelling with Graph

Transformation for Efficient Visual Language Definition and Model Manipulation. In
M. Wermelinger and T. Margaria-Steffens, editdPsoc. Fundamental Aspects of Software
Engineering 2004volume 2984. Springer LNCS, 2004.

. A. Cal, D. Calvanese, G. De Giacomo, and M. Lenzerini. A formal framework for reasoning

on UML class diagrams. [Rroc. of the 13th Int. Sym. on Methodologies for Intelligent
Systems (ISMIS 2002)olume 2366 ot ecture Notes in Computer Scienpages 503-513.
Springer, 2002.

. A. Corradini, F. L. Dotti, L. Foss, and L. Ribeiro. Translating Java into graph transformation

systems. In H. Ehrig, G. Engels, F. Parisi-Presicce, and G. Rozenberg, e8éoosd Inter-
national Conference on Graph Transformatimolume 3256 ot.ecture Notes in Computer
Sciencepages 383-389. Springer-Verlag, 2004.

. A. Corradini, U. Montanari, and F. Rossi. Graph Proces&secial Issue of Fundamenta

Informaticae 26(3,4):241-266, 1996.

. H. Ehrig, K. Ehrig, A. Habel, and K.-H. Pennemann. Constraints and application condi-

tions: From graphs to high-level structures. In H. Ehrig, G. Engels, F. Parisi-Presicce, and
G. Rozenberg, editor®roc. 2nd Int. Conference on Graph Transformation (ICGT,Q4)-
ume 3256. Springer LNCS, 2004.

. A. Habel. Private communication, 2004.
. R. Heckel and A. Wagner. Ensuring Consistency of Conditional Graph Grammars — A con-

structive Approach.Proc. of SEGRAGRA'95 “Graph Rewriting and Computation”, Elec-
tronic Notes of TCS2, 1995.http://www.elsevier.nl/locate/entcs/volume2.html.

T. Mens, S. Demeyer, and D. Janssens. Formalising behaviour preserving program transfor-
mations. In A. Corradini, H. Ehrig, H.-J. Kreowski, and G. Rozenberg, edikns, Inter-
national Conference on Graph Transformatimolume 2505 otecture Notes in Computer
Sciencepages 286-301. Springer-Verlag, 2002.

OMG. MDA, MOF, UML and OCL specificationsOMG, 2004. at the OMG web page:
http://www.omg.org/.

A. Rensink. Representing first-order logic using graphs. In H. Ehrig, G. Engels, F. Parisi-
Presicce, and G. Rozenberg, editdraernational Conference on Graph Transformations
(ICGT), volume 3256 ofLecture Notes in Computer Sciengeges 319-335. Springer-
Verlag, 2004.

D. Varrd and A. Pataricza. VPM: A visual, precise and multilevel metamodeling framework
for describing mathematical domains and UMburnal of Software and Systems Modelling
(1):1-24, 2003.

16



