
Model Transformation by Graph
Transformation: A Comparative Study

Gabriele Taentzer1, Karsten Ehrig1, Esther Guerra2, Juan de Lara3, Laszlo
Lengyel4, Tihamer Levendovszky4, Ulrike Prange1, Daniel Varro4, and Szilvia

Varro-Gyapay4

1 Technische Universität Berlin, Germany
{karstene,gabi,ullip}@cs.tu-berlin.de
2 Universidad Carlos III de Madrid, Spain

eguerra@inf.uc3m.es
3 Universidad Autonoma de Madrid, Spain

jdelara@uam.es
4 Budapest University of Technology and Economics, Hungary

{varro,gyapay}@mit.bme.hu
{lengyel,tihamer}@aut.bme.hu

Abstract. Graph transformation has been widely used for expressing
model transformations. Especially transformations of visual models can
be naturally formulated by graph transformations, since graphs are well
suited to describe the underlying structures of models. Based on a com-
mon sample model transformation, four different model transformation
approaches are presented which all perform graph transformations. At
first, a basic solution is presented and crucial points of model transforma-
tions are indicated. Subsequent solutions focus mainly on the indicated
problems. Finally, a first comparison of the chosen approaches to model
transformation is presented where the main ingredients of each approach
are summarized.

1 Introduction

Raising the abstraction level from textual programming languages to visual mod-
eling languages, model transformation techniques and tools have become more
focused recently. Model transformation problems can be formulated as graph
transformation problems, thus, a variety of tools choose this technique as the
underlying mechanism for the transformation engine. This paper aims at com-
paring four approaches to model transformation that apply graph transforma-
tion techniques for model transformation. These can be characterized by their
tool support. The presented tools are AGG [1], AToM3 [15], VIATRA2 [25] and
VMTS [26] [16].

This paper reports on an activity which was started by the authors within
the RTN “Syntactic and Semantic Integration of Visual Modelling Techniques”
(SegraVis). Since the underlying concepts of these four tools are all based on
graph transformation on one hand, and the tools are already used for model

transformations on the other hand, it was interesting to start a comparative
study along a common case study. The tools and their underlying approaches
considered within this paper, are shortly introduced within the rest of the in-
troduction and presented in more detail, including their application to a sample
model transformation, in the following sections.

AGG is a development environment for attributed graph transformation sys-
tems supporting an algebraic approach to graph transformation. It aims at spec-
ifying and rapid prototyping applications with complex, graph structured data.
Since graph transformation can be applied on very different levels of abstraction,
it can be non-attributed, attributed by simple computations or by complex pro-
cesses, depending on the abstraction level. To reflect this wide application area
for attributed graph transformation, we decided to attribute AGG graphs by
Java objects. AGG supports typed graph transformations including type inher-
itance and multiplicities. Rule application can contain non-deterministic choice
of rules which may be controlled by rule layers. Due to its formal foundation,
AGG offers validation support being consistency checking of graphs and graph
transformation systems according to graph constraints, critical pair analysis to
find conflicts between rules and checking of termination criteria for graph trans-
formation systems.

AToM3 (A Tool for Multi-formalism and Meta-Modelling) [15] is a tool for
the design of Domain Specific Visual Languages. It allows defining the abstract
and concrete syntax of the Visual Language by means of meta-modelling and
expressing model manipulation by means of graph transformation [9]. With the
meta-model information, AToM3 generates a customized modelling environment
for the described language. Recently, AToM3 has been extended with functional-
ities to generate environments for Multi-View Visual Languages (such as UML)
and triple graph grammars [21]. The latter is useful to express the evolution of
two different models, related by an intermediate one. Both new characteristics
will be used for the proposed example.

VIATRA2 is an Eclipse-based general-purpose model transformation engi-
neering (transware) framework that will support the entire life-cycle for the speci-
fication, design, execution, validation and maintenance of transformations within
and between various modelling languages and domains. Using efficient importers
and exporters, VIATRA2 is able to cooperate with an arbitrary external system,
and execute the transformation with a native transformation model (plug-in),
which is generated by VIATRA2. Its rule specification language combines the
graph transformation and abstract state machines into a single paradigm. Es-
sentially, elementary transformation steps are captured by graph transformation
rules (using a rich graph pattern concept) while complex transformations are
assembled from these basic steps by using abstract state machine rules as con-
trol flow specification. Furthermore, model constraints are also captured by the
same graph pattern concept.

The Visual Modeling and Transformation System (VMTS) is a general pur-
pose meta-modelling and transformation environment. VMTS is a highly config-
urable environment offering capabilities for specifying visual languages applying

meta-modelling techniques. VMTS uses the instantiation relationship residing
between the M0 and M1 layers in the MOF standard [20], namely, the one be-
tween the UML class diagram and object diagram. The VMTS Presentation
Framework (VPF) facilitates a means of rapid development for plug-ins as a
customized presentation of the concrete syntax of the models. VMTS defines
the model constraints in terms of OCL constraints placed in the meta-model.
Since the rules in VMTS are specified by meta-model elements of the input and
the output models, the transformation constraints are also expressed in OCL.
VMTS has an automated support for preserving, guaranteeing, and validating
constraints. The crosscutting concerns are handled with aspect-oriented tech-
niques. The VMTS control flow is defined by stereotyped activity diagrams.

The comparison presented in this paper takes the following considerations in
account: (i) We make a general comparison of the features provided by the tools
with respect to the input and output models, transformation methods and other
services. (ii) Based on the problems induced by the case study, we compare
the solutions of the different approaches. An explicit classification criteria is
developed in Section 7 to underpin an expressive comparison method which is
easy to follow.

The rest of the paper is organized as follows: Section 2 describes our inter-
pretation of the common case study specified in [4]. Section 3 contributes the
AGG approach, Section 4 is devoted to the AToM3 method, while Section 5 and
Section 6 elaborate on the model transformation techniques offered by ViaTra
and VMTS, respectively. A comparison is described in Section 7 concluding with
future work.

2 A Sample Model Transformation: Main Requirements

As common case study we consider a model transformation from class diagrams
to relational data base models. The main requirements for this model transfor-
mation are given in [4]. In this section, we recall the main requirements given in
[4] and amend them with our interpretation of open issues.

Classes can be indicated as persistent or non-persistent. A persistent class is
mapped to a table and all its attributes or associations to columns in this table.
If the type of an attribute or association is another persistent class, a foreign
key to the corresponding table is established.

If class hierarchies are transformed, only the topmost classes are mapped to
tables. Additional attributes and associations of subclasses result in additional
columns of the top-most classes.

Non-persistent classes are not mapped to tables, however, one of the main
requirements for the transformation considered is to preserve all the information
in the class diagram. That means attributes and associations of non-persistent
classes are distributed over those tables stemming from persistent classes which
access non-persistent classes.

In general, the transformation of attributes with classes as types can be
handled in the same way as associations. Thus, the use of attributes could be
restricted to values of primitive data types.

Summarizing the model transformation, the following subtasks have to be
performed:

1. creation of a table for each persistent class
2. creation of columns for each attribute (association) of a persistent class
3. computation of transitive closure of class inheritance
4. transformation of attributes and associations of subclasses to columns of the

topmost class’ table
5. transformation of attributes and associations of connected non-persistent

classes to columns of referring persistent classes’ tables
6. deletion of helper structure (optional)
7. deletion of source model (optional)

Example. The following example is used to explain this principle in more detail.
Figure 1 shows a sample class diagram as instance of a suitable meta-model.
While classes Person and Phone are persistent, class Address is not. Moreover,
class Customer inherits from class Person.

: Class
name= „Address“
is_persistent = false

: Class
name= „Person“
is_persistent = true

: Class
name= „Phone“
is_persistent = true

: Association
name= „address“

: Association
name= „phone“

: Attribute
name= „name“
is_primary = true

: Attribute
name= „addr“
is_primary = true

: Attribute
name= „number“
is_primary = true

: PrimitiveDataType
name= „String“

: PrimitiveDataType
name= „Integer“

src srcdest dest

attrs attrs attrs

type type type

: Class
name= „Customer“
is_persistent = false

parent

: Attribute
name= „cust_id“
is_primary = true

attrs

type

Fig. 1. Sample class diagram as meta-model instance

This class structure is transformed into the relational data base model in
Figure 2 consisting of two tables, one for Person and one for Phone. The asso-

ciations and the primary attribute of class Address are mapped to columns of
table Person. Furthermore, the primary attribute of class Customer is mapped
to a column of table Person.

: Table
name= „Person“

: Table
name= „Phone“

: Column
name= „name“
type = „String“

: Column
name= „number“
type = „Integer“

: Column
name= „address_addr“
type = „String“

: Column
name= „address_phone_number“
type = „Integer“

: FKey

pkey pkey colscols cols cols

fkeys

cols

ref

: Column
name= „cust_id“
type = „Integer“

cols

pkey

Fig. 2. Data base model as meta-model instance

3 A Model Transformation Approach using Algebraic
Graph Transformation in AGG

3.1 The approach

Describing a model transformation by graph transformation, the source and
target models have to be given as graphs. Performing model transformation by
graph transformation means to take the abstract syntax graph of a model, and to
transform it according to certain transformation rules. The result is the abstract
syntax graph of the target model.

A model transformation can be precisely defined by a graph transformation
system GTS = (T,R) consisting of a type graph T and a set of transformation
rules R. The abstract syntax graphs of the source models can be specified by
that subset of instance graphs over a type graph TS which are generated by
the corresponding syntax graph grammar. Correspondingly, the abstract syntax
graphs of the target models are specified by a subset of instance graphs over
a type graph TT . Both type graphs TS and TT have to be subgraphs of the
common type graph T . See Figure 3. Starting the model transformation with
instance graph GS typed over TS , it is also typed over T . During the model
transformation process the intermediate graphs are typed over T . Please note
that this type graph may contain not only TS and TT , but also additional types
and relations which are needed for the transformation process only. The result
graph GT is automatically typed over T . If it is also typed over TT , it fulfills one
main requirement to be syntactically correct. If both languages are defined by

syntax graph grammars and assuming that the model transformation starts with
a syntactically correct source graph, the result graph of the model transformation
should be a syntax graph of the target language, i.e. should be creatable by the
target language grammar. In this case, it fulfills all requirements for syntactic
correctness.

TS

incS // T TT

incToo

GS

typeS

OO

ri +3

typeGS

==zzzzzzzzzzzzzzzzzz
...

rj +3 Gi

typeGi

OO

rk +3 ... rl +3 GT

typeT

OO

typeGT

aaDDDDDDDDDDDDDDDDDD

Fig. 3. Typing in the model transformation process

As in object-oriented modelling, types can be structured by an inheritance re-
lation [3]. Instances of a type graph are object graphs equipped with a structure-
preserving mapping to the type graph. A class diagram can thus be represented
by a type graph plus a set of constraints over this type graph expressing multi-
plicities and maybe further constraints.

In this approach, models are described by typed attributed graphs. An at-
tribute is declared just like a variable in a conventional programming language:
we specify a name and a certain type for the attribute, and then we may assign
any value of the specified type to it. All graph objects of the same type also
share their attribute declarations, i.e. the list of attribute types and names; only
the values of the attributes may be chosen individually. From a conceptual point
of view, attribute declarations have to be considered as an integral part of the
definition of a type. In theory ([11]), the attribute values are defined by sepa-
rate data nodes which are elements of some algebra. In the AGG [1] tool, the
attribution is based on Java.

A graph transformation rule r : L → R consists of a pair of T -typed graphs
L,R such that the union L∪R is defined. In this case, L∪R forms a graph again,
i.e. the union is compatible with source, target and type settings. The left-hand
side L represents the pre-conditions of the rule, while the right-hand side R
describes the post-conditions. L ∩ R defines a graph part which has to exist to
apply the rule, but which is not changed. L\ (L∩R) defines the part which shall
be deleted, and R\(L∩R) defines the part to be created. To make sure that newly
created items are not already in the graph, we have to generate new vertex and
edge identifiers whenever a rule is applied. Formally, for each application a new
rule instance is created. Furthermore, a rule may specify attribute computations.
For this purpose, the rule graphs can be attributed by elements of term algebras
which are instantiated by concrete values in the graphs when the rule is applied.

A graph transformation step is defined by first finding a match m of the left-
hand side L in the current object graph G such that m is structure-preserving
and type compatible. If a vertex embedded into the context, shall be deleted,
dangling edges can occur. These are edges which would not have a source or
target vertex after rule application. There are mainly two ways to handle this
problem: Either the rule is not applied at match m, or it is applied and all
dangling edges are also deleted.

The applicability of a rule can be further restricted, if additional application
conditions have to be satisfied. A special kind of application conditions are neg-
ative application conditions which are pre-conditions prohibiting certain graph
parts. This and more general application conditions are presented in [10].

Performing a graph transformation step with rule r at match m, all the
vertices and edges which are matched by L \ (L ∩ R) are removed from G.
The removed part is not a graph in general, but the remaining structure D :=
G \ m(L \ (L ∩ R)) still has to be a legal graph, i.e., no edges should be left
dangling. This means if dangling edges occur during a rule application, they
have to be deleted in addition. In the second step of a graph transformation,
graph D is glued with R \ (L ∩ R) to obtain the derived graph H. Since L and
R can overlap in a common graph, its match occurs in the original graph G
and is not deleted in the first step, i.e. it also occurs in the intermediate graph
D. For gluing newly created vertices and edges into D, graph L ∩ R is used. It
defines the gluing items at which R is inserted into D. A graph transformation,
more precisely a graph transformation sequence, consists of zero or more graph
transformation steps.

Given a host graph and a set of graph rules, two kinds of non-determinism
can occur: First several rules might be applicable and one of them is chosen
arbitrarily. Second, given a certain rule several matches might be possible and
one of them has to be chosen. There are techniques to restrict both kinds of
choices. Some kind of control flow on rules can be defined by applying them in
a certain order or using explicit control constructs, priorities, etc. Moreover, the
choice of matches can be restricted by specifying partial matches using input
parameters. A common form of controlled rule application is the following one:
One rule is selected from outside (e.g. the user) and triggers the application of
a number of other rules which become applicable after the first rule has been
applied.

3.2 The solution

In the following, we specify a model transformation from class diagrams to re-
lational data base models by algebraic graph transformation. The solution is
presented in two steps: First a basic solution is presented not considering class
inheritance and non-persistent classes. Thereafter, we discuss a complete solution
which satisfies all requirements stated in Section 2.

A basic solution First of all, we present the type graph for the chosen model
transformation in Figure 4. It consists of a type graph for class diagrams (the

left part) which follows the meta-model for class models given in the workshop
announcement [4] where the inheritance is flatten. In the advanced solution it
will follow the class meta-model directly. Furthermore, it contains a type graph
for the relational data base model (the right part) which also correspond exactly
to the meta model for relational data base models given in the announcement.
For the model transformation, some additional helper structure (the part in
between) is needed which mainly holds correspondences between elements of
different type graphs.

Fig. 4. Basic type graph for the sample model transformation

We start the model transformation by mapping persistent classes to tables.
For each class a table with the same name is created and the correspondence
between both is set. This step is formulated by rule ”Class2Table” in Figure 5.
This figure shows the left and the right-hand sides of the rule. The mapping
between both rule sides is indicated by the same number at both classes. This
rule states that the class is preserved, while the table and the correspondence
structure are created. This rule and all the following ones in this subsection have
a negative application condition (NAC) which is equal to the right-hand side.
NACs of this special form are used to apply a rule only once at the same match.

Fig. 5. Rule ”Class2Table”

Next we consider the transformation of class attributes performed by the
application of rule ”PrimAtt2Col” in Figure 6. Given a transformed class, an
attribute of this class is mapped to a column of the corresponding table. The
column is named as the attribute. Here, we consider the case where the attribute
type is a primitive data type. In rule ”AttPersClass” in Figure 7 we consider also
the transformation of attributes, but this time the attribute type is a persistent
class. In this case, a corresponding table exists also for this class, together with
a primary key. Rule ”AttPersClass” inserts a foreign key to this table and a new
column. The name of this new column is a concatenation of the attribute name
and the primary key of the foreign table.

Fig. 6. Rule ”PrimAtt2Col”

Fig. 7. Rule ”AttPersClass”

Rule ”setkey” in Figure 8 sets a primary key to that column which is the
translation of a primary attribute.

Finally, rule ”AssPersClass” in Figure 9 translates an association between
two classes in the same way as an attribute with a class as type was translated.
That means a foreign key to the corresponding table of the destination class is

Fig. 8. Rule ”setkey”

created together with a new column. The name of the column is the association
name followed by the primary key of the foreign table.

Fig. 9. Rule ”AssPersClass”

Rules which delete the helper structures as well as the source model are
optional. Since it should be clear how they would look like, we omit them here.

An advanced solution The complete model transformation builds up on the
basic solution, but takes also class inheritance and non-persistent classes into
account. In class hierarchies, only the top-most classes are mapped to tables,
while additional information given by subclasses has to be merged in. That means
additional attributes and associations of subclasses are mapped to additional
columns in the corresponding table.

To handle this requirement, we first compute the transitive closure of the in-
heritance relation (expressed by ”parent” edges) and store it as additional helper
structure in the instance graph (using ”anc(estor)” edges). Furthermore, we pull
up attributes and associations from the subclasses to the top-most classes. To
distinguish these additional attributes and associations we add two helper types:
”Att” and ”Assoc” (with additional edge types). Moreover, we use node type

inheritance [3] and multiplicities here, as used for class models in the given
meta-model in [4]. The extended type graph is shown in Figure 10.

Fig. 10. Type graph for the sample model transformation

In Figures 11 and 12 the corresponding rules are shown which first add an
anc(estor) edge for each parent edge and then compute the transitive closure
in form of additional helper edges by recursive rule application. By recursively
applying the rule in Fig. 13 all subclass’ attributes are collected in the topmost
classes. After having transformed the topmost classes to tables, their subclasses
are also transformed to their tables by the recursive application of the rule in
Figure 14. Please note that Fig. 11 - 15 show rules with three compartments:
The leftmost compartment shows a NAC, in the middle the LHS is depicted and
on the right we see the RHS.

Fig. 11. Rule which initializes the transitive closure computation for class inheritance

Non-persistent classes are not mapped to tables, however, one of the main re-
quirements for the model transformation considered is the preservation of all the
information of the class diagram. That means having attributes or associations
pointing to non-persistent classes, all attributes and associations of these classes
are also mapped to columns belonging to the table of the original persistent
class.

Fig. 12. Rule which computes the transitive closure for class inheritance

Fig. 13. Rule which collects attributes of subclasses in their parent classes

Since the non-persistent structure can be arbitrarily large, we first collect all
attributes and associations of non-persistent classes in those persistent classes
pointing to the non-persistent ones. These additional attributes and associations
are also stored in the helper types ”Att” and ”Assoc”. The name of an additional
attribute (association) is the concatenation of names occurring on the path from
the persistent class to this attribute (association), including its own name.

The rule in Figure 15 collects all attributes of non-persistent classes which in
their referencing classes. By recursive rule application, the attributes are stepwise
added to the referencing classes until they are persistent (see NAC “NoAnces-
tor”). This rule has another NAC equal to the RHS (which is not shown). Asso-
ciations can be handled in the same way. The corresponding rules are not shown
within this paper.

In the complete model transformation we first build up the necessary helper
structure by additional rules. Then, the actual model transformation takes place,

Fig. 14. Rule which transforms a subclass to its ancestor’s table

Fig. 15. Rule which collects attributes of non-persistent classes in those classes refer-
ring to them

using the rules presented above in principle. They have to be slightly adapted to
handle also those additional attributes and associations coming from subclasses
or connected non-persistent classes.

In this solution, we do not define additional control structures for the rule
execution, but coordinate them by the definition of layers only. Each rule is as-
signed to a certain layer. Starting with layer 0, the rules of one layer are applied
as long as possible. Thereafter, the next layer is executed. Having executed the
highest layer, the transformation is finished. In the complete model transforma-
tion we distinguish the following layers:

0 - computation of transitive closure of class inheritance
1 - collection of attributes and associations of subclasses
2 - collection of attributes and associations of connected non-persistent classes
3 - creation of tables
4 - creation of columns
5 - deletion of helper structure
6 - deletion of source model

For this model transformation example the use of layers was enough to con-
trol the rule application. More complex model transformations might use trans-
formation units which have been introduced by Kreowski and Kuske in [14].
Transformation units provide the means to structure a system of rules to sub-
components that can use each other. Within a unit, the set of rules of another
unit can be ‘called’ by using the name of the corresponding unit, thus realizing
functional abstraction.

3.3 Validation of Model Transformations

Due to its formal foundation [11], the algebraic graph transformation approach
allows to validate model transformation concerning different properties.

Following the model transformation approach described above (see Figure 3),
the result graph GT is automatically typed over graph T . If it is also typed

over TT , it fulfills one main requirement to be syntactically correct. Otherwise,
additional model elements occur which could be deleted by special deletion rules.

If both languages are defined by syntax graph grammars and assuming that
the model transformation starts at a syntactically correct source graph, the
result graph of the model transformation should be a syntax graph of the target
language, i.e. should be creatable by the target language grammar. In this case,
it fulfills all requirements for syntactic correctness. If the target language is just
defined by a set of constraints over a given type graph, the result graph has to
fulfill these constraints. In the case of graph constraints, there is a theory ([10])
on transforming constraints to corresponding application conditions for rules
in the following sense: Starting with a correct source model, all rules (possibly
extended by additional application conditions) can only be applied such that the
result graphs are consistent with respect to the given graph constraints.

Besides syntactical correctness, model transformations should show further
correctness issues. A model transformation should lead to a unique result, i.e. it
should show a functional behaviour. This means not only that the transforma-
tion rules should not be applied in a way that several results are possible, i.e. the
transformation system must be confluent , but also that all model transforma-
tions have to terminate. Corresponding criteria are given in [11] for confluence
and [7, 6] for termination.

3.4 The Tool Support

The approach presented is supported by AGG [1] which is an integrated devel-
opment tool for typed attributed graph transformation, implemented in Java.
It offers the visual development of graph transformation systems including vi-
sual editing and simulation as well as a number of validation tools. The internal
graph transformation engine can also be used by a Java API and thus, can be
integrated into other tool environments.

Since the theoretical concepts are implemented as directly as possible – natu-
rally, respecting necessary efficiency considerations – AGG offers clear concepts
and a sound behavior concerning the graph transformation part. Since graph
transformation can be applied on very different levels of abstraction, it can be
non-attributed, attributed by simple computations or by complex processes, de-
pending on the abstraction level. To reflect this wide application area for at-
tributed graph transformation, we decided to attribute AGG graphs by Java
objects. On one hand, this design decision certainly allows a large variety of
graph transformation applications, but on the other hand it is clear that the
Java semantics is not covered by the formal foundation.

Rule applications can be performed in two different modes: the interactive
mode and interpreter mode. In the interactive mode, the rule selection and match
definition can be done interactively. After having chosen a rule, the match can
either be given element-wise by the user, or computed automatically. If several
matches are possible, they are computed one after the other. A third possibility
is the manual definition of a partial match which is completed automatically
afterwards. The automatic match completion computes the possible matches in

an arbitrary order which certainly differs from the order when repeating the
computation of all possible matches. After having fixed rule and match, the
rule is applied to the current host graph. The second possible mode for rule
application is the interpreter mode where rules are applied as long as possible.
The rule as well as the match selection orders are non-deterministic, except for
layered graph grammars or other kind of rule control as by Java programs using
the AGG API.

Due to its formal foundation, AGG offers validation support including consis-
tency checking of graphs and graph transformation systems, critical pair analysis
and termination checks for graph transformation systems.

4 A Triple Graph Grammars Approach with AToM3

4.1 The approach

Triple Graph Grammars [21] were proposed by Andy Schürr as a means to specify
translators of data structures, check consistency, or propagate small changes
of one data structure as incremental updates into another one. Triple graph
grammar rules model the transformations of three separate graphs: source, target
and correspondence. Nodes in the latter have a couple of morphisms, one to
nodes in the source graph and another one to nodes in the target graph. In our
approach, we allow the morphisms to be partial. In this way, the rewriting is
performed on triple graphs, which have the form SOURCE

s←− CORR
t−→

TARGET . In a similar way as regular graph rules (see section 3), triple graph
grammars are made of triple rules, each having triple graphs in its left and right
hand sides (LHS and RHS). When a matching (three morphisms in our case) is
found between the rule’s LHS and the triple graph, then the occurrence can be
substituted by the RHS.

Triple graph grammars can be extended by providing a triple meta-model fro
typing the triple graphs [12]. This triple meta-model describes the kind of struc-
ture that can be found in the source, target and correspondence models. In our
case, we consider meta-models containing inheritance relations and additional
textual constraints.

In our approach we also provide rules with application conditions [10], re-
stricting the context in which they can be applied. These application conditions
were developed for regular graph transformation, but we have adapted them for
triple graph grammars. A condition has a premise graph X, a set of consequent
graphs Yi, and morphisms yi from X to each Yi: c = {X, X

yi−→ Yi}. If an oc-
currence is found for X in the host graph, then an occurrence has to be found
for every consequent node Yi for the rule to be applied. If a condition does not
have consequent graphs, finding a match for the premise forbids the rule appli-
cation. This is a special case of condition called negative application condition
(NAC). On the contrary, if the condition has an empty premise, it is a positive
application condition.

For rule execution, we use the control structure provided by AToM3 [15].
This control structure is based on rule priorities. Rules with the same priority

are chosen at random. The rewriting engine tries first the rules with the highest
priority. When a rule with a certain priority is executed, the control goes back
to the rules with the highest priority. If no rule with a certain priority can be
executed, then the control goes to the next lower priority. The grammar execu-
tion ends when no rule (with the lowest priority) can be executed. In addition,
it is possible to select a list of graph transformation systems to be executed in
sequence.

4.2 The solution

The solution we present here is based on the AToM3 tool [15], which supports
regular graph grammars (in the style of the ones presented in section 3) and
triple graph grammars. For the example, we use triple graph grammars and
discuss its merits with respect to the AGG solution based on regular graphs.

The source and target meta-models are the ones in the specification. In the
correspondence meta-model we do not explicitly create a meta-model, but use
untyped graphs. This is a feature of AToM3 (see next subsection). We allow
correspondence nodes to relate columns and attributes, classes and tables, two
columns (by connecting two correspondence nodes and each one of them to the
columns, see Figure 18), and two foreign keys. Note how, the partial morphisms
from the correspondence nodes allow relating elements from one model only.

The main idea of our solution is given in the following list of steps, where
each step is made of one or more rules. Rules in steps 1-8 have the same priority,
so no order should be assumed. Nonetheless, due to the NACs in the different
rules, the execution order is similar to the ordering we present in the list. We
show only pictures of some representative rules.

1. Create a table for each top-most class, even if the class is non-persistent, and
relate such table with the class (one rule). The relation is done through a
node in the correspondence graph. This rule is similar to rule “class2table”
shown in Figure 5 in the AGG section.

2. For each attribute of a class already related to a table, create a column in the
corresponding table (one rule). The rule is not executed if there is already
a column with the same name. Figure 16 shows this rule. The upper part is
the class diagram model, while the lower part is the relational model. The
rule has two NACs, the first one checks that the attribute has not already an
associated column. The second one is useful as later (in step 3), subclasses
may be related with the table, and new columns may be generated. We do not
generate a new column for an overriding attribute, but keep the generated
column by the attribute in the parent class. In this way the NAC forbids the
rule execution if the table has already a column with the same name as the
attribute. Note how this rule is similar to rule “PrimAtt2Col” in Figure 6 in
the AGG section. Note however that in the triple rule, the elements of the
different models are arranged in the different graphs.

3. For each subclass, relate the class with the table of the top-most parent (one
rule). Note how the execution of this rule may trigger the execution of the

Fig. 16. createColumn rule (step 2).

rule in step 2. The rule is shown in Figure 17. The rule is iterativelly applied
down the inheritance hierarchy (association labelled as 5 in the rule). The
rule has a NAC that allows executing the rule only once for each class (it
checks if the class already has an associated table). In addition, the rule has
an application condition that forbids its application if a column has not been
created for some attribute in the parent class. The condition can be read as:
“if the class has an attribute (graph X), then it should have an associated
column (graph Y)”. In this way, this rule cannot is not applicable if the rule
in step 2 can still be applied at some match.

4. Create the primary keys (one rule). This rule is similar to the “setkey” rule
in the AGG approach (see Figure 8).

5. For each related persistent class (through an association or attribute), create
the corresponding foreign key (four rules, two for attributes and two for asso-
ciations). The rules are similar to the “AssPersClass” of the AGG approach
(see Figure 9).

6. For each related non-persistent class, copy the columns (two rules, one for
attributes and one for associations). One of the rules in this step (the one for
attributes) is shown in Figure 18. The copied column is related to the original
one by means of two nodes in the correspondence graph. The first NAC
forbids the rule execution if the column has already been copied (the columns
are already related). The second NAC forbids the rule execution if the table

Fig. 17. collectAttributesDown rule (step 3).

already has a column with the appropriate name. This NAC is necessary to
allow incremental execution of the grammar. It should be noticed that the
tables for non-persistent classes (and their related columns) will be deleted
after the grammar execution. In this way, if the user adds elements in the
class diagram and then executes again this grammar to update the relational
model, the tables and columns for non persistent classes would be created
again. Without this NAC, the column would be copied again in the persistent
class.

7. Add the primary keys for the newly added columns by the rules in step 6
(one rule). Note how the execution of this rule may trigger the execution of
rule number 5, to update the foreign keys. Figure 19 shows the rule for this
step. The rule looks for two columns (one of them a primary key and the
other not) related by nodes in the correspondence graph (which means that
one of the columns was copied). Then, a primary key arrow (the red one) is
added to the column that is not a primary key.

8. Copy the foreign keys from the newly added columns by the rules in step 6
(two rules).

9. Delete the tables and columns associated to non-persistent classes (twelve
rules). These rules should be executed once no other rule is applicable. There-
fore they have been implemented in a separate transformation that is exe-

Fig. 18. AddColumnsNonPersistentAttr rule (step 6).

Fig. 19. AddPrimaryKeyNonPersistent rule (step 7).

cuted once the previous one ends. The deletion of elements needs so many
rules because we are using the so-called Double Pushout (DPO) approach [9].
This approach forbids deleting a node if it has some incoming or outgoing
edge. Therefore, before deleting a node, we have to execute rules to delete
all surrounding edges. On the other hand, the Single Pushout (SPO) ap-
proach [9] allows the deletion of nodes with incident edges, and the edges
are deleted as well. Although both approaches are supported by AToM3, we

usually prefer the more conservative DPO as in this case a rule execution
does not have side effects.

One of the differences with the AGG solution is that we implement the tran-
sitive closure of inherited attributes by directly creating the columns in the as-
sociated table, and then performing the rest of the operations with the columns.
Moreover, we temporarily create tables for non-persistent classes. These differ-
ences are not essential however, and the AGG solution could have been imple-
mented with triple graph grammars as well. On the other hand, one of the main
drawbacks – also shared with the AGG approach – is that we had to include very
similar rules for the case of attributes and associations. Other deeper conceptual
differerences are discussed in the next section and in section 7.

4.3 The Tool Support

In this section we show the implementation of the proposed solution in the
meta-modelling and transformation tool AToM3 [15]. This tool allows the spec-
ification of Domain Specific Visual Languages by means of meta-modelling, and
their manipulation by means of graph transformation. Recently, AToM3 has
been provided with the possibility to define triple graph grammars [12] and mul-
tiple views [13]. Views are provided their own meta-model, which optionally can
be a subset of a global meta-model that relates all the view concepts. This is
very useful when defining multi-view languages (especially if such views contain
overlappings), such as UML. We have used this AToM3 feature to define two in-
dependent views: one for the Class Diagram and one for the Relational Database
model. We defined the corresponding example meta-models in the views.

In addition, AToM3 allows the definition of consistency relations between
views. These consistency relations contain a triple graph grammar that can be
executed when the view source of the relation changes. We have defined two
relations that have the Class Diagram view as their source. The first one con-
tains a triple graph grammar for generating and updating the relational model
(containing rules for steps 1-8). The second one contains another triple grammar
that deletes the tables for non-persistent classes (rules for the last step). It is
executed after the previous one has finished. A screenshot of the definition of
the environment is shown in Figure 20.

The picture shows in the bottom window the two views and the consistency
relations. One of the relations (the one that does the main computation) is being
edited in the rest of the windows. The dialog window on top of the previous one
allows editing the relation name (called ClassDiagram2Relational). The next
window allows editing the triple graph grammar. The LHS of one of the rules
(MergeFK1, step 8) is being edited. The rule copies the foreign key of a table
related to a non-persistent class. All attributes in the LHS are set to “any”
meaning that any value in the model will make a match. In the RHS, attribute
values can be copied from the LHS or specified by means of Python code.

¿From this specification, AToM3 generates a tool where the user can insert
class diagrams and relational models. Nonetheless, for this application, we are

Fig. 20. Defining the Class to Relational Environment with AToM3.

interested in generating the relational model from the class diagram models.
After editing a class diagram, the user may run the consistency relations to create
or update the associated relational model. A screenshot of this environment is
shown in Figure 21. The window at the bottom allows inserting relational and
class diagram models. A class diagram is being shown in the window to the left.
It has been converted to a relational model, which is shown in the window to the
right. The correspondence graph between the class diagram and the relational
model is hidden to the user. This is because it is only used internally to maintain
the consistency between both models.

One of the advantages of the approach in this section is the modularity, as
it keeps separated the source and target models, which are related through a
separate model. That is, the class diagram and the relational database are two
completely separated models. Moreover, the meta-models remain also separated
and do not have to be modified. In this way, it could be possible to define an
environment with different model transformations from/to a certain domain.
The triple graph grammars approach is cleaner than mixing all the meta-models
and models into a single one. This has another advantage: in the regular graph
transformation approach an important aspect is to verify whether the target
model is correctly typed over the target meta-model. That is, at the end of the
transformation no source or auxiliary elements should remain. This is no longer a
problem in the triple graph grammars approach, as the target model is correctly

Fig. 21. The Class to Relational Environment Generated by AToM3.

typed because the rules are correctly typed and no auxiliary elements are present
in the target model (they are kept in the correspondence graph).

Another main difference with the regular graph transformation approach is
that we do not delete the source elements and keep the correspondence graph in
between the source and target. This allows for incremental transformations (see
discussion in section 7).

5 Controlled Graph Transformation with Recursive
Graph Patterns in VIATRA

In many graph transformation approaches (e.g. Progres, Fujaba, Great, VIATRA
or VMTS), the application of elementary algebraic graph transformation rules is
frequently driven by complex control structures to reduce non-determinism and
thus to improve run-time performance. In addition, graph patterns allowed in the
left-hand side of rules are also more powerful than in the basic algebraic approach
by allowing so-called path expressions or multi-objects. The expressiveness of
similar extensions is demonstrated in the paper on two approaches, namely,
VIATRA (Sec. 5) and VMTS (Sec. 6).

5.1 The Approach

The VIATRA approach combines the rule and pattern-based paradigm of graph
transformation (GT) and the very general, high-level formal paradigm of abstract

state machines (ASM) [5] into a single framework for capturing transformations
within and between modelling languages (following the results of [23]). On the se-
mantic level, this combined VIATRA specification is translated back into ASMs,
which thus serve as a very high-level, executable virtual machine.

Model definition. VIATRA uses the VPM metamodeling approach [24] for de-
scribing modeling languages and models, which supports arbitrary meta-levels
in the model space. As a direct consequence, models taken from conceptually
different domains (and/or technological spaces) can be easily integrated into the
VPM model space. In the VIATRA section of the paper, models and modelling
languages will be denoted in the traditional MOF notation for presentation rea-
sons.

Queries on models. Queries on models are intuitively captured by generalized
(recursive) graph patterns. Graph patterns in VIATRA may contain an arbitrary
number of negative application conditions marked with the neg keyword, which
denotes that a graph pattern becomes a negative (forbidden) pattern. It is a
generalization of traditional negative application conditions in the algebraic GT
approach (see Sec. 3) in a sense that negative patterns may in turn contain nega-
tive patterns (negation with arbitrary depth). Furthermore, patterns are allowed
to call call other patterns even in a recursive way (using the find keyword).

Elementary model manipulations. Elementary model manipulations are specified
by graph transformation rules. A graph transformation rule in VIATRA consists
of a precondition pattern and a postcondition pattern both of which are arbitrary
graph patterns basically corresponding to the LHS and RHS of the algebraic
GT rules. To support the modular design of transformations and to increase
reusability, pre- and postcondition of GT rules may refer to predefined (named)
graph patterns. (See the definition of rule subclassR in Fig. 22.)

Furthermore, input (and output) parameters may be passed to a VIATRA
rule or a pattern to improve performance and to define the morphism between
pre- and postcondition graph elements. If a graph element is passed to the post-
condition pattern as a parameter, but it does not appear there, it prescribes
the deletion of the matched element. Consequently, if a graph element appears
only in the postcondition (but not in the precondition), a new model element is
created.

As a consequence, the main conceptual difference on the rule level compared
to the basic algebraic approach is that only those parts of the precondition
pattern need to be passed as parameters to the postcondition pattern, which
are (i) either nodes in the interface graph (formally, in L ∩ R) or (ii) they are
nodes and edges to be removed (thus, in L \ R). Naturally, it is also possible
to spuriously pass the entire precondition to the postcondition using different
parameters.

A unique feature of VIATRA is the support of generic and meta-transformations
[25] that allow type parameters and manipulate transformations as ordinary

models, respectively. This allows to arrange common graph algorithms (e.g. tran-
sitive closure, graph traversals, etc.) into a reusable library, which is called by
assigning concrete types to type parameters in the generic rules.

Complex transformation programs. Complex transformation programs are as-
sembled by using abstract state machine constructs that provide higher-level
control structures for elementary manipulation steps.

ASMs provide complex model transformations with many powerful control
structures including the sequencing operator (seq), rule calls to other rules (call),
variable declarations and updates (let and update constructs) and if-then-else
structures, non-deterministic selected (random) and executed rules (choose), it-
erative execution (applying a rule as long as possible), and the deterministic
parallel rule application at all possible matchings (locations) satisfying a con-
dition (forall). In the sequel, we use the collective term “ASM rules” to denote
one of these constructs responsible for the control flow of the transformation.
Examples on ASM rules will be given in Fig. 23 later on.

Both ASM and GT rules are allowed to have input and output parameters to
support information hiding and to improve the efficiency of pattern matching.

The semantics of an ASM rule is defined by a set of consistent elementary
update steps manipulating the model space (or other runtime ASM data struc-
tures).

Interaction between ASMs and GT rules. Abstract state machine rules (defined
by the rule keyword) and graph transformation rules (defined by the gtrule key-
word) interact with each other in a mutual way.

– ASM rules using GT rules. ASM rules may initiate the application of graph
transformation rules by quantifying input parameters of GT rules existen-
tially or universally. In the latter case (extensively used in the VIATRA part
of the paper), all tuples of the quantified variables satisfying a guard (which
is a Boolean ASM expression or a graph pattern) are enumerated and the
GT rule is applied to all tuples in a single parallel step.
Finally, when a GT rule is applied successfully, the output parameters of the
rule get instantiated (by the RHS). These are returned to the ASM rules by
parameter passing along variables.

– GT rules using ASM rules. A graph pattern in a GT rule may contain a
check part, which allows to check attribute conditions. Furthermore, a GT
rule may also contain an action part, which is a sequence of ASM rules
executed after the model manipulation part of the GT rule has completed
for a given matching.

Code generation. Code generation is treated as ordinary model-to-code model
transformations, and it is supported by intelligent (model-driven) print ASM
rules, and a code formatter mechanism to split the generated code into different
source files.

Further conceptual details of the VIATRA approach are discussed together
with the solution in the upcoming section.

5.2 The Solution

As the main guidelines of the solution was already presented both using the
basic algebraic approach (Sec. 3) and triple graph grammars (Sec. 4), in the
VIATRA solution, we focus only on three critical parts of the transformation.
More specifically, we discuss

1. the transitive closure of ancestor edges starting from basic parent edges;
2. the merging-in of associations in a chain of non-persistent classes;
3. the generation of columns and foreign keys from such associations (and at-

tributes).

We believe that these steps are interesting and representative as they solve
the selected subproblems of the entire transformation in a more succinct or
efficient way. The remaining parts of the model transformation in VIATRA con-
ceptually follow the basic algebraic case (naturally, seq, iterate and forall ASM
control structures are used instead of layers).

Graph transformation rules for transitive closure. The transitive closure cal-
culation of ancestor edges requires two steps as described by the two graph
transformation rules in Fig. 22.

Fig. 22. Graph transformation rules in VIATRA for the transitive closure of ancestor
edges

– First ancestor edges are generated for all parent edges by applying rule par-
entIsAncR. It is worth pointing out that edge P1 of type parent in the pre-
condition is not passed as a parameter to the postcondition. As a result, the
missing parent edge does not mean that P1 is removed by the rule applica-
tion, since VIATRA only removes model elements which are passed to the
postcondition as a parameter but they do not appear in the postcondition.

– Then, according to rule subclassR, if a class C2 is an ancestor of class C1,
class C3 is an ancestor of C2, but C3 is not yet an ancestor of C1 (see the
negative condition), a new anc edge is generated from C1 to C3. This time,
the all elements from the precondition pattern lhs are passed as parameters
to the postcondition rhs (but anc edges E1 and E2 could be omitted from
the passed parameters as done in rule parentIsAncR).

ASM program for transitive closure. Elementary graph transformation rules are
controlled by ASM rules (defined by the rule keyword) into complex transforma-
tion programs. The ASM rules of the transitive closure calculation of ancestor
edges is presented in Fig. 23.

Fig. 23. ASM programs for the transitive closure of ancestor edges

1. Initially, an anc edge is created for each parent edge (GT rule parentIsAncR
applied in forall mode), and then ASM rule closureAnc is called.

2. In this latter ASM rule, we check if there are triples of classes where only
the transitive anc edge is missing (see the conditional construct which calls
pattern classWithoutAnc).

3. Then subclassR is applied in parallel to all such classes5.
5 For efficiency reasons, graph transformation rules are also allowed in the guard of a

forall ASM statement, which is equivalent to an atomic step of a pattern matching
and a manipulation phase (see the two equivalent solutions for calling subclassR).

4. Finally, rule closureAnc is called recursively.

While in case of the algebraic GT approach, the transitive closure of rule
subclassR would be calculated by an iterative rule application (i.e. the rule is
applied as long as possible), the forall ASM control structure provides a more
efficient solution, which handles all the matches of the rule in parallel.

Obviously, the latter solution is only applicable if there is no overlapping
between the different matches of rule subclassR. In the current example, this
means that there is no multiple inheritance in the source UML model, which
is assumed in the paper, since the database encoding (with a single database
column referring to the type of an element) is only applicable in the same case.

Generic transformation rule for transitive closure. Note that the transitive clo-
sure of a certain edge type is a frequent subproblem in many model transforma-
tions. Therefore, it would be advantageous to use a common reusable library of
transformation design patterns as pointed out in [2]. For this purpose, VIATRA
offers the concepts of generic model transformation rules as depicted in Fig. 24.

Fig. 24. A generic graph transformation rules in VIATRA for the basic step of transi-
tive closure

Compared to subclassR, this generic rule has three additional input parame-
ters:

– ClsE for the type of the nodes (Class previously),
– ParR for an edge type which denotes the type of the elementary relation to

be closed transitively (parent in the previous example), and
– AncR for the transitive edge type (anc in the example).

Now all pattern elements have types taken from the built-in (top-most level)
VPM meta-model, while the type-instance relationship between meta-model and
model nodes and edges are denoted by the dashed instance-of arrows.

When interpreting this generic pattern, the VIATRA engine first instantiates
the type parameters (i.e. ClsE, ParR, AncR) and then queries all the instances of

these types. As a result, the same set of rules can be applied in various modelling
languages.

Merging-in of associations. The merging-in of associations is captured by the GT
rule assocNPClassAssocR in Fig. 25. Prior to applying rule assocNPClassAssocR,
another rule should generate Assoc instances for all Association instances. Then
rule assocNPClassAssocR can be applied as long as possible using the iterate
construct.

Fig. 25. Merging-in the associations of non-persistent classes

The rule itself finds a two-step path in the association chain (an Assoc object
leading to a class C2 with non-persistent ancestors (i.e. its top-most parent class
is non-persistent) followed by an Association leading out from C2) which is not
yet processed. In the case when different association paths are leading to the
same non-persistent class, all associations leading out of this class are merged
in multiple times (naturally, with different names along the different paths as
guaranteed by the action part of the rule, which concatenates the appropriate
association names).

The rule is applied to each path once, and assumes that no circular associ-
ations exist between non-persistent classes. In this case, the termination of the
rule is guaranteed by the negative application pattern attrExists, which prohibits
the application of the rule twice to the same Assoc - Association pair defined by
the from and via edges in the helper structure of Assoc.

Finally, note that the merging-in of attributes can be treated in a similar
way, although some additional post-processing is required to set primary keys
properly to fresh attributes.

The transformation steps up to know generated helper structures (like Assoc,
Attr or anc) in the source UML language only (layers 0–2 in the attributed graph
transformation case). Now we discuss a major step taken from the main model
transformation (layers 3–4), namely, how to generate columns and foreign keys
from the helpers Assoc and Attr.

Generation of columns and primary keys. We assume that the model trans-
formation has completed steps up to layer 3, that is, all persistent classes are
transformed into corresponding database tables.

The requirements state that associations and attributes leading to a persis-
tent class should be handled similarly. For that purpose, we extend the source
meta-model with the notion of a Property, which is a common superclass of Attr
and Assoc. Furthermore, we introduce a predefined graph pattern attrOrAssoc
(depicted in Fig. 26), which can be interpreted as a hyperedge leading between
the source and target class of an Assoc or Attr object.

Fig. 26. Predefined helper graph patterns

Afterwards, we can express in a single GT rule (see rule assocOrAttrPersClassR
in Fig. 27) that a foreign key should be generated for each attribute or association
leading to a persistent class (which is already transformed into a table) by using
this pattern. During this rule application, VIATRA calls the predefined pattern
attrOrAssoc using the find construct.

Note that the action part of this rule contains a call to the GT rule addFK-
eyColsR (see Fig. 28) to copy all primary key columns from the target table T2
to the source table T1 for each matching of rule assocOrAttrPersClassR.

Furthermore, Property P and Column Cl2 are only required in the postcon-
dition so that the action part could access their attributes when calculating the
attributes of Column Cl1 from the attribute values of this nodes.

For this purpose, we can pass the matched values of elements in the precondi-
tion (LHS) pattern (such as table T2) or the generated elements for elements in
the postcondition (RHS) pattern (such as foreign key FK). Furthermore, we pre-
scribe that rule addFKeyColsR should be applied to all matching (primary key)

Fig. 27. Generating foreign keys for merged-in attributes and associations

Fig. 28. Generating columns for foreign keys

columns of table T2 by using the forall construct iterating over the values that
can be taken by a fresh variable Cl2. Without using this forall, rule addFKeyColsR
would be applied only on a single matching of Cl2.

Formally, the possible values of this variable are passed as parameters to the
GT rule addFKeyColsR, but for efficiency reasons, VIATRA applies lazy evalu-
ation, and thus enumerates the possible values of Cl2 only during the pattern
matching phase of this second rule (and not when calling this rule in the action
part of GT rule assocOrAttrPersClassR).

Comparison with the algebraic approach. Compared to the basic algebraic solu-
tion presented in Sec. 3, the VIATRA approach provides (i) a more expressive
pattern language, (ii) complex control structures to improve the efficiency of
transformations (e.g. parallel rule application), (iii) generic transformations to
provide algorithmic-level reuse of solutions for common transformation prob-
lems, (iv) structuring mechanisms for modularity achieved by pattern and rule
parameters.

5.3 Tool Support: VIATRA2

The VIATRA approach is currently supported by the VIATRA2 model trans-
formation framework, which was used for the implementation of the rules above.
VIATRA2 is written in Java and it is fully integrated into the Eclipse framework
(in contrast to the previous Prolog-based VIATRA toolkit).

Execution of transformations. Transformations are primarily executed within
the framework by using the VIATRA interpreter, which uses constraint sat-
isfaction techniques for matching graph patterns (which is typically the most
expensive step of a model interpreter).

Furthermore, transformations can be externalized by compiling transforma-
tions into platform-specific, stand-alone transformation plug-ins (transformers).
These automatically generated transformers are traditional pieces of software
which can be integrated into existing tools without integrating the entire VIA-
TRA framework.

Extension mechanisms. VIATRA provides an extensible framework for handling
a large variety of MDA models and transformations. Arbitrary model importers
can be easily implemented using the simple meta-modelling API of VPM meta-
modelling core, and a large set of importer plug-ins is already available. Further-
more, VIATRA transformations may call external Java methods if necessary to
integrate external tools into a single tool chain.

User interface. Currently, VIATRA provides a textual language for describing
models, meta-models and transformations (called VTML and VTCL, respec-
tively), and a graphical user interface for viewing and editing the VPM model
space including the creation and deletion of various model elements (and tradi-
tional undo and copy operations). This GUI provides both an Eclipse GEF-based
fully graphical view and a tree view of the model space. Support for a graphical
transformation editor of GT and ASM descriptions (similarly to the figures in
this section of the paper) is an ongoing activity.

6 A Model Transformation Approach Based on VMTS

6.1 The Approach

The Visual Modeling and Transformation System (VMTS) is an n-layer meta-
modelling environment designed together with model transformation functionali-
ties. VMTS offers the most widely accepted constructs to define visual languages:

built-in relationships are available for containment hierarchy, attributes and in-
heritance. Inheritance support means the following: if one submits a query for
the attributes and the edges of a node-based model element (e.g. class), then all
the inherited attributes and edges are retrieved besides the ones defined for the
given element.

VMTS is also a model transformation system, which uses graph transforma-
tion techniques as the underlying formal mechanism. The general overview of
the transformation process is illustrated in Figure 29. Since the transformation
system is integrated in the meta-modelling environment, the meta-models of the
input and output models are assumed to be available besides the obvious in-
put model. The meta-models can be considered to be analogous to type graphs
discussed in Section 3. Furthermore, the transformation engine takes the trans-
formation description, which consists of a rule specification and a control flow
part.

Fig. 29. Overview of the transformation process

The transformation rules used by VMTS are similar to the graph transfor-
mation rules: they contain a left hand side (LHS) and a right hand side (RHS).
Also, a match of the LHS must be found in the model to which the rule is ap-
plied. As opposed to the graph transformation rules, not an isomorphic subgraph
of the LHS must be found, but an instantiation of it, since it is defined in terms
of the meta-model elements. This technique facilitates a natural representation
for multiplicities, multi-objects and assignments of OCL constraints to the rules
as well as a syntax close to the UML notation.

It is worth noting that VMTS facilitates a refined description of the transfor-
mation steps. When the transformation is performed, the changes are specified
by the RHS and internal causality relationships defined between the LHS and
the RHS elements of a transformation rule. Internal causalities can express the
modification or removal of an LHS element, and the creation of an RHS ele-
ment. XSLT scripts can access the attributes of the objects matched to the LHS
elements, and produce a set of attributes for the RHS element to which the
causality points. Therefore, it is not true that if a rule element appearing in the
LHS but not in RHS is going to be deleted.

On the rewriting level, VMTS follows the DPO rules: the elements to be
deleted are removed first, then the elements to be added are glued to the model.
Moreover, the DPO gluing conditions are enforced by the tool.

The VMTS Control Flow Language (VCFL) is a stereotyped UML activity di-
agram, where the activities are provided with the stereotype << TransformationRule >>.
The decisions contain OCL constraints to decide which branch must be passed
the control. The OCL expressions may contain system variables, such as Sys-
temLastRuleSucceed,which is true if the last rule has been executed successfully,
false otherwise. VCFL allows specifying external causalities, which are a means
of parameter passing between the rules. External causalities can be defined be-
tween the RHS of a rule R1 and the LHS of a rule R2, where there must exist
a transition from R1 to R2 in the control flow. If the control is passed to this
transition, the model objects matched to the source of the causality are au-
tomatically associated with the target of the external causality. The matching
algorithm considers these LHS objects as already bound.

In the next section we show how these features can be applied to the common
example already presented.

6.2 The Solution

In this section a solution supported by VMTS is given. We concentrate on the
additional features of the basic solution elaborated in Section 3. The complete
solution of the case study can be found in [26].

The VMTS uses a simplified class diagram to describe the meta-models.
The subtle differences compared to Figure 4 are the following. (i) We specify
two different meta-models, because we can use helper nodes, which can connect
two nodes with any type. These helper nodes can also contain attributes. In
accordance with the triple graph grammar method applied by ATOM3, we create
a << SystemAtom >> node with two edges pointing to the two connected
objects. However, for the sake of simplicity, this construct is referred to as helper
nodes. (ii) We specify multiplicities on the association ends, because it is required
by our meta-modelling language.

In most cases we stick to the following principles. If the transformation is
not supposed to modify the input model, it is not modified. In our example
this is the case, because the task is to create an output model, namely, the
database representation. By the end of the transformation, all helper nodes must
be deleted and restored, except the ones used for tracing.

The VCFL representation of the transformation control flow is depicted in
Figure 30.

The control flow can be divided into four parts according to the goal of
the units. (i) The large loop on the top (CreateTable, CreateParentClassHelper,
ProcessChildClass, ShiftParentClassHelper, DeleteParentClassHelper) is respon-
sible for treating the inheritance-related issues. (ii) The large loop in the middle
(AddNonPersHelperNode, ProcessNonPersClass, AddFkeyHelperNode, ShiftNon-
PersHelperNode, ShiftNonPersHelperNode2, DeleteNonPersHelperNode) is de-

Fig. 30. Overview of the transformation process

voted to process the chains of non-persistent classes. (iii) The last steps perform
the computation of the foreign keys, and (iv) removing helper nodes.

A major challenge is to compute the ”transitive closure” of the inheritance
chain and the attribute change. This is a common problem of the inheritance
hierarchy and the transformation of the non-persistent chains. In case of the
inheritance support, we pull up all the attributes and associations from the
hierarchy in the root base class if it is persistent. When it comes to non-persistent
chains, the attributes and primary keys from the non-persistent classes must be
incorporated into the persistent class to which the chain is attached. Because of
the similarities, the attribute chains are described here in detail, the rules for
the inheritance chain can be found in [26].

The first step (CreateTable, Figure 31) is equivalent with the ”class2table”
rule described earlier. This rule is applied exhaustively, thus, at the end each
primary class has a table in the output model associated with it through a
helper node. In case of inheritance hierarchies only the topmost base class is
regarded.

Our interpretation of the case study is the following. If an association from
a persistent class PC points to a directed chain of non-persistent classes, then
all the attributes of the non-persistent classes should be mapped into the table

Fig. 31. The rule CreateTable

created from the persistent class as columns. Moreover, if an association points
to another persistent class PCF from a class in the non-persistent chain, it
should be referenced as a foreign key in the table created for the class PC.
In our solution, a helper node is used for both, the transitive closure and the
primary key management.

VMTS uses four kinds of helper nodes in the transformation. (i) Parent-
ClassHelperNode is devoted to the creation of the transitive closure upwards
in the inheritance hierarchy. (ii) The ClassTableHelperNode is used to connect
persistent classes to their created tables. (iii) The FkeyHelperNode helper node
denotes that a non-persistent class NP has a foreign key to a persistent class
PCF . When the non-persistent class is mapped to a referencing persistent class
PC, this foreign key must be included in the table of PC. In this case our so-
lution creates a directed helper node from the table of PC to PCF . (iv)The
NonPersHelperNode points to the actual non-persistent classes in the current
chain to help in the computation of the transitive closure. Moreover, temporary
associations are created in the base classes of the persistent hierarchies, which are
denoted with an attribute. These nodes are deleted when they are not necessary
anymore.

In accordance with these guidelines, the rule AddNonPersHelperNode selects
a persistent class and assigns a helper node NonPersHelperNode to this class,
pointing to all the adjacent non-persistent classes (Figure 32).

Both sides of the rule uses a formalism similar to that of the UML class
diagram. The same instantiation rules apply to the LHS as to the UML class
diagram, with two exceptions. (i) An association with the multiplicity ∗ matches
all the edges of the appropriate type in a given position. (ii) A type can appear
more than once in the rules. In our case both the PersistentClass and the Non-
PersistentClass are classes. These types are processed by the matching algorithm
as they had been of different types. However, care is taken that the same model
element cannot be matched to two different LHS objects. In our example this is

Fig. 32. The rule AddNonPersHelperNode

impossible, since there are different constraints assigned to them: PersistentClass
should be persistent and should not be processed yet. The NonPersistentClass
should be non- persistent. These constraints are expressed in OCL, which is a
natural construct in a UML class diagram environment. In our experience, the
rule specification is closer to the intuition if it allows processing all neighbors of
a model node. In VMTS, association multiplicities can be assigned to the rules,
which are instantiated in the same way as in the UML class diagram. Thus, the
rule can match all the non-persistent neighbours of a persistent class.

The interpretation of the undefined (∗) multiplicity is not evident on the
right hand side. In VMTS, this value is determined by the result of the attribute
transformation. The advantage of this approach is the flexibility that an attribute
can influence the topology. The drawback is that the transformation cannot be
executed without the attribute transformations: if there is at least one (∗) star
multiplicity assigned to an association of RHS, the attribute transformation must
be specified. Since VMTS is intended to be a model transformation system, the
attribute transformation is usually available. Thus, this is not a serious limitation
of the tool.

This rule also sets the isProcessed attribute of the actual persistent class to
true. The attribute transformation is performed by XSL scripts. These scripts
are assigned to the internal causalities. In the rule AddNonPersHelperNode, there
are three Create causalities in the rule (Table 6.2).

The causality, which starts from the association and points to the helper node
NonPersHelperNode, takes the target role name of the association and copies it
to the namePrefix attribute of the helper node. Since the attribute transforma-
tion computes a helper node attribute set for each matched association, the ∗
multiplicity of the newly created nodes are substituted by the actual number of
association relationships in the matched model part.

Causality Type Source Target

Create association dstNonPersHelperE

Create association NonPersHelperNode

Create association srcNonPersHelperE

Identity PersistentClass PersistentClass

Identity Table Table

Identity NonPersistentNeighbor NonPersistentNeighbor

Identity TableHelperNode TableHelperNode

Table 1. Causality table for the rule AddNonPersHelperNode

The rule ProcessNonPersClass takes the persistent class as well as its at-
tached table along with all the non-persistent classes adjacent via the helper
nodes (Figure 33). The attributes of the matched non-persistent classes are
transformed to the columns of the assigned table. The primary key nodes are
also added.

Fig. 33. The rule ProcessNonPersClass

The LHS matches all the non-persistent classes, to which a NonPersHelperN-
ode points, along with their attributes and types. Then columns and primary
key relationships are assigned to the table of the actual persistent class. Since
the multiplicities in the RHS are not specified, the attribute transformation will
determine the actual multiplicities. The number of the newly created columns
is the same as the number of the attributes of the non-persistent classes. The
primary key relationship is created for the primary key attributes only. The rel-
ative complex processing step of all the current non-persistent classes can be
expressed by only one rule. This illustrates the advantages of the VMTS ap-
proach: although it takes more time to specify the rules, a relatively complex
concern can be expressed by a rule in a straightforward and intuitive way. The
causalities of the rule can be found in Table 6.2.

Causality Type Source Target

Create Attribute Column

Create attrs cols

Create attrs pkeys

Identity PersistentClass PersistentClass

Identity Table Table

Identity NonPersistentClass NonPersistentClass

Identity TableHelperNode TableHelperNode

Identity NonPersHelperNode NonPersHelperNode

Table 2. Causality table for the rule ProcessNonPersClass

At the current stage of the transformation, there is only one persistent class,
which is connected to a NonPersHelperNode. Thus, when the control is passed to
the rule ProcessNonPersClass from the rule AddNonPersHelperNode, the Pro-
cessNonPersClass rule must find this unique place in the model graph. This is
a correct solution, but it can be optimized further in VMTS. The appropriate
parameter passing constructs are called external causalities. The external causal-
ities are attached to the transitions between the rules. In our example, the exter-
nal causalities are depicted in Figure 34. The persistent class, the related table,
the table helper node, the non-persistent neighbor class and the non-persistent
helper node are passed to the next rule. Thus, the ProcessNonPersClass trans-
formation step must find the elements, which have been not concerned with the
transformation so far, but for the other elements we reuse the elements already
matched.

The rule AddFkeyHelperNode selects all the non-persistent classes that are
adjacent to the actual persistent class, having an edge pointing to another per-
sistent class. The actual persistent class and the other persistent classes are
connected with an edge FkeyHelperNode. We need this helper node, because it
is possible that the other persistent classes are not yet processed, and can have
additional primary keys originated from their non-persistent class chain. Hence,

Fig. 34. The external causalities

a foreign key cannot be created in this step, because the columns of the primary
key that the foreign key references are not known yet.

The next two rules shift the helper nodes of type NonPersHelperNode. The
attribute namePrefix of the helper node is concatenated with the target role
name of the association along which the helper node is shifted. The concatena-
tion is performed by the XSL script assigned to the internal causality. Recall,
that the XSL script can access the attributes of the matched elements, and pro-
duce the attributes for the RHS element to which the causality point. Since,
according to the DPO approach, the elements to be deleted are removed first,
we cannot delete the previous helper node in this rule, because the value of
the namePrefix attribute would be lost. Thus, this operation is performed by
the rule ShiftNonPersHelperNode2. If the rules can successfully shift the helper
nodes, the new non-persistent classes are processed. If the shifting rules cannot
be applied, then the end of the non-persistent chain has been reached. Then
the helper nodes are removed, and the rule AddNonPersHelperNode attempts to
find a new actual persistent class. Since there is a constraint on the isProcessed
attribute, the same persistent class cannot be processed twice. If this rule does
not match, then all non-persistent chains are processed. Since we have all the
columns and primary keys of the tables, the foreign keys can be constructed. It
is done in two steps: (i) the adjacent persistent classes are considered and (ii) the
helper nodes of type FkeyHelperNode are processed. The last three rules remove
the remaining instances of the helper nodes.

6.3 Tool Support

The solution presented above has been specified and implemented within the
Visual Modeling and Transformation System. The tool has successfully been
applied in industrial applications such as that elaborated in [17].

The rule execution in VMTS is specified by VCFL, the pattern matching
algorithm is MetaVF2 with heuristics [18]. The constraints given in OCL are
compiled into a .NET assembly, which is invoked by the transformation process.
In order to obtain a more expressive constraint treatment, aspect-oriented tech-
niques are used to eliminate the constraints that crosscut the transformation.

Import and export functions in VMTS are realized by Traversing Model
Processors (TMP). VMTS offers a TMP interface, where the model elements
appear as regular objects in a programming language, and traversing classes are

also provided by the framework. The types of these objects are obtained from
the meta-model.

As far as the user interface is concerned, VMTS incorporates VPF, which is a
class library that supplies: (i) built-in base classes for the general presentation fa-
cilities of shapes (nodes) and lines (edges). (ii) Automatic event handling for the
common functionalities such as resizing, moving and selecting model elements.
(iii) Automatic serialization for the properties of the model elements. (iv) So-
phisticated presentation of attributes, model structure, visualization information
and editing features.

7 Comparison

Within this section, we compare the different graph transformation approaches
to perform the sample model transformation. Each approach comes along with
an accompanying tool. So we compare the corresponding tools along main model
transformation facilities.

Since not only the approaches, but also the presented solutions differ, we also
compare those. Be aware that we kept the original meta models for class models
on one hand and for relational data base models on the other hand. But the
additional helper structures, only transiently used for model transformations,
can differ from each other.

Additionally, we compare the graph transformation approaches with the
Query/View/Transformation language [22], since is supposed to become the
OMG standard language for model transformation. A QVT solution for the basic
version of the model transformation example can be found in the appendix.

A summary of the comparison is given in Fig. 35.

7.1 Comparison of Graph Transformation Approaches and QVT

Typing Information. In all approaches considered, the typing information is
given by an attributed type graph or meta-model which contains the structural
information (typing of entities and attributes), inheritance concepts and multi-
plicity constraints. In AToM3, additional constraints can be expressed in Python,
while AGG allows the formulation of graph constraints. In QVT, typing infor-
mation is provided from the source and target meta-models for model transfor-
mation (see for example Fig. 1 and 2 in [4]) whereas in the graph transformation
approach the model transformation type graph T consists of the source type
graph TS , the target type graph TT and additional reference nodes and edges
needed by the model transformation rules (so-called helper structure). See Fig.
3.
Instances. Once a meta-model is defined, instances of this meta-model, i.e.
models which conform to this meta-model can be created. This type-instance
relation can be generalized as done in the meta-modelling approach where meta-
models are instances of meta-meta-models, and so on.

Tabelle1

Seite 1

Comparison of Model Transformation Approaches

AGG AToM3 VIATRA2 VMTS QVT (Core)

Type information Type graphs with multiplicities UML-like meta models UML-like meta models UML-like meta models MOF metamodels

Instances Typed attributed graphs Models Models (instance) models MOF models

Pre-conditions OCL, LHS OCL, patterns

Post-conditions Post appl. conditions Python code OCL OCL, patterns

Actions

Control Stereotyped activity diagrams

Correctness Preservation of OCL constraints

Additional features

Comparison of Model Transformation Solutions

Columns of corr. tables Columns of corr. tables Columns of corr. tables Columns of corr. tables

Deletion of source model Possible by deletion rules Not considered Not considered Not considered

Possible by deletion rules Not considered Not considered By deletion rules

Comparison of Model Transformation Tools

Editors

Simulation Visualization of the result model

Compilation None None Standalone Java code None

Debugging

Validation Preservation of OCL constraints

LHS, application conditions (Java
for attr.) and gluing condition

LHS, application conditions
(Python for attr.), and gluing

condition
LHS, recursive graph

patterns, attribute conditions
graph patterns with attribute

conditions

Deletion in L -K, creation in R-K,
attribute computations in Java

Deletion in L – K, creation in R
– K, attribute computation in

Python

Deletion & creation based on
R-L, attribute computations

in ASM
Causalities based on LHS ->

RHS
Patterns of

enforced domains

Non-deterministic rule and match
selection, layers

Non-deterministic rule and
match selection, parallel

execution of rules, priorities
Abstract state machine

(ASM) rules

Context (when) and
post-effect (where)

clauses
Critical pair analysis, termination,
preservation of graph constraints

Correct typing of the target
model

Correct typing of the target
model

Patterns of checked
domains

Potentially incremental model
transformation

Generic and meta
transformations, Native
(Java) transformations

Incremental model
transformation

Persistent classes:
attributes of primitive
data type

Columns of corr.
tables

persistent classes:
attributes of persistent
classes

Columns of corr. tables – foreign
keys

Columns of corr. tables –
foreign keys

Columns of corr. tables –
foreign keys

Columns of corr. tables -foreign
keys

Columns of corr.
tables – foreign

keys

Inheritance: transitive
closure

Additional ancestor helper edges
between classes

Additional ancestor helper
edges between classes and

tables

Additional ancestor helper
edges between classes and

tables
Additional ancestor helper

edges between classes

Inheritance: attributes
and associations of
subclasses

Collection of additional attributes
and associations in topmost

classes

Incremental addition of attr. and
assoc. to the table

corresponding to the topmost
class

Collection of additional
attributes and associations

in topmost classes

Non-persistent classes:
attributes and
associations of non-
persitent classes

Collection of additional attributes
and associations in persistent class

1. treatment as persistent
classes 2. copying to tables of

persistent classes 3. deletion of
tables of non-persistent classes

Collection of additional
attributes and associations

in persistent class

Coll. of additional attributes and
assoc. in the corr. tables of the

persistent classes

Deletion of helper
structure

Visual editors for graphs, type
graphs, and rules

Visual editors for models, meta
models, and rules

Visual editors for models,
meta models, and textual

language for rules

Adaptive modeler containing
editors for meta models,

models, and rules

Visual simulation of transformation
seq., graph shown after each step

Visual simulation of
transformation seq., graph

shown after each step, timing
of execution

Visualization of the result
model

Manual selection of rule and match
possible

Manual selection of a match
possible

Log window for model
transformations

Log window for model
transformations

Critical pair analysis, termination,
preservation of graph constraints

Correct typing of the target
model

Correct typing +
Preservation of graph

patterns

Fig. 35. Comparison of graph transformation approaches and QVT, solution and tools

Pre-conditions. The main precondition for rule application is the LHS of the
rule. Furthermore, additional application conditions could be added. Rules also
have additional attribute conditions which are expressed in Java, Python, or
OCL. Moreover in some approaches, the gluing condition is evaluated when the
rule is going to be applied. In QVT pre-dependencies of a relation are defined
in a pre-condition starting with the keyword when.
Post-conditions. Application conditions which are checked after a rule applica-
tion are supported by each of the approaches in a similar form as pre-conditions.
But the semantics can differ: While in AToM3 the condition is checked only, the

other approaches provide a rollback mechanism if the condition is not met. In
QVT, post-dependencies of a relation are defined in the post-condition starting
with the keyword where.
Actions. The actions of a rule can comprise deletion and creation of model
entities as well as attribute modification. The latter is specified in Java, Python,
ASM, and OCL, dependent on the approach. In addition, pre- and post-actions
to be executed before and after the rule application, can be specified in AToM3.
In QVT, actions are formulated by enforcements. Attribute computations can
be found in where-clauses.
Control. A completely uncontrolled rule application allows non-deterministic
rule and match selection at any step of the transformation. To increase the
usability and efficiency of graph transformation a variety of control concepts for
rule and match selection have been considered. Some of them are used with the
approaches presented: AGG uses rule layers, AToM3 supports priorities for rules,
VIATRA2 supports ASMs and VMTS offers stereotyped activity diagrams. In
QVT top relations are applied directly whereas (more elementary) relations are
called from top relations.
Correctness. Here mainly the preservation of constraints is supported. More-
over, AGG offers validation techniques to find conflicts between rules and to
check termination criteria. Using triple graph grammars in AToM3 supports
checking the correct typing of the target model, as the auxiliary elements are
kept in the correspondence graph.
Additional features. AToM3 allows for some incremental transformations.
Since the source elements and the correspondence graph in between the source
and target are not deleted, there is the following option. If the user modifies the
source model, the grammar can be executed again to update the target model.
In this case, the transformation is incremental, but only if the user adds new el-
ements in the class diagram. If the user deletes some class diagram elements, we
would have to delete the associated relational model and start again the trans-
formation. This could be solved by adding some rules dealing with the deletion
of class diagram elements. In QVT, relations between domain models (instead
of rules) are the basis for incremental model transformations.

VIATRA supports generic and meta transformations to provide reusable
transformation libraries applicable to different meta-models. Furthermore, VIA-
TRA provides language constructs to “officially” integrate native Java method
calls in transformations, which is similar to the black-box (external) transforma-
tion concept of QVT.

7.2 Comparison of Model Transformation Solutions

Persistent classes: attributes of primitive data type. In all solutions a col-
umn in the corresponding table is added and in some solutions, correspondence
relations are kept as helper structures.
Persistent classes: attributes of persistent classes. In all solutions foreign
keys are created and in some solutions, correspondence relations are kept as
helper structures.

Inheritance: transitive closure. In all solutions additional helper edges be-
tween classes are created to store the transitive closure of ancestors. In AToM3,
helper edges between the subclasses and the table associated with the top class
are inserted.
Inheritance: attributes and associations of subclasses. In most solutions
the attributes and associations of subclasses are collected in the topmost classes
first and translated to columns afterwards, while in the AToM3 solution, addi-
tional columns (of the topmost class’ table) are added for each attribute of the
subclasses incrementally.
Non-persistent classes: attributes and associations of non-persistent
classes. In most of the solutions, attributes and associations of connected non-
persistent classes are collected in referencing persistent classes first and then
translated to corresponding columns. In the AToM3 solution, tables are created
for non-persistent classes (together with corresponding columns) first. Then, the
columns are copied into the tables of persistent classes. Primary keys are updated
accordingly. Finally, tables of non-persistent classes are deleted.
Deletion of source model. In AToM3, VIATRA2, and VMTS deletion of the
source model is not considered at all, while in AGG it can be done by a set of
deletion rules, applied in a new rule layer.
Deletion of helper structure. In AToM3 and VIATRA2 deletion of the helper
structure is not considered at all, while in AGG it can be done and in VMTS it
is always done, by a set of deletion rules, appropriately controlled.

7.3 Comparison of Accompanying Tools

Editors. All tools support the editing of meta-models, models and rules by
visual editors. While AGG, VIATRA2 and VMTS concentrate on the abstract
syntax of model transformations, AToM3 is oriented to the definition of Domain
Specific Languages, where the concrete syntax has also to be defined. Further-
more, it is possible to open several meta-models at the same time which is quite
useful when implementing triple graph grammars.
Simulation. All tools can simulate transformations of concrete models. While
VIATRA2 and VMTS concentrate on the visualization of the result model, AGG
and AToM3 also support the visualization of the model transformation sequences
themselves, i.e. intermediate models. Moreover, executing the rules in AToM3

allows for the visual animation of the rule applications, e.g. a timing information
can be assigned to rules, so that every rule takes a certain amount of time to be
executed.
Compilation. Most of the tools do not yet support the compilation of model
transformations to some programming language. But VIATRA2 already sup-
ports a compilation to standalone Java code.
Debugging. All tools support some kind of logging for model transformations.
These logs usually contain the rules applied, bindings of variables, etc. In ad-
dition, AGG supports the manual selection of rules and interactive setting of
partial matches which might be completed automatically. In AToM3, the user
also can select manually the match where the rule has to be applied.

Validation. AGG, VIATRA2 and VMTS support some validation tools which
check if constraints are preserved by models. In addition, type checking is sup-
ported. Moreover, AGG offers validation techniques to find conflicts between
rules and to check termination criteria. AToM3 offers a code generator for AGG
to use AGG’s validation tools within AToM3.

8 Conclusions and Future Work

Summarizing the comparative study in this paper, we can notice that the graph
transformation approaches and QVT share a number of commonalities. The typ-
ing concepts by type graphs or the almost equivalent concept of meta-models
can be found in all approaches. Moreover, all transformation approaches con-
sidered are rule-based, even QVT with its concept of relations between domain
models is very close. While the simple rule-based approach is unidirectional,
triple graph grammars and QVT relations focus more on bidirectional or even
multi-dimensional transformations. All approaches follow an idea of pre- and
post-conditions expressed by some patterns, equipped with typical actions chang-
ing the models. Main differences can be found in the description of additional
attributes using Java, Python, ASM or OCL as languages for attribute compu-
tations as well as conditions. Moreover, the control of rule applications ranges
from pure rule-based approaches allowing a high degree of non-determinism, to
rather controlled rule applications using mainly automata-based descriptions. In
contrast, QVT allows the call of relations from others.

The solutions presented all have the same basic solution, but differ in the
advanced solutions. They all use the same domain meta-models, but use different
helper structures. These are mainly used for the advanced solution to collect
transient information. While some approaches collect this data directly in the
source models, others extend the relations between source and target models.
These differences are not large and it is an obvious conjecture that the differences
in the solution are approach-independent.

Each graph transformation approach comes along with a tool which show
different specialities. While AGG focusses on validation issues, AToM3 concen-
trates on incremental transformations taking also layouting of the target models
into account. VIATRA2 and VMTS are both closer to the MOF approach and
thus to QVT. They use graph transformation concepts to come up with MOF
transformations. All tools come along with a number of exchange formats sup-
ported such as GXL, XMI, etc. In the case of AGG and VIATRA2, the internal
transformation engine can be used by a Java API.

Open issues for all graph transformation approaches are elaborated concepts
to compose transformations as well as a suitable exception handling. Moreover,
further tools might come up with a compilation of model transformations to some
standard programming language such as Java (as VIATRA2 already does).

This comparative study is a first effort to compare the graph transformation
approaches presented. Another one, where AGG and VIATRA2 were also com-
pared, has been given in [19]. This paper applies a general model transformation

taxonomy to graph transformation approaches and tools. Considering both stud-
ies, future work is needed to intensify the comparison by investigating further
tools and by adding benchmark tests like the one considered in this paper.

References

1. AGG Homepage. http://tfs.cs.tu-berlin.de/agg.

2. Reusable Idioms and Patterns in Graph Transformation Languages. Agrawal, A.,
Vizhanyo, A., Kalmar, Z., Shi, F., Narayanan, A., Karsai, G. 2004. Proc. 2nd
International Workshop on Graph Based Tools (GraBaTs 2004). Satellite workshop
of ICGT 2004, Rome, Italy, 2004.

3. R. Bardohl, H. Ehrig, J. de Lara, and G. Taentzer. Integrating Meta Modelling
Aspects with Graph Transformation for Efficient Visual Language Definition and
Model Manipulation. In M. Wermelinger and T. Margaria, editors, Proceedings of
FASE 2004, pages 214–228, 2004.

4. Model Transformation in Practice Workshop Announcement. Bezivin, J., Rumpe,
B., Schürr A., Tratt L. 2005. http://sosym.dcs.kcl.ac.uk/events/mtip/

5. Börger, E., Stärk, R.: Abstract State Machines. A method for High-Level System
Design and Analysis. Springer-Verlag (2003)

6. P. Bottoni, M. Koch, F. Parisi-Presicce, and G. Taentzer. Termination of High-
Level Replacement Units with Application to Model Transformation. In M. Minas,
editor, Proc. Workshop on Visual Languages and Formal Methods, 2004.

7. H. Ehrig, K. Ehrig, J. de Lara, G. Taentzer, D. Varró, and S. Varró-Gyapay. Ter-
mination criteria for model transformation. In Proc. Fundamental Approaches to
Software Engineering (FASE), Lecture Notes in Computer Science, pages 00–00.
Springer Verlag, 2005.

8. Formal Integration of Inheritance with Typed Attributed Graph Transformation
for Efficient VL Definition and Model Manipulation. Ehrig, H., Ehrig, K., Prange,
U., Taentzer, G. 2005. Proc. IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC’05).

9. Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G. 1999. Handbook of Graph
Grammars and Computing by Graph Transformation. Vol 1. Foundations. World
Scientific.

10. Ehrig, H., Ehrig, K., Habel, A., Pennemann, K.-H. 2004. Constraints and Applica-
tion Conditions: From Graphs to High-Level Structures. In Proc. ICGT’04 (Rome).
LNCS 3256, pp.: 287-303. Springer.

11. H. Ehrig, U. Prange, and G. Taentzer. Fundamental Theory for Typed Attributed
Graph Transformation. In H. Ehrig, G. Engels, F. Parisi-Presicce, and G. Rozen-
berg, editors, Proceedings of ICGT 2004, volume 3256 of LNCS, pages 161–177.
Springer, 2004.

12. Guerra, E., de Lara, J. 2004. Event-Driven Grammars: Towards the Integration
of Meta-Modelling and Graph Transformation. In Proc. ICGT’04 (Rome). LNCS
3256, pp.: 54-69. Springer.

13. Guerra, E., Dı́az, P., de Lara, J. 2005. A Formal Approach to the Generation of
Visual Language Environments Supporting Multiple Views. Proc. IEEE Symposium
on Visual Languages and Human-Centric Computing, IEEE VL/HCC. Dallas.

14. H.-J. Kreowski and S. Kuske. Graph transformation units with interleaving se-
mantics. Formal Aspects of Computing, 11:690–723, 1999.

15. de Lara, J., Vangheluwe, H. 2002. AToM3: A Tool for Multi-Formalism
Modelling and Meta-Modelling. LNCS 2306, pp.: 174 - 188. Springer. See:
http://atom3.cs.mcgill.ca

16. Levendovszky T., Lengyel L., Mezei G., Charaf H.: A Systematic Approach to
Metamodeling Environments and Model Transformation Systems in VMTS, 2nd
International Workshop on Graph Based Tools (GraBaTs); workshop at ICGT
2004, Rome, Italy, 2004.

17. Lengyel L, Levendovszky T, Mezei G, Forstner B, Charaf H: Metamodel-Based
Model Transformation with Aspect-Oriented Constraints, Accepted to GraMoT’05
- International Workshop on Graph and Model Transformation,Tallinn, 2005

18. Levendovszky T, Lengyel L, Charaf H: A UML Class Diagram-Based Pattern Lan-
guage for Model Transformation Systems, WSEAS Transactions on Computers,
ISSN: 110-92750 Issue 2, Vol. 4, 2005 pp. 190-195

19. T. Mens, P. Van Gorp, D. Varro, and G. Karsai. Applying a Model TRansformation
Taxonomy to Graph TRansformation Technology. In G. Karsai, and G. Taentzer,
editors, Proceedings of Graph and Model Transformation Workshop, to appear in
ENTCS, 2005.

20. Object Management Group, OMG Meta Object Fa-
cility (MOF), Version 1.4 (12th June 2003), URL:
http://www.omg.org/cgi-bin/apps/doc?formal/02-04-03.pdf access:

2004-06-28

21. Schürr, A. 1994. Specification of Graph Translators with Triple Graph Grammars.
In LNCS 903, pp.: 151-163. Springer.

22. Query/View/Transformation. QVT-Merge Group, version 2.0 (2005-03-02), 2005.
http://www.omg.org/cgi-bin/apps/doc?ad/05-03-02.pdf

23. Varró, D.: Automated Model Transformations for the Analysis of IT Systems.
PhD thesis, Budapest University of Technology and Economics, Department of
Measurement and Information Systems (2004)

24. Varró, D., Pataricza, A.: VPM: A visual, precise and multilevel metamodeling
framework for describing mathematical domains and UML. Journal of Software
and Systems Modeling 2 (2003) 187–210

25. Varró, D., Pataricza, A.: Generic and meta-transformations for model transfor-
mation engineering. In Baar, T., Strohmeier, A., Moreira, A., Mellor, S., eds.:
Proc. UML 2004: 7th International Conference on the Unified Modeling Language.
Volume 3273 of LNCS., Lisbon, Portugal, Springer (2004) 290–304

26. VMTS Web Site, http://avalon.aut.bme.hu/∼tihamer/research/vmts

A A Basic Solution using QVT

In the appendix we present a basic solution for the model transformation example
in [4] using the Query/View/Transformation (QVT) language derived from the
UML to RDBMS example in the QVT specification [22].

The basic solution shows only some aspects of the QVT language. Please
note, that in general model transformation in QVT is also possible with different
constructions shown in the QVT specification [22].

transformation classToRdbms(classmodel:ClassModel, rdbms:RDBMS)
{

key Table (name); // Table has unique name
key Column (name); // Column has unique name

key FKey (references); // FKey has unique reference to Table

top relation ClassToTable // map each persistent class to a table
{

cn, prefix: String;
checkonly domain classmodel c:Class {is_persistent=TRUE, name=cn};
enforce domain rdbms t:Table {name=cn};
where {

prefix = ’’;
AttributeToColumn(c, t, prefix);

}
}

relation AttributeToColumn
{

checkonly domain classmodel c:Class {};
enforce domain rdbms t:Table {};
primitive domain prefix:String;
where {

PrimitiveAttributeToColumn(c, t, prefix);
ComplexAttributeToColumn(c, t, prefix);
SuperAttributeToColumn(c, t, prefix);

}
}

relation PrimitiveAttributeToColumn
{

an, pn, cn, sqltype: String;
checkonly domain classmodel c:Class {attrs=a:Attribute {name=an,

type=p:PrimitiveDataType {name=pn}}};
enforce domain rdbms t:Table {cols=cl:Column {name=cn,

type=pn}};
primitive domain prefix:String;
where {

cn = if (prefix = ’’) then an else prefix+’_’+an endif;
}

}

relation ComplexAttributeToColumn
{

an, newPrefix: String;
checkonly domain classmodel c:Class {attrs=a:Attribute {name=an,

type=tc:Class {}}};
enforce domain rdbms t:Table {};
primitive domain prefix:String;
where {

newPrefix = prefix+’_’+an;
AttributeToColumn(tc, t, newPrefix);

}
}

relation SuperAttributeToColumn
{

checkonly domain classmodel c:Class {general=sc:Class {}};
enforce domain rdbms t:Table {};
primitive domain prefix:String;
where {

AttributeToColumn(sc, t, prefix);
}

}

// map each association between persistent classes to a foreign key
top relation AssocToFKey
{

srcTbl, destTbl: Table;
pColumn: Column;
an, scn, dcn, pcn, fcn, fct: String;
checkonly domain classmodel a:Association {

name=an,
src=sc:Class {is_persistent=TRUE,name=scn},
dest=dc:Class {is_persistent=TRUE,name=dcn}

};
enforce domain rdbms fk:FKey {

cols=fc:Column {name=fcn,type=fct},
references=destTbl

};
when { /* when refers to pre-condition */

ClassToTable(sc, srcTbl);
ClassToTable(dc, destTbl);
pColumn = destTbl.pkey;

}
where {

fcn = an+’_’+pcn;
pcn = pColumn.name;
fct = pColumn.type;
srcTbl.fkeys = fk;
srcTbl.cols = fc;

}
}

}

