THE EASST NEWSLETTER E}

The Column on
Visual Modelling Techniques

News on theSegraVis Research Training Network

Edited by Reiko Heckel *
*University of Leicester, UK

Abstract. In this third Column on Visual Modeling Techniques we present a first comparison of
tools developed by partners and grant holders of the Research Training NeBegriaVis on
Syntactic and Semantic Integration of Visual Modeling Techniques

Keywords: visual modeling techniques, tools

1 A First Comparison of Segravis Tools

In the wide area of visual modelling techniques a large number of CASE and Meta-CASE tools have
been developed to define and work with visual modelling technigues. In this survey, we concentrate
on those tools for visual modelling techniques and languages which have been developed within the
SegraVis project. The main purpose of this first comparison is to get an overview on the functionalities
of such kind of tools and to better understand each tool's purpose and features. A comparison with other
CASE and Meta-CASE tools is left to future work.

First the tools regarded in this comparison are shortly introduced. Thereafter, we start a first comparison
by explaining the items used for comparison. Throughout this survey, functional and non-functional
characteristics are distinguished and listed in several tables. In the following, explanations to each table
entry can be found.

1.1 Survey on SegraVis Tools

In the following, CASE and Meta-CASE tools developed within the SegraVis project, are presented. A
CASE tool is usually dedicated to one individual modeling technique. It supports the editing of models
and might offer also support for simulation, validation, transformation and code generation.

Meta CASE tools support for specifying visual modeling techniques and generating visual modeling
environments. Different kinds of Meta CASE tools are available: Generic, parameterizable CASE tools
allow the definition of variants of one main modeling techniques (e.g. lots of UML CASE tools offer

The VMT Column

THE EASST NEWSLETTER E}

support for the definition of stereotypes). CASE tool frameworks (such as Eclipse/EMF) can be used to
generate reusable, semi-complete code to be extended to a specific CASE tool. CASE tool generators
offer designers for the specification of visual modeling environments and their generation from the given
specification. Tools like GenGED and AToM3 described below belong to this group of Meta CASE tools.

The Meta CASE approaches followed by the following tools are graph transformation-based and/or
based on Meta Object Facilities (MOF). Basing the specification of a visual modeling techniques on
graph transformation the visual alphabet, i.e. the symbols and links, are described by type graphs. Graph
grammars define the language syntax, and graph transformation systems can be used for the semantics
definition. Using MOF, symbols, links and multiplicity constraints are described by class diagrams,
while well-formedness rules define the language syntax.

AGG AGG (tfs.cs.tu-berlin.de/agg) is a development environment for attributed graph
transformation systems supporting an algebraic approach to graph transformation. It aims at specify-
ing and rapid prototyping applications with complex, graph structured data. AGG may be (re)used
(without GUI) as a general purpose graph transformation engine in Java applications employing graph
transformation concepts.

DaMoRe

GenGED The GenGED approach (Generation of Graphical Environments for Deiggyog(tu-berlin.
de/genged) supports the generic description of visual modeling languages for the generation of graph-
ical editors and the simulation of behavior models. GenGED is based on algebraic graph transformation
and graphical constraint solving techniques and tools. It has been applied to a variety of visual languages
(VLs). The corresponding visual environment supports the visual description of VLs and the genera-
tion of language-specific graphical editors, available in syntax-directed or free-hand editing mode. The
behavior of a visual model can be specified and simulated in the generated graphical editor.

AToM3 The two main tasks of AToMZatoma3.cs.mcgill.ca) are meta-modelling and model-
transforming. Meta-modelling refers to the description, or modelling of different kinds of formalisms
used to model systems Model-transforming refers to the (automatic) process of converting, translating
or modifying a model in a given formalism, into another model that might or might not be in the same
formalism. In AToM3, formalisms and models are described as graphs. From a meta-specification (in the
ER formalism) of a formalism, AToM3 generates a tool to visually manipulate (create and edit) models
described in the specified formalism. Model transformations are performed by graph rewriting. The
transformations themselves can thus be declaratively expressed as graph-grammar models.

Fujaba The primary topic of the Fujaba Tool Suitengwcs.uni-paderborn.de/cs/fujaba)

project is to provide an easy to extend UML and Java development platform with the ability to add
plug-ins. The Fujaba Tool Suite combines UML class diagrams and UML behaviour diagrams to a
powerful, easy to use, yet formal system design and specification language. Furthermore the Fujaba Tool
Suite supports the generation of Java source code out of the whole design which results in an executable

The VMT Column

tfs.cs.tu-berlin.de/agg
tfs.cs.tu-berlin.de/genged
tfs.cs.tu-berlin.de/genged
atom3.cs.mcgill.ca
wwwcs.uni-paderborn.de/cs/fujaba

THE EASST NEWSLETTER E}

prototype, ideally. Moreover the way back is provided, too (to some extend so far), so that Java source
code can be parsed and represented within UML.

MetaEnv MetaEnv [?] is a toolbox for automating visual software engineering. MetaEnv augments
visual diagrammatic (VD) notations with customizable dynamic semantics. Traditional meta-CASE tools
support flexibility at syntactic level: MetaEnv augments them with semantic flexibility. MetaEnv refers

to a framework based on graph grammars and has been experimented as add-on to several commercial
and proprietary tools that support syntactic manipulation of VD notations.

ViaTra2 The VIATRA (Visual Automated model TRAnsformations) framework is the core of a transformation-
based verification and validation environment for improving the quality of systems designed using the
Unified Modeling Language by automatically checking consistency, completeness, and dependability
requirements.

Consistency Workbench The Consistency Workbenctvwwecs.uni-paderborn.de/cs/ag-engels/

ag _engl/People/Kuester/ResearchTools.html) is aresearch prototype for consistency man-
agement in UML-based development processes. Currently, consistency of UML models is only partially
ensured by the language specification. In particular, behavioral consistency of UML models is not pre-
scribed by the language standard. Such semantic consistency must be defined and checked by the soft-
ware engineer when applying UML in practical development processes.

The Consistency Workbench aims at providing tool support for consistency management along a gen-
eral methodology. Briefly, the methodology requires the software engineer to identify consistency prob-
lems and then develop partial mappings (model transformations) of UML models into a formal semantic
domain. In such a semantic domain, formal consistency conditions can be defined and existing formal
verification tools such as model checkers can be applied for their verification. One key functionality of
the Consistency Workbench is the definition and execution of model transformations as well as consis-
tency checks including model transformations.

UGT

1.2 Non-functional characteristics

Here the main non-functional information about the tools is listed. Please note that the tools are compared
with each other along qualitative characteristics only, since there are not yet benchmark tests available
for them.

e Name: the full name of the tool as well as its shortcut (if available).

e Developer: For Segravis tools, this is either the name of a Segravis partner or a grant holder. For
all other tools, this is the name of the head of the development or a company/ organisation.

e Status of tool/component development: Open source or commercial? Under which license? Pro-
totype, established tool, the standard tool for....?

The VMT Column

wwwcs.uni-paderborn.de/cs/ag-engels/ag_engl/People/Kuester/ResearchTools.html
wwwcs.uni-paderborn.de/cs/ag-engels/ag_engl/People/Kuester/ResearchTools.html

THE EASST NEWSLETTER E}

o Which version has been used for evaluation?

e Which implementation language has been used?
e For which platforms is the tool available?
¢ In which way is the tool documented?

e |s there support for interoperability with other tools? What kinds of exchange formats are sup-
ported? Are there well-defined interfaces for the tool and/or tool components?

e What are the possibilities to extend the tool or components of the tool? Can it be adapted to special
user requirements?

e Do there exist test suites? How is the recovery from failures?

e Are there benchmark tests?

1.3 Functional characteristics

These characteristics can also be seen as features. They describe the purpose of the tool. Moreover, we
consider here the scope of the tool, i.e. which kinds of visual modeling techniques this tool is developed
for. The functional characteristics are structured into two groups: one for CASE functionalities and one
for Meta CASE functionalities. The Meta CASE functionalities comprise general aspects as well as
syntactical and semantical features.

Dependent on the features of each tool, it occurs in those tables where corresponding characteristics are
offered, only.

1.3.1 CASE functionalities

Most of the considered tools are CASE tools for a fixed language each. A CASE tool can comprise
visual editors, simulators, model transformations to other modelling techniques, code generators, and
animation tools. The table entries are concerned with the following questions:

e Which visual modeling technique or language is supported?

e s there a reference application for this tool? If yes, the one or two most important ones are
mentioned.

¢ Is the tool developed for a special application domain?
e Is there a visual editor? How do the visual editors work? Syntax-directed or freehand?

e Is there a simulator? Is it visual? How does it work? Is the simulation discrete or conti-
nous/animated? Is it hand-driven or automatic? Does it show the (intermediate) results? In a
visual form?

The VMT Column

THE EASST NEWSLETTER

auou BuoN| Jojelbaju| ssauisng suou| ou| suou| suoul ou| suoul s}s9) yJewysuaq
NG| Joj suonewlojsuel | @duewIopad
suou| SUON ou| suou| s)sa} Jun suou| suoul nnpey nunp sa)Ins|
159} / Aynqerey
auou QUON| saA| auoufwsiueyosw uibn|d| suoisaidxa uoyiid wsjueyoauw suoissaldxa sanqissod
Aq uonnquye] uibnig eAer Aq uo|Sua)xa
uonnguye s|qixaly
X99 uonduosap| (uonessuab Asejeudoud| ddd SNd ‘SSdO[OAS ‘ew.oy ew.oy ynoke|l IX1O X9 “IX9)| sjew.oy ndjno
eiqable sseo0id 4SO 9po9) [enjxa} Aue ‘dINSD00 ‘X99| TNX Ateyeudoud| Asejaudoud ‘NX|
‘Jew.oy} N0V
abenbue| 9'| uoplesod Aq (eydie) Aiejoudoud| ¥d4 1ew.o} SNO| jewoy Jewuoy JnoAe|| 340D I XD “IXD) sjew.ioj 3ndui
indur 3sn| peonpoud sjapow JAN |Jopow asoy ‘(eydie) JNX Aseyoudoud| Areysudoud INX
papus)xa uj 4N “TNA ‘[enixe)
s[gpow JAN
auoy| IdV yim auibus Ix9| suoneoydde uouyiAd TNX] I “TIAIX| X9 Aungesadosajul
uoljew.ojsued]| yum uonelbajul ‘|dV Yum auibus) 10} poddns|
uonjewJojsuel |
(paysiand| gyz-c0-14-H1 Moday s|dv| Jaded| Jood qam ay| sabed gap| ybiy Ajjened| sabed qapp ‘Jeded uoneuaWNI0pP|
194 Jou) sisay)| [edluyos] se s|qejiene| 1oy oopeAer ‘sydeouod) uo sjeuon) [esoAsg| “jooq ‘siaded
ewo|dip uo siaded |eianas
¥'Lyar Auej BAef) asdijoq ‘ener SMOPUIAN ¥'Lyar Aue| SQoe ‘smopui XnuI XINN 'L yar Aue| SOoeN ‘smopuip| suuoyeld
xnur ‘XINN| Xnur ‘XINN pajoddns
e/u e/l ener ener) uoyikd OAS eAer] e/u S|00} pajelauab)
jo abenBue|
uonejuawajdwi
ener ener) ener ++0)| eAer) uoyihd eAer eAe(ener) abenbue|
uonejuawajdwi
L0 0L (wioperd 0L L0 220 0L 10 9L UOISIBA
MaU 8y} 0} SJayal) 0°Z
pases|al| yuawdojanap (wuoperd 9IBM)JOS 93l SAIJOE 21eM)jos da.) paysi|qe)ss) EIGEE] paysi|qe)ss juswdojanap
194 J0U ‘BAOR Jayuny ou Apuaung ener 0} 6ojoid woly) ‘21em)os s3] ‘asuaol juauodwoa/|oo)
‘adAyojoud ‘adAjojo.d yoseasal Buneauibusai Jofew NNDS ‘elemyos aa.) Jo snjejs
youeasal Ja)je [ejuswadxs)
swa)sAs adn ouEA |olueq adn ele ap uen(and| andl anl 1adojanap|
-juequajeq
oy ‘uswaig
eusIBAIUN
19n YDUSQYIOMN| Zeneip Auzeld eqeflny EINOLY] a3aoue FYoeq 99V aweN

Kouaysisuo)

S|00] SIARIDOS :SOI)SIIB}ORIEYD [BUOIIOUN-UON

| characteristics

iona

: Segravis Tools: Non-functi

Figure 1

The VMT Column

THE EASST NEWSLETTER E}

To which other visual modeling technique or language are model transformations supported?
To which implementation languages are code generators available?
Which kinds of model validation techniques are supported?

Are several views on the model supported? If yes, which ones?

1.3.2 Meta CASE functionalities

For each Meta CASE tool, we consider the scope of the tool: For which kinds of modeling techniques
and/or languages tools is this Meta CASE tool designed? Moreover, the approach for defining the visual
modeling technique/language is interesting. Which one is used?

We compare Meta CASE tools along the supporting tools offered for each language aspect. For each
aspect we distinguish tools to describe this aspect, tools interpreting this description, tools generated
from a description, and tools analysing a description according to certain properties.

General and Syntax Aspects

Which kinds of modeling techniques/languages can be described by this tool?

What are the meta concepts to describe a visual technique or language? If several are used, please
distinguish which one is used for which purpose.

Is there a reference application for this tool? If yes, the one or two most important ones are
mentioned.

Is the tool developed for a special application domain?
Are abstract and/or concrete syntax features defined?
How are symbols and their interrelations defined?

Which structures based on symbols and relations are allowed, i.e. belong of the visual language
to be defined? Are all structures allowed? Or are they restricted by additional constraints or a
grammar?

Which kind of concrete layout is possible? Graph-like, diagram-like, icon-based,....?

If the concrete syntax is described, how is the the concrete layout defined? Are special layout
algorithms used?

Is there a visual editor which takes the language description as input and interprets it such that
an editor for the language defined is available? Which features has this editor? (See CASE tool
simulators)

The VMT Column

THE EASST NEWSLETTER

oul auou sweibelq maip| ou sanqLne SM3IA [BIIAdS
‘SU02I apou o/m malA ydelb
sydeib ulewop dnuewss ul sy ewyouaq ou ou sisAjeue Jied |eono ‘Buyoayd) uoljepljeA |9pow
aje)s waysAs Bujwloysues)| Buposyo |opow Bujwiopad Aousysisuoo ‘Buisted ydeud|
Aq suni waysAs pue suoljewJojsuely
Bunejnwis Aq uonepijen |jopow Bunnoaxa
Aq Buyoayo Aousjsisuod
auou 2 ISNY L+ enep auou 0} siojesauab apod
60 ‘¢leyia ‘ener
wa)sAs| ulewop dluewsas sjau g Aue Aue Auy 0}
uonewJojsuely ydeud| suoljewojsues) [opow
s)|nsal auou J9smouq ydeub| ou 2ljeWo}Ne/UdALIP-pULRY ‘9)aI0SIp sloje|nwis
Q)eIpawIalul SMOYS ‘|ensiA pue uoljew.ojsuel)
‘UBALIp-pueY ‘9}210sIp| ydeub ‘so|
auou| pajoalIp-Xejuis auou| pajoauIp-XejuAs pajoauIp-xeuAs pajoauIp-xeuAs S10}IP3 [9pOW |BNSIA|
Aue) Aug) Aue| swajsAs pappaquid) Auy sujewop
uonesijdde jeioads
uope|nwis| dSD urewop) s100] D1d| waysAs pappaqua ou $J0}Ipa |ensiA Jo uoljesauas)| suopesijdde aouaiayal
pue wajsAs uonew.ojsuel) JlJUBWAS OJU| UONE|SUEL) pue yamw
ydeub ojui uoie|sues) Aq Aq speyosiess AN
s|apow AN JO uolepleA 10 Bupjoayd Aousysisuod)
uofjew.ojsuel) $)08Y0 AOUB)SISUOD| UOI}BWIOJSUEL) (uonewuoysuesy] ainjoniisenul JANN uopjew.ojsues) ydesb| abenbBuej/sanbiuyoay
ydeub pue JAN 10 Buiispow ayI-IANN ydeib| ydeib) Buyepop Buijapow |ensiA|
pue uonewsojsuel) ydeib uanlq Aojg|
19n| youaqgyioppAoualsisuo) Augeja\ eqeln4 Jyoneq 99Y| aweN

S|001 SIAVYHOZS :saljljeuonduny 3sv9

. CASE functionalities

Segravis Tools

Figure 2

The VMT Column

THE EASST NEWSLETTER E}

e Is it possible to generate a visual editor for the language defined? Which features has this editor?
(See CASE tool simulators)

e Is parsing of visual structures/models supported? Are certain parts, i.e. texts parsed?

e Is it possible to formulate syntactical constraints? Which kinds of constraints can be used?

e Is it possible to give an operational semantics for the language to be defined?
e Isit possible to translate language elements to some separate semantical domain? Which one?
e How is the semantics described?

¢ Is there a simulator which takes the language description as input and interprets it such that a
simulator for the language defined is available? Which features has this simulator? (See CASE
tool simulators)

e Is it possible to generate a simulator for the language defined? Which features has this simulator?
(See CASE tool simulators)

e Are animated simulations supported?

o If animation is supported, which animation features are available? Continuous movements, color
changes, size changes, change of visibilities,...?

e How can the model behaviour be tested? Are test cases generated?

¢ Is the validation of model behaviour supported? If yes, how can it be validated?

1.4 Conclusion

In this contribution, we presented CASE and Meta CASE tools developed within the Segravis project
and started to compare them. The main purpose of this first comparison is to get an overview on the
functionalities of such kind of tools and to find out which meta-level objectives are already covered by
tools.

In a first conclusion of this comparison we can say that the syntax definition as well as model trans-
formation is already well captured by Segravis tools. These VL aspects are defined based on MOF and
graph transformation. Interpreters and generators are available to provide the language designer with
visual editors and tool support for model transformation. Moreover, several analysis and verification
techniques for VL's are available. Modularity, refinement and integration is not yet covered by tool
support to such extent.

A comparison with other CASE and Meta-CASE tools is left to future work.

The VMT Column

THE EASST NEWSLETTER

auou weJbelp sse|D| EEN SJUIBJISUOD)| SJUIBASU0D D0 SJUIB.)SUO?)| SJUIRJISUOD [BD1}ORJUAS)
(pajouysal) ‘uoner I ydeig
‘aouejLIayul [opowejewl
Jew.oy [en)xa) e Joj] auou ener oN]| JeLo) [en)xa) Jo4 eAeljeuwlo) [enjxa) 104 Buisied
ou| ou| auou| saf| SOA saA| auou| Ioypa pejeisush|
oul ou| ou| pajoalIp| ou[pajoalip-xejuhs 10}1pa Bunaidiay
XejuAs / puey
931} UOIjeUIqWIOD)|
swelboud| sydesb adAy Wwa)sAs| (uoyd swis|ueyoaW so|nJ bunipa|sydelb adAy ‘sadAy sydeub uonduasap jnoke]
NSV + se|ni uonewlojsuel)| ‘sadA) abps uofjeuwLiojsues)| ul sjulensuod+)| [ensiajuswsd| + Jewwelb pue[aBpa pue apou| adA} ‘sadAy
ydeub + sjopow eja|| pue apou| yde.B| |epow-ejaw uonejoN joqeydie [ensiA abpa pue apou
paseq main da1)| ayjil-ydeud) ay1|-ydeuB|inoAe) soy yyiobiel paseq-uod| yde.b| ayIl-ydeln) jnoAe| 3}a12u09|
ou ‘paseq-uodl Jo onewwesbelp
sweubelp joalqosssejo| ydelb adAy| sweibelp abexoed Buijjapow e/ulsewwelb ydesb Aq| ainjonyis|sabpa pue sapoul S2INJONJ}S PaMo||e|
panquye pue ssejo JAN| -eew Aq pauyap| abeyoed JOW| painguye ‘padAy
ue Aq ypm a|qiedwod
SeNquUNe ‘SUONEIO0SSE| sabpa)| SUONEIO0SSE| suonejal swisiu suoneja.| seouaiaes [eninw|sebps pue sapoul suolje|al pue s|oquiAs
‘sjopowl(ejow)/sasselp| pue sapou pue sessefo pue sjoquiAs| eyoawy/sjuswajo) pue sjoquis ‘suoljeloosse| pajnquye ‘padAy
panquye; painquye ‘padAy [oPo| paInquye ‘padAy ‘sassefo
‘padAy
XeJUAS| Auew| xejuAs joensqe XejuAs XejuAs joelsqe| Aue| xejuhs yoelsqe| sainjeaj Xejuhs|
1oB1)SqE| PUE 8}810U0D| B1}SqR/8}8IOU0D) pUE 9}2I0U09
ou| Aug] oul uole[nuwis| Buueauibusal auou| p uoneaiidde | d:
(wsijewuoy ‘uonyesBajul |00}
-hinw)
dS9 ulewop onuewss Jojesbayu| sseuisng NgI| SI001D1d| 0C 40N “'SA3q speyoalels| dessjooq| sweibelp Ajianoe] suonesijdde asusiayal
ojul uone|suel) Aq speYISIE)S| 10} SUOIBULIOJSUBJ) [9pOW ‘uonoeJalu| ‘sjou Ujed ‘speyoa)els
NN Jo Buiyoayd Aousysisuoo) $5900Id| ‘sjau Ujad
‘ejewony pauwi] |
ESREDNE SINSY ‘Uonew.ojsue) u ¢| sonuewss ioj| Buiepow ejopy uonewJojsue.) uonewJojsuel)f uonew.ojsues) uonduosap
Aouasysisuoo Joy uonduosap| ydelb ‘Buljepowelow NJA|onewlojsue uoljewojsuel) ydeib| ydeiB yde.b| [aAal-ybiy 10} yoeoudde|
weibelp-AyAoe pue ydeub ‘xejuAs 1oy paynguye padAy / sydeub adAy
s9|nJ uonew.ojsuel) ydeud| Bulspow e
I (peseq |apowejaw) Aue Aue) suoljewojsuel) ai-ydelo) aNI-TAN Auelo'z TNN ‘o'z 40N Aueg] sanbiuyoay/sabenbue|
ydeub Buijepow pajoddns|
um aI-1IAN
YouagyiomAdua)sisuog zeleln Auges iy eqelng EINOLYV)| JN-TNA-ad) a3ouag Jyoneq| D9V suweN|

s|00] siaeiBag :sjoadse xejulks pue [eissuab — sanijeuonouny ISy BB

| aspects

ICal

general and syntact

lities

1ona

Meta-CASE funct

Segravis Tools:

Figure 3

The VMT Column

THE EASST NEWSLETTER

ou| syJewyouaq ou 19999 ON sisAleue syde.b| sojweulp
|Jopow a|dwis leyuswasoull jo Ayjigeyoeal |apow Jo uonepljeA|
‘SJOIlJU0d
ou| yunr| suoneoydde siny| ON nuney S9SED 1S9} sojweulp
10 uolesauab) |apow jo Bunsa]|
ou ‘suopeoljdde|
aIny
ou| (sgoaq) wayshAs soh sabueyd ou| ON SsaJnjesy uonjewiue|
Buismolg AYIQISIA /821S/10]09
1098[qQ o1weuAiq ‘Juswanow
sSNoNuuUod
ou| 10)1pd ou sah soh ou| ON SMB3IA uoljewiue
1ob4e} ay) Ul
auou ou SOlIBUIS ou OoN
uoljewiue Joy
$309Y0 AOUB)SISUOD 10) soA| aweb uayo) ou oljewolne| oljewojne| ou onjewojne| Jojeinwis Bunaidiajul
Jo sueaw Aq /onnoeIaUl JoAnOeRIBUI JonnoeIBUl
‘snonuiuo9; ‘SnoNuUUod ‘9)aI0sIp ‘|ensip
/301081 /2)210SIp ‘|ensip
pajaidiayul SISV wa)sAs Wwo)sAs| w)sAs wo)sAs Wwa)sAs w)sAs| uondiuosap)
pue swelbelp| + uonewlojsuel)l uonewlojsuel) uoew.osuel) uofjew.osuel) uojjewlojsuel)| uonewsojsues)l uonewlojsuBly
Ajaijoe se payioads ydeub| ydeub ydeub| ydeub| ydeib ydeib ydeub
9. SY290 Aous)sIsuo9
sjou Uj@d| uonewlojsuely uoyihd uofjew.ojsuel) ulewop [ed)uewas
ydesb| ‘uonew.ojsuel) ydeib
ydeup|
$309Y0 AOUS}SISUOD J0J SISV ou soA soAh sok sah sof| sonuewas jeuonesado
+ UonewJojsuely
ydeub|
YOUaQg) oM\ Zeljelp Auzee N eqelng €INOLY| a3ouan Jyoneq 99V sweN

Kouaysisuo9)

s100] siAeiBag :sjoadse soiuewWwaS — SaI}IjeUOI}OUNY ISV RIS

semantical aspects

Meta-CASE functionalities

Segravis Tools

Figure 4

The VMT Column

	A First Comparison of Segravis Tools
	Survey on SegraVis Tools
	Non-functional characteristics
	Functional characteristics
	CASE functionalities
	Meta CASE functionalities

	Conclusion

