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Abstract. In this third Column on Visual Modeling Techniques we present a first comparison of
tools developed by partners and grant holders of the Research Training NeBegriaVis on
Syntactic and Semantic Integration of Visual Modeling Techniques
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1 A First Comparison of Segravis Tools

In the wide area of visual modelling techniques a large number of CASE and Meta-CASE tools have
been developed to define and work with visual modelling technigues. In this survey, we concentrate
on those tools for visual modelling techniques and languages which have been developed within the
SegraVis project. The main purpose of this first comparison is to get an overview on the functionalities
of such kind of tools and to better understand each tool's purpose and features. A comparison with other
CASE and Meta-CASE tools is left to future work.

First the tools regarded in this comparison are shortly introduced. Thereafter, we start a first comparison
by explaining the items used for comparison. Throughout this survey, functional and non-functional
characteristics are distinguished and listed in several tables. In the following, explanations to each table
entry can be found.

1.1 Survey on SegraVis Tools

In the following, CASE and Meta-CASE tools developed within the SegraVis project, are presented. A
CASE tool is usually dedicated to one individual modeling technique. It supports the editing of models
and might offer also support for simulation, validation, transformation and code generation.

Meta CASE tools support for specifying visual modeling techniques and generating visual modeling
environments. Different kinds of Meta CASE tools are available: Generic, parameterizable CASE tools
allow the definition of variants of one main modeling techniques (e.g. lots of UML CASE tools offer
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support for the definition of stereotypes). CASE tool frameworks (such as Eclipse/EMF) can be used to
generate reusable, semi-complete code to be extended to a specific CASE tool. CASE tool generators
offer designers for the specification of visual modeling environments and their generation from the given
specification. Tools like GenGED and AToM3 described below belong to this group of Meta CASE tools.

The Meta CASE approaches followed by the following tools are graph transformation-based and/or
based on Meta Object Facilities (MOF). Basing the specification of a visual modeling techniques on
graph transformation the visual alphabet, i.e. the symbols and links, are described by type graphs. Graph
grammars define the language syntax, and graph transformation systems can be used for the semantics
definition. Using MOF, symbols, links and multiplicity constraints are described by class diagrams,
while well-formedness rules define the language syntax.

AGG AGG (tfs.cs.tu-berlin.de/agg ) is a development environment for attributed graph
transformation systems supporting an algebraic approach to graph transformation. It aims at specify-
ing and rapid prototyping applications with complex, graph structured data. AGG may be (re)used
(without GUI) as a general purpose graph transformation engine in Java applications employing graph
transformation concepts.

DaMoRe

GenGED The GenGED approach (Generation of Graphical Environments for Deiggyog(tu-berlin.
de/genged ) supports the generic description of visual modeling languages for the generation of graph-
ical editors and the simulation of behavior models. GenGED is based on algebraic graph transformation
and graphical constraint solving techniques and tools. It has been applied to a variety of visual languages
(VLs). The corresponding visual environment supports the visual description of VLs and the genera-
tion of language-specific graphical editors, available in syntax-directed or free-hand editing mode. The
behavior of a visual model can be specified and simulated in the generated graphical editor.

AToM3 The two main tasks of AToMZatoma3.cs.mcgill.ca ) are meta-modelling and model-
transforming. Meta-modelling refers to the description, or modelling of different kinds of formalisms
used to model systems Model-transforming refers to the (automatic) process of converting, translating
or modifying a model in a given formalism, into another model that might or might not be in the same
formalism. In AToM3, formalisms and models are described as graphs. From a meta-specification (in the
ER formalism) of a formalism, AToM3 generates a tool to visually manipulate (create and edit) models
described in the specified formalism. Model transformations are performed by graph rewriting. The
transformations themselves can thus be declaratively expressed as graph-grammar models.

Fujaba The primary topic of the Fujaba Tool Suitengwcs.uni-paderborn.de/cs/fujaba )

project is to provide an easy to extend UML and Java development platform with the ability to add
plug-ins. The Fujaba Tool Suite combines UML class diagrams and UML behaviour diagrams to a
powerful, easy to use, yet formal system design and specification language. Furthermore the Fujaba Tool
Suite supports the generation of Java source code out of the whole design which results in an executable
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prototype, ideally. Moreover the way back is provided, too (to some extend so far), so that Java source
code can be parsed and represented within UML.

MetaEnv MetaEnv [?] is a toolbox for automating visual software engineering. MetaEnv augments
visual diagrammatic (VD) notations with customizable dynamic semantics. Traditional meta-CASE tools
support flexibility at syntactic level: MetaEnv augments them with semantic flexibility. MetaEnv refers

to a framework based on graph grammars and has been experimented as add-on to several commercial
and proprietary tools that support syntactic manipulation of VD notations.

ViaTra2 The VIATRA (Visual Automated model TRAnsformations) framework is the core of a transformation-
based verification and validation environment for improving the quality of systems designed using the
Unified Modeling Language by automatically checking consistency, completeness, and dependability
requirements.

Consistency Workbench The Consistency Workbenctvwwecs.uni-paderborn.de/cs/ag-engels/

ag _engl/People/Kuester/ResearchTools.html ) is aresearch prototype for consistency man-
agement in UML-based development processes. Currently, consistency of UML models is only partially
ensured by the language specification. In particular, behavioral consistency of UML models is not pre-
scribed by the language standard. Such semantic consistency must be defined and checked by the soft-
ware engineer when applying UML in practical development processes.

The Consistency Workbench aims at providing tool support for consistency management along a gen-
eral methodology. Briefly, the methodology requires the software engineer to identify consistency prob-
lems and then develop partial mappings (model transformations) of UML models into a formal semantic
domain. In such a semantic domain, formal consistency conditions can be defined and existing formal
verification tools such as model checkers can be applied for their verification. One key functionality of
the Consistency Workbench is the definition and execution of model transformations as well as consis-
tency checks including model transformations.

UGT

1.2 Non-functional characteristics

Here the main non-functional information about the tools is listed. Please note that the tools are compared
with each other along qualitative characteristics only, since there are not yet benchmark tests available
for them.

e Name: the full name of the tool as well as its shortcut (if available).

e Developer: For Segravis tools, this is either the name of a Segravis partner or a grant holder. For
all other tools, this is the name of the head of the development or a company/ organisation.

e Status of tool/component development: Open source or commercial? Under which license? Pro-
totype, established tool, the standard tool for....?
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o Which version has been used for evaluation?

e Which implementation language has been used?
e For which platforms is the tool available?
¢ In which way is the tool documented?

e |s there support for interoperability with other tools? What kinds of exchange formats are sup-
ported? Are there well-defined interfaces for the tool and/or tool components?

e What are the possibilities to extend the tool or components of the tool? Can it be adapted to special
user requirements?

e Do there exist test suites? How is the recovery from failures?

e Are there benchmark tests?

1.3 Functional characteristics

These characteristics can also be seen as features. They describe the purpose of the tool. Moreover, we
consider here the scope of the tool, i.e. which kinds of visual modeling techniques this tool is developed
for. The functional characteristics are structured into two groups: one for CASE functionalities and one
for Meta CASE functionalities. The Meta CASE functionalities comprise general aspects as well as
syntactical and semantical features.

Dependent on the features of each tool, it occurs in those tables where corresponding characteristics are
offered, only.

1.3.1 CASE functionalities

Most of the considered tools are CASE tools for a fixed language each. A CASE tool can comprise
visual editors, simulators, model transformations to other modelling techniques, code generators, and
animation tools. The table entries are concerned with the following questions:

e Which visual modeling technique or language is supported?

e s there a reference application for this tool? If yes, the one or two most important ones are
mentioned.

¢ Is the tool developed for a special application domain?
e Is there a visual editor? How do the visual editors work? Syntax-directed or freehand?

e Is there a simulator? Is it visual? How does it work? Is the simulation discrete or conti-
nous/animated? Is it hand-driven or automatic? Does it show the (intermediate) results? In a
visual form?
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To which other visual modeling technique or language are model transformations supported?
To which implementation languages are code generators available?
Which kinds of model validation techniques are supported?

Are several views on the model supported? If yes, which ones?

1.3.2 Meta CASE functionalities

For each Meta CASE tool, we consider the scope of the tool: For which kinds of modeling techniques
and/or languages tools is this Meta CASE tool designed? Moreover, the approach for defining the visual
modeling technique/language is interesting. Which one is used?

We compare Meta CASE tools along the supporting tools offered for each language aspect. For each
aspect we distinguish tools to describe this aspect, tools interpreting this description, tools generated
from a description, and tools analysing a description according to certain properties.

General and Syntax Aspects

Which kinds of modeling techniques/languages can be described by this tool?

What are the meta concepts to describe a visual technique or language? If several are used, please
distinguish which one is used for which purpose.

Is there a reference application for this tool? If yes, the one or two most important ones are
mentioned.

Is the tool developed for a special application domain?
Are abstract and/or concrete syntax features defined?
How are symbols and their interrelations defined?

Which structures based on symbols and relations are allowed, i.e. belong of the visual language
to be defined? Are all structures allowed? Or are they restricted by additional constraints or a
grammar?

Which kind of concrete layout is possible? Graph-like, diagram-like, icon-based,....?

If the concrete syntax is described, how is the the concrete layout defined? Are special layout
algorithms used?

Is there a visual editor which takes the language description as input and interprets it such that
an editor for the language defined is available? Which features has this editor? (See CASE tool
simulators)
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e Is it possible to generate a visual editor for the language defined? Which features has this editor?
(See CASE tool simulators)

e Is parsing of visual structures/models supported? Are certain parts, i.e. texts parsed?

e Is it possible to formulate syntactical constraints? Which kinds of constraints can be used?

e Is it possible to give an operational semantics for the language to be defined?
e Isit possible to translate language elements to some separate semantical domain? Which one?
e How is the semantics described?

¢ Is there a simulator which takes the language description as input and interprets it such that a
simulator for the language defined is available? Which features has this simulator? (See CASE
tool simulators)

e Is it possible to generate a simulator for the language defined? Which features has this simulator?
(See CASE tool simulators)

e Are animated simulations supported?

o If animation is supported, which animation features are available? Continuous movements, color
changes, size changes, change of visibilities,...?

e How can the model behaviour be tested? Are test cases generated?

¢ Is the validation of model behaviour supported? If yes, how can it be validated?

1.4 Conclusion

In this contribution, we presented CASE and Meta CASE tools developed within the Segravis project
and started to compare them. The main purpose of this first comparison is to get an overview on the
functionalities of such kind of tools and to find out which meta-level objectives are already covered by
tools.

In a first conclusion of this comparison we can say that the syntax definition as well as model trans-
formation is already well captured by Segravis tools. These VL aspects are defined based on MOF and
graph transformation. Interpreters and generators are available to provide the language designer with
visual editors and tool support for model transformation. Moreover, several analysis and verification
techniques for VL's are available. Modularity, refinement and integration is not yet covered by tool
support to such extent.

A comparison with other CASE and Meta-CASE tools is left to future work.
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