
Composition and Decomposition of DPO
Transformations with Borrowed Context�

Paolo Baldan1, Hartmut Ehrig2, and Barbara König3

1 Dipartimento di Informatica, Università Ca’ Foscari di Venezia, Italy
2 Institut für Softwaretechnik und Theoretische Informatik,

Technische Universität Berlin, Germany
3 Institut für Informatik und interaktive Systeme, Universität Duisburg-Essen,

Germany

Abstract. Double-pushout (DPO) transformations with borrowed con-
text extend the standard DPO approach by allowing part of the graph
needed in a transformation to be borrowed from the environment. The
bisimilarity based on the observation of borrowed contexts is a congru-
ence, thus facilitating system analysis. In this paper, focusing on the
situation in which the states of a global system are built out of local
components, we show that DPO transformations with borrowed context
defined on a global system state can be decomposed into corresponding
transformations on the local states and vice versa. Such composition and
decomposition theorems, developed in the framework of adhesive cate-
gories, can be seen as a first step towards an inductive definition, in sos

style, of the labelled transition system associated to a graph transfor-
mation system. As a special case we show how an ordinary DPO trans-
formation on a global system state can be decomposed into local DPO
transformations with borrowed context using the same production.

1 Introduction

Graph transformations [7] have been applied successfully to several areas of
software and system engineering, including syntax and semantics of visual lan-
guages, visual modelling of behaviour and programming, metamodelling and
model transformation, refactoring of models and programs. Almost invariably
the underlying idea is the same: the states of a system are modelled by suit-
able graphs and state changes are represented by graph transformations. Conse-
quently, the behaviour of the system is expressed by a transition system, where
states are reachable graphs and transitions are induced by graph transforma-
tions. The transition system can be the basis for defining various notions of
abstract behavioural equivalences, e.g., trace, failures and bisimulation equiva-
lence. These, in turn, can be used to provide a solid theoretical justification for
various constructions and techniques in the above mentioned areas of system

� Research partially supported by the EC RTN 2-2001-00346 Project SegraVis, the
MIUR Project ART, the DFG project SANDS and CRUI/DAAD Vigoni “Models
based on Graph Transformation Systems: Analysis and Verification”.

A. Corradini et al. (Eds.): ICGT 2006, LNCS 4178, pp. 153–167, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

154 P. Baldan, H. Ehrig, and B. König

engineering, e.g., for the formalisation of behavioural refinement, or to show
semantical correctness of refactoring and model transformation.

The applicability of these techniques generally requires the considered be-
havioural equivalence to be a congruence: two systems—seen as equivalent from
the point of view of an external observer—must be equivalent also in all possible
contexts or environments.

Unfortunately, behavioural equivalences defined over unlabelled transition
systems naively generated by using transformation rules often fail to be con-
gruences. The same problem arises for several other computational formalisms
which can be naturally endowed with an operational semantics based on unla-
belled reductions, such as the λ-calculus [2] or many process calculi with mobility
or name passing, e.g., the π-calculus [11] or the ambient calculus [4].

In order to overcome this problem recently there has been a lot of interest
in the automatic derivation of labelled transition systems where bisimilarity
is a congruence for reactive systems endowed with an (unlabelled) reduction
semantics (see, e.g., [10,8,6,12]). In particular, in the case of double-pushout
(DPO) graph rewriting this has led to an extension of the approach, called
DPO approach with borrowed contexts [6]. Intuitively a label C of a transition
represents the (minimal) context that must be “added” to the current state in
order to allow the transformation or reduction step to be performed.

In this paper, we focus on the situation in which the states of a global system
are built out of local states of the components of the systems. Then we show
that DPO transformations with borrowed context defined on a global system
state can be decomposed into corresponding transformations on the local states.
Vice versa we study the conditions under which local transformations can be
composed to yield global ones. The main results of this paper are composition
and decomposition theorems for DPO transformations with borrowed context
in the framework of rewriting systems over adhesive categories [9]. As a special
case we show how an ordinary DPO transformation on a global system state can
be decomposed into local DPO transformations with borrowed context using the
same production.

These composition and decomposition results can be seen as a first step to-
wards a structural operational semantics for adhesive rewriting systems, i.e.,
towards a framework where the transition system associated to a graph trans-
formation system can be defined inductively, in sos style. Compare for instance
the inductive CCS rule stating that from P

a→ P ′ and Q
ā→ Q′ (where a is an

action and ā its corresponding coaction) one can derive P | Q
τ→ P ′ | Q′ (where

the label τ stands for a silent transition). Intuitively P
a→ P ′ means that P can

move to Q′ if the environment performs an output on channel a and, similarly,
Q can move if the environment performs an input on a. The two local moves
can be combined leading to a transition for P | Q where nothing is “borrowed”
from the environment (as expressed by the τ -label).

Having an inductive way of specifying the behaviour of a graph can lead to a new
understanding of system semantics and new proof techniques. E.g., inductive def-
initions can be quite useful when comparing the semantics of two calculi, as in [3].

Composition and Decomposition of DPO Transformations 155

The rest of the paper is structured as follows. In Section 2 we introduce the
basics of adhesive categories and of the DPO approach with borrowed contexts.
In Section 3 we introduce a category of transformations with borrowed contexts,
which is the basis for the formalisation of the composition and decomposition
theorems for transformations given in Sections 4 and 5, respectively. Finally, in
Section 6 we conclude and outline directions of future research. Proofs of all
theorems, propositions and lemmas can be found in [1].

2 DPO Transformation with Borrowed Contexts

Adhesive categories have been introduced in [9], as categories where pushouts
along monomorphisms are so-called Van-Kampen squares (see Condition 3 in the
definition below). We will only briefly sketch the theory of adhesive categories.

Definition 1 (Adhesive category). A category C is called adhesive if

1. C has pushouts along monos;
2. C has pullbacks;
3. Given a cube diagram as shown on the right

with: (i) A → C mono, (ii) the bottom square a
pushout and (iii) the left and back squares pull-
backs, we have that the top square is a pushout
iff the front and right squares are pullbacks.

A′ ��

���
��

��

��

C′

���
��

��

��

B′ ��

��

D′

��

A ��

���
��

��
C

���
��

��

B �� D

The category Set of sets and functions is adhesive. Adhesive categories enjoy
closure properties, for instance if C is adhesive then so is any functor category
CX, any slice category C↓C and any co-slice category C↓C. Therefore, since the
category of graphs and graph morphisms is a functor category Graph ∼= Set•⇔•,
it is adhesive.

A subobject of a given object T is an isomorphism class of monomorphisms
to T . Binary intersections of subobjects exist in any category with pullbacks. In
adhesive categories also binary unions of subobjects exist and can be obtained
by taking the pushout over their intersection. Moreover, the lattice of subobjects
is distributive.

Theorem 2 ([9]). For an object T of an adhesive category C, the partially
ordered set Sub(T) of subobjects of T is a distributive lattice. Given two subobjects
A, B ∈ Sub(T), the meet A ∩ B is (the isomorphism class of) their pullback,
while the join A∪B is (the isomorphism class of) their pushout in C over their
intersection.

A

�����������

A ∩ B

��������

�����
���

PB T

B

�����������

A

		������������������

���������

A ∩ B

���������

��������� PO A ∪ B �� T

B

																		

���������

156 P. Baldan, H. Ehrig, and B. König

The following lemma will be useful in the future where we have to show that cer-
tain squares in adhesive categories are pullbacks or pushouts. It follows directly
from Theorem 2.

Lemma 3. Consider the following diagram where all arrows are mono. The
square below is a pullback if and only if A = B ∩ C (all objects are seen as
subobjects of E). Furthermore the square is a pushout if and only if A = B ∩ C
and D = B ∪ C.

A

��

�� B

��

C �� D �� E

We next define rewriting with borrowed contexts on objects (e.g., over graphs)
with interfaces, as introduced in [6]. Intuitively, the borrowed context is the
smallest extra context which must be added to the object being rewritten in
order to obtain an occurrence of the left-hand side. The extra context can be
added only using the interface.

Definition 4 (Borrowed contexts, transformations). Let C be a fixed ad-
hesive category and let r = (L ← I → R) be a rewriting rule. A DPO transfor-
mation with borrowed context—short transformation—t (of r) is a diagram in
C of the following form, where all arrows are mono:

D

��

�� L

��

I�� ��

��

R

��

G �� G+

PO

C

PO
�� �� H

PO

J

��

�� F

PO

��

K

PB

��

��

In this case we write (J → G)
r,m
=⇒ (K → H) where m = G ← D → L

is the partial match. If instead we want to focus on the interaction with the
environment we say that J → G makes a transition with borrowed context J →
F ← K and becomes K → H (written: (J → G) J→F←K→ (K → H)).

For a given transformation ti we will denote the objects occurring in the corre-
sponding diagram by Di, Gi, Ji, G+

i , Ci, Hi, Fi, Ki.
The squares in the diagram above have the following meaning: the upper

left-hand square merges the left-hand side L and the object G to be rewritten
according to a partial match G ← D → L of the left-hand side in G. The
resulting object G+ contains a total match of L and can be rewritten as in the
standard DPO approach, which produces the two remaining squares in the upper
row. The pushout in the lower row gives us the borrowed (or minimal) context
F which is missing in order to obtain a total match of L, along with a morphism
J → F indicating how F should be attached to G. Finally, the interface for the

Composition and Decomposition of DPO Transformations 157

Sell Buy

U

A

U

O

U

A

U

O

A

UU

O

(Buy)

O

A

U U

O

A

U

Sell

O

A

(Offer)

U

A

U

A

U

A

Buy

(Ask)

Fig. 1. Rewriting system Market

resulting object H is obtained by “intersecting” the borrowed context F and the
object C via a pullback. Roughly, the new interface includes what is preserved
of the old interface and of the context borrowed from the environment. The two
pushout complements that are constructed in Definition 4 may not exist. In this
case no rewriting step is possible.

It has been shown in [6] that bisimilarity on the transition system labelled
with borrowed contexts is a congruence with respect to cospan composition.

Example. Consider the category Graph of labelled graphs and label-preserving
morphisms. Take the rewriting system Market in Graph depicted in Fig. 1,
which can be interpreted as a very high-level description of the interactions be-
tween users of an electronic market place. Graph nodes are represented as circles,
with their label inside. Edges are directed and unlabelled. Users, represented as
U -labelled nodes, can possess objects, denoted by O-labelled nodes, and they
can be connected to one (or more) market places, represented by A-labelled
nodes.

A user possessing some objects can autonomously decide to offer one of them
to other users, on a market place, expressed by rule (Offer). A user can also ask
for something to buy on a market he is connected to, expressed by rule (Ask). A
request and an offer, after some negotiation which is not modelled, can meet, the
object is sold and moved from the seller to the buyer, modelled by rule (Buy).

An example of a transformation with borrowed context using production
(Buy) can be found in Fig. 3. It is applied to the graph with interface J1 → G1
in Fig. 2. The graph G1 includes a market place A, with a user U , possessing two
objects and trying to sell one of them. Note that the borrowed context consists
of an additional user playing the role of a buyer. In other words, the existence of

158 P. Baldan, H. Ehrig, and B. König

A

Sell

A

U

O O

G1 J1

Fig. 2. The graph with interface J1 → G1

U

A

U

O

A

UU

O

Sell

A

U

O

Sell

A

U

O

Sell Buy

U

A

U

O

O

Sell Buy

U

A

U

O O

A

UU

O O

U

A

U

O O

A

Buy

U

A

U

A

Fig. 3. A transformation with borrowed context t1 over J1 → G1, using rule (Buy)

the transformation expresses the fact that rule (Buy), can be applied assuming
that the context provides a user which buys the object sold by the user in G1.

Remark: Note that we obtain the well-known case of DPO transformations if we
consider total matches L → G instead of partial matches G ← D → L, which
implies G = G+. In this case we can take any interface object J , for instance
the initial object—if it exists in the category—which implies that F and K are
also initial objects.

3 Transformation Morphisms

A first step towards the composition of transformations is the formalisation of
the intuitive idea of embedding of a transformation into another. This is done
by introducing a suitable notion of transformation morphism.

Composition and Decomposition of DPO Transformations 159

Definition 5 (Transformation morphisms). Let t1, t2 be two transforma-
tions for a fixed rewriting rule L ← I → R. A transformation morphism θ: t1 →
t2 consists of arrows D1 → D2, G1 → G2, G+

1 → G+
2 , C1 → C2, H1 → H2,

J2 → J1, F2 → F1 and K2 → K1 such that the diagram below commutes. (The
arrows L → L, I → I, R → R in the diagram are the identities.)

A transformation morphism is called componentwise mono if it is composed
of monos only.

D2 ��

�������� L

�������� I�� ��

�������� R

��������

G2 �� G2
+ C2�� �� H2

J2 ��

��������

��

F2

��������

��

K2��

��

��������

D1 ��

��������

		

L

��������

		

I�� ��

��������

		

R

��������

		

G1 ��

		

G1
+

		

C1�� ��

		

H1

		

J1 ��

��������

F1

��������

K1��

��������

The intuition—at least if all arrows are mono—is that a morphism “embeds”
transformation t1 into t2. Thus, G1 (the object being rewritten) is mapped into
G2 and the same holds for D1 (the partial match), G+

1 , C1 and H1. Furthermore,
since G1 is contained in G2, it might be necessary to borrow more context from
the environment. Hence F1 can be larger than F2 and the same holds for the inner
and outer interfaces of F1 (denoted by J1 and K1). For instance J1 might have
to be larger than J2 since more context has to be attached. Hence the “squares”
J2, J1, G1, G2 and F2, F1, G

+
1 , G+

2 and K2, K1, C1, C2 are not real squares, but
will be called horseshoes in the following.

The complexity of our proofs stems from the fact that these horseshoes have
to be taken into account. Otherwise it would be possible to simply work in a
functor category.

Definition 6 (Category of transformations). The category having as ob-
jects transformations and as arrows transformation morphisms is denoted by
Trafo. Composition of transformation morphisms is defined componentwise.

Example. Consider the graph with interface J3 → G3 in Fig. 4. The graph G3
includes a market place with two users. The first one possesses two objects and
is trying to sell one of them. The second user is looking for an object to buy. A
transformation for J3 → G3 , using rule (Buy), can be found in Fig. 5. Observe
that in this case the given graph already includes all what is needed for applying
rule (Buy) and thus nothing is actually borrowed from the context. Thus only
the interface is exposed in the label, i.e., the graph F3 = J3. It is not difficult to
see that there is an obvious transformation morphism θ1 : t1 → t3, where t1 is
the transformation in Fig. 3.

160 P. Baldan, H. Ehrig, and B. König

A

O

Sell Buy

U

A

U

O O

G3 J3

Fig. 4. The graph with interface J3 → G3.

U

A

U

O O

A

U

OOO

U

Sell

U

O O O

U

Buy

A

U

A

U

O

A

UU

O

Sell Buy

U

A

U

O

Sell Buy

U

A

U

O

Sell

U

O O O

U

Buy

A

A A A

Fig. 5. A transformation with borrowed context t3 over J3 → G3, using rule (Buy)

Although the definition of transformation morphisms does not impose any
condition on the vertical squares or horseshoes, we can infer some properties by
taking into account that all horizontal squares are either pullbacks or pushouts
(along monos, and thus also pullbacks).

Lemma 7 (Properties of transformation morphisms). For a transforma-
tion morphism θ as defined in Definition 5 it holds that:

– The squares I, I, L, L and I, I, R, R and C1, C2, G+
1 , G+

2 and C1, C2,
H1, H2 are pushouts.

– If the arrows G+
1 → G+

2 , C1 → C2 and H1 → H2 are mono, the squares L,
L, G+

1 , G+
2 and I, I, C1, C2 and R, R, H1, H2 and K2, K1, F2, F1 and

D1, D2, G1, G2 are pullbacks.

Composition and Decomposition of DPO Transformations 161

4 Composition of Transformations

In this section we study a composition mechanism for transformations. More
precisely we show that given two transformations t1, t2, using the same pro-
duction, with a common subtransformation t0, the two transformations can be
combined via a pushout. We will give sufficient conditions for the existence of
this pushout and show how it can be constructed.

We first consider a simpler category where objects are pushouts and we show
how to construct pushouts in this setting.

Lemma 8 (Pushouts in the category of pushouts). Let C be a fixed adhe-
sive category. Consider the category of pushouts in C, where objects are pushouts
pi of the form

Ai
0

��

��

Ai
2

��

Ai
1

�� Ai
3

and an arrow ϕ: p1 → p2 consists of four arrows (ϕ0, ϕ1, ϕ2, ϕ3) (with ϕi: A1
i →

A2
i) which connect the corners of the squares such that the full diagram (which

is a cube) commutes.
Given two arrows ϕ1: p0 → p1, ϕ2: p0 → p2 in this category, a pushout

ψ1: p1 → p3, ψ2: p2 → p3 can be computed by constructing four pushouts of the
arrows ϕi, ψi, provided that these pushouts exist. Then the resulting (pushout)
square is composed of the four mediating arrows.

Note that even if the pushouts p0, p1, p2 consist only of monos, the resulting
pushout square p3 does not necessarily consist of monos. Hence in our case this
property has to be shown by different means.

We next introduce a property ensuring the composability of transformations.

D0 ��

��

D1

��

D2 �� L

(a)

t1 θ′
1

��

t0

θ1
����������

θ2 ��

 t3

t2 θ′
2

����������

(b)

Fig. 6. Composition of transformations

Definition 9 (Composable transformation morphisms). Let θi: t0 → ti
with i ∈ {1, 2} be transformation morphisms. We say that θ1 and θ2 are com-
posable if

162 P. Baldan, H. Ehrig, and B. König

1. θ1, θ2 are componentwise mono and
2. the square in the underlying category C in Fig. 6(a) (where the top and

right arrows appear in θ1 and the left and bottom arrows appear in θ2) is a
pullback.

Intuitively the second condition in the definition above requires that the partial
match for t0 is the intersection of the partial matches for t1, t2.

Theorem 10 (Composition of transformations). Let θi: t0 → ti with i ∈
{1, 2} be two composable transformation morphisms. Then the pushout of θ1, θ2
exists (see Fig. 6(b)) and can be obtained in the following way:

– Construct D3, G3, G
+
3 , C3, H3 by taking pushouts and J3, F3, K3 by taking

pullbacks. For instance D3 is constructed by taking the pushout of D0 → D1,
D0 → D2, where these two arrows are taken from θ1 respectively θ2. This
produces the transformation morphisms θ′i: ti → t3.

– In order to construct the arrows in t3 we proceed as follows:
• Most arrows can be immediately obtained as mediating arrows. This is

the case for D3 → G3, D3 → L, G3 → G+
3 , L → G+

3 , C3 → G+
3 , C3 →

H3, J3 → F3, K3 → F3, I → C3, R → H3.
• Furthermore construct J3 → G3 by composing J3 → J1 → G1 → G3.

Similarly for F3 → G+
3 and K3 → C3.

5 Decomposition of Transformations

In the previous section we have shown how to compose larger transformations
out of smaller ones. Here we are going into the opposite direction and show under
which conditions transformations can be split into smaller ones. That is, given a
transformation of J → G and a decomposition of G into subobjects G1, G2, is it
possible to find transformations for these subobjects, such that the composition
of these transformations yields the original transformation?

5.1 Projecting Transformations

In order to be able to formulate the decomposition of transformations, we will
first show how to project a transformation to a subobject of G, i.e., to a subobject
of the object to be rewritten. We identify some conditions which ensure that
a transformation can be projected over a subobject of the rewritten object.
Roughly, the interface of the subobject must be sufficiently large to guarantee
that the needed context can be actually borrowed.

Definition 11 (Extensibility). Let t2 be a transformation and and let J2 →
J1 → G1 → G2 be a factorisation of the arrow J2 → G2. Then the transforma-
tion is called extensible with respect to this factorisation, whenever there exists
a subobject F1 of U2 (the pushout of G+

2 ← C2 → H2) such that

G1 ∪ L = G1 ∪ F1 G1 ∩ F1 = J1.

Composition and Decomposition of DPO Transformations 163

The definition above basically requires (in lattice-theoretic terms) that the push-
out complement F1 of J1 → G1 → G+

1 exists, where G+
1 = G1 ∪ L. Note that in

adhesive categories the pushout complement of monos is unique (if it exists).
The extensibility condition given in Definition 11 can be difficult to work with.

Below we give an alternative handier condition, sufficient for extensibility.

Lemma 12 (Sufficient condition for extensibility). Let t3 be a transfor-
mation and let J3 → J1 → G1 → G3 be a factorisation of the arrow J3 → G3.
Then t3 is extensible with respect to this factorisation if the pushout complement
X13 of J1 → G1 → G3 exists, i.e., there exists an object X13 and morphisms
such that the square below is a pushout.

J1

��

�� G1

��

X13 �� G3

In this case set F1 = (X13 ∪ F3) ∩ (G1 ∪ L).

Essentially, the sufficient condition requires that the interface of the smaller
object G1 is sufficiently large to allow to get the larger object G3 by extending
G1 along its interface.

Now let ti be a transformation over an object with interface Ji → Gi (i ∈
{1, 2}) and let J2 → J1 → G1 → G2 be a factorisation of J2 → G2. We say that
a transformation morphism θ : t1 → t2 is consistent with the factorisation if it
has the arrows J2 → J1 and G1 → G2 as components.

Proposition 13 (Projection of transformations). Let t2 be a transforma-
tion and let J2 → J1 → G1 → G2 be a (mono) factorisation of the morphism
J2 → G2 such that t2 is extensible with respect to this factorisation. Then there
exists a unique transformation t1 of J1 → G1, with a componentwise mono
transformation morphism θ: t1 → t2, consistent with the factorisation.

The objects of this transformation can be constructed as follows:

1. Construct U2 as the pushout of C2 → G+
2 and C2 → H2. Now all objects can

be considered as subobjects of U2.
2. The object F1 is given by the extensibility property above, which requires that

G1 ∪ L = G1 ∪ F1 and G1 ∩ F1 = J1. Set D1 = G1 ∩ D2, G+
1 = G1 ∪ L,

C1 = G+
1 ∩ C2, H1 = C1 ∪ R, K1 = F1 ∩ C1.

5.2 Decomposing Transformations

As a first step towards the decomposition of a transformation, we introduce a
suitable decomposition for an object with interface.

Definition 14 (Proper decomposition). Let J3 → G3 be an object with in-
terface. Then a proper decomposition of J3 → G3 is a cube as shown below

164 P. Baldan, H. Ehrig, and B. König

where all arrows are mono, the square G0, G1, G2, G3 is a pushout and and the
square J0, J1, J2, J3 is a pullback. (Note that the four remaining “squares” are
horseshoes.)

J0

��

J2��

��

J1

��������

��

J3��

��������

��

G0 ��

�������� G2

��������

G1 �� G3

Theorem 15 (Decomposition of transformations). Let t3 be a transfor-
mation of an object with interface J3 → G3. Consider a proper decomposi-
tion of J3 → G3 as in Definition 14 and assume that the transformation t3
is extensible with respect to the factorisations J3 → J1 → G1 → G3 and
J3 → J2 → G2 → G3.

Then there are transformations ti for Ji → Gi (where i ∈ {0, 1, 2}) with
componentwise mono transformation morphisms θj : t0 → tj, θ′j : tj → t3 (where
j ∈ {1, 2}) forming a pushout in the category of transformations (see the diagram
in Theorem 10). These transformation morphisms can be obtained via projections
as described in Proposition 13.

Observe that, if in the cube in Theorem 15 above we have the special (but very
typical) case where J0 = J1 = J2 = J3 = G0 (and all arrows between these
objects are the identities), the sufficient extensibility condition of Lemma 12 is
satisfied: in the terminology of this lemma X13 = G2 and X23 = G1.

In a sense, composition and decomposition are inverse to each other up to
isomorphism. The fact that composition is the inverse of decomposition has been
shown directly in Theorem 15. On the other hand, since projections are unique
(by Proposition 13), there is—up to isomorphism—only one way to decompose
a transformation according to a proper decomposition of the rewritten object
(see Definition 14). Hence, also decomposition is the inverse of composition.

Next we discuss the special case where a DPO rewriting step with trivial
borrowed context is decomposed, leading to transformations with possibly non-
empty borrowed contexts. Assume that G = G3 can be split into G0, G1, G2 as
in the pushout diagram below on the left and consider a DPO rewriting step for
G3. Then this step can be extended to a transformation with borrowed context
for G3 (with interface G0) with a total match of the left-hand side.

G0

��

���
��

��
��

�

G1

���
��

��
��

� PO G2

��

G3

L

��

�� L

��

I�� ��

��

R

��

G �� G

PO

C

PO
�� �� H

PO

G0

��

�� G0

PO

��

G′0

PB

��

��

Composition and Decomposition of DPO Transformations 165

A

U

OO

U

Sell

U

O O

U

Buy

A

U

A

U

O

A

UU

O

Sell Buy

U

A

U

O

Buy

U

A

O

U

Buy

A

A

Sell

U

O

A

O

U

A

U

O

O

U

A

Fig. 7. A transformation with borrowed context t2 over J2 → G2, using rule (Buy)

A

G0

A

U

O

Buy

G2

Sell

A

U

O O

G1

O

Sell Buy

U

A

U

O

G3

Fig. 8. Decomposition of transformations

In this case we can set J0 = J1 = J2 = J3 = G0 and obtain a proper decompo-
sition of J3 → G3 as in Definition 14 (the top square is trivially pullback and
the bottom square is a pushout by assumption). Then, decomposing transfor-
mation t3 as described in Proposition 15 leads to three transformations t0, t1, t2,
with—in general—partial matches D0, D1, D2.

166 P. Baldan, H. Ehrig, and B. König

Example. Consider the graph with interface J3 → G3 in Fig. 4. Note that there
is an obvious factorisation J3 → J1 → G1 → G3 of J3 → G3. Furthermore,
the transformation t3 in Fig. 5, which uses rule (Buy), is extensible along such
factorisation. In fact, the sufficient condition given by Lemma 12 is satisfied.

Therefore we can project the transformation t3 in Fig. 5 along such factori-
sation thus obtaining the transformation t1 over J1 → G1 depicted in Fig. 3.
As already noted, as an effect of projecting the transformation over a smaller
graph, the borrowed context becomes non-trivial (larger than the interface): the
rule can be applied assuming that the context provides a user which buys the
object sold by the user in G1.

More generally, consider the diagram in Fig. 8, where morphisms are the
inclusions suggested by the shapes of the graphs. This is a pushout in Graph.
Moreover, we can imagine all graphs Gi to have an interface given by Ji = G0.
Then the conditions of Proposition 15 are satisfied: we can project the transfor-
mation t3 in Fig. 5 to transformations over Ji → Gi (i ∈ {0, 1, 2}). The projec-
tion over J1 → G1 leads to the transformation t1 in Fig. 3, while the projection
over J2 → G2 leads to the transformation t2 in Fig. 7. Both t1 and t2 project
to the same derivation t0 over J0 → G0. The pushout of the obtained transfor-
mations can be computed, according to Theorem 10 to obtain t3 again.

6 Conclusion and Comparison to Related Work

In this paper, focusing on a setting in which a system is built out of smaller
components, we discussed how derivations with borrowed context over the global
state can be decomposed into transformations over the local state of each single
component using the same rule. Vice versa, we showed that, under suitable
consistency conditions, local transformations can be composed to give rise to a
transformation over the global system state.

We remark that the form of composition described in this paper is quite
different from amalgamation as described for instance in [5]. There two transfor-
mations for different rules are amalgamated producing a transformation for the
amalgamated rule. In our case, instead, the rule is fixed and the transformations
differ with respect to the context that has to be borrowed from the environment.
By composing objects and hence transformations we obtain additional structure
which might reduce the borrowed context.

The composition and decomposition results can be seen as a basic step towards
the possibility of defining transformations only for “atomic objects” and assem-
ble all possible transformations out of these atomic transformations, and thus,
towards an inductive definition, in sos style, of the transition system of a graph
transformation system (more generally an adhesive rewriting system). In addition
to the composition result we will also need the possibility to compose an evolv-
ing object with a passive context and to have rules for handling restrictions of
the interface. This would correspond to the communication, parallel composition
and restriction rules for process calculi. Additionally, composition would be even
more natural and closer to process calculi if performed over so-called rewriting

Composition and Decomposition of DPO Transformations 167

steps, hiding the internal details, rather than on full transformations. That is—
in the terminology of Definition 4—we would like to observe only the object with
interface J → G, the resulting object K → H and the label or borrowed con-
text J → F ← K, but not the objects D, G+, C which are only auxiliary or
intermediate objects. We plan to extend our approach to this setting.

References

1. P. Baldan, H. Ehrig, and B. König. Composition and decomposition of DPO
transformations with borrowed contexts. Technical report, Universität Duisburg-
Essen, 2006.

2. H. P. Barendregt. The Lambda Calculus—its Syntax and Semantics, volume 103
of Studies in Logic and Foundations of Mathematics. North-Holland, 1984.

3. F. Bonchi, F. Gadducci, and B. König. Process bisimulation via a graphical en-
coding. In Proc. of ICGT ’06. Springer, 2006. LNCS, to appear.

4. L. Cardelli and A. D. Gordon. Mobile ambients. In Proc. of FoSSaCS ’98, pages
140–155. Springer-Verlag, 1998. LNCS 1378.

5. A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, and M. Löwe. Algebraic
approaches to graph transformation—part I: Basic concepts and double pushout
approach. In G. Rozenberg, editor, Handbook of Graph Grammars and Computing
by Graph Transformation, Vol. 1: Foundations, chapter 3. World Scientific, 1997.

6. H. Ehrig and B. König. Deriving bisimulation congruences in the DPO approach to
graph rewriting. In Proc. of FOSSACS ’04, pages 151–166. Springer, 2004. LNCS
2987.

7. H. Ehrig, H.-J. Kreowski, U. Montanari, and G. Rozenberg, editors. Handbook of
Graph Grammars and Computing by Graph Transformation, Vol.3: Concurrency,
Parallellism, and Distribution. World Scientific, 1999.

8. O. H. Jensen and R. Milner. Bigraphs and transitions. In Proc. of POPL 2003,
pages 38–49. ACM, 2003.

9. S. Lack and P. Sobociński. Adhesive and quasiadhesive categories. RAIRO –
Theoretical Informatics and Applications, 39(3), 2005.

10. J. J. Leifer and R. Milner. Deriving bisimulation congruences for reactive systems.
In Proc. of CONCUR 2000, 2000. LNCS 1877.

11. R. Milner. The polyadic π-calculus: a tutorial. In Logic and Algebra of Specification.
Springer-Verlag, Heidelberg, 1993.

12. V. Sassone and P. Sobociński. Reactive systems over cospans. In Proc. of LICS
’05, pages 311–320. IEEE, 2005.

	Introduction
	DPO Transformation with Borrowed Contexts
	Transformation Morphisms
	Composition of Transformations
	Decomposition of Transformations
	Projecting Transformations
	Decomposing Transformations

	Conclusion and Comparison to Related Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

