GT-VMT 2006

Maintaining coherence between models with
distributed rules: from theory to Eclipse

C

Paolo Bottoni® Francesco Parisi-Presicce ¢ Simone Pulcini®

Gabriele Taentzer P

& Unigversita di Roma “La Sapienza - Italy
b Technische Universitit Berlin - Germany

¢ George Mason University - USA

Abstract

Integrated Development Environments supporting software and model evolution
have to deal with the problem of maintaining coherence between code and model
despite changes which may occur on both sides. Rather than going through model
reingeneering or code regeneration, it would be better to build a full correspondence
between the starting models and keep it updated in an incremental way after each
evolutionary step. In a series of previous papers, it was shown how distributed
graph rewriting could support such updates. Here, we show how to construct a
distributed graph from individual models, through the use of synchronized rules.
In particular, we discuss the case of Java code and UML models, and propose an
Eclipse implementation of the approach.

Key words: Distributed graphs, model morphism, software
evolution.

1 Introduction

Integrated Development Environments (IDEs) are increasingly devoted to en-
able their users to move through the different processes of design and im-
plementation, providing tools to keep some form of coherence between the
design models and the produced code. In particular, several tools support
refactoring, usually providing the possibility of combining simple refactorings

* Work supported in part by the European Community’s Human Potential Programme
under contract HPRN-CT-2002-00275, SegraVis and by the European Network of Excellence
Interop

This paper is electronically published in

Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs

BorTONI

into complex ones, managing aspects such as assessment of preconditions and
modifications of model components, typically class diagrams.

In previous papers we have made the case for keeping into account other
views of the design model, such as sequence and state diagrams, and have
proposed the use of distributed graph rewriting [3,4] for an integrated man-
agement of modifications in the code and in the global UML model underlying
a software artifact. The approach is based on identifying mappings between
software elements, represented by an Abstract Syntax Tree (AST) derivable
from the code, and model elements, expressed in UML terms. Both AST and
UML models are seen as instances of their respective metamodels, interpreted
as graph types. In this context, the construction of the correspondence be-
tween them amounts to that of their (typed) interface graph. In such a graph,
each node corresponds to some abstract concept common to the two models.
At the instance level, morphisms between nodes in the interface graph and
the corresponding nodes are constructed.

In this paper, we show how to construct the interface graph and the as-
sociated morphisms, based on the assumption that the two models (AST and
UML) already exist and are coherent in the sense that elements with the same
(qualified) name refer to the same concept. The approach can be easily ex-
tended to the case of two incoherent models, so that reasons for failure can be
identified. On the other hand, by assuming one of the two models as correct,
repair actions can performed on the other one.

In particular, we express the sequences of actions performing the mor-
phism construction as transformation units [11,2], which are specializations of
a general transformation pattern and illustrate how such specializations can
be generated. We also present guidelines for implementing the rules using the
Eclipse API system [6]. The discussion is illustrated by presenting transfor-
mation units for the construction of mappings between some particular types.

The rest of the paper develops as follows. After a brief recall of Theory in
Section 2, we present the general pattern of transformation some of its specific
instantiations in Section 3. Section 4 presents the Eclipse implementation and
conclusions are given in Section 5.

2 Theory and models overview

For correspondence construction, we rely on the DPO approach [5], and in
particular, to the theory of distributed graphs and graph transformation [13],
allowing the concurrent construction of the interface graph, of the morphisms
between it and individual graphs, and of morphisms between corresponding
nodes in the different graphs, so that diagrams such as the one of Figure 1
commute. Figure 1 also illustrates the convention adopted in the rest of the
paper: corresponding nodes are identified by the same name, primed in the
code graph and doubly primed in the UML graph. This allows us to deal with
the existence of morphisms and of a node with corresponding name in the

2

BorTONI

interface graph implicitly.

Fig. 1. The general form of morphisms.

In the examples of the paper, we show pairs of local rules working in a
synchronized manner. Rules are defined on the metamodels specifying the
type graphs for the two models.

A rule p : L L 15 Ris given by two morphisms [and r. Given an

object G and a rule p : L L1 R, a match of p to G is a morphism
m: L — G. A direct derivation d from G to H by p and match m, d : G =,
H, is given by a double pushout (see Figure 2). Rules may have application
conditions, both positive and negative (NACs), as well as attribute evaluation
actions associated. In Figure 2, the NAC is an object N and an injective
total morphism n; a rule is applicable only if match m cannot be extended to
m’ such that n om’ = m. Several objects N;, and the associated morphisms
n;, can be associated with one L, indicating that no extension of m should
exist for any i. The derived rule from a direct derivation d : G =,,, H is

pd:GﬁDlH.
N<“—[<'—]1-—">R

. mi (1) l (2) \L

G<y—D—+H

Fig. 2. Double Pushout rule with a negative application condition.

A transformation unit controls rule application through control conditions
specified by expressions over a set Names of rule names. The class C of control
expressions is recursively defined by

(i) Names CC,

(ii) forall n end € C, if n € Names,
(111) Cl; Cy e C, if Cl, Cy e C,
(iv) asLongAsPossible C' end € C, if C € C,

(v) if Bthen C end €C, if C € C,
where B is a logical expression constructed using the logical operators OR
and AND on atoms of the form applicable(r), with r a named rule and
applicable a predicate which evaluates to true only if r is applicable in the
current graph. If an expression consists of a name r € Names only, the rule
with name r is applied to the current host graph. The operator in (ii) applies

the rule with name n at all different matches in parallel to the same host graph.
The operator ; is left associative and applies first the expression '} and then

3

BorTONI

the expression Cy. The operator in (iv) sequentially applies expression C' as
long as its application is possible. The operator in (v) prescribes the execution
of the expression C' conditioned on the success of B (typically this will contain
names of rules to be applied first). Transformation units have a transactional
interpretation, i.e. they either succeed or fail completely.

In this paper we exploit the metamodels resulting from the definition of
the abstract syntax of the Java language, as per the JavaML DTD [1], and
the UML Metamodel [9].

3 Correspondence Construction

In this section, we illustrate the approach to the construction of the corre-
spondence, by showing a general template for the used transformation units
and illustrating it by an example. The complete construction is described in
[12]. While the identification of corresponding elements is based on type and
name identities, the main problem lies in the identification of the context, i.e.
the namespace, in which to check identities. A general search template has
therefore been specifically devised to address this problem.

In general, we consider the Java AST as the basis for the construction
process, so as to exploit the facilities for tree visit provided by Eclipse. For the
sake of simplicity, a slightly abstract form of Java and UML model elements
are used in the rules. Where necessary, adaptations of the rules to the real
metamodels are discussed.

Templates for Correspondence Construction

In several situations, establishing a correspondence between elements requires
recognizing the correspondence of the embedding contexts. In particular, we
rely on the notion of parenthood as provided by the tree model. As the number
of sibling elements is arbitrary, we adopt transformation units to force an
exhaustive search of such elements.

In particular, we observe that a common structure exists for transformation
units to build correspondences between elements in a well defined pattern. A
correspondence can be established between elements so that the element p’ in
the AST is the root of some subtree, and children of p’ correspond to elements
which are linked according to some suitable association with p”.

We can therefore define a template for transformation units to be properly
instantiated with a suitable set of rules to resolve the correspondence for a
specific pattern. The transformation unit is constructed from 4 basic steps.

Step 1 : Identify the corresponding parent elements to ensure the presence
of a context for the rest of the transformation unit.

Step 2 : The construction of the correspondence for children of a mapped
element requires a mapping for each corresponding pair of children. Hence,
the rule establishing the correspondence has to be applied in the context of

4

BorTONI

the parent and to each different pair of corresponding children.
The template for transformation units is expressed as

CorrespondenceConstruction()
forall mapParent();
forall mapChild() end

This template can be compared to amalgamated graph transformation as
presented in [13].

Sample Correspondence Construction

Now we illustrate the specialization of the template presented above to study
the case in which the context is a Java class declaration; as stated in JavaML
DTD, together with zero or more field declarations in its scope. The con-
struction of the mapping between a Java class and a UML Class is real-
ized by the rule mapClass() in Figure 3, an example of instantiation of
mapParent (), while the construction of mappings between Java fields and
UML Attributes requires the instantiations of mapChild() in the form of
mapField2Attribute(), as shown in Figures 4.

1c :class 2,c" : Class
name = ¢ name = ¢
NAC NAC

1:class 1c :class
name = ¢ name = ¢
visibility = x; visibility = x,

. —_—)

static = w9 static = @9
final = 3 final = x3
abstract = x4 abstract = x4

2: Class 2,c"" : Class
name = ¢ name = ¢
visibility =y, visibility = y1

_—-—— .

isAbstract = ys isAbstract = ys
isLeaf = yy isLeaf =y,

1 € {public, protected, private} U {nil}
9 € {true, false} U {nil}
a3 € {true, false} U {nil}
x4 € {true, false} U {nil}

y =z ¢ {nil}?x : package
y3 = x3 ¢ {nil, false}?true : false
ys = x4 ¢ {nil, false}?true : false

Fig. 3. Rule mapClass().

The rules in Figure 3 show several application conditions on the class
properties:

BorTONI

e If visibility in the AST is undefined, then the UML side assumes default,
package, visibility. Otherwise, visibility is the same for both elements;

e The UML counterparts of the abstract and final JavaML attributes are
isAbstract and isLeaf respectively;

* No counterpart for the JavaML static attribute is available from the UML
metamodel for outer classes.

In the rules of Figure 4 specific issues of concern are ' :

* targetScope is specified with the instance value according to the meta-
model semantic. By doing so, Attribute is not used to store meta-information
but behaves as a normal model attribute;

e changeability represents the UML 1.5 way to specify a Java final at-
tribute modifier.

The transformation unit which establishes the correspondence between
classes, fields, and attributes results from the specialization of the template
given above and is expressed as follows:

Field2Attribute()

forall mapClass());
forall mapField2Attribute() end

4 Correspondence Construction between Java and UML
in Eclipse

This section discusses the implementation of template instances in an Eclipse

plugin, com.spulci.C2MCM (Code to Model Consistency Maintainer).

C2MCM is based on the Eclipse AST framework, residing in the org.eclipse. jdt.core.dom
package tree, and on the UML2 Eclipse tool project in package org.eclipse.uml?2

[9]. C2MCM manipulates structures generated by these APIs to search for se-

mantic equivalent nodes inside them. C2MCM also creates a representation

of the interface graph within an XML file. A brief introduction to the Eclipse

platform, AST framework and the UML2 plugin is given as needed.

4.1 The Eclipse Platform

Eclipse is a platform centric IDE which offers tools to develop and maintain
software taking into account various project aspects. The whole Eclipse ar-
chitecture is extensible and open. Indeed, tools belonging to the platform
are structured as plug-ins. Each plug-in can define one or more extension-
points, places where another plug-in can attach itself to provide new capa-
bilities and offer an interface to the existing ones.

L The field mapping rules shown in this article are a simplified version; some attributes are
omitted and a more complex pattern on the UML side is not shown in order to keep the
presentation of the Eclipse implementation simpler.

6

BorTONI

2,f - field 3,87 ¢ Attribute
name = d _
name = d
NAC NAC
1,¢’ : class 1,¢": class
name = ¢ name = ¢
—_—
\ Y
2 : field 2,7 field
name = d name = d
visibility = x, visibility = xy
final = x5 final =
static = x3 static = xg
3 : Attribute 3,17 Attribute
name = d [— name = d
visibility = y; visibility =y,
changeability =y, changeability =y,
targetScope = instance targetScope = instance
feature feature
4,¢” : Class 4,¢" : Class
name = ¢ name = ¢

21 € {public, protected, private} U {nil}
2y € {true, false} U {nil}
2y & { false,nil}?y, = frozen : y, = changeable

x1 € {nil}?y; = package : y; = 1

Fig. 4. Rule mapField2Attribute().

4.2 Java Abstract Syntax and UMLZ2 in Eclipse

We rely here on the definitions of the Java Abstract Syntax and of UML2 as
provided by the Eclipse core, in which the instances of these metamodels are
stored as separate files without reference between them. The basic assumption
is that matching names refer to corresponding elements.

Classes from org.eclipse.jdt.core.dom and org.eclipse.uml?2 are im-
ported to manage the Java AST and UML2 models. The AST of some Java
file is taken as input, allowing the search for semantically equivalent nodes in
the UML2 model during the AST visit.

Correspondence construction in C2MCM is started by a call to the method
startEngine(ICompilationUnit icu), where the actual value for icu is an in-
stance implementing the ICompilationUnit interface, specified by the user

7

BorTONI

through the plug-in GUI. This is the root of an AST built from a . java file.
Besides loading the AST, this method evaluates the URI of the UML2 model
on which to construct the mapping and passes it to the loadModel(URI uri)
method which actually loads it.

The realization of the approach takes advantage of the implementation of
the Visitor pattern supported by Eclipse which can be advantageously used
to implement the template as developed in the previous section.

Actually, visiting the tree according to the node types allows the inter-
leaving of rules from different transformation units. However, this does not
alter the final result with respect to the normal execution of these transitions.
Indeed, each transformation unit resulting from the instantiation of the tem-
plate produces, as its net effect, the construction of a node in the interface
graph and of the mappings to UML2 and AST models, without eliminating
any existing node or edge. As a result, no derived rule for each such instanti-
ation may disrupt the positive context for the application of another (i.e. to
consume something in the left-hand side of a rule). Hence, building a cor-
respondence between some elements cannot prevent the construction of other
correspondences between elements in their context. We can thus conclude
that any interleaving of rules from different transformation units produces
the same result, provided that any partial order between rules in the same
transformation unit is respected.

loadModel() returns a Package model class instance with the same name
as the Package Java class. To avoid namespace conflicts, we adopt the con-
vention of always using the fully qualified name org.eclipse.uml2.Package.
The model is loaded through a call to an EMF method, as the UML2 plug-in
is an extension of the Eclipse Modelling Framework.

4.3 Code Skeleton

The first step to the Eclipse implementation of a transformation unit is to
identify the nodes that should be visited in the AST. The visit is started on the
nodes for which a transformation unit is defined. This results in the mappings
prescribed by instantiations of mapChild, and possibly in those prescribed in
the instantiations of mapParent, which are optionally applied. According to
the AST Eclipse API, it is necessary to override the appropriate visit() method
for each node type that has to be visited by the framework? The steps below
analyze the template core notions and show the skeleton followed to build the
Eclipse implementation:

Context Identification and Applicability: The identification of the con-
text (schematised in the template as parent) for the node under examination
is done by navigating the tree starting from the current node and looking for

2 The abstract syntax node type is passed as parameter to visit() Hence, a visit(A 1)
method codes a visit for a node x of Java type A. To grant children visit for the current
node, the value true must be returned by each implementation.

8

BorTONI

the pattern described in the mapParent () rule, also checking the applica-
bility conditions. In most cases, this is simply done by navigating upwards
until a node of a specific type is found. As node visits proceed from the root
downwards, a mapping for the found parent may have been constructed in
the visit of some other type with the same context (e.g. fields and methods
in a class).

Node Mapping: The visiting policy adopted in the Java AST Framework
provides an implementation of the forall mapChild() end construct, in-
voking a visit each time it finds a node of a certain type. This assures that
a node of a certain type is visited at most once for each visit. Actually, it
proceeds in a sequence in which the leftmost child of a node is always the
first to be visited, and the subsequent siblings are visited in the order of
declaration.

Name checking: As the mapping relies on name identification, the method
getFullyQualifiedName () is used on AST nodes. On the UML side, the
obtained name is used to construct an argument for findNamedElements(),
which returns a Collection of nodes (typically at most two elements, if a
variable and a method in the same class have the same name). The node
of the correct kind is then extracted from the collection.

Application Conditions: An application condition in a rule is directly coded
as a Boolean clause which performs checks on the attribute values specified
in the rule.

Mapping construction: If the check is passed, the mapping is represented
by adding an XML node to three different documents, one representing the
Interface Graph, one for the Java to UML correspondences, the last for the
reverse UML to Java mappings.

4.4 AstDecorator class: AST wisit to find equivalent nodes

The bulk of the work is realized within the AstDecorator class in Listing 1, by
which AST nodes are visited to find semantic equivalences. The constructor
initializes a reference to the UML2 model passed as argument and stores the
UML2 model name, to be used to construct fully qualified UML2 names. For
each AST node type a version of the wvisit() method is defined. The actual
node parameter is passed at runtime by the framework while the returned
boolean value is set to true to allow visits to children nodes. In particular,
for each node of the AST, a reference to the corresponding element in the
UML model is set, and vice versa. Moreover, a node of the interface graph
is constructed with references to the nodes put in correspondence. This also
provides the correct context for the visit to the children.

In particular, we show the code for a TypeDeclaration node in the Java
Language Specification ® in Figure 3, and for a VariableDeclarationFragment,

3 We follow here JLS3, i.e. the version described in the third edition of [10]
9

BorTONI

a JLS grammar element containing JavaML Field node items, together with
their parent FieldDeclaration(see Figure 4).

A TypeDeclaration can be specialized as either an Interface or a Class
Declaration; we consider here only the latter. The corresponding Class el-
ement in the UML2 model is found using the Eclipse findNamedElement()
method. Inside the if clause body, the concrete coding of the mapping is
performed. (See Listing 2.)

Field declarations require some additional work; a field identifier can be
found inside a VariableDeclarationFragment, child of a FieldDeclara-
tion. As our matching technique is based on name searching, it is better to
define a visit on the former instead of the later. As explained before, a check
is needed to find the context of that node. This time the context will be a
class declaration and is searched by the method in Listing 3.

The visit implementation is shown in listing 4. Its structure is quite similar
to the TypeDeclaration visit, exploiting the Java context to find an UML
Class that contains a semantic equivalent field.

4.5 XML Document for the Interface Graph

Correspondences built by C2MCM are maintained both as new elements of
the XML files for AST and UML2 and in a specific XML Document represent-
ing the Interface Graph. Nodes in this document have the following structure:

¢ The name of the node is the name of the rule which built it.

e The attribute JAVANAME contains the fully qualified name of the Java
Ast element mapped by the rule.

e The attribute UMLNAME contains the fully qualified name of the corre-
sponding element in the loaded UML2 model

As an example, the following code snippet constructs the node for the
mapClass () rule mapping, using the DOM4J open source API [7]:

Element igChild = igRoot.addElement("Class2Class"); //Node name

igChild.addAttribute ("JAVANAME", packageName+"."+
className.getFullyQualifiedName()); //Java name

igChild.addAttribute ("UMLNAME" ,md.getQualifiedName ()+":: "+
className.getIdentifier()) //UML name

5 Conclusion

In conclusion, we have shown how synchronized rules defined on the meta levels
of Java abstract syntax and UML2 can be used to establish correspondences
between instance models. This can be used for several purposes, including
navigation from code to model and viceversa, and is particularly suited to

10

BorTONI

allow consistency management between refactored code and model, without
having to recur to reverse engineering or recompilation.

References

[1] Badros, G., Javaml: A markup language for java source code, 9th Int. World
Wide Web Conference (2000).
URL http://www.badros.com/greg/JavaML/

[2] Bottoni, P., M. Koch, F. Parisi Presicce and G. Taentzer, Automatic consistency
checking and visualization of OCL constraints, in: UML 2000 - The Unified
Modeling Language (2000), pp. 294-308.

[3] Bottoni, P., F. Parisi Presicce and G.Taentzer, Specifying Integrated
Refactoring with Distributed Graph Transformation, in: Applications of Graph
Transformations with Industrial Relevance, LNCS 3062 (2004), pp. 220-235.

[4] Bottoni, P., F. Parisi Presicce and G. Taentzer, Specifying Coherent Refactoring
of Software Artefacts with Distributed Graph Transformations, in: P. v. Bommel,
editor, Transformation of Knowledge, Information, and Data: Theory and
Applications (2004), pp. 95-125.

URL http://tfs.cs.tu-berlin.de/7Egabi/gBPT04.pdf

[5] Corradini, A., U. Montanari, F. Rossi, H. Ehrig, R. Heckel and M. Lowe,
Algebraic Approaches to Graph Transformation - Part I: Basic Concepts and
Double Pushout Approach, , I, World Scientific, 1997 pp. 163—246.

[6] D’Anjou, J., S. Fairbrother, D. Kehn, J. Kellerman and P. McCarthy, “The
Java Developer’s Guide to Eclipse 2nd Edition,” Addison Wesley, 2004.

[7] Dom4J Group, Dom4J API Project, http://www.dom4j.org/.

[8] Eclipse Organisation, Eclipse 3.1.x Official Documentation,
http://help.eclipse.org/help31/index. jsp.

[9] Eclipse Organisation, UMLZ2 project, http://www.eclipse.org/uml2/.

[10] Gosling, J., B. Joy, G. Steele and G. Bracha, “JavaT™Language Specification,
Third Edition,” The Java™series, Addison Wesley, 2005, 3rd edition.

[11] Kreowski, H.-J. and S. Kuske, Graph transformation units with interleaving
semantics, Formal Aspects of Computing 11 (1999), pp. 690-723.

[12] Pulcini, S., “Evoluzione concorrente di Modelli Basata su Grafi Distribuiti,”
Master’s thesis, University ”La Sapienza” of Rome, Italy (2005).

[13] Taentzer, G., “Parallel and Distributed Graph Transformation: Formal

Description and Application to Communication-Based Systems,” Ph.D. thesis,
TU Berlin (1996), Shaker Verlag.

11

BorTONI

A Listings

public class AstDecorator extends ASTVisitor {
public Model md; public String modelName;; //UML2 Model and Model name
public AstDecorator (Model md){super(); this.md = md; this.modelName = md.getName ();}

public boolean visit(TypeDeclaration node){ // see Listing 2
return true;

public boolean visit (VariableDeclarationFragment node){ // see Listing 4
return true;

Listing 1: AstDecorator class

public boolean visit (TypeDeclaration node){
//check for class declaration
if (!node.isInterface()){ SimpleName className = node.getName (); //get node simple name
Collection ¢ = UML2Util.findNamedElements ((Resource) md.eResource (),
modelName+” :: "4+packageName+” :: "4className . getFullyQualifiedName ());
Iterator it = c.iterator (); //iterate on found model elements if any
while (it .hasNext ()){
if (it instanceof org.eclipse.uml2. Class){
org.eclipse.uml2.Class ¢l = (org.eclipse.uml2.Class)it.next(); //cast to Class
VisibilityKind visibilityKind = cl.getVisibility (); //get UML visibility
int modifiers = node.getModifiers (); //get AST node modifiers bit mask
Modifier . ModifierKeyword keyword = Modifier.ModifierKeyword.fromFlagValue(modifiers
//boolean clause for application conditions
boolean test = (cl.isAbstract () & Modifier.isAbstract(modifiers)) |
(cl.isLeaf() & Modifier.isFinal (modifiers)) |
(keyword. toString ().contains (visibilityKind .getName ()));
if (test){ // code for mapping construction}
}
}
}
}

Listing 2: visit(TypeDeclaration node) body

private TypeDeclaration getClassDeclaration (ASTNode node){
ASTNode tempNode = node.getParent ();
while (! (tempNode instanceof TypeDeclaration)){ tempNode = tempNode.getParent (); }
return (TypeDeclaration) tempNode;

Listing 3: getClassDeclaration(ASTNode node) body

public boolean visit (VariableDeclarationFragment node){
TypeDeclaration parent = getClassDeclaration(node); //get the ClassDeclaration
if (!parent.isInterface()) { //check for parent node to be a class
String parentName = parent.getName (). getFullyQualifiedName ();
//search for the class inside the UML model
org.eclipse.uml2. Classifier classifier;
Collection ¢ = UML2Util. findNamedElements (md. eResource (),

context

md. getName()+” :: "+packageName+” : : "4parentName) ;
Iterator it = c.iterator ();
while (it .hasNext ()){

classifier = (org.eclipse.uml2. Classifier)it.next ();

//find UML Attribute with same Java Field name

Property attribute = classifier.getAttribute (node.getName (). getFullyQualifiedName ());
//find fragment modifiers

FieldDeclaration parentNode = (FieldDeclaration) node.getParent ();
int modifiers = parentNode.getModifiers ();

Modifier . ModifierKeyword keyword = Modifier.ModifierKeyword.fromFlagValue(modifiers);

if (attribute != null){
VisibilityKind attributeVisibility = attribute.getVisibility ();
//boolean clause for the application conditions
boolean test = (keyword.toString ().contains(attributeVisibility .getName()) |

(attribute.isReadOnly () & Modifier.isFinal(modifiers)) |
(attribute.isLeaf () & Modifier.isStatic(modifiers)));
if (test){ // code for mapping construction

}

return true;

}

Listing 4: visit(VariableDeclarationFragment node) body

12

