
Volume 1 Abstract Volume
Volume 2 Full Papers CD

:
:

ISBN 3-901608-30-3

5th Vienna Symposium on Mathematical
Modelling

5 MATHMOD
th

IENNA

ARGESIM Report no. 30

Proceedings

February 8-10, 2006
Vienna University of Technology,
Austria

A
R

G
E
S

I
M

R
e
p
o
r
t

ARGESIM Report no. 30

I. Troch, F. Breitenecker (Eds).

Proceedings
5th MATHMOD Vienna

Volume 1: Abstract Volume
Volume 2: Full Papers CD

5th Vienna Symposium on Mathematical
Modelling

February 8-10, 2006
Vienna University of Technology, Austria

ARGESIM - Verlag, Vienna, 2006
ISBN 3-901608-30-3

ARGESIM Reports

Published by ARGESIM and ASIM, Arbeitsgemeinschaft Simulation,
Fachausschuss GI im Bereich ITTN – Informationstechnik und Technische Nutzung der
Informatik

Series Editor:

Felix Breitenecker (ARGESIM / ASIM)
Div. Mathematical Modelling and Simulation, Vienna University of Technology
Wiedner Hauptstrasse 8 - 10, 1040 Vienna, Austria
Tel: +43-1-58801-10115, Fax: +43-1-58801-10199
Email: Felix.Breitenecker@tuwien.ac.at

ARGESIM Report no. 30

Titel: Proceedings 5th MATHMOD Vienna –

5th Vienna Symposium on Mathematical Modelling
 Volume 1: Abstract Volume
 Volume 2: Full Papers CD

Editors: Inge Troch, Felix Breitenecker

Div. Mathematical Modelling and Simulation,
Vienna University of Technology
Wiedner Hauptstrasse 8 - 10, 1040 Vienna, Austria
Email: Inge.Troch@tuwien.ac.at

ISBN 3-901608-30-3

Das Werk ist urheberrechtlich geschützt. Die dadurch begründeten Rechte, insbesondere die der
Übersetzung, des Nachdrucks, der Entnahme von Abbildungen, der Funksendung, der Wiedergabe auf
photomechanischem oder ähnlichem Weg und der Speicherung in Datenverarbeitungsanlagen bleiben,
auch bei nur auszugsweiser Verwertung, vorbehalten.

© by ARGESIM / ASIM, Wien, 2006

ARGE Simualtion News (ARGESIM)
c/o F. Breitenecker, Div. Mathematical Modelling and Simulation, Vienna Univ. of Technology
Wiedner Hauptstrasse 8-10, A-1040 Vienna, Austria
Tel.: +43-1-58801-10115, Fax: +43-1-58801-42098
Email: info@argesim.org; WWW: http://www.argesim.org

MODELING VISUAL LANGUAGES BASED ON GRAPH
TRANSFORMATION CONCEPTS AND TOOLS

Claudia Ermel, Hartmut Ehrig, Karsten Ehrig
Institut für Softwaretechnik und Theoretische Informatik

Technische Universität Berlin, Germany
email:{lieske,ehrig,karstene}@cs.tu-berlin.de

Visual languages (VLs) and visual environments are used in an increasing frequency for software
and system development. Prominent examples are the Unified Modeling Language (UML) for software
modeling, Petri nets for the design of concurrent system behavior, and a variety of domain-specific
diagrammatic notations for various purposes. Although visual languages are used wide-spread, a standard
formalism for VL definition such as the Extended Backus-Naur-form (EBNF) for textual languages, is
still missing. Nowadays two main approaches to VL definition can be distinguished: grammar-based
approaches or meta-modeling. Using graph grammars, multi-dimensional representations are described
by graphs and allows not only a visual notation of the concrete syntax, but also a visualization of
the abstract syntax. While the concrete syntax contains the concrete layout of a visual notation, the
abstract syntax abstracts from the layout and provides a condense representation to be used for further
processing. Similarly to the EBNF, rules define the language grammar, but this time, graph rules are
used to manipulate the graph representation of a language element.

For the application of graph transformation techniques to VL modeling, typed attributed graph trans-
formation systems have proven to be an adequate formalism. Roughly spoken a typed attributed graph
transformation rule p = (L → R) consists of a pair of typed attributed graphs L and R (its left-hand
and right-hand sides). A direct graph transformation written G

p,o
=⇒ H, means that the graph G is

transformed into the graph H by applying rule p at the occurrence o of the left-hand side of p in G.

A VL is modeled basically by an attributed type graph which
captures the definition of the underlying visual alphabet, i.e.
the symbols and relations which are available. Sentences or
diagrams of the VL are given by attributed graphs typed over
the type graph. All concepts and constructions in this paper
are illustrated by modeling the VL of activity diagrams, which
are used to describe the control flow on activities. A sample
activity diagram is depicted to the right.
The abstract alphabet of the sample VL defines two symbol
types, activity nodes and next relations which connect activi-
ties. Activities can be of different kinds, i.e. simple activities
(inscribed by a name), start and end nodes as well as decisions.

The abstract alphabet is extended by defining the concrete layout of activity diagrams. At the concrete
syntax level, the VL alphabet defines that an activity is either visualized by an ellipse or by a polygon,
depending on the activity kind.

Usually, the set of visual sentences (instances) over an alphabet should be further restricted to the
meaningful ones (the valid visual models of the VL). By defining this restriction via graph rules, the
constructive way is followed (as opposed to the declarative MOF approach where OCL constraints are
used). The application of syntax graph rules builds up abstract syntax graphs of vaild models. Together
with a suitable start graph, the set of syntax rules forms the syntax graph grammar which defines the
models belonging to a VL in a well-defined and constructive way.

Two tool environments have been developed at TU Berlin to support visual language modeling: the
graph transformation engine AGG realizes attributed graph transformation at the abstract syntax level.
The visual editor generator Tiger relies on AGG and on the graphical editor framework GEF of Eclipse,
and generates a syntax-directed graphical editor from a VL alphabet and a syntax graph grammar. The
generated Java code implements an Eclipse visual editor plug-in based on GEF which makes use of
a variety of GEF’s predefined editor functionalities. Hence, the generated editor plug-in appears in a
timely fashion and the generated editor code may easily be extended by further functionalities.

Proceedings 5th MATHMOD Vienna, February 2006 (I.Troch, F.Breitenecker, eds.)

309

MODELING VISUAL LANGUAGES BASED ON GRAPH
TRANSFORMATION CONCEPTS AND TOOLS

Claudia Ermel, Hartmut Ehrig, Karsten Ehrig
Institut für Softwaretechnik und Theoretische Informatik

Technische Universität Berlin, Germany
email:{lieske,ehrig,karstene}@cs.tu-berlin.de

Abstract. Visual languages and visual environments are increasingly important for software develop-
ment. In this paper, we focus on the syntax definition of visual languages and visual models based on
graph transformation. In analogy to textual language definition, graph grammars are used to define the
structure of visual notations as well as their construction. Two tool environments are presented which
have been developed at TU Berlin to support visual language modeling: The graph transformation
engine AGG realizes attributed graph transformation at the abstract syntax level. The visual editor
generator Tiger relies on AGG and on the graphical editor framework GEF of Eclipse, and generates
a syntax-directed graphical editor from a visual language model given as a typed attributed graph
transformation system.

1. Introduction

Although visual languages are used wide-spread, a standard formalism for visual language definition
such as the Extended Backus-Naur-form (EBNF) for textual languages, is still missing. Nowadays
two main approaches to visual language definition can be distinguished: grammar-based approaches
or meta-modeling. Using graph grammars, multi-dimensional representations are described by graphs.
This allows not only a visual notation of the concrete syntax, but also a visualization of the abstract
syntax. While the concrete syntax contains the concrete layout of a visual notation, the abstract syntax
abstracts from the layout and provides a condense representation to be used for further processing.
Similar to the EBNF, rules define the language grammar, but this time, graph rules are used to
manipulate the graph representation of a language element. Meta-modeling is also graph-based, but
uses constraints instead of a grammar to define the visual language. While visual language definition
by graph grammars can borrow a number of concepts from classical textual language definition, this is
not true for meta-modeling.

In this paper, we present the graph grammar-approach to visual language definition. The concrete
as well as the abstract syntax of visual notations are described by typed attributed graphs. The type
information given in the type graph, captures the definition of the underlying visual alphabet, i.e. the
symbols and relations which are available. A visual language is defined by a pair of typed attributed
graph grammars, one for the concrete and one for the abstract syntax, both taking their type graph
into account. For tool support, the attributed graph transformation development environment AGG
[20] and the Tiger environment [13, 12] for generating visual editor plug-ins in Eclipse [5] have been
developed at TU Berlin.

The paper is structured as follows: Section 2 provides a short introduction into graph transforma-
tion. In Section 3, we introduce the concepts for the definition of visual languages based on graph
transformations. In Section 4, tool support is discussed, presenting the AGG tool for dealing with
visual languages at the abstract syntax level and the Tiger tool, extending the visual definition of
visual languages to the concrete syntax level. Finally, we summarize the main points of our approach
in Section 5.

2. Graph Transformation

The main idea of graph grammars and graph transformation is the rule-based modification of graphs
where each application of a graph transformation rule leads to a graph transformation step. Graph

Proceedings 5th MATHMOD Vienna, February 2006 (I.Troch, F.Breitenecker, eds.)

Tool Integration and Interchange Formats for Hybrid Systems 5 - 1

grammars can be used on the one hand to generate graph languages similar to Chomsky grammars
in formal language theory. On the other hand, graphs can be used to model the states of all kinds of
systems and graph transformation to model state changes. Meanwhile, graph transformation has been
investigated as a fundamental concept for programming, specification, concurrency, distribution, visual
modeling and model transformation [8, 9, 10].

The core of a graph transformation rule p = (LHS, RHS) is a pair of graphs (LHS, RHS), called
left-hand side and right-hand side, and an injective (partial) graph morphism r : LHS → RHS.
Applying the rule p = (LHS, RHS) means to find a match of LHS in the source graph and to replace
LHS by RHS leading to the target graph of the graph transformation.

Especially for the application of graph transformation techniques to visual language (VL) modeling,
typed attributed graph transformation systems [11, 8] have proven to be an adequate formalism. A
VL is modeled by a type graph capturing the definition of the underlying visual alphabet, i.e. the
symbols and relations which are available. Sentences or diagrams of the VL are given by graphs typed
over the type graph. In order to restrict the visual sentences to valid visual models, a syntax graph
grammar is defined, consisting of a set of language-generating graph transformation rules describing
editing operations which lead to the construction of valid visual models only.

Intuitively, the application of rule p to graph G via a match m from LHS to G deletes the image
m(LHS) from G and replaces it by a copy of the right-hand side m∗(RHS). Note that a rule may only
be applied if the so-called gluing condition is satisfied, i.e. the deletion step must not leave dangling
edges, and for two objects which are identified by the match, the rule must not preserve one of them
and delete the other one.

Definition 2.1 (Graph Transformation)
Let p = (LHS → RHS) be a typed graph transformation rule and G a typed graph with a typed graph
morphism m : LHS → G, called match.A graph transformation step
G

p,m
=⇒ H from G to a typed graph H via rule r, match m, and

comatch m∗ is shown in the diagram to the right. The rule r may be
extended by a set of negative application conditions n : LHS → NAC
(NACs) [14, 8]. The match m : LHS → G satisfies the NAC with the
injective NAC morphism n : LHS → NAC, if there does not exist
an injective graph morphism q : NAC → G with q ◦ n = m.

NAC

q
|

IIII

$$III
II

LHS
r //

m

��

noo RHS

m∗

��
G // H

A sequence G0 ⇒ G1 ⇒ ... ⇒ Gn of graph transformation steps is called transformation and denoted
as G0

∗⇒ Gn. 4

Now we define graph grammars and languages. The language of a graph grammar consists of the
graphs that can be derived from the start graph by applying the transformation rules.

Definition 2.2 (Graph Grammar and Language)
A (typed) graph grammar GG = (TG, P, S) consists of a type graph TG, a set of typed graph transfor-
mation rules P , and a typed start graph S.

The graph language L of GG is defined by L = {G | ∃ graph transformation S
∗⇒ G}.

4

Although we do not define the attribution concept for graphs formally in this paper (see [11, 8] for
a complete definition of the theory), we use node attributes in our examples, e.g. text for the names of
nodes, or integers for their positions. This allows us to perform computations on attributes in our rules
and offers a powerful modeling approach. For flexible rule application, variables for attributes can be
used, which are instantiated by concrete values in the rule match.

An example for a graph grammar with NACs and node attributes is the visual syntax grammar
for activity diagrams (see Fig. 4) which is explained in detail in Section 3. Graph objects which are
preserved by the rule occur in both LHS and RHS (indicated by equal numbers for the same objects).

3. Visual Language Definition

Two main approaches to visual language definition can be distinguished: the declarative way, called
meta-modeling and the constructive way, based on (graph) grammars.

Proceedings 5th MATHMOD Vienna, February 2006 (I.Troch, F.Breitenecker, eds.)

Tool Integration and Interchange Formats for Hybrid Systems 5 - 2

Meta-modeling in the MOF Approach. UML is defined by the Meta Object Facilities (MOF)
approach [18] which uses classes and associations to define symbols and relations of a VL. Within
the MOF approach, each UML metamodel is structured in four sections: (1) Class diagrams, (2)
explanations of the class diagram features, (3) well-formedness rules formulated in the Object Constraint
Language OCL [17], and (4) informal description of the semantics of the features as natural-language
comments.

VL Definition using Graph Grammars. While constraint-based formalisms such as MOF provide
a declarative approach to VL definition, grammars are more constructive, i.e. closer to the implemen-
tation. In [16], for example, textual grammar as well as graph grammar approaches are considered for
VL definition.

Using graph transformation, a type graph defines the visual alphabet, i.e. the symbols and sym-
bol relations of a visual language. Layout information is integrated in the type graph by special
layout-related nodes or edges connected to symbol nodes, and by constraints on the relations of visual
representations. The layout-related nodes or edges include information about the symbol’s shape (any
kind of graphical figure or line), and the constraints establish certain visual relations (like “The shape
for this symbol type is always drawn inside the shape for another symbol type.” or “The shape for this
symbol type has always a minimal size of ...”).

A type graph together with a syntax graph grammar can directly be used as high-level visual
specification mechanism for VLs [2]. The syntax grammar restricts the allowed visual sentences over the
alphabet to the meaningful ones. Syntax grammar rules define language generating syntax operations.
A syntax operation is modeled as a typed graph rule (typed over the VL type graph) being applied to
the concrete syntax graph of the current diagram. Thus, only syntactical changes are allowed which
are described by a syntax rule and which result again in a valid VL diagram. A syntax operation (i.e.
the application of a syntax rule) results in a corresponding change of the internal abstract syntax graph
of the diagram and its layout. The induced graph language determines the corresponding VL. Visual
language parsers can be immediately deduced from a syntax graph grammar. Furthermore, abstract
syntax graphs are also the starting point for model simulation, model transformation and model analysis
by graph transformation [3, 21, 15].

All concepts and constructions in this paper are illustrated by activity diagrams, the visual language
we use as running example. Activity diagrams are used to describe the control flow on activities. A
concrete activity diagram is depicted in Fig. 1.

Figure 1: Sample Activity Diagram (Graphical Notation)

3.1 Definition of a Visual Alphabet

The underlying structure of a diagram is naturally described by an abstract syntax graph (ASG). The
extension of the ASG to a graph which also considers the concrete layout, i.e. the kind of figures, lines,
and their relations, establishes the concrete syntax graph (CSG). The CSG covers all aspects of diagram
representation.

The abstract syntax graph contains symbols and links. Symbols may be attributed by additional
data. The concrete layout is described by visuals which may be any kind of figures and lines, and by

Proceedings 5th MATHMOD Vienna, February 2006 (I.Troch, F.Breitenecker, eds.)

Tool Integration and Interchange Formats for Hybrid Systems 5 - 3

layout constraints to establish certain visual relations. Additional attributes are needed to define the
properties of visual representations.

Symbols and links of a specific visual language as well as their specific visual representations are
defined in the abstract type graph TA and the concrete type graph TC , where TA is included in TC .

Definition 3.3 (Visual Alphabet)
A visual alphabet Alph = (TGC , TGA) of a visual language consists of two type graphs TGC , TGA ∈
GraphsTG where TGC represents the concrete syntax of the visual language and TGA represents the
abstract syntax. 4

Example 3.4 (Visual Alphabet for Activity Diagrams)
The visual alphabet for activity diagrams contains two kinds of symbols, activities and next-relations
which begin and end at activities. The activities can be of different kinds, i.e. simple activities, start
and end nodes as well as decision or merge nodes. Simple activities are usually described by some text.
Moreover, next-relations may have inscriptions which are used to formulate conditions. This abstract
syntax part of the visual alphabet described by type graph TA, is depicted by all types without filling
and their adjacent edge types in Fig. 2. All node types drawn as white rectangles are symbols, while
all edge types are relations. Symbol attributes are denoted inside the rectangles.

begin

end

Ellipse
color: Color
fillcolor: Color
pos: Point
minSize: int

Text

Text
text: String
font: Font
size: Fsize
color: Color

layout
layout layout layout

inside atCenter

Polygon
color: Color
fillcolor: Color
pos: Point
bpoints: Vector

Activity
name: String
kind: AKind

layout

Polyline
bpoints: Vector
color: Color

atCenter
from

from

Next
inscr: String

to

to

Figure 2: Visual Alphabet for Activity Diagrams

The abstract alphabet is extended by defining the concrete layout of activity diagrams. Activities
are either represented by ellipses or by polygons, depending on their kinds. End activities are depicted
by two ellipses, a black one inside another without fill color. A simple activity usually has a textual
description which is put inside its ellipse. A next relation is shown by a poly line which is attached to
two activity figures. A possible inscription is described by text and positioned at the line center. The
figures and lines are categorized as visuals while their spatial relations are described by constraints.
Each visual has the obvious properties such as font, font size, color, fill color, etc. as attributes. The
whole visual alphabet described by a type graph TC , is depicted in Fig. 2. 4

A visual sentence over a visual alphabet (TC , TA) is given by a pair of graphs (SC , SA). The abstract
syntax graph (ASG) SA shows the abstract syntax structure of this sentence. It is typed over type
graph TA. Correspondingly, the concrete representation SC of a visual sentence, i.e. the spatial relations
graph (SRG) and its connection to the ASG, is typed over type graph TC .

Definition 3.5 (Visual Sentence over Visual Alphabet)
Let Alph = (TGC , TGA) be a visual alphabet. A visual sentence, also called model, over alphabet
Alph is defined by the concrete and abstract graphs (SC , SA) with SC typed over TGC , and SA typed
over TGA.

Proceedings 5th MATHMOD Vienna, February 2006 (I.Troch, F.Breitenecker, eds.)

Tool Integration and Interchange Formats for Hybrid Systems 5 - 4

According to the typing, we have SA ⊆ SC . The restriction of SC to
the types in TGA yields the abstract syntax graph SA, i.e. formally the
diagram to the right is a pullback in the category of graphs [8].

SA
� � //

��
(PB)

SC

��
TGA

� � // TGC

4

Example 3.6 (Activity Diagram as Visual Sentence over the Activity Diagram Alphabet)

In Fig. 3 the abstract syntax of a larger part of the activity diagram in Fig. 1 is shown. Only the
start activity is omitted for space limitations. Its typing over TA in Fig. 2 is shown explicitly by type
names inside of all nodes and at all edges. Moreover, a smaller section of the ASG, namely the activities
receive order, calculate price and the decision and edges between them, is equipped with concrete layout
showing a part of the CSG which is explicitly typed over TC in Fig. 2.

Figure 3: Parts of the Abstract and Concrete Syntax Graph of the sample Activity Diagram (Graph
Layout)

4

3.2 Visual Language over a Visual Alphabet and a Syntax Grammar

Defining a VL by a graph grammar, the application of graph rules builds up syntax graphs of visual
sentences. This is a constructive approach to generate the language VL in contrast to the declarative
MOF approach.

In general, a VL syntax specification is a pair of graph grammars (GGC , GGA) where GGC =
(TGC , SC , PC) is the VL syntax grammar and contains the complete syntax description of the VL.

Definition 3.7 (VL Syntax Grammar)
A VL syntax grammar GG = (GGC , GGA) consists of a concrete syntax grammar and an abstract
syntax grammar GGA. The concrete syntax grammar GGC = (TGC , SC , PC) contains the concrete

Proceedings 5th MATHMOD Vienna, February 2006 (I.Troch, F.Breitenecker, eds.)

Tool Integration and Interchange Formats for Hybrid Systems 5 - 5

type graph TGC of the visual alphabet, a start graph SC , and a set of concrete syntax rules PC . All
graphs in GGC , i.e. the start graph SC and all rule graphs, are typed over TGC . The abstract syntax
grammar GGA = (TGA, SA, PA), contains the abstract type graph TGA of the visual alphabet, a start
graph SA and a set of abstract syntax rules PA.
The abstract start graph SA is constructed by restricting SC to the types
in TGA, i.e. square (1) in the diagram to the right is a pullback in the
category of graphs. Analogously, for each concrete rule pC = (LC →
RC) ∈ PC , we define the abstract rule pA = (LA → RA) ∈ PA by
restricting the rule graphs of the concrete rule pC to the types in TGA.

SA
� � //

��
(1)

SC

��
TGA

� � // TGC

4

Example 3.8 (VL Syntax Grammar for Activity Diagrams)
The syntax rules for activity diagrams define important aspects of the visual language, e.g. the number
of start and end activities which are allowed in one diagram, or the question whether decision branches
have to be merged again. Our variant of activity diagrams allows only one start and one end activity.
This is realized in the abstract syntax grammar (see Fig. 4) by defining an activity diagram as start
graph which consists of exactly one start and one end activity, connected by a next-relation. As none
of the syntax rules adds or deletes start or end activities, their number will always be fixed to one each.

LHS RHS

start graph

LHS RHS

NAC

NAC

x = x_out

y = y_out

1:Activity

2:Next
inscr = ""

begin

1:Activity

kind="end"

kind="decision"

1:Activity begin

kind = "simple"
name = name

Activity

x = x_out
y = y_out + 60

end

2:Next
inscr = ""

begin

1:Next

end

begin end

Next
inscr = leftinscr

beginend

endend

begin

kind = "simple"
name=leftname

Activity

x = x_out − 50
y = y_out + 50

name = ""

Activity

x = x_out

name = ""

Activity

x = x_out
y = y_out + 100

kind = "simple"
name=rightname

Activity

x = x_out + 50
y = y_out + 50

kind="decision"

kind="decision"

begin

y = y_out

addActivityAsDecision(leftname,rightname,leftinscr,rightinscr)

1:Next
end

Activity

y = y_out
x = x_out
kind="simple"

2:Next

begin

inscr = rightinscr
Next

Next
inscr = ""

2:Next

begin
Next
inscr = ""

Next
inscr = ""

kind = "start"
name = ""

Activity

x = 50
y = 10

Next
inscr = ""

kind = "end"
name = ""

Activity

x = 50
y = 100

begin

end

addActivity(name)

1: Activity

Figure 4: Syntax Grammar for Activity Diagrams

The syntax grammar contains two main rules for symbol creation: Rule addActivity inserts a simple
activity after another activity (which must not be a decision or the end activity). The name of the
new activity is given by input parameter name. Rule addActivityAsDecision replaces a simple activity
by a decision activity with two branches. Each branch contains one simple activity. The branches
are merged afterwards by another decision activity. This rule has four input parameters: two arc
inscriptions leftinscr and rightinscr, and two names leftname and rightname for the simple activities
in both branches. Positions of newly inserted activities are computed from the positions of already
existing ones, e.g. in rule addActivity the new activity is inserted at a fixed distance (60 points) below
the activity identified by number 1. The start graph defines the initial position of the start and end
activities. All other layout properties are either constant (such as colors and minimal sizes) or relative
(i.e. the connection points of next-relation lines and the size of simple activities which depends on the
size of the text inside the ellipse.

Proceedings 5th MATHMOD Vienna, February 2006 (I.Troch, F.Breitenecker, eds.)

Tool Integration and Interchange Formats for Hybrid Systems 5 - 6

The activity diagram in Fig. 1 has been edited by applying first rule addActivity(“receive order”)
with the left-hand side activity matched to the start activity, then again applying rule addActiv-
ity(“simple activity”) to obtain a match for the next rule application, namely of rule addActivityAsDeci-
sion(“notify client”, “calculate price”, “product available”, “product not available”) with the left-hand
side activity is matched to the activity “simple activity” which is now replaced by the branch-and-merge
structure. At last, rule addActivity(“send receipt”) is applied, where the left-hand side activity this
time is matched to the activity “calculate price”. Further syntax rules (not depicted in Fig. 4) exist for
deleting and moving activities in order to obtain a well-layouted diagram. The deletion rules roughly
correspond to the inverted creation rules from Fig. 4. 4

All graphs generated by the rules of the syntax grammar GG define its visual language V L.

Definition 3.9 (Visual Language over VL Syntax Grammar GG)
The visual language V L = (V LC , V LA) over a VL alphabet Alph = (TGC , TGA) and a VL syn-
tax grammar GG = (GGC , GGA) consists of a concrete visual language V LC , the elements of which
are typed over TGC and constructed by the rules of the concrete syntax grammar GGC : V LC =
{GC |SC

∗=⇒ GC}, and an abstract visual language V LA, the elements of which are typed over TGA

and constructed by the rules of the abstract syntax grammar GGA: V LA = {GA|SA
∗=⇒ GA}. 4

4. Tool Support

In this section we discuss tool support provided by the AGG tool at the abstract syntax level and by
the Tiger tool, extending the visual definition of visual languages to the concrete syntax level.

4.1 Abstract Syntax Modeling and Analysis by AGG

AGG is a general development environment for typed attributed graph transformation systems which
follows the interpretative approach [1]. Its special power comes from a very flexible attribution concept.
AGG graphs are allowed to be attributed by any kind of Java objects. Graph transformations can be
equipped with arbitrary computations on these Java objects described by a Java expression. The AGG
environment consists of a graphical user interface comprising several visual editors, an interpreter, and
a set of validation tools. The interpreter allows the stepwise transformation of graphs as well as rule
applications as long as possible. AGG supports several kinds of validations which comprise graph
parsing, consistency checking of graphs and conflict detection in concurrent transformations by critical
pair analysis of graph rules. Applications of AGG include graph and rule-based modeling of software,
validation of system properties by assigning a graph transformation based semantics to some system
model, and graph transformation based evolution of software.

On the one hand, AGG comes with its own visual development environment including graphical
editors for graphs and graph transformation rules, on the other hand AGG offers an interface for the
use of the graph transformation machine to external tools which have their own graphical user interface
(such as Tiger). Right now, AGG version 1.3.0 is integrated in Tiger as transformation engine for
the syntax-directed editing of visual diagrams in the generated Eclipse editors.

Critical pair analysis [8] is used to support the check of confluence of a graph grammar, i.e. unique-
ness of the resulting graph, independent of the order of rule applications.

4.2 Concrete Syntax Modeling using Tiger

The tool environment Tiger [13, 12] (Transformation-based generation of modeling environments)
supports the generation of visual environments, based on the one hand on recent MDA development
tools integrated in the development environment Eclipse [5], and on the other hand on typed attributed
graph transformation to support syntax-directed editing.

Eclipse offers rich support for graphical editor development in form of a number of plug-ins (e.g.
EMF [4], Draw2D and the Graphical Editor Framework GEF [6]). Tiger combines the advantages
of precise VL specification techniques (offered by AGG [20]) with sophisticated graphical editor and
layout features (offered by GEF). Graph transformation is used at the abstract syntax level. Tiger
extends the AGG engine by a concrete visual syntax definition. From the definition of the visual
language, the Tiger generator generates Java [19] source code. The generated Java code implements
an Eclipse visual editor plug-in based on GEF which makes use of a variety of GEF’s predefined editor

Proceedings 5th MATHMOD Vienna, February 2006 (I.Troch, F.Breitenecker, eds.)

Tool Integration and Interchange Formats for Hybrid Systems 5 - 7

functionalities. Hence, the generated editor plug-in appears in a timely fashion and the generated editor
code may easily be extended by further functionalities. Fig. 5 shows an overview of the Tiger software
architecture.

uses
Plugin for

generates

Eclipse Environment / GEF

Tiger

Generated Visual Environment

Java CodeAGG (Engine)

uses

Figure 5: Tiger Architecture Overview

In Tiger, a VL alphabet has to contain not only the definition of the VL’s abstract syntax, but
also a specification of the intended layout which controls the generation of the visual editor.

Fig. 6 shows (a part of) the Tiger meta type graph, where all VL alphabet type graphs have to
be typed over this meta typegraph. At the abstract syntax level (the upper part of Fig. 6), each VL
alphabet consists of NodeSymbolTypes (e.g. activities in activity diagrams), EdgeSymbolTypes (e.g.
next-relations in activity diagrams) and LinkTypes (the connection of EdgeSymbolTypes to NodeSym-
bolTypes). Moreover, NodeSymbolTypes may be attributed by AttributeTypes (e.g. names of simple
activities).

NodeSymbolType EdgeSymbolTypeLinkTypeAttributeType

ShapeFigureTextFigure LinkLayout Connection

ConnectionConstraintLayoutConstraint

layout layout layout layout

end begin

first first secondfirst first
second

abstract
syntax

concrete
syntax

Figure 6: Meta Type Graph for VL Alphabets in Tiger

At the concrete syntax level (the lower part of Fig. 6), the graphical layout for a node symbol of a
certain NodeSymbolType is given by a ShapeFigure. The shape of NodeSymbols can be a simple form,
e.g. a rectangle, circle, ellipse or a closed polygon. Shape figure properties such as stroke and fill colors
are given by additional attributes (not shown in Fig. 6). The standard layout for a textual attribute of
type AttributeType is given by a TextFigure (with attributes font, fontColor, ..). The graphical relations
between TextFigures and ShapeFigures are expressed by LayoutConstraints, such as below(TextFigure,
ShapeFigure). Figures can be connected by Connections (i.e. lines or polylines) which represent the
concrete graphical layout for the EdgeSymbolTypes. The graphical representation of a link (e.g. a
colored arrow head) is modeled by a LinkLayout object. Graphical relations between a Figure and a
Connection can be modeled as ConnectionConstraints, such as atCenter(TextFigure, Connection).

Based on a VL alphabet, Tiger uses the default GEF graph layouter to compute the layout of the
symbols and links in the generated editor. Editing operations modeled by abstract syntax rules are
performed in Tiger-generated editor plug-ins by AGG operating on the abstract syntax of the VL
diagrams. The concrete layout is computed after each operation on the basis of the generated GEF
layouting features.

At the current development stage, Tiger generates a GEF-based diagram editor from a VL spec-
ification which consists of a VL alphabet and a syntax grammar. For example, the visual editor for
activity diagrams generated by Tiger from the alphabet in Fig. 2 and the syntax grammar in Fig. 4,
is shown in Fig. 7.

Moreover, model transformation from a model over a source VL to a model over a target VL is also
possible using Tiger. For this purpose, a model transformation graph grammar at the abstract syntax
level has to be provided in AGG, where the rules are typed over a union of the source and target VL

Proceedings 5th MATHMOD Vienna, February 2006 (I.Troch, F.Breitenecker, eds.)

Tool Integration and Interchange Formats for Hybrid Systems 5 - 8

Figure 7: Tiger-generated Editor Plug-In for Activity Diagrams

type graphs and specify the operations which transform elements of the source language to elements
of the target language. An example for a model transformation from activity diagrams to Petri nets is
described in another contribution to this conference [7].

Future work is planned to extend the Tiger environment to support also simulation and animation
of visual behavior models based on graph transformation. Up to now, we allow graph-like languages
only, such as Petri nets, automata or class diagrams.

5. Conclusion

In this paper we have described how graph transformations can be used for modeling visual languages,
where the abstract and concrete syntax of visual languages is based on typed attributed graphs. Fur-
thermore two tool environments have been introduced: the AGG graph transformation environment
based on the abstract syntax and the Tiger environment for generation of visual editor plug-ins in
Eclipse based on the concrete syntax.

In contrast to the meta-modeling approach, for the graph transformation approach suitable analysis
techniques have been developed [8]. For example critical pair analysis and strict local confluence of
critical pairs ensures local confluence of the graph transformation system. This means that the resulting
graph is always unique, independent of the order of rule application.

References

[1] AGG Homepage. http://tfs.cs.tu-berlin.de/agg.

[2] R. Bardohl, G. Taentzer, M. Minas, and A. Schürr. Application of Graph Transformation to
Visual Languages. In H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg, eds., Handbook of
Graph Grammars and Computing by Graph Transformation, Volume 2: Applications, Languages
and Tools. World Scientific, 1999.

Proceedings 5th MATHMOD Vienna, February 2006 (I.Troch, F.Breitenecker, eds.)

Tool Integration and Interchange Formats for Hybrid Systems 5 - 9

[3] J. de Lara, H. Vangheluwe, and M. Alfonseca. Meta-Modelling and Graph Grammars for Multi-
Paradigm Modelling in AToM3. Software and System Modeling: Special Section on Graph Trans-
formations and Visual Modeling Techniques, 3(3):194–209, 2004.

[4] Eclipse Consortium. Eclipse Modeling Framework (EMF) – Version 1.1.1, 2003. http://www.
eclipse.org/emf.

[5] Eclipse Consortium. Eclipse – Version 2.1.3, 2004. http://www.eclipse.org.

[6] Eclipse Consortium. Eclipse Graphical Editing Framework (GEF) – Version 2.1.3, 2004. http:
//www.eclipse.org/gef.

[7] H. Ehrig, K. Ehrig, C. Ermel, and J. Padberg. Construction and Correctness Analysis of a Model
Transformation from Activity Diagrams to Petri Nets. In I. Troch and F. Breitenecker, eds., Proc.
Intern. IMCAS Symposium on Mathematical Modelling (MathMod). ARGESIM-Reports, 2006.

[8] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of Algebraic Graph Transformation.
EATCS Monographs in Theoretical Computer Science. Springer, 2006. to appear.

[9] H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg, eds. Handbook of Graph Grammars
and Computing by Graph Transformation, Volume 2: Applications, Languages and Tools. World
Scientific, 1999.

[10] H. Ehrig, H.-J. Kreowski, U. Montanari, and G. Rozenberg, eds. Handbook of Graph Grammars and
Computing by Graph Transformation. Vol 3: Concurrency, Parallelism and Distribution. World
Scientific, 1999.

[11] H. Ehrig, U. Prange, and G. Taentzer. Fundamental theory for typed attributed graph transfor-
mation. In F. Parisi-Presicce, P. Bottoni, and G. Engels, eds., Proc. 2nd Int. Conference on Graph
Transformation (ICGT’04), Rome, Italy, volume 3256 of LNCS. Springer, 2004.

[12] K. Ehrig, C. Ermel, S. Hänsgen, and G. Taentzer. Towards Graph Transformation based Gener-
ation of Visual Editors using Eclipse. In M. Minas, ed., Visual Languages and Formal Methods,
volume 127/4 of ENTCS, pages 127–143. Elsevier Science, 2004.

[13] K. Ehrig, C. Ermel, S. Hänsgen, and G. Taentzer. Generation of Visual editors as Eclipse Plug-
ins. In Proc. 20th IEEE/ACM International Conference on Automated Software Engineering, IEEE
Computer Society, Long Beach, California, USA, 2005.

[14] A. Habel, R. Heckel, and G. Taentzer. Graph Grammars with Negative Application Conditions.
Special issue of Fundamenta Informaticae, 26(3,4):287–313, 1996.

[15] R. Heckel, J. Küster, and G. Taentzer. Towards Automatic Translation of UML Models into
Semantic Domains . In H.-J. Kreowski, ed., Proc. of APPLIGRAPH Workshop on Applied Graph
Transformation (AGT 2002), pages 11 – 22, 2002.

[16] K. Marriott and B. Meyer. Visual Language Theory. Springer, 1998.

[17] Object Management Group. UML 2.0 OCL Specification, 2003. http://www.omg.org/docs/ptc/
03-10-14.pdf.

[18] Object Management Group. Meta-Object Facility (MOF), Version 1.4, 2005. http://www.omg.
org/technology/documents/formal/mof.htm.

[19] Sun Microsystems. Java – Version 1.5, 2004. http://java.sun.com.

[20] G. Taentzer. AGG: A Graph Transformation Environment for Modeling and Validation of Software.
In J. Pfaltz, M. Nagl, and B. Boehlen, eds., Application of Graph Transformations with Industrial
Relevance (AGTIVE’03), volume 3062 of LNCS, pages 446 – 456. Springer, 2004.

[21] D. Varró. A formal semantics of UML Statecharts by model transition systems. In A. Corradini,
H. Ehrig, H.-J. Kreowski, and G. Rozenberg, eds., Proc. ICGT 2002: 1st Int. Conf. on Graph
Transformation, volume 2505 of LNCS, pages 378–392. Springer, 2002.

Proceedings 5th MATHMOD Vienna, February 2006 (I.Troch, F.Breitenecker, eds.)

Tool Integration and Interchange Formats for Hybrid Systems 5 - 10

