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Abstract

In the framework of graph transformation, simulation rules are well-known to define the op-
erational behavior of visual models. Moreover, it has been shown already how to construct
animation rules in a domain specific layout from simulation rules. An important requirement
of this construction is the semantical correctness which has not yet been considered. In this
paper we give a precise definition for simulation-to-animation (S2A) model and rule trans-
formations. Our main results show under which conditions semantical correctness can be
obtained in the cases without and with negative application conditions for rules. The results
are applied to show the semantical correctness of the S2A transformation of a Radio Clock
model.

Keywords: graph transformation, model and rule transformation, semantical correctness,
simulation, animation
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1 Introduction

In recent years, visual models represented by graphs have become very popular in model-
based software development, as the wide-spread use of UML and Petri nets proves. For the
definition of an operational semantics for visual models, the transformation of graphs plays
a similar central role as term rewriting in the traditional case of textual models. The area of
graph transformation provides a rule-based setting to express the semantics of visual models
(see e.g. [Roz97]). The objective of simulation rules is their application to the states of
a visual model, deriving subsequent model states, thus characterizing system evolution. A
simulation scenario, i.e. a sequence of such simulation steps can be visualized by showing
the states before and after each simulation rule application as graphs.

For validation purposes, simulation may be extended to a domain specific view, called an-
imation view [EB04, EE05b, EHKZ05], which allows to define scenario visualizations in the
layout of the application domain. The animation view is defined by extending the alphabet of
the original visual modeling language by symbols representing entities from the application
domain. The simulation rules for a specific visual model are translated to the animation view
by performing a simulation-to-animation model and rule transformation (S2A transforma-
tion), realizing a consistent mapping from simulation steps to animation steps which can be
visualized in the animation view layout. S2A transformation is defined by a set of S2A graph
transformation rules, and an additional formal construction allowing to apply S2A rules to
simulation rules, resulting in a new set of graph transformation rules, called animation rules.

Comparable theoretical research in the area of applying graph transformation rules to rules
has been done by Parisi-Presicce [PP96]. His approach has provided the basis of our definition
of S2A transformations which additionally allows to transform not only the rule interfaces,
and which also treats negative application conditions (NACs), both for the transforming rules
and for the transformed rules.

An important requirement is the semantical correctness of the S2A transformation in the
sense that the behavior of the original model is preserved in the animation view. Up to now, the
semantical correctness of the S2A transformation has not been considered. In this paper, we
give a formal definition for S2A transformations and show under which conditions semantical
correctness can be obtained. In our approach, an S2A transformation generates one animation
rule for each simulation rule. Hence, our notion of semantical correctness implies that each
animation step (obtained by applying an animation rule) corresponds to a simulation step of
the original model. Please note that there are more general definitions for the semantical cor-
rectness of model transformations which establish a correspondence between one simulation
step in the source model and a sequence of simulation steps in the target model. For our case
of S2A transformation it is sufficient to relate single simulation and animation steps. Interme-
diate animation states providing smooth state transitions are possible nonetheless: They are
defined by enriching an animation rule by animation operations to specify continuous changes
of object properties such as size, color or position. Since animation operations leave the states
before and after a rule application unchanged, they do not influence the semantical correct-
ness of the S2A transformation. Our approach has been implemented in the generic visual
modeling environment GENGED [Gen]. The implementation includes an animation editor,
where animation operations can be defined visually, and animation scenarios can be exported
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to to the SVG format [WWW03].

There exist related tool-oriented approaches, where different visual representations are used
to visualize a model’s behavior. One example is the reactive animation approach by Harel
[HEC03]. Here, the reactive system behavior is specified with tools like Rhapsody [Rha05]
using UML, or the Play-Engine [HM03] using Life-Sequence-Charts, an extension of State-
charts. The animated representation of the system behavior is implemented by linking these
tools to pure animation tools like Flash or Director from Macromedia [Mac04]. Hence, the
mapping from simulation to animation views happens at the implementation level and is not
specified formally. Furthermore, different Petri net tools also offer support for customized
Petri net animations (e.g. the SimPEP tool [Gra99] to animate transition firings of low-level
Petri nets). In general, approaches to enhance the front end of CASE tools for simulating/ani-
mating the behavior of models are restricted to one specific modeling language. In our ap-
proach we integrate animation views at model level with graph transformation representations
for different visual modeling languages based on a formal specification. This provides the
model designer with more flexibility, as the modeling language to be enhanced by animation
features, can be freely chosen.

The paper is organized as follows: Section 2 presents the basic concepts of simulation and
animation, illustrated by our case study in Section 3. In Section 4, the main result on semanti-
cal correctness of S2A transformation is given in the case without NACs. Extensions to cope
with NACs are discussed. Explicit proofs for the case with NACs are given in Section 5, and
the semantical correctness of the Radio Clock case study is presented in Section 6. Section 7
contains a summary as well as an overview on ongoing work.

2 Basic Concepts of Simulation and Animation

We use typed algebraic graph transformation systems (TGTS) in the double-pushout-approach
(DPO) [EEPT06] which have proven to be an adequate formalism for visual language (VL)
modeling. A VL is modeled by a type graph capturing the definition of the underlying visual
alphabet, i.e. the symbols and relations which are available. Sentences or diagrams of the
VL are given by graphs typed over the alphabet type graph. We distinguish the abstract and
the concrete syntax in alphabets and models, where the concrete syntax includes the abstract
symbols and relations, and additionally defines their layout. Formally, a VL can be considered
as a subclass of graphs typed over a type graph TG in the category GraphsTG.

For behavioral diagrams like Statecharts, an operational semantics can be given by a set of
simulation rules PS , using the abstract syntax of the modeling VL. A simulation rule p ∈ PS

is a graph transformation rule, consisting of a triple of graphs p = (L, I, R), called left-hand
side, interface and right-hand side, and two injective morphisms L ← I → R. Applying
the rule p to a graph G means to find a match of L in G and to replace the occurrence m(L)
of L in G by R leading to the target graph G′ of the graph transformation step. In the DPO
approach, the deletion of m(L) and the addition of R are described by two pushouts (a DPO)
in the category GraphsTG of typed graphs. A rule p may be extended by a set of negative
application conditions (NACs) [EEPT06], describing situations in which the rule should not
be applied to G. Formally, the match L

m−→ G satisfies a NAC N with the injective NAC
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morphism L
n−→ N , if there does not exist an injective graph morphism N

x−→ G with
x ◦ n = m. A sequence G0 ⇒ G1 ⇒ ... ⇒ Gn of graph transformation steps is called
transformation and denoted as G0

∗⇒ Gn. A transformation G0
∗⇒ Gn, where the rules of a

rule set P are applied as long as possible (i.e. as long as matches can be found which satisfy
the respective NACs), is denoted by G0

P !
=⇒ Gn.

We define a model’s simulation language V LS , typed over the simulation alphabet TGS ,
as a sublanguage of the modeling language V L, such that all diagrams GS ∈ V LS represent
different states of the model during simulation. Based on V LS , the operational semantics of
a model is given by a simulation specification.

Definition 2.1 (Simulation Specification)
Given a visual language VLS typed over TGS , i.e. VLS ⊆ GraphsTGS

, a simulation specifi-
cation SimSpecVLS

= (VLS , PS) over VLS is given by a TGTS (TGS, PS) s.t. VLS is closed
under simulation steps, i.e.

GS ∈ VLS and GS ⇒ HS via pS ∈ PS implies HS ∈ VLS .

The rules pS ∈ PS are called simulation rules. 4

In order to transform a simulation specification to an animation view, we define an S2A
transformation S2A = (S2AM , S2AR) consisting of a simulation-to-animation model trans-
formation S2AM , and a corresponding rule transformation S2AR. The S2AM transformation
applies S2A transformation rules from a rule set Q to each GS ∈ V LS as long as possible,
adding symbols from the application domain to the model state graphs. The resulting set of
graphs comprises the animation language V LA.

Definition 2.2 (S2AM -Transformation)
Given a simulation specification SimSpecV LS

= (V LS, PS) with VLS typed over TGS and a
type graph TGA, called animation type graph, with TGS ⊆ TGA, a simulation-to-animation
model transformation, short S2AM -transformation,

S2AM : VLS → VLA

is given by S2AM = (VLS , TGA, Q) where (TGA, Q) is a TGTS with non-deleting rules
q ∈ Q, and S2AM -transformations GS

Q !
=⇒ GA with GS ∈ VLS . The animation language

VLA is defined by VLA = {GA| ∃ GS ∈ VLS & GS
Q !
=⇒ GA}. This means GS

Q !
=⇒ GA

implies GS ∈ VLS and GA ∈ VLA, where each intermediate step Gi
qi

=⇒ Gi+1 is called
S2AM -step. 4

Our aim is not only to transform model states but to obtain a complete animation spec-
ification, including animation rules, from the simulation specification. Hence, we define a
construction allowing us to apply the S2A transformation rules from Q also to the simulation
rules. The following definition extends the construction for rewriting rules by rules given by
Parisi-Presicce in [PP96], where a rule q is only applicable to another rule p if it is applicable
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to the interface graph of p. This means, q cannot be applied if p deletes or generates objects
which q needs. In this paper, we want to add animation symbols to simulation rules even if
the S2A transformation rule is not applicable to the interface of the simulation rule. Hence,
we distinguish three cases in Def. 2.3. Case (1) corresponds to the notion of rule rewriting in
[PP96], adapted to non-deleting S2A transformation rules. In Case (2), the S2A transforma-
tion rule q is not applicable to the interface, but only to the left-hand side of a rule p (p deletes
something that is needed by q), and in Case (3), q is only applicable to the right-hand side of
p (p generates something that q needs).

Definition 2.3 (Transformation of Rules by Non-Deleting Rules)
Given a non-deleting rule q = (Lq → Rq) and a rule p1 = (L1

l1← I1
r1→ R1) then q is

appicable to p1 leading to a rule transformation step p1
q _ *4 p2 , if the precondition of one

of the following three cases is satisfied and p2 = (L2
l2← I2

r2→ R2) is defined according to the
corresponding construction

• Case (1)
Precondition (1): There is a match h : Lq → I1.
Construction (1): Let I2, L2, and R2 be defined as pushout objects in the following
squares leading to injective morphisms l2 and r2

Lq

h

��

q // Rq

��
I1

r1

��

l1
�����

qI // I2
l2 �����

r2

��
L1

qL // L2

R1
qR // R2

• Case (2)
Precondition (2): There is no match h : Lq → I1, but a match h′ : Lq → L1.
Construction (2): Let L2 be defined as pushout in the following diagram and define
I2 = I1, R2 = R1, r2 = r1, and l2 = q′ ◦ l1

Lq

h′

��

q // Rq

��
L1

qL // L2

• Case (3)
Precondition (3): There are no matches h : Lq → I1 and h′ : Lq → L1, but there is a
match h′′ : Lq → R1.
Construction (3): Let R2 be defined as pushout in the following diagram and define
L2 = L1, I2 = I1, l2 = l1, and r2 = q′ ◦ r1
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Lq

h′′

��

q // Rq

��
R1

qR // R2

4

The transformation of rules defined above allows now to define an S2AR transformation of
rules, leading to an S2A transformation S2A = (S2AM , S2AR) from the simulation specifi-
cation SimSpecV LS

to the animation specification AnimSpecV LA
.

Definition 2.4 (S2AR-Transformation)

Given a simulation specification SimSpecV LS
= (VLS , PS) and an S2AM -transformation

S2AM = (VLS , TGA, Q) then a simulation-to-animation rule transformation, short S2AR-
trafo,

S2AR : PS → PA,

is given by S2AR = (PS, TGA, Q) and S2AR transformation sequence pS
Q !_*4 pA with

pS ∈ PS , where rule transformation steps p1
q _ *4 p2 with q ∈ Q (see Def. 2.3) are applied

as long as possible.

The animation rules PA are defined by PA = {pA| ∃ pS ∈ PS ∧ pS
Q !_ *4 pA }.

This means pS
Q !_*4 pA implies pS ∈ PS and pA ∈ PA, where each intermediate step

pi
qi _*4 pi+1 is called S2AR-step.

4

Definition 2.5 (Animation Specification and S2A Transformation)
Given a simulation specification SimSpecV LS

= (VLS , PS), an S2AM transformation S2AM :
VLS → VLA and an S2AR transformation S2AR : PS → PA, then

1. AnimSpecV LA
= (VLA, PA) is called animation specification, and each transformation

step GA
pA=⇒ HA with GA, HA ∈ VLA and pA ∈ PA is called animation step.

2. S2A : SimSpecV LS
→ AnimSpecV LA

, defined by S2A = (S2AM , S2AR) is called
simulation-to-animation model and rule transformation, short S2A transformation.

4
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3 Case Study: Radio Clock

In this section, we illustrate the main concepts of Section 2 by the well-known Radio Clock
case study from Harel [Har87]. The behavior of a radio clock is modeled by the nested
Statechart shown in Fig. 1 (a). The radio clock display can show alternatively the time, the date
or allows to set the alarm time. The changes between the modes are modeled by transitions
labeled with the event Mode. The nested state Alarm allows to change to modes for setting
the hours and the minutes (transition Select) of the alarm time. A Set event increments the
number of hours or minutes which are currently displayed.

Figure 1: Radio Clock Statechart (a), and Animation View Snapshots (b)

A domain-specific animation view of the Radio Clock is illustrated in Fig. 1 (b). The two
snapshots from a possible simulation run of the Statechart in Fig. 1 (a) correspond to the active
state Set:Hours before and after the set event has been processed. The animation view shows
directly the current display of the clock and indicates by a red light that in the current state
the hours may be set. Furthermore, buttons are shown either to proceed to the state where the
minutes may be set (button Select), or to switch back to the Time display (button Mode).

The abstract syntax graph of the Radio Clock Statechart is the given by the graph GI in
Fig. 2.

Figure 2: Abstract Syntax Graph GI of the Radio Clock Statechart

The set of model-specific simulation rules PS to be applied to GI is shown in Fig. 3. In
the first rule layer, the initialization of an event queue is realized by the rules initial(h,m,e)
and addEvent(e) which generate the object, set its current pointer to the top level state “Radio
Clock” and fill its event queue. In this way, the events that should be processed during a
simulation run, can be defined in the beginning of the simulation. Alternatively, events also
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may be inserted at the end of the queue while a simulation is running. Furthermore, the object
node holds values for the initial alarm time given by the rule parameters of rule initial. The
second layer contains all remaining rules and realizes the actual simulation, processing the
events in the queue. For each superstate there is a down rule which moves the current pointer
from the superstate to its initial substate. Analogously, for each substate there is an up rule
moving the current pointer from the substate to its superstate. For each transition there is
a trans rule moving the current pointer from the source state of the transition to its target
state, if the next event in the queue is the triggering event of the transition. For the transitions
named “set”, the value of hours or the minutes of the current alarm time are incremented by
the respective rule (i.e. in case the hours variable has the value 23, the incr method would
replace it by 00, and the minutes variable 59 would be replaced by 00; in all other cases, the
incr method corresponds to “+ 1”).

Figure 3: Simulation Rules for the Radio Clock

The simulation specification SimSpecV LS
= (VLS , PS) consists of the simulation lan-

guage VLS typed over TGS , where TGS is the simulation alphabet depicted in the left-hand
side of Fig. 4, PS is the set of simulation rules shown in Fig. 3, and VLS consists of all graphs
that can occur in any Radio Clock simulation scenario: VLS = {GS|∃GI

PS∗=⇒ GS}, where GI

is the initial graph shown in Fig. 2.

Fig. 4 shows the animation view type graph TGA, which is a disjoint union of the simulation
alphabet for Statecharts TGS , shown in the left part of Fig. 4, and the new visualization
alphabet TGV shown in the right part of Fig. 4 which models the elements for a domain-
specific visualization of the radio clock behavior. (Since we do not need the concrete syntax
of the Statecharts to define the animation view, we do not depict it in Fig. 4.)

The three modes of the clock are visualized by five different displays: a date display, show-
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Figure 4: Simulation and Animation Alphabet for the Radio Clock

ing the date (month / day / weekday), a time display showing the time (hours / minutes),
and three alarm displays showing the time for the alarm to ring, but differing in the states of
two lights which indicate the states Display (both lights off), Set:Hours (light SetH on), and
Set:Minutes (light SetM on).

The S2A transformation rules Q, shown in Fig. 5, add corresponding visualization elements
to the simulation rules and to the initial radio clock graph, depending on the state the current
pointer is pointing at. We visualize only basic states which do not have any substates. Super-
states (i.e. the states Radio Clock and Alarm are not visualized in the animation view, as they
are considered as transient, abstract states which are active on the way of the current pointer
up and down the state hierarchy between two basic states, but which have no concrete layout
themselves.

The S2A rule clock initializes the animation view part by adding a Clock symbol to all
(rule) graphs it is applied to. This rule belongs to S2A rule layer 0. For simplicity, we do not
visualize the real lapse of time, and show just constants for time and date of the clock. To
the Clock symbol, all generated animation view elements are linked. S2A rules time and date
generate the time and date displays the corresponding active state named “Time” or “Date”,
respectively. S2A rules display, setH and setM generate the different alarm displays, where
the numbers of hours and minutes to be shown in the respective display positions are the
current values of the corresponding Object attributes.

All Radio Clock S2A transformation rules are typed over TGA, and have a negative appli-
cation condition NAC which equals its RHS denoted by R and N in Fig. 5. Moreover, all rules
within the same rule layer are parallel independent, as none of them generates elements which
are forbidden by the NACs of the other rules in the layer.

The Radio Clock S2AM transformation S2AM : VLS → VLA is given by S2AM =

(VLS , TGA, Q) with animation language VLA = {GA|∃GS ∈ VLS : GS
Q !
=⇒ GA}.

We consider a sample S2A transformation sequence which transforms the simulation rule
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Figure 5: S2A Rules for the Radio Clock

upTime in Fig. 3 to the animation rule S2A(upTime) in Fig.7 using S2A rules in Fig.5. In the
first S2A transformation step, only the S2A rule clock is applicable. It is applied according to
Case (1) of Def. 2.3 to all three rule graphs of rule upTime, which results in an intermediate
rule up′Time in Fig.6.

Secondly, rule time from S2A rule layer 2 is applicable to rule up′Time, according to Case
(2), as there is a match to the LHS of rule up′Time. The application adds a symbol of type
TimeDisplay to the LHS graph, and links it to the Clock symbol. This transformation step is
depicted in Fig. 6, resulting in the animation rule S2A(upTime) = (L′′ ← I ′′ → R′′), since no
more S2A rules can be applied to this rule.

The Radio Clock S2AR transformation S2AR : PS → PA is given by S2AR = (PS, TGA, Q)

with animation rules PA = {pA|∃pS ∈ PS : pS
Q !_*4 pA }. The Radio Clock animation speci-

fication AnimSpecV LA
based on the S2A transformation S2A = (S2AM , S2AR) is given by

AnimSpecV LA
= (VLA, PA), where VLA is the animation language obtained by the Radio

Clock S2AM transformation, and PA are the animation rules obtained by the Radio Clock
S2AR transformation of the simulation rules PS . Fig. 7 shows some of the animation rules
which we obtain by S2A transformation applying the S2A rules in Fig. 5 to the simulation
rules in Fig. 3.

Fig. 8 shows an animation scenario in the concrete notation of the animation view, where
the animation rules are applied beginning with the start graph S2AM(GI).

The first state of the scenario in Fig. 8 is obtained by applying animation rules from the first
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Figure 6: Application of S2A Rule time = (L → R) to Rule up′Time = (L′ ← I ′ → R′)
resulting in Animation Rule S2A(upTime) = (L′′ ← I ′′ → R′′)

Figure 7: Animation Rules for the Radio Clock

rule layer for setting the alarm time and initializing the event queue with the events mode,
mode, select, set, mode. The subsequent animation steps result from applying animation
rules from the second rule layer for event processing or for moving up and down the state
hierarchy.

11



Figure 8: Animation Scenario of the Radio Clock Model

4 Semantical Correctness of S2A Transformations

In this section, we continue the general theory of Section 2 and study semantical correctness
of S2A-transformations. In our case, semantical correctness of an S2A-transformation means
that for each simulation step GS

pS=⇒ HS there is a corresponding animation step GA
pA=⇒

HA where GA (resp. HA) are obtained by S2A model transformation from GS (resp. HS),
and pA by S2A rule transformation from pS . Note that this is a special case of semantical
correctness defined in [EE05a], where instead of a single step GA

pA=⇒ HA more general
sequences GA

∗
=⇒ HA and HS

∗
=⇒ HA are allowed.

Definition 4.1 (Semantical Correctness of S2A Transformations)
An S2A-transformation S2A : SimSpecV LS

→ AnimSpecV LA
given by S2A = (S2AM :

VLS → VLA, S2AR : PS → PA) is called semantically correct, if for each simulation step
GS

pS=⇒ HS with

GS ∈ VLS and each S2AR-transformation sequence pS
Q !_*4 pA

(see Def. 2.4) we have

1. S2AM -transformation sequences GS
Q !
=⇒ GA and HS

Q !
=⇒ HA,

and

2. an animation step GA
pA=⇒ HA

GS
Q ! +3

pS

��

GA

pA

��

Q ! _*4

HS
Q ! +3 HA

4

Before we prove semantical correctness in Theorem 4.4, we first show local semantical
correctness in Theorem 4.2 where only one S2AM -step (resp. S2AR-step) is considered.

Theorem 4.2 (Local Semantical Correctness of S2A-Transformations)
Given an S2A-transformation S2A : SimSpecV LS

→ AnimSpecV LA with S2A = (S2AM :

VLS → VLA, S2AR : PS → PA) and an S2AR-transformation sequence pS
Q !_*4 pA with

intermediate S2AR-step pi
q _ *4 pi+1 with q ∈ Q. Then for each graph transformation step

Gi
pi

=⇒ Hi with Gi, Hi ∈ GraphsTGA
we have
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1. Graph transformation steps Gi
qi

=⇒ Gi+1 in Cases (1) and (2),
Gi

id
=⇒ Gi+1 in Case (3), Hi

q
=⇒ Hi+1 in Cases (1) and (3),

and Hi
id

=⇒ Hi+1 in Case (2) of Def. 2.3.

2. Graph transformation step Gi+1
pi+1
=⇒ Hi+1 with Gi+1, Hi+1 ∈

GraphsTGA

Gi
q / id +3

pi

��

Gi+1

pi+1

��

q _ *4

Hi

q / id +3 Hi+1

4

Proof: We consider the respective pushout diagrams for pi
q _ *4 pi+1 according to the three

rule transformation cases in Def. 2.3, and show by pushout composition/decomposition that in
each case we obtain the commuting double cube below where the two back squares comprise
the given DPO for the transformation step Gi

pi
=⇒ Hi, and in the front squares we get the

required DPO for the transformation step Gi+1
pi+1
=⇒ Hi+1.

In Case (1) of Def. 2.3, we obtain the top squares as pushouts and then construct Gi+1, Ci+1,
Hi+1 as pushouts in the diagonal squares, leading to unique induced morphisms Ci+1 → Gi+1

and Ci+1 → Hi+1 s.t. the double cube commutes. By pushout composition/decomposition
also the front and the bottom squares are pushouts. Furthermore, we obtain pushouts for the
transformation steps Gi

q
=⇒ Gi+1 and Hi

q
=⇒ Hi+1 by composing pushout (POI) below

with the respective pushouts from the double cube.

Cases (2) and (3) are handled similarly, with the difference that some morphisms in the
respective double cubes are identities.

Li

����� mi

��

Ii
lioo

��

�����

ri // Ri

��

�����

Li+1

mi+1

��

Ii+1
oo

��

// Ri+1

��
Gi

�����
Ci

oo

�����
// Hi

�����

Gi+1 Ci+1
oo // Hi+1

Lq

h

��

q //

(POI )

Rq

��
Ii

qi+1 // Ii+1

2

The following notions are used for proving the main Theorem 4.4.

Definition 4.3 (Termination of S2AM and Rule Compatibility of S2A)
An S2AM transformation S2AM : VLS → VLA is terminating if each transformation
GS

Q ∗
=⇒ Gn can be extended to GS

Q ∗
=⇒ Gn

∗
=⇒ Gm such that no q ∈ Q is applicable to

Gm anymore.

An S2A-transformation S2A = (S2AM : VLS → VLA, S2AR : PS → PA) with S2AM =
(VLS , TGA, Q) is called rule compatible, if for all pA ∈ PA and q ∈ Q we have that pA and q
are parallel and sequential independent.
More precisely for each G

pA=⇒ H with GS
Q ∗
=⇒ G and HS

Q ∗
=⇒ H for some GS , HS ∈ VLS

and each G
q

=⇒ G′ (resp. H
q

=⇒ H ′) we have parallel (resp. sequential) independence of
G

pA=⇒ H and G
q

=⇒ G′ (resp. H
q

=⇒ H ′). 4
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Theorem 4.4 (Semantical Correctness of S2A)
Each S2A transformation S2A = (S2AM , S2AR) is semantically correct, provided that S2A
is rule compatible, and S2AM is terminating. 4

Proof: Given S2A = (S2AM : VLS → VLA, S2AR : PS → PA) with terminating S2AM =

(VLS , TGA, Q), a simulation step GS
pS=⇒ HS with GS ∈ VLS , and an S2AR transformation

sequence pS
Q !_*4 pA with

pS = p0
q0 _ *4 p1

q1 _*4 .. qn−1_*4 pn = pA with n ≥ 1, then we can apply the Local Semantical
Correctness Theorem 4.2 for i = 0, .., n− 1, leading to the following diagram

GS = G0
q0 +3

pS=p0

��

G1
q1 +3

p1

��

G2
q2 +3

p2

��

... +3 Gn−1
qn−1 +3

pn−1

��

Gn

pn=pA

��

Q! _*4

HS = H0 q0

+3 H1 q1

+3 H2 q2

+3 ... +3 Hn−1 qn−1

+3 Hn

which includes the case n = 0 with GS = G0, HS = H0 and pS = p0 = pA, where no
q ∈ Q can be applied to pS = p0 = pA. If no q ∈ Q can be applied to Gn and Hn anymore,
we are ready, because the top sequence is GS

Q !
=⇒ Gn = GA, and the bottom sequence is

HS
Q !
=⇒ Hn = HA.

Now assume that we have qn ∈ Q which is applicable to Gn leading to Gn
qn

=⇒ Gn+1. Then,
rule compatibility implies parallel independence with GA

pA=⇒ HA, and the Local Church
Rosser Theorem [EEPT06] leads to square (n):

Gn
qn +3

pA

��
(n)

Gn+1
+3

pA

��

... +3 Gm−1 qm−1

+3

pA

��

Gm = GA

pA

��
Hn

qn +3 Hn+1
+3 ... +3 Hm−1

qm−1+3 Hm = HA

This procedure can be repeated as long as rules qi ∈ Q are applicable to Gi for i ≥ n.
Since the S2AM transformation is terminating, we have some m > n such that no q ∈ Q is
applicable to Gm anymore, leading to a sequence GS = G0

Q !
=⇒ Gm = GA.

Now assume that there is some q ∈ Q which is still applicable to Hm leading to Hm
q

=⇒
Hm+1. Now rule compatibility implies sequential independence of Gm

pA=⇒ Hm
q

=⇒ Hm+1.
In this case, the Local Church Rosser Theorem would lead to a sequence Gm

q
=⇒ Gm+1

pA=⇒
Hm+1 which contradicts the fact that no q ∈ Q is applicable to Gm anymore. This implies
that also H0

Q ∗
=⇒ Hn

Q ∗
=⇒ Hm is terminating, leading to the required sequence HS = H0

Q !
=⇒

Hm = HA. 2
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5 Extension by Negative Application Conditions

In Sections 2 and 4 we have only considered the basic case of rules without negative applica-
tion conditions (NACs). In this section, we extend the general theory by considering all rules
and transformation of rules with NACs.

Definition 5.1 (Transformation of Rules with NACs)

Given a non-deleting rule q = Lq → Rq with NACq = (Lq
n→ Nq) and a rule p1 = (L1

l1←
I1

r1→ R1) with NAC1i = (L1
n1i−→ N1i)(i = 1, .., n) then q is appicable to p1 leading to a rule

transformation step with NACs p1
q _ *4 p2 , if the precondition of one of the following four

cases is satisfied and p2 = (L2
l2← I2

r2→ R2) with NAC2i = (L2
n2i−→ N2i)(i = 1, .., n) is

defined according to the corresponding construction:

• Case (1)
Precondition (1): There is a match h : Lq → I1 such that the matches h, l1 ◦ h, r1 ◦ h,
and n1i ◦ l1 ◦ h satisfy NACq for i = 1, .., n.
Construction (1): As before (without NACs), where now (N2i, n2i) is defined by the
following pushout

L1

n1i

��

qL // L2

n2i

��
N1i

qNi // N2i

• Case (2)
Precondition (2): Precondition (1) is not satisfied, but there is a match h′ : Lq → L1

such that h′ and n1i ◦ h′ satisfy NACq for i = 1, .., n.
Construction (2): As before, where now (N2i, n2i) is defined by pushout

L1

h

��

qL // L2

��
N1i

qNi // N2i

• Case (3)
Precondition (3): Preconditions (1)–(2) are not satisfied, but there is a match h′′ : Lq →
R1 which satisfies NACq.
Construction (3): As before, where now (N2i, n2i) = (N1i, n1i) for i = 1, .., n.

• Case (4)
Precondition (4): Preconditions (1)–(3) are not satisfied, but there are matches h′′′i :
Lq → N1i which satisfy NACq for i = 1, .., n.
Construction (4): Let (N2i, n2i) be defined by PO
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Lq

h′′′i

��

q // Rq

��
N1i

qNi // N2i

and n2i = qNi
◦ n1i (i = 1, .., n). Moreover let p2 = p1.

4

Now we are able to extend the concepts of simulation and animation specifications and
S2A transformations in Section 2 including semantical correctness in Section 4 to the case
with NACs.

Definition 5.2 (Animation Specification and S2AM -Transformation with NACs)

Given a simulation specification SimSpecV LS
= (VLS , PS) with NACs for PS , an S2AM -

transformation S2AM : VLS → VLA given by S2AM = (VLS , TGA, Q) with NACs for
Q and a corresponding S2AR-transformation S2AR : PS → PA based on transformation of
rules with NACs (see Definition 5.1), then

1. AnimSpecV LA
= (VLA, PA) is called animation specification with NACs

2. S2A : SimSpecV LS
→ AnimSpecV LA

, defined by S2A = (S2AM , S2AR) is called
S2A-transformation with NACs.

4

Definition 5.3 (Semantical Correctness of S2A-Transformations with NACs)

An S2A-transformation S2A : SimSpecV LS
→ AnimSpecV LA with NACs given by S2A =

(S2AM : VLS → VLA, S2AR : PS → PA) and NACs for PS and PA is called seman-
tically correct, if for each simulation step GS

pS=⇒ HS with GS ∈ VLS and each S2AR-

transformation sequence pS
Q !_*4 pA with NACs for Q we have

1. S2AM -transformation sequences GS
Q !
=⇒ GA and HS

Q !
=⇒ HA, and an

2. Animation step GA
pA=⇒ HA

GS
Q ! +3

pS

��

GA

pA

��

Q ! _*4

HS
Q ! +3 HA
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4

In order to show semantical correctness of S2A transformations with NACs in Theorem 5.6,
we need local semantical correctness which requires NAC-compatibility of S2A in the follow-
ing sense:

Definition 5.4 (NAC-Compatibility of S2A)

An S2A-transformation S2A = (S2AM : VLS → VLA, S2AR : PS → PA) with NACs
and S2AM = (VLS , TGA, Q) is called NAC-compatible, if the following conditions hold for
all q ∈ Q and Gi

pi
=⇒ Hi derivable with NACs from some GS

pS=⇒ HS by S2A:

1. (NAC-compatibility of S2AM )
If q is applicable to pi with NACq , then each match of q in Gi (resp. Hi) satisfies NACq .

2. (NAC-compatibility of S2AR)
If pi

q _*4 pi+1 satisfies NACq , and Gi
pi

=⇒ Hi satisfies NAC (pi) then Gi+1
pi+1
=⇒ Hi+1

satisfies NAC (pi+1 ).

4

In the following proposition we state that each S2AR transformation S2AR : PS → PA

with S2AR = (PS, TGA, Q) is NAC-compatible provided that we have a suitable layered
graph transformation system as in our case study. Thus, given a concrete S2A transformation,
it suffices to show only NAC-compatibility of S2AM , where general criteria are still missing.

Proposition 5.5 (NAC-compatibility of S2AR)
Each S2AR-transformation S2AR : PS → PA with S2AR = (PS, TGA, Q) is NAC-compatible
in the sense of Def. 5.4, 2. 4

Proof Sketch: We know that pi satisfies NACi. This means, there does not exist an injective
graph morphism x : Ni → Gi with x ◦ ni = mi. We must show that then there does not exist
an injective graph morphism x′ : Ni+1 → Gi+1 with x′ ◦ ni+1 = mi+1.

We assume that there exists such an injective graph morphism x′ : Ni+1 → Gi+1 with x′ ◦
ni+1 = mi+1. Then we have the situation depicted in the diagram below. If we can show
that now we get an injective graph morphism x : Ni → Gi with x ◦ ni = mi, we have a
contradiction to the precondition.

Ni+1

x′
GGG

G

##GGG
G

Li+1

mA

��

nAoo

Ni

x
""

Q !
9Azzzzzzzz

zzzzzzzz
Li

mS

��

nSoo Q

!
7?wwwwwwww

wwwwwwww
Gi+1

Gi

Q

!
7?wwwwwwww

wwwwwwww
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We can show the existence of such an injective morphism x : Ni → Gi for all four
cases for the transformation of rules with NACs given in Def. 5.1. In the complete proof
(see [Erm06]), we use pushout composition/decomposition properties, and the characteris-
tics of a right adjoint functor f<

TGS
: TGA → TGS which models the restriction from

graphs typed over the animation alphabet TGA to graphs typed over the simulation alpha-
bet TGS , i.e. f<

TGS
(GA) = GA|TGS

. Moreover, we use the fact that S2A rules are type-
increasing by definition, which means that we have n rule layers and type graph inclusions
TGS = TG0 ⊆ TG1.. ⊆ TGn = TGA such that for each S2A rule Lq

q−→ Rq belonging to
layer i, Lq is typed over TGi, Rq is typed over TGi+1, and Rq|TGi

= Lq.

2

Similar to Theorem 4.4, we also need rule compatibility where Def. 4.3 has to be extended
to the case with NACs. This means that in addition to parallel and sequential independence in
the case without NACs, we have to require that the induced matches satisfy the corresponding
NACs.

Theorem 5.6 (Semantical Correctness of S2A-Transformations with NACs)

Each S2A-transformation S2A = (S2AM , S2AR) is semantically correct including NACs,
provided that S2AM is terminating and S2A is rule compatible and NAC-compatible (see
Def. 5.4). 4

Proof: Local semantical correctness in Theorem 4.2 can be extended to local semantical cor-
rectness with NACs using NAC-compatibility of S2A. This allows to extend also Theorem 4.4
to the case with NACs, where now rule compatibility (parallel and sequential independences)
and termination have to be required with NACs. Termination of S2AM holds in general, as it
has been shown in [Erm06]. 2

6 Semantical Correctness of the Radio Clock Case Study

In this section we show the semantical correctness of our case study.

To ensure the semantical correctness S2A transformation of the Radio Clock S2A = (S2AM , S2AR),
we have to check transformation NAC-compatibility of the S2A-transformation. Since NAC-
compatibility of S2AR holds in general see Proposition 5.5), it suffices to show NAC-compa-
tibility of S2AM and the rule compatibility of S2A.

Proposition 6.1 (NAC-Compatibility of Radio Clock S2AM -Transformation)
The Radio Clock S2AM transformation is NAC-compatible according to Def. 5.4, 1. 4

Proof: We have to show that for all pi
q _*4 pi+1 with q = (Lq

q−→ Rq) and NACq =

(Lq
q−→ Rq) such that the match from q to pi satisfies NACq, the following S2AM steps also

satisfy NACq according to the rule transformation cases below:
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Case (1): Gi
q

=⇒ Gi+1 and Hi
q

=⇒ Hi+1,
Case (2): Gi

q
=⇒ Gi+1,

Case (3): Hi
q

=⇒ Hi+1.

We show for all q ∈ Q that for a match Lq → X there is no NAC-morphism (Rq−Lq)
x−→

X . Due the property of all q ∈ Q being type-increasing, and due to TGV ∩ TGS = ∅, only in
this case NACq is satisfied for this match.

The only S2A rule which can be applied to any rule pi according to Case (1) is rule clock.
As rule clock belongs to rule layer 1, all rules pi it can be applied to, are the original simulation
rules, and do not contain symbols typed over TGV . Hence, a step involving the application of
clock to a rule pi is always NACq-compatible, since

- the match Lq
h−→ Ipi

lpi−→ Lpi

mpi−→ Gi satisfies NACq as Gi does not contain TGV -
typed elements, and hence there is no NAC-morphism (Rq − Lq)

x−→ Gi;

- the match Lq
h−→ Ipi

rpi−→ Rpi

m∗
pi−→ Hi satisfies NACq as Hi does not contain TGV -

typed elements, and hence there is no NAC-morphism (Rq − Lq)
x−→ Hi;

All subsequent S2A transformation steps are either according to Case (2) or to Case (3).
Note that the right-hand sides of all S2A rules do not overlap in their generated elements, i.e.
in (Rq − Lq).

Let us consider a step according to Case (2), first: We assume that q is applicable to pi, i.e.
there is a match Lq

h−→ Li satisfying NACq. Now, if NACq is not satisfied for the match
Lq

h−→ Li
m−→ Gi, then this means that q must have been applied before to another rule pj

according to Case (2) with pj
q _*4 pj+1 _ *4 .. _*4 pi with j < i, since q is the only S2A

rule which could add the elements (Rq−Lq) to Gi. But in this case, we have a NAC-morphism
(Rq − Lq) → Lj+1 → Li which is a contradiction to our assumption that NACq is satisfied
for the match Lq → Li. Hence, NACq must be satisfied for the match Lq

h−→ Li
m−→ Gi.

Analogously, we can argue for the Case (3) steps: We assume that q is applicable to pi, i.e.
there is a match Lq

h−→ Ri satisfying NACq. Now, if NACq is not satisfied for the match
Lq

h−→ Ri
m∗
−→ Hi, then this means that q must have been applied before to another rule pj

according to Case (3) with pj
q _*4 pj+1 _ *4 .. _*4 pi with j < i, since q is the only S2A

rule which could add the elements (Rq−Lq) to Hi. But in this case, we have a NAC-morphism
(Rq − Lq) → Rj+1 → Ri which is a contradiction to our assumption that NACq is satisfied
for the match Lq → Ri. Hence, NACq must be satisfied for the match Lq

h−→ Ri
m∗
−→ Hi. 2

Proposition 6.2 (Rule Compatibility of the Radio Clock S2A Transformation)
The Radio Clock S2A transformation is rule compatible in the sense of Def. 4.3, i.e. all pA

and all q are parallel and sequential independent.

4
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Proof: If pA is applicable to a graph G, then there is a match LA
m−→ G. Therefore, symbols

of at least those types from TGV that are contained in LA have also to be contained in G. So,
in the sequence GS

Q∗
=⇒ G there have been applied at least those rules q ∈ Q which have also

been applied in pS
Q !_*4 pA according to Case (1) or (2) (i.e. applied to some Li, i = 0, .., n).

All those rules q are not applicable anymore to LA because of their NACs NACq. Neither are
they applicable to G, due to NAC-compatibility.

So we have to consider only those overlappings LA/Lq where h(Lq) is not completely
included in m(LA). As the LHS of S2A rule clock is empty, we do not have to consider this
rule at all. Moreover, there exists exactly one instance of type Clock in each graph G, in all
Lq and in all LA. Hence, all pairs LA/Lq overlap in the Clock symbol. This is uncritical, as
the Clock symbol is always preserved by all rules. Furthermore, there exists always only one
State symbol with a certain name. So all pairs LA/Lq which both contain a State symbol with
the same name, overlap in this node. Again, this is uncritical, as State symbols are always
preserved by all rules. The next symbol and link LA/Lq could overlap at, is a symbol of type
Object and a link of type current. The Object symbol is the last node apart from the Clock and
State nodes in the LHSs of the S2A transformation rules. As we have argued above, LA and
Lq overlap already in the Clock and State nodes. If they would overlap also in the Object node
and the current link, they would overlap completely, i.e. h(Lq) would be included in m(LA).
This cannot be the case as shown above. Hence, LA and Lq do not overlap in the Object node.
As there is exactly one Object node and one current link in any graph G, we can conclude that
there are no pairs LA/Lq which do not overlap completely, and in these cases NACq forbids
the application of q.

Hence, all pairs pA/q are parallel independent.

Due to the Local Church Rosser Theorem, we know that if G
pA=⇒ H and G

q
=⇒ G′ are

parallel independent (which was shown above), then G
pA=⇒ H and H

q
=⇒ H ′ are sequential

independent. 2

Theorem 6.3 (Semantical Correctness of the Radio Clock S2A Transformation)
The S2A transformation S2A = (S2AM , S2AR) based on the S2A transformation system
(TGA, Q) for the Radio Clock model, where the S2A transformation rules Q are shown in
Fig. 5, is semantically correct. 4

Proof: Termination has been shown to be fulfilled in [Erm06] for general S2A transforma-
tion systems with suitable rule layers by applying the termination criteria given in [EEdL+05].
Moreover, the Radio Clock S2A transformation is rule-compatible (see Proposition 6.2) and
NAC-compatible, where NAC-compatibility of S2AM is shown explicitly (see Proposition 6.1),
and NAC-compatibility of S2AR has been shown for general S2A transformation systems
with suitable rule layers in Proposition 5.5.

Altogether this implies semantical correctness due to Theorem 5.6. 2
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7 Conclusion and Ongoing Work

In this paper we have given a precise definition for simulation-to-animation (S2A) model and
rule transformations. The main results show under which conditions an S2A transformation
S2A : SimSpecV LS

→ AnimSpecV LA
between a simulation and an animation specification

is semantically correct in the cases without and with negative application conditions. The
results have been used to show semantical correctness of our radio clock case study.

For simplicity, the theory has been presented in the DPO-approach for typed graphs, but it
can also be extended to typed attributed graphs, where injective graph morphisms are replaced
by suitable classes M and M ′ of typed attributed graph morphisms for rules and negative
application conditions, respectively (see [EEPT06]).

Moreover, it is interesting to analyse not only semantical correctness of S2A : SimSpecV LS
→

AnimSpecV LA
, but to construct also a backward model and rule transformation A2S : Anim-

SpecV LA
→ SimSpecV LS

, essentially given by restriction of all graphs and rules to the type
graph TGS . Semantical correctness of A2S means that for each animation step GA

pA=⇒ HA

there is also a corresponding simulation step GS
pS=⇒ HS using the restrictions GS, HS

and pS of GA, HA and pA, respectively. Finally, we can consider semantical equivalence
of SimSpecV LS

and AnimSpecV LA
, which requires existence and semantical correctness of

S2A and A2S , such that both are inverse to each other, i.e.

A2S ◦ S2A = Id and S2A ◦ A2S = Id .
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